WO2021004090A1 - 色彩转换组件、显示面板及制作方法 - Google Patents

色彩转换组件、显示面板及制作方法 Download PDF

Info

Publication number
WO2021004090A1
WO2021004090A1 PCT/CN2020/080676 CN2020080676W WO2021004090A1 WO 2021004090 A1 WO2021004090 A1 WO 2021004090A1 CN 2020080676 W CN2020080676 W CN 2020080676W WO 2021004090 A1 WO2021004090 A1 WO 2021004090A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
hole
barrier
color conversion
Prior art date
Application number
PCT/CN2020/080676
Other languages
English (en)
French (fr)
Inventor
王岩
Original Assignee
成都辰显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都辰显光电有限公司 filed Critical 成都辰显光电有限公司
Priority to KR1020227000045A priority Critical patent/KR20220008378A/ko
Publication of WO2021004090A1 publication Critical patent/WO2021004090A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/08Optical design with elliptical curvature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • This application relates to the field of display technology, in particular to a color conversion component, a display panel and a manufacturing method.
  • Flat display panels such as Liquid Crystal Display (LCD) panels, Organic Light Emitting Diode (OLED) panels, and display panels using light-emitting diodes (Light Emitting Diode, LED) devices have high image quality and low cost.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • LED Light Emitting Diode
  • the display panel can support the display of color patterns through multiple colorization schemes. For example, colorization can be achieved by adding a light conversion layer with quantum dots (QD). Although this method can meet the requirements of colorization, the structure of the light conversion layer is unreasonable, resulting in color display of the display panel. There are problems such as color shift at different viewing angles.
  • QD quantum dots
  • the embodiments of the present application provide a color conversion component, a display panel, and a manufacturing method, which can meet the colorization requirements of the display panel and can avoid the color shift problem of the display panel under different viewing angles.
  • a color conversion component including: a light conversion layer, the light conversion layer includes: a barrier wall layer, the barrier wall layer is provided with at least one through hole, the through hole is formed by the light conversion layer
  • the barrier layer penetrates in the first direction from the light entrance side to the light exit side; at least one light conversion unit, each light conversion unit is disposed in one of the through holes, and the light conversion unit converts incident light into a wavelength range different from that of the incident light
  • the barrier layer includes two or more barrier layers stacked along the first direction to gather the emitted light toward the center of the through hole.
  • a display panel including: a light-emitting layer, including a plurality of light-emitting units and barriers, and adjacent light-emitting units are separated from each other by the barriers; the above-mentioned color conversion component, It is arranged on the light-emitting layer, and each light-emitting unit is arranged opposite to one of the through holes.
  • a method for manufacturing a display panel including: providing a driving backplane formed with a light-emitting layer, the light-emitting layer includes a plurality of light-emitting units and barriers, and adjacent light-emitting units are mutually connected through the barriers. Separately arranged; forming the color conversion component on the light-emitting layer includes: forming a barrier layer on the light-emitting layer, the barrier layer has through holes corresponding to each light-emitting unit, and the barrier layer includes two or more barrier layers stacked, The light is emitted toward the center of the through hole; the light conversion unit is formed in at least part of the through hole during or after the forming of the barrier layer.
  • the incident light can be converted into the emergent light with a wavelength range different from that of the incident light by the light conversion unit, thereby realizing the full-color display of the display panel.
  • the barrier layer includes two or more barrier layers stacked, the incident light rays of different angles after being reflected by the corresponding barrier layers can all be concentrated toward the center of the corresponding through hole, reducing the optical path of different light rays. In order to avoid the color cast problem of the display panel under different viewing angles.
  • FIG. 1 is a schematic top view of the structure of a color conversion component according to an embodiment of the present application
  • FIG. 2 is a schematic partial cross-sectional structure diagram of a color conversion component according to an embodiment of the present application
  • Figure 3a is a partial cross-sectional view of a light conversion layer according to an embodiment of the present application.
  • Fig. 3b is a schematic partial top view of a barrier layer according to an embodiment of the present application.
  • FIG. 5 is a partial cross-sectional view of a light conversion layer according to another embodiment of the present application.
  • Fig. 6 is a partial cross-sectional view of a light conversion layer according to another embodiment of the present application.
  • Fig. 7 is a schematic partial cross-sectional view of a light scattering layer according to an embodiment of the present application.
  • FIG. 8 is a schematic partial cross-sectional view of a light scattering layer according to another embodiment of the present application.
  • FIG. 9 is a schematic partial cross-sectional view of a light scattering layer according to another embodiment of the present application.
  • FIG. 10 is a schematic partial cross-sectional structure diagram of a display panel according to an embodiment of the present application.
  • FIG. 11 is a partial enlarged schematic diagram of a display panel according to an embodiment of the present application.
  • FIG. 12 is a flowchart of a manufacturing method of a display panel according to an embodiment of the present application.
  • 13a to 13s are schematic structural diagrams corresponding to each step of a manufacturing method of a display panel according to an embodiment of the present application.
  • a color conversion assembly 100 is provided, including a light conversion layer 30, and the light conversion layer 30 includes a barrier layer 31 and at least one light conversion unit 32.
  • a through hole 312 is provided in the barrier wall layer 31, and the through hole 312 penetrates the barrier wall layer 31 in the first direction X from the light incident side to the light output side of the light conversion layer 30.
  • At least one light conversion unit 32 is disposed in the at least one through hole 312, and the light conversion unit 32 can convert incident light into emitted light having a wavelength range different from that of the incident light.
  • the barrier layer 31 includes two or more barrier layers stacked along the first direction X.
  • two or more barrier layers may include a barrier layer 31a, a barrier layer 31b, and a barrier layer 31c to converge and emit light toward the center of the through hole 312.
  • the number of light conversion units 32 may be one, two or more, and the number of through holes 312 may also be one, two or more.
  • the number of the light conversion units 32 may be less than or equal to the number of the through holes 312, that is, each through hole 312 may be provided with one light conversion unit 32, or only a part of the through holes 312 may be provided with the light conversion unit 32.
  • the incident light can be converted into outgoing light having a wavelength range different from that of the incident light by the light conversion unit 32, so as to realize the full-color display of the display panel to which the color conversion assembly 100 is applied.
  • the barrier layer 31 includes two or more barrier layers 31a, 31b, 31c stacked, so that the incident light rays of different angles after being reflected by the corresponding barrier layers can all be gathered toward the center of the corresponding through hole 312. Achieve collimation. That is, all the emitted light rays can be emitted substantially along the first direction X, which reduces the optical path difference of the rays at different exit angles, thereby avoiding the problem of color shift of the display panel under different viewing angles.
  • the color conversion component 100 provided in the embodiments of the present application can be applied to micro-luminescence display technology, and of course, can also be applied to technical fields such as LCD display technology and OLED display technology.
  • LCD display technology and OLED display technology.
  • the following will take the application in the field of microled display technology as an example for description.
  • the number of barrier layers included in the barrier layer 31 of the color conversion assembly 100 can be set according to the angle of incident light and reflection requirements, as long as it can better ensure that the emitted light can be It is sufficient to converge and emit toward the center of the through hole 312 to reduce the requirements for the optical path difference of the light rays at different exit angles.
  • the light-emitting element that generates incident light may use a blue micro-light-emitting diode chip.
  • the light conversion unit 32 may include a red conversion unit and a green conversion unit.
  • the red conversion unit converts the light of its corresponding light-emitting element into red light to form a red sub-pixel
  • the green conversion unit converts the light of its corresponding light-emitting element into green light to form a green sub-pixel. At least part of the light-emitting unit can be above
  • the light conversion unit 32 is not provided to maintain the original color of the light-emitting element and form a blue sub-pixel.
  • the red conversion unit includes a photoluminescent material for generating red light, for example, a material formed by mixing red quantum dots and photoresist or a material formed by mixing red organic photoluminescence material and photoresist.
  • the green conversion unit includes a photoluminescence material for generating green light, for example, a material formed by mixing green quantum dots and photoresist or a material formed by mixing green organic photoluminescence material and photoresist.
  • the photoresist is a negative adhesive
  • the quantum dot component can be inorganic nanoparticles such as ZnS, ZnO, CdS, InP, etc.
  • each barrier layer 31a, 31b, 31c is provided with a receiving groove penetrating in the first direction X and opposite to each light emitting element.
  • the opposite receiving grooves 311a of the barrier layers 31a, 31b, and 31c jointly form a through hole 312.
  • the light conversion unit 32 can be filled in the receiving groove 311a of any barrier layer 31a, 31b, 31c and connected to the surface of the barrier layer 31a, 31b, 31c facing the through hole 312.
  • the size of the light conversion unit 32 may be less than or equal to the size of the barrier layer where it is located. In some other examples, it can also be larger than the size of the barrier layer and extend upward and/or downward to the next barrier layer, as long as it can meet the color conversion requirements of the incident light to the exit light.
  • the light conversion unit 32 may be located in the lowermost barrier layer 31a provided close to the light incident side of the light conversion layer 30 and at the center point or focus position of the bottom of the through hole 312, so as to improve the pairing of the light conversion unit 32. Corresponding to the light conversion rate of incident light, reduce the risk of light leakage.
  • the size of the light conversion unit 32 is smaller than the depth of the through hole 312.
  • the size of the light conversion unit 32 is smaller than the depth of the through hole 312.
  • the light-gathering ability of two or more barrier layers toward the center of the through hole 312 is increasing, which is easier to meet the effect of gathering the emitted light toward the center of the through hole 312.
  • two or more barrier layers face the surface of the through hole 312
  • the light reflection angle is increasing.
  • the light reflection angle M1 of the surface of the blocking layer 31a facing the through hole 312 is smaller than the light reflection angle M2 of the surface of the blocking layer 31b facing the through hole 312 than the light reflection angle M3 of the surface of the blocking layer 31c facing the through hole 312.
  • the light reflection angle mentioned above and below refers to the angle between the incident light and its corresponding normal.
  • the opening area of the end of the through hole 312 near the light entrance side of the light conversion layer 30 is smaller than the opening area of the end of the through hole 312 near the light exit side of the light conversion layer 30.
  • the barrier layer 31 can adopt a variety of structural forms, as long as it can meet the requirements for gathering the emitted light.
  • the radial dimension of the surface of each barrier layer 31a, 31b, 31c facing the through hole 312 near the light entrance side is smaller than the radial dimension of the end near the light exit side, so that each barrier layer 31a, The surfaces 31b and 31c facing the through hole 312 are both cone-shaped.
  • each barrier layer 31a, 31b, 31c facing the through hole 312 is a closed annular surface, and its projection in the first direction X may be a ring structure, for example, a circular ring structure or a polygonal ring structure .
  • the radial dimension of the end close to the light incident side refers to the radial dimension of the inscribed circle or the circumscribed circle of the end projected in the first direction X.
  • the radial dimension of the end close to the light exit side refers to the radial dimension of the inscribed circle or circumscribed circle of the end projected in the first direction X.
  • the surface of the barrier layer 31a facing the through hole 312 is a closed annular surface, and the projection of the barrier layer 31a along the first direction X is a circular ring
  • the radial dimension of the surface of the barrier layer 31a facing the through hole 312 near the light entrance side is D1
  • the radial dimension of the end near the light exit side is D2
  • D1 is smaller than D2.
  • each barrier layer 31a, 31b, 31c for the incident light irradiated on the surface thereof.
  • the surfaces of the two adjacent barrier layers facing the through hole 312 are connected by a transition surface, and the surfaces of the two adjacent barrier layers facing the through hole 312 are respectively arranged to intersect with the transition surface to enclose
  • the side wall forming the through hole 312 has a stepped cylindrical shape as a whole.
  • the angle between the surface of the two adjacent barrier layers facing the through hole 312 and the horizontal plane increases sequentially, that is, as shown in FIG. 3a, the angle ⁇ is smaller than the angle ⁇ and smaller than the angle ⁇ to optimize
  • the light-gathering effect achieves the purpose of collimating the emitted light.
  • each barrier layer 31a, 31b, 31c of the retaining wall layer 31 faces the through hole 312
  • the surface can still be cone-shaped.
  • the angles between the surfaces of the two adjacent barrier layers facing the through hole 312 and the horizontal plane are the same, and the surfaces of the two or more barrier layers facing the through hole 312 are connected end to end in the first direction X (that is, connected in a continuous manner ), the side wall surrounding the through hole 312 has a smooth cone shape as a whole, which can also meet the gathering effect of the emitted light.
  • each barrier layer 31 facing the through hole 312 is an arc surface, wherein along the first direction X, the angle between the tangent of the adjacent arc surface and the horizontal plane increases in sequence. That is, the surface of each barrier layer 31 facing the through hole 312 may be an arc surface, and each arc surface is convex away from the axial direction of the through hole 312, wherein along the first direction X, the through hole is enclosed by the side wall. The cross-sectional area of the hole gradually increases.
  • each barrier layer 31a, 31b, 31c facing the through hole 312 may be an arc surface, along the first direction X, the angle between the tangent of the adjacent arc surface and the horizontal plane Increasing sequentially, that is, the angle w is smaller than the angle y and the angle z. That is, the surface of each barrier layer 31a, 31b, 31c facing the through hole 312 may all be arc-shaped surfaces, and each arc-shaped surface is convex outward in the axial direction away from the through hole 312, wherein, along the first direction X, the side walls are enclosed The cross-sectional area of the formed through hole 312 gradually increases.
  • the horizontal plane mentioned above and below may be a flat surface perpendicular to the first direction X.
  • the light conversion layer 30 of the color conversion component 100 provided in the foregoing embodiments further includes a light reflection layer 40.
  • the light-reflecting layer 40 is disposed on the surface of each barrier layer 31a, 31b, 31c facing the through hole 312.
  • the reflective layer 40 By providing the reflective layer 40, the surface of each barrier layer 31a, 31b, 31c facing the through hole 312 can be completely covered, and the reflectivity of the light from the light-emitting unit 21 can be improved to improve the convergence of the light, so that the light is as vertical as possible
  • the emission in the first direction X further reduces the probability of color shift in the display panel applied by the color conversion component 100.
  • the reflective layer 40 may be a metal layer.
  • the color conversion assembly 100 provided by the embodiments of the present application is not limited to the provision of a reflective layer 40 to increase the reflectivity of incident light.
  • the color conversion assembly 100 provided by the foregoing embodiments of the present application can be composed of reflective materials with different reflectivity, which can also meet the increasing light-gathering ability of two or more barrier layers 31a, 31b, 31c toward the center of the through hole 312 Trend requirements to better meet the requirements of light gathering and collimation.
  • the color conversion component 100 provided by the foregoing embodiments of the present application further includes planarization layers 50a, 50b, and 50c.
  • the planarization layers 50a, 50b, and 50c fill the through holes 312 and cover the light conversion layer 30.
  • the side of the light conversion layer 30 away from the light-emitting layer 20 can be planarized, which is beneficial to color
  • the application of the conversion component 100 in a display panel is also more conducive to the formation of two or more barrier layers 31a, 31b, and 31c.
  • the color conversion assembly 100 provided by the foregoing embodiments of the present application further includes a Bragg reflective layer 70.
  • the Bragg reflective layer 70 is located on the light-emitting side of the light conversion layer 30, and the projection covering portion of the Bragg reflective layer 70 on the light conversion layer 30 Light conversion unit 32.
  • the color conversion component 100 provided in the implementation of the present application is provided with a Bragg reflective layer 70, so that the light emitted from the light conversion layer 30 is reflected and transmitted by the Bragg reflective layer 70 to better realize a full-color display.
  • the light-emitting element of the incident light as a blue micro-light emitting diode
  • the red light and green light converted by the light conversion layer 30 can be transmitted through the Bragg reflective layer 70, and are disposed opposite to the light conversion unit 32 without being converted.
  • the blue light can be reflected by the Bragg reflective layer 70, which better guarantees the color display effect of the display panel.
  • the color conversion component 100 provided by the foregoing embodiments of the present application further includes a light scattering layer 80.
  • the light scattering layer is located on the side of the Bragg reflective layer 70 away from the light conversion layer 30, and the light scattering layer 80 may be one of a micro lens and a scattering particle layer.
  • the surface of the light scattering layer 80 facing the light emitting layer 20 is a concave-convex surface.
  • a planarization layer 81 may be provided on the side of the light scattering layer 80 facing the Bragg reflective layer 70.
  • each through hole 312 may be provided with a light conversion unit 32.
  • the multiple light conversion units 32 include a red conversion unit, a green conversion unit, and a blue conversion unit, which can also meet the color display requirements of the color conversion component 100.
  • each display area of the color conversion assembly 100 includes at least three Sub-pixels of different colors realize color display.
  • the barrier layer 31 includes two or more barrier layers 31a, 31b, 31c stacked in the thickness direction X, from the light-emitting layer 20 to the direction away from the light-emitting layer 20, the two or more barrier layers 31a, 31b, 31c are
  • the light-gathering ability of the center of the through hole 312 is increasing, so that the light from different angles emitted by the light-emitting unit 21 is reflected by the barrier layers 31a, 31b, 31c with different light-gathering ability, and can be gathered to the center of the corresponding through hole 312 to reduce
  • the optical path difference of the light from different exit angles prevents the color shift problem of the display panel under different viewing angles.
  • An embodiment of the present application also provides a display panel.
  • the display panel includes a light-emitting layer 20 and the color conversion components 100 of the foregoing embodiments.
  • the light-emitting layer 20 includes a plurality of light-emitting units 21 and barriers. 22. Adjacent light-emitting units 21 are separated from each other by barriers 22.
  • the color conversion element 100 is disposed on the light-emitting layer 20, and each light-emitting unit 21 is disposed opposite to one of the through holes 312 of the color conversion element 100. The light emitted by the light emitting unit 21 can be used as the incident light of the color conversion component 100.
  • the display panel may further include a driving backplane 10 disposed on the side of the light-emitting layer 20 away from the color conversion component 100.
  • the driving backplane 10 may include a base substrate and a driving circuit disposed on the base substrate.
  • the driving circuit may Composed of thin film transistors and other devices, the driving backplane 10 is also called an array substrate.
  • the barrier 22 included in the light-emitting layer 20 may be a light-absorbing black matrix, and the barrier 22 defines a plurality of accommodating parts.
  • the accommodating parts may have an inverted trapezoidal structure, or of course, may also be a rectangular section structure with relatively vertical edges. It is not specifically limited, as long as it can achieve a barrier effect on the adjacent light-emitting layer 20.
  • the side wall of the accommodating part may be provided with a light-reflecting layer, and the light-reflecting layer may be made of a light-reflecting material such as metal.
  • the light-emitting units 21 may be distributed in an array, and a plurality of light-emitting units 21 distributed in an array may be arranged in the accommodating portion and electrically connected to the driving circuit respectively, and controlled by the driving circuit.
  • a barrier 22 is provided between adjacent light-emitting units to prevent the light emitted from the light-emitting units 21 from crosstalking each other.
  • the barrier 22 is provided with a reflective layer on the side wall facing the receiving part, which can improve the light reflection of the light-emitting unit 21 to increase the light extraction rate along the thickness direction X and reduce the side light leakage/light mixing, resulting in low light utilization efficiency, color mixing and other risks .
  • the light emitting unit 21 may be a micro light emitting diode chip. In some optional examples, the light emitting unit 21 may be a blue micro light emitting diode chip. Each containing portion may be provided with a light emitting unit 21. Of course, it can also be based on the containing portion and the light emitting unit. The size ratio of 21 is to set more than two light-emitting units 21, which is not specifically limited here. In order to facilitate the arrangement of the light conversion layer 30, optionally, a planarization layer 23 is provided on the side of the light-emitting layer 20 away from the driving backplane 10, so that the light-emitting layer 20 has a planarized surface.
  • a cover 60 is further provided on the side of the color conversion component 100 away from the light-emitting layer 20, and the color conversion component 100 is clamped between the cover 60 and the light-emitting layer. Between layer 20.
  • the display panel provided by the foregoing embodiments of the present application because it includes the color conversion assembly 100 of the foregoing embodiments, can not only meet its own color display requirements, but also has a function of gathering light rays to reduce light rays from different exit angles.
  • the optical path difference of the display panel avoids the color shift problem of the display panel under different viewing angles.
  • an embodiment of the present application also provides a manufacturing method of a display panel, including the following steps:
  • the light-emitting layer 20 includes a plurality of light-emitting units 21 and barriers 22 distributed in an array. Adjacent light-emitting units 21 are separated from each other by the barriers 22.
  • Forming the color conversion component 100 on the light-emitting layer 20 includes: forming a barrier layer 31 on the light-emitting layer 20, the barrier layer 31 has through holes 312 corresponding to each light-emitting unit 21, and the barrier layer includes more than two layers
  • the barrier layers are stacked to converge and emit light toward the center of the through hole 312, and the light conversion unit 32 is formed in at least part of the through hole 312 during or after the forming of the barrier layer 31.
  • FIGS. 13a to 13s show schematic structural diagrams corresponding to each step of the manufacturing method of the display panel of the embodiment of the present application.
  • step 100 first take a driving backplane 10, which can be a glass plate, and a driving circuit has been fabricated on the driving backplane 10, and a light-emitting unit 21, such as a blue light-emitting diode, is fabricated on the backplane , Forming the structure shown in Figure 13a.
  • a driving backplane 10 which can be a glass plate
  • a driving circuit has been fabricated on the driving backplane 10
  • a light-emitting unit 21 such as a blue light-emitting diode
  • a barrier 22 is fabricated on the driving backplane 10, which can be a light-absorbing black matrix, or a barrier structure with a reflective layer 40, which can be fabricated by printing or photolithography.
  • the reflective layer 40 can be fabricated by a metal evaporation process. The structure shown in Figure 13b and Figure 13c is formed.
  • step 200 as shown in FIG. 13d, the light-emitting layer 20 is planarized. Specifically, a planarization layer 23 can be formed on the barrier 22 and the light-emitting unit 21, which can be made by printing or spin coating, etc., to make the light emitting A flattened surface is formed on the layer 20, that is, the structure shown in FIG. 13d is formed.
  • this step may specifically include:
  • a first barrier layer 31a is formed on the planarized surface, and the first barrier layer 31a has a receiving groove 311a disposed opposite to each light-emitting unit 21, forming the structure shown in FIG. 13e.
  • a reflective layer 40 may be provided on the surface of the first barrier layer 31a facing its own containing groove 311a to form a structure as shown in FIG. 13f.
  • the light conversion unit 32 is formed in the plurality of accommodating grooves 311a of the first barrier layer 31a.
  • the light conversion unit 32 may include a red conversion unit 321 and a green conversion unit 322, respectively corresponding to the finally formed red and green pixels.
  • the red and green conversion unit can be photoresist or ink doped with red and green quantum dots, which can be made by a printing process or a photolithography process, and then the first barrier layer 31a and the light conversion unit 32 are planarized to form the light
  • the first planarization layer 50a of the conversion layer 30 further forms the structure shown in FIG. 13g and FIG. 13h.
  • a second barrier layer 31b is formed on the planarized first barrier layer 31a, specifically, a second barrier layer 31b is formed on the first planarization layer 50a, and the second barrier layer 31b has a connection with each light emitting unit 21.
  • the receiving grooves 311a disposed opposite to each other flatten the second barrier layer 31b, and form the second planarization layer 50b of the light conversion layer 30 to form the structure shown in FIGS. 13i and 13k.
  • a reflective layer 40 may be provided on the surface of the second barrier layer 31b facing its own containing groove 311a to form a structure as shown in FIG. 13j.
  • the third barrier layer 31c may be continuously formed on the second barrier layer 31b, and the planarization layer 50c may be planarized to form the structure shown in FIGS. 13l-13n.
  • each barrier layer 31a, 31b, 31c and the receiving groove 311a disposed opposite to the same light-emitting unit 21 together form one of the through holes 312, and the sidewalls surrounding each through hole 312 can be tapered, cylindrical, or stepped. Smooth arc tube shape. Regardless of the shape, it can be roughly arc-shaped reflective cup shape, which can satisfy that the light-gathering ability of two or more barrier layers toward the center of the through hole 312 increases from the light-emitting layer 20 to the direction away from the light-emitting layer 20. Ensure the gathering and collimation requirements of the light of the light-emitting unit 21.
  • the reflective layer 40 may be provided on the surface facing the respective receiving groove 311a, and metal evaporation may be used. The process of plating.
  • another cover plate 60 is taken, which may be a glass plate, to form the structure shown in FIG. 13o.
  • a light scattering layer 80 is formed on the cover plate 60 first.
  • the light scattering layer 80 can be a microlens, an uneven surface, or a layer of scattering particles, etc., which can be nano-imprinted , Surface etching, glue coating, photolithography and other processes, and planarize the light scattering layer 80, specifically set the planarization layer 81 to form the structure shown in Figure 13p and Figure 13q, and form on the planarized light scattering layer 80
  • the Bragg reflective layer 70 forms the cover plate assembly 200, that is, the structure shown in FIG. 13r.
  • the cover plate assembly 200 is docked with the color conversion assembly 100, which can be specifically bonded by filling glue, so that the Bragg reflective layer 70 is located between the light conversion layer 30 and the cover plate 60 to form a display panel.
  • the manufactured display panel can meet the requirements of color display and can overcome the color shift problem.
  • the multi-layer barrier layers 31a, 31b, and 31c of the light conversion layer 30 are made in a layered manner, which can not only ensure the reflection and collimation of light, but also facilitate the production and molding of the display panel, so it is easy to promote and use .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请涉及一种色彩转换组件、显示面板及制作方法,色彩转换组件包括光转换层,光转换层包括挡墙层,挡墙层内设有至少一个贯穿孔,贯穿孔在由光转换层的入光侧至出光侧的第一方向上贯穿挡墙层,光转换层还包括至少一个光转换单元每个光转换单元设置于其中一个贯穿孔内,光转化单元将入射光线转化为与入射光线的波长范围不同的出射光线;其中,挡墙层包括沿第一方向层叠设置的两层以上阻挡层,以向贯穿孔的中心聚拢出射光线。本申请实施例提供的色彩转换组件、显示面板及制作方法,能够满足显示面板的彩色化要求,且能够避免显示面板在不同视角下存在色偏问题。

Description

色彩转换组件、显示面板及制作方法
相关申请的交叉引用
本申请要求享有于2019年07月11日提交的名称为“色彩转换组件、显示面板及制作方法”的中国专利申请第201910625722.9号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,特别是涉及一种色彩转换组件、显示面板及制作方法。
背景技术
液晶显示(Liquid Crystal Display,LCD)面板、有机发光二极管显示(Organic Light Emitting Diode,OLED)面板以及利用发光二极管(Light Emitting Diode,LED)器件的显示面板等平面显示面板因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
显示面板可以通过多种彩色化方案来实现支持彩色图案的显示。例如可以通过增加具有量子点(quantum dot,QD)的光转换层来实现彩色化,该种方式虽然能够满足彩色化要求,但也因光转换层因结构设计不合理,导致显示面板彩色化显示时在不同视角下存在色偏等问题。
发明内容
本申请实施例提供一种色彩转换组件、显示面板及制作方法,能够满足显示面板的彩色化要求,且能够避免显示面板在不同视角下存在色偏问题。
一方面,根据本申请实施例提出了一种色彩转换组件,包括:光转换层,光转换层包括:挡墙层,挡墙层内设有至少一个贯穿孔,贯穿孔在由光转换层的入光侧至出 光侧的第一方向上贯穿挡墙层;至少一个光转换单元,每个光转换单元设置于其中一个贯穿孔内,光转化单元将入射光线转化为与入射光线的波长范围不同的出射光线;其中,挡墙层包括沿第一方向层叠设置的两层以上阻挡层,以向贯穿孔的中心聚拢出射光线。
另一方面,根据本申请实施例提出了一种显示面板,包括:发光层,包括多个发光单元及阻隔物,相邻发光单元通过阻隔物相互分离设置;上述的色彩转换组件,色彩转换组件设置于发光层,每个发光单元与其中一个贯穿孔相对设置。
又一方面,根据本申请实施例提出了一种显示面板的制作方法,包括:提供形成有发光层的驱动背板,发光层包括多个发光单元及阻隔物,相邻发光单元通过阻隔物相互分离设置;在发光层上形成色彩转换组件,包括:在发光层上形成挡墙层,挡墙层具有与各个发光单元对应的贯穿孔,且挡墙层包括两层以上层叠设置的阻挡层,以向贯穿孔的中心聚拢出射光线;在挡墙层成型的过程中或者成型之后在至少部分贯穿孔内成型光转化单元。
根据本申请实施例提供的色彩转换组件、显示面板及制作方法,通过光转化单元能够将入射光线转化为与入射光线的波长范围不同的出射光线,实现显示面板的全彩化显示。同时,由于挡墙层包括层叠设置的两层以上阻挡层,使得不同角度的入射光线经过相应阻挡层的反射之后的出射光线均能够向对应的贯穿孔中心聚拢,减小不同出射光线的光程差,进而避免显示面板在不同视角下存在色偏问题。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的色彩转换组件的俯视结构示意图;
图2是本申请一个实施例的色彩转换组件的局部剖视结构示意图;
图3a是本申请一个实施例的光转换层的局部剖视图;
图3b是本申请一个实施例的其中一层阻挡层的局部俯视结构示意图;
图4是本申请一个实施例的光转换层的贯穿孔形状简化图;
图5是本申请另一个实施例的光转换层的局部剖视图;
图6是本申请又一个实施例的光转换层的局部剖视图;
图7是本申请一个实施例的光散射层的局部剖视结构示意图;
图8是本申请另一个实施例的光散射层的局部剖视结构示意图;
图9是本申请又一个实施例的光散射层的局部剖视结构示意图;
图10是本申请一个实施例的显示面板的局部剖视结构示意图;
图11是本申请一个实施例的显示面板的局部放大示意图;
图12本申请一个实施例的显示面板的制作方法流程图;
图13a~图13s是本申请一个实施例的显示面板的制作方法各步骤对应的结构示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
为了更好地理解本申请,下面结合图1至图13根据本申请实施例的色彩转换组件、显示面板及制作方法进行详细描述。
请一并参阅图1、图2及图3a,根据本申请实施例提出了一种色彩转换组件100,包括光转换层30,光转换层30包括挡墙层31和至少一个光转换单元32。挡墙层31内设有贯穿孔312,贯穿孔312在由光转换层30的入光侧至出光侧的第一方向X上贯穿挡墙层31。至少一个光转换单元32设置于至少一个贯穿孔312内,光转化单元32能够将入射光线转化为与入射光线的波长范围不同的出射光线。其中,挡墙层31包括沿第一方向X层叠设置的两层以上阻挡层。例如,在一些可选的示例中,两层以上阻挡层可以包括阻挡层31a、阻挡层31b及阻挡层31c,以向贯穿孔312的中心聚拢出射光线。
可选的,光转换单元32的个数可以为一个、两个或多个,贯穿孔312的个数也可以为为一个、两个或多个。光转换单元32的个数可以小于等于贯穿孔312的个数,即,可以使得每个贯穿孔312内设置一个光转换单元32,或者只有部分贯穿孔312内 设置光转换单元32。
本申请实施例提供的色彩转换组件100,通过光转化单元32能够将入射光线转化为与入射光线的波长范围不同的出射光线,实现色彩转换组件100所应用的显示面板的全彩化显示。
同时,由于挡墙层31包括层叠设置的两层以上阻挡层31a、31b、31c,使得不同角度的入射光线经过相应阻挡层的反射之后的出射光线,均能够向对应的贯穿孔312中心聚拢,达到准直。即,使得出射光线都能够大致沿着第一方向X出射,减小不同出射角度光线的光程差,进而避免显示面板在不同视角下存在色偏问题。
本申请实施例提供的色彩转换组件100可以应用至微发光显示技术,当然,也可以应用至LCD显示技术领域、OLED显示技术领域等技术领域。为了更好的理解本申请实施例的色彩转换组件100,以下将以应用至microled显示技术领域为例进行举例说明。
可选的,在第一方向X上,色彩转换组件100的挡墙层31所包括的阻挡层的层数可以根据入射光线的角度以及反射要求等设定,只要能够更好的保证出射光线能够向贯穿孔312的中心聚拢并出射,减小不同出射角度光线的光程差的要求即可。
可选的,产生入射光线的发光元件可以采用蓝光微发光二极管芯片,为满足彩色化显示要求,光转换单元32可以包括红色转换单元以及绿色转换单元。红色转换单元将其对应的发光元件的光线转换成红光,形成红色子像素,绿色转换单元将其对应的发光元件的光线转换成绿光,形成绿色子像素,至少部分数量的发光单元上方可以不设置光转换单元32,以保持发光元件的本来色彩,形成蓝色子像素。
其中,红色转换单元包括用于产生红光的光致发光材料,例如,红色量子点与光刻胶混合形成的材料或者红色有机光致发光材料与光刻胶混合形成的材料。绿色转换单元包括用于产生绿光的光致发光材料,例如,绿色量子点与光刻胶混合形成的材料或者绿色有机光致发光材料光刻胶混合形成的材料。其中,光刻胶为负性胶,量子点成分可以为ZnS、ZnO、CdS、InP等无机纳米颗粒。
可选的,挡墙层31的两层以上阻挡层31a、31b、31c中,每层阻挡层31a、31b、31c上均设置有沿第一方向X贯通并与各发光元件相对设置的容纳槽311a,各阻挡层31a、31b、31c相对设置的容纳槽311a共同形成贯穿孔312。
光转换单元32可以填充于任意一层阻挡层31a、31b、31c的容纳槽311a内并与该 层阻挡层31a、31b、31c朝向贯穿孔312的表面连接。在第一方向X上,光转换单元32的尺寸可以小于等于其所在的阻挡层的尺寸。在一些其他示例中,也可以大于其所在阻挡层的尺寸而向上和/或向下延伸至下一层阻挡层中,只要能够满足入射光线至出射光线的色彩转换要求均可。
可选的,光转换单元32可以位于靠近光转换层30的入光侧设置的最下面一层阻挡层31a中且位于贯穿孔312底部的中心点位置或者焦点位置,以提高光转换单元32对相应入射光线的光转换率,降低漏光风险。
可选的,沿第一方向X,光转换单元32的尺寸小于贯穿孔312的深度,在保证显示面板彩色化显示要求并保证度出射光线的聚拢要求的基础上,更易于色彩转换组件100的成型,并降低其成本。
可选的,在第一方向X上,两层以上阻挡层向贯穿孔312中心的聚光能力呈递增趋势,更易于满足对出射光线向贯穿孔312中心的聚拢效果。
参阅图3a、图3b以及图4,在一些可选的示例中,为了保证对相应出射光线的聚拢效果,可选的,在第一方向X上,两层以上阻挡层朝向贯穿孔312的表面的光反射角呈递增趋势。例如,阻挡层31a的朝向贯穿孔312的表面的光反射角M1小于阻挡层31b的朝向贯穿孔312的表面的光反射角M2小于阻挡层31c的朝向贯穿孔312的表面的光反射角M3。通过上述设置,能够优化挡墙层31对出射光线的聚拢效果,使得出射光线能够更接近于沿着第一方向X出射,进一步缩小不同出射光线之间的光程差,保证显示效果。
需要说明的是,以上以及以下所提及的光反射角是指出射光线与其相应法线之间的夹角。
可选的,贯穿孔312靠近光转换层30的入光侧一端的开口面积小于贯穿孔312靠近光转换层30的出光侧一端的开口面积。通过上述设置,能够更好的保证对不同入射角度的入射光线的反射效果,使得不同角度入射光线经过光转换层30的反射后均能够向贯穿孔的中心聚拢,更利于出射光线的准直出射要求。
本申请上述各实施例提供的色彩转换组件100,其挡墙层31可以采用多种结构形式,只要能够满足对出射光线的聚拢要求均可。
请继续参阅图3a、图3b以及图4。在一些可选的示例中,每层阻挡层31a、31b、31c朝向贯穿孔312的表面靠近入光侧一端的径向尺寸小于靠近出光侧一端的径向尺 寸,以使每层阻挡层31a、31b、31c朝向贯穿孔312的表面均呈锥筒状。
每层阻挡层31a、31b、31c朝向贯穿孔312的表面均为闭合的环形面,其在第一方向X上的投影可以为环状结构,例如,可以为圆环状结构或者多边形环状结构。当为多边形环状结构时,所提及的靠近入光侧一端的径向尺寸是指该端在第一方向X投影的内切圆或者外接圆的径向尺寸。同理,所提及的靠近出光侧一端的径向尺寸是指该端在第一方向X投影的内切圆或者外接圆的径向尺寸。
为了更便于理解,如图3b所示,以其为阻挡层31a举例,阻挡层31a朝向贯穿孔312的表面为闭合的环形面,阻挡层31a在沿第一方向X上的投影为圆环状结构,阻挡层31a朝向贯穿孔312的表面靠近入光侧一端的径向尺寸为D1,靠近出光侧一端的径向尺寸为D2,D1小于D2。
通过上述设置,能够保证每层阻挡层31a、31b、31c对照射在其表面上的入射光线的准直出射要求。
可选的,沿着第一方向X,相邻两层阻挡层朝向贯穿孔312的表面由过渡面连接,且相邻两层阻挡层朝向贯穿孔312的表面分别与过渡面相交设置,围合形成贯穿孔312的侧壁整体呈阶梯筒状。通过使得挡墙层31采用上述结构形式,既方便成型,同时能够使得挡墙层31面向每个贯穿孔312的表面呈一个图4所示的近似弧形的反射面,或者说挡墙层31面向每个贯穿孔312的表面呈反射杯结构,对出射光线具有更好的聚拢准直效果。
可选的,沿第一方向X,相邻两层阻挡层朝向贯穿孔312的表面与水平面的夹角依次增大,即,如图3a所示,角α小于角β小于角γ,以优化聚光效果,达到对出射光线的准直目的。
请一并参阅图5,挡墙层31采用上述结构形式只是一种可选的实施方式,在一些其他的示例中,挡墙层31的每层阻挡层31a、31b、31c朝向贯穿孔312的表面仍可以呈锥筒状。沿第一方向X,相邻两层阻挡层朝向贯穿孔312的表面与水平面的夹角相同,两层以上阻挡层朝向贯穿孔312的表面沿第一方向X首尾相接(即以连续方式连接),围合形成贯穿孔312的侧壁整体呈平滑的锥筒形,同样能够满足对出射光线的聚拢效果。
可选的,每层阻挡层31朝向贯穿孔312的表面均为弧形面,其中,沿第一方向X,相邻弧形面的切线与水平面的夹角依次增大。即,每层阻挡层31朝向贯穿孔312 的表面可以均为弧形面,各弧形面向远离贯穿孔312的轴线方向外凸,其中,沿第一方向X,由侧壁围合形成的贯穿孔的截面面积逐渐增大。
如图6所示的实施例,每层阻挡层31a、31b、31c朝向贯穿孔312的表面可以均为弧形面,沿着第一方向X,相邻弧形面的切线与水平面的夹角依次增大,即角w小于角y小于角z。即每层阻挡层31a、31b、31c朝向贯穿孔312的表面可以均为弧形面,各弧形面向远离贯穿孔312的轴线方向外凸,其中,沿第一方向X,由侧壁围合形成的贯穿孔312的截面面积逐渐增大。通过上述设置,能够满足发光单元21各角度出射光线的聚拢要求,优化显示面板的显示效果,避免色偏现象的发生。以上及以下所提及的水平面可以为与第一方向X相垂直的平整的表面。
可选的,上述各实施例提供的色彩转换组件100,其光转换层30进一步包括反光层40。反光层40设置于各阻挡层31a、31b、31c朝向贯穿孔312的表面。通过设置反光层40,可以完全覆盖各阻挡层31a、31b、31c朝向贯穿孔312的表面,能够提高对发光单元21光线的反射率,以提高对光线的聚拢,使得光线尽可能沿着垂直方向或者说第一方向X出射,进一步降低色彩转换组件100所应用的显示面板产生色偏现象的概率。具体实施时,反光层40可以采用金属层。
可以理解的是,本申请实施例提供的色彩转换组件100并不限于通过设置反光层40提高对入射光线的反射率,在一些其他的示例中,本申请上述各实施例提供的色彩转换组件100,其挡墙层31的各阻挡层31a、31b、31c可以由具有不同反射率的反射材料构成,同样能够满足两层以上阻挡层31a、31b、31c向贯穿孔312中心的聚光能力呈递增趋势要求,进而更好的满足对光线的聚拢及准直要求。
可选的,本申请上述各实施例提供的色彩转换组件100进一步包括平坦化层50a、50b、50c。平坦化层50a、50b、50c填充于贯穿孔312并覆盖光转换层30,通过设置平坦化层50a、50b、50c,能够使得光转换层30远离发光层20的一侧被平坦化,利于色彩转换组件100在显示面板中的应用,同时更利于两层以上阻挡层31a、31b、31c的成型。
可选的,本申请上述各实施例提供的色彩转换组件100进一步包括布拉格反射层70,布拉格反射层70位于光转换层30的出光侧,布拉格反射层70在光转换层30上的投影覆盖部分光转换单元32。
本申请实施提供的色彩转换组件100,通过设置布拉格反射层70,使得由光转换 层30出射的光经过布拉格反射层70反射及透射后更好的实现全彩化显示。例如,以入射光线的发光元件为蓝光微发光二极管为例,由光转换层30转换的红光以及绿光能够通过布拉格反射层70透射出去,而与光转换单元32相对设置而未被转换的蓝光能够通过布拉格反射层70反射,更好的保证显示面板的彩色化显示效果。
请一并参阅图2、图7至图9,可选的,本申请上述各实施例提供的色彩转换组件100,还进一步包括光散射层80。光散射层位于布拉格反射层70远离光转换层30的一侧,光散射层80可以为微透镜及散射粒子层的一者。在一些其他的示例中,光散射层80面向发光层20的表面为凹凸面。通过设置光散射层80,能够对经过光转换层30聚拢的光线进一步散射,增加显示面板的可视角度。为了便于与布拉格反射层70之间的连接,光散射层80面向布拉格反射层70一侧可以设置有平坦化层81。
可以理解的是,以上均是以入射光线对应的发光单元采用蓝光微发光二极管芯片进行举例说明,其为一种可选的方式,在一些其他的示例中,入射光线对应的发光单元还可以采用紫外光微发光二极管,此时,每个贯穿孔312内均可以设置有光转换单元32。多个光转换单元32中,包括有红色转换单元、绿色转换单元以及蓝色转换单元,同样能够满足色彩转换组件100的彩色化显示要求。
由此,本申请实施提供的色彩转换组件100,其至少部分数量的发光单元21出射的光到达光转换单元32后能够经过光转换单元32转换,使得色彩转换组件100的各显示区域至少包括三个不同色彩的子像素,实现彩色化显示。
同时,由于挡墙层31包括沿厚度方向X层叠设置的两层以上阻挡层31a、31b、31c,由发光层20至远离发光层20的方向上,两层以上阻挡层31a、31b、31c向贯穿孔312中心的聚光能力呈递增趋势,使得由发光单元21出射的不同角度光线经过不同聚光能力阻挡层31a、31b、31c的反射,均能够向对应的贯穿孔312中心聚拢,减小不同出射角度光线的光程差,进而避免显示面板在不同视角下存在色偏问题。
请一并参阅图10以及图11,本申请实施例还提供一种显示面板,显示面板包括发光层20以及上述各实施例的色彩转换组件100,发光层20包括多个发光单元21及阻隔物22,相邻发光单元21通过阻隔物22相互分离设置。色彩转换组件100设置于发光层20,每个发光单元21与色彩转换组件100的其中一个贯穿孔312相对设置。发光单元21出射的光线可以作为色彩转换组件100的入射光线。
可选的,显示面板还可以包括设置于发光层20远离色彩转换组件100一侧的驱动 背板10,驱动背板10可以包括衬底基板以及设置于衬底基板上的驱动电路,驱动电路可以由薄膜晶体管等器件组成,驱动背板10也称为阵列基板。
发光层20包括的阻隔物22可以为吸光的黑色矩阵,阻隔物22限定出多个容纳部,可选的,容纳部可以倒梯形结构,当然也可以是边缘较为垂直的矩形切面结构,此处不做具体限定,只要能够达到对相邻发光层20的阻隔作用即可。容纳部的侧壁可以设置有反光层,反光层可以由金属等反光材料制成。
可选的,发光单元21可以呈阵列分布,呈阵列分布的多个发光单元21可以设置在容纳部内且分别于驱动电路电连接,通过驱动电路控制。在相邻的发光单元之间设置阻隔物22,可以防止发光单元21出射的光相互串扰。阻隔物22面向容纳部的侧壁设置有反光层,能够提高发光单元21的光的反射,以提高沿厚度方向X的出光率,降低侧面漏光/混光,导致光利用效率低、混色等风险。
发光单元21可以为微发光二极管芯片,在一些可选的示例中,发光单元21可以为蓝光微发光二极管芯片,每个容纳部内可以设置一个发光单元21,当然,也可以根据容纳部与发光单元21的尺寸比例设置两个以上发光单元21,此处不做具体限定。为了便于光转换层30的设置,可选的,发光层20远离驱动背板10的一侧设置有平坦化层23,使得发光层20具有平坦化表面。
进一步的,为了更好的对色彩转换组件100的防护,可选的,在色彩转换组件100远离发光层20的一侧还设置有盖板60,色彩转换组件100夹持于盖板60与发光层20之间。
本申请上述各实施例提供的显示面板,因其包括上述各实施例的色彩转换组件100,不仅能够满足自身的彩色化显示要求,同时还能够对出射光线具有聚拢功能,减小不同出射角度光线的光程差,进而避免显示面板在不同视角下存在色偏问题。
请一并参阅图12,本申请实施例还提供一种显示面板的制作方法,包括如下步骤:
S100、提供形成有发光层20的驱动背板10,发光层20包括呈阵列分布的多个发光单元21及阻隔物22,相邻发光单元21通过阻隔物22相互分离设置。
S200、在发光层20上形成色彩转换组件100,包括:在发光层20上形成挡墙层31,挡墙层31具有与各个发光单元21对应的贯穿孔312,且挡墙层包括两层以上层叠设置的阻挡层,以向贯穿孔312的中心聚拢出射光线,在挡墙层31成型的过程中或者 成型之后在至少部分贯穿孔312内成型光转化单元32。
请一并参阅图13a~图13s,图13a~图13s示出了本申请实施例的显示面板的制作方法各步骤对应的结构示意图。
在步骤100中,如图13a~图13c所示,先取一驱动背板10,可以为玻璃板,驱动背板10上已制作驱动电路,在背板上制作发光单元21,例如蓝光微发光二极管,形成如图13a所示结构形式。
接着在驱动背板10上制作阻隔物22,可以是吸光的黑矩阵,或者是有反光层40的阻挡结构,可通过打印或光刻工艺制作,反光层40可通过金属蒸镀工艺制作,以形成图13b及图13c所示结构形式。
在步骤200中,如图13d所示,对发光层20平坦化处理,具体可以在阻隔物22以及发光单元21上形成平坦化层23,可以通过打印或者旋涂等等方式制作,进而使得发光层20上形成平坦化表面,即形成图13d所示结构形式。
进一步的,如图13e~图13n所示,该步骤可以具体包括:
在平坦化表面形成第一层阻挡层31a,第一层阻挡层31a具有与每个发光单元21相对设置的容纳槽311a,形成图13e所示结构形式。为了保证对光线的反射效果,可以在第一层阻挡层31a面向其自身容纳槽311a的表面上设置反光层40,形成如图13f所示结构形式。
在第一层阻挡层31a的多个容纳槽311a内形成光转换单元32,光转换单元32可以包括红色转换单元321以及绿色转换单元322,分别对应最终形成的红、绿像素。红、绿色转换单元可以是掺杂有红、绿量子点的光刻胶或墨水,可以由打印工艺或光刻工艺制作,然后对第一层阻挡层31a以及光转换单元32平坦化,成型光转换层30的第一层平坦化层50a,进而形成图13g以及图13h所示结构形式。
在平坦化后的第一层阻挡层31a上形成第二层阻挡层31b,具体在第一层平坦化层50a上形成第二层阻挡层31b,第二层阻挡层31b具有与每个发光单元21相对设置的容纳槽311a,对第二层阻挡层31b平坦化,成型光转换层30的第二层平坦化层50b,形成图13i及图13k所示结构形式。同样的,为了保证对光线的反射效果,可以在第二层阻挡层31b面向其自身容纳槽311a的表面上设置反光层40,形成如图13j所示结构形式。
重复上述在最后一层平坦化后的阻挡层设置下一层具有与发光单元21相对设置的 容纳槽311a的阻挡层并平坦化,直至完成对第n层阻挡层的设置以及平坦化,n大于等于3。例如,在一些可选的示例中,可以在第二层阻挡层31b上继续形成第三层阻挡层31c,并对其平坦化成型平坦化层50c,以形成图13l~13n所示结构形式。
其中,每层阻挡层31a、31b、31c与同一发光单元21相对设置的容纳槽311a共同构成其中一个贯穿孔312,围合形成每个贯穿孔312的侧壁可以锥筒状、阶梯筒状或者平滑的弧形筒状。无论何种形状,均可大致呈弧形的反射杯形状,能够满足由发光层20至远离发光层20的方向上,两层以上阻挡层向贯穿孔312中心的聚光能力呈递增趋势。保证对发光单元21的光线的聚拢以及准直要求。
上述在成型每层阻挡层31a、31b、31c时,在该层阻挡层31a、31b、31c被平坦化之前,其面向各自的容纳槽311a的表面上均可以设置反光层40,可以采用金属蒸镀的工艺制作。
进一步的,如图13o至图13r所示,取另一盖板60,可以为玻璃板,形成图13o所示结构形式。为了更好的对光线进行散射,可选的,先在盖板60上形成光散射层80,光散射层80可以是微透镜、凹凸不平的表面、或散射粒子层等,可以由纳米压印、表面腐蚀、涂胶、光刻等工艺制作,并对光散射层80平坦化,具体设置平坦化层81,形成图13p以及图13q所示结构形式,在平坦化的光散射层80上形成布拉格反射层70,以形成盖板组件200,即形成图13r所示结构形式。
进一步的,如图13s所示,将盖板组件200与色彩转换组件100对接,具体可以通过填充胶进行粘合,使得布拉格反射层70位于光转换层30以及盖板60之间,以形成显示面板。
本申请实施例提供的显示面板的制作方法,其制作成型的显示面板能够满足彩色化显示要求,同时能够克服色偏问题。同时,将光转换层30的多层阻挡层31a、31b、31c采用分层制作的形式,既能够保证对光线的反射聚拢及准直的要求,同时易于显示面板的制作成型,故易于推广使用。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种色彩转换组件,包括光转换层,所述光转换层包括:
    挡墙层,所述挡墙层内设有至少一个贯穿孔,所述贯穿孔在由所述光转换层的入光侧至出光侧的第一方向上贯穿所述挡墙层;
    至少一个光转换单元,每个所述光转换单元设置于其中一个所述贯穿孔内,所述光转化单元将入射光线转化为与所述入射光线的波长范围不同的出射光线;
    其中,所述挡墙层包括沿所述第一方向层叠设置的两层以上阻挡层,以向所述贯穿孔的中心聚拢所述出射光线。
  2. 根据权利要求1所述的色彩转换组件,其中,所述贯穿孔靠近所述入光侧的开口面积小于所述贯穿孔靠近所述出光侧的开口面积。
  3. 根据权利要求1所述的色彩转换组件,其中,沿所述第一方向,两层以上所述阻挡层朝向所述贯穿孔的表面的光反射角呈递增趋势。
  4. 根据权利要求1所述的色彩转换组件,其中,每层所述阻挡层朝向所述贯穿孔的表面均为弧形面,其中,沿所述第一方向,相邻所述弧形面的切线与水平面的夹角依次增大。
  5. 根据权利要求1所述的色彩转换组件,其中,每层所述阻挡层朝向所述贯穿孔的表面靠近所述入光侧一端的径向尺寸小于靠近所述出光侧一端的径向尺寸,以使每层所述阻挡层朝向所述贯穿孔的表面均呈锥筒状,其中,沿所述第一方向,相邻两层所述阻挡层朝向所述贯穿孔的表面与水平面的夹角相同或依次增大。
  6. 根据权利要求5所述的色彩转换组件,其中,沿所述第一方向,两层以上所述阻挡层朝向所述贯穿孔的表面以连续方式连接。
  7. 根据权利要求5所述的色彩转换组件,其中,沿所述第一方向,相邻两层所述阻挡层朝向所述贯穿孔的表面由过渡面连接,相邻两层所述阻挡层朝向所述贯穿孔的表面分别与所述过渡面相交设置,围合形成所述贯穿孔的侧壁整体呈阶梯筒状。
  8. 根据权利要求1至7任意一项所述的色彩转换组件,其中,所述光转换层进一步包括反光层,所述反光层设置于各所述阻挡层朝向所述贯穿孔的表面。
  9. 根据权利要求1至7任意一项所述的色彩转换组件,其中,各所述阻挡层由具有不同反射率的反射材料构成。
  10. 根据权利要求1至7任意一项所述的色彩转换组件,其中,所述光转换层进一步包括平坦化层,所述平坦化层填充于所述贯穿孔。
  11. 根据权利要求1至7任意一项所述的色彩转换组件,其中,所述色彩转换组件进一步包括布拉格反射层,所述布拉格反射层位于所述光转换层的所述出光侧,所述布拉格反射层在所述光转换层上的投影覆盖各所述光转换单元。
  12. 根据权利要求11所述的色彩转换组件,其中,所述色彩转换组件进一步包括光散射层,所述光散射层位于所述布拉格反射层远离所述光转换层的一侧。
  13. 根据权利要求12所述的色彩转换组件,其中,所述光散射层为微透镜及散射粒子层中的一者。
  14. 根据权利要求12所述的色彩转换组件,其中,所述光散射层面向所述光转换层的表面为凹凸面。
  15. 根据权利要求1至7任意一项所述的色彩转换组件,其中,所述光转换单元位于靠近所述入光侧设置的所述阻挡层中且位于所述贯穿孔的中心点位置或者焦点位置。
  16. 根据权利要求1至7任意一项所述的色彩转换组件,其中,沿所述第一方向,所述光转换单元的尺寸小于所述贯穿孔的深度。
  17. 一种显示面板,包括:
    发光层,包括多个发光单元及阻隔物,相邻所述发光单元通过所述阻隔物相互分离设置;
    如权利要求1至16任意一项所述的色彩转换组件,所述色彩转换组件设置于所述发光层,每个所述发光单元与其中一个所述贯穿孔相对设置。
  18. 一种显示面板的制作方法,包括:
    提供形成有发光层的驱动背板,所述发光层包括多个发光单元及阻隔物,相邻所述发光单元通过所述阻隔物相互分离设置;
    在所述发光层上形成色彩转换组件,包括:
    在所述发光层上形成挡墙层,所述挡墙层具有与各个发光单元对应的贯穿孔,且所述挡墙层包括两层以上层叠设置的阻挡层,以向所述贯穿孔的中心聚拢出射光线;
    在所述挡墙层成型的过程中或者成型之后在至少部分所述贯穿孔内成型光转化单元。
  19. 根据权利要求18所述的显示面板的制作方法,其中,所述在所述发光层上形成色彩转换组件具体包括:
    在所述驱动背板上形成第一层所述阻挡层,第一层所述阻挡层具有与每个所述发光单元相对设置的容纳槽;
    在第一层所述阻挡层的多个所述容纳槽内形成光转换单元,对第一层所述阻挡层以及所述光转换单元平坦化;
    在平坦化后的第一层所述阻挡层上形成第二层所述阻挡层,第二层所述阻挡层具有与每个所述发光单元相对设置的容纳槽,对第二层阻挡层平坦化;
    重复上述在最后一层平坦化后的所述阻挡层设置下一层具有与发光单元相对设置的容纳槽的阻挡层并平坦化,直至完成对第n层所述阻挡层的设置以及平坦化,其中,n大于等于3。
  20. 根据权利要求18所述的显示面板的制作方法,其中,所述显示面板的制作方法还包括:
    提供盖板,在所述盖板上形成光散射层并平坦化,在平坦化的光散射层上形成布拉格反射层,以形成盖板组件;
    将所述盖板组件与所述色彩转换组件对接,所述布拉格反射层位于所述光转换层以及所述盖板之间。
PCT/CN2020/080676 2019-07-11 2020-03-23 色彩转换组件、显示面板及制作方法 WO2021004090A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227000045A KR20220008378A (ko) 2019-07-11 2020-03-23 색상 변환 어셈블리, 표시 패널 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910625722.9A CN112216774A (zh) 2019-07-11 2019-07-11 色彩转换组件、显示面板及制作方法
CN201910625722.9 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021004090A1 true WO2021004090A1 (zh) 2021-01-14

Family

ID=74048687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080676 WO2021004090A1 (zh) 2019-07-11 2020-03-23 色彩转换组件、显示面板及制作方法

Country Status (3)

Country Link
KR (1) KR20220008378A (zh)
CN (1) CN112216774A (zh)
WO (1) WO2021004090A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089565A1 (en) * 2021-11-18 2023-05-25 Hyperlume, Inc. Micro-led display co-packaged with optics and method of fabrication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113552A (zh) 2021-03-24 2021-07-13 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202058783U (zh) * 2011-05-13 2011-11-30 华中科技大学 一种led封装反光杯
US20130092961A1 (en) * 2011-10-14 2013-04-18 Samsung Electronics Co., Ltd. Light emitting device module
CN104916759A (zh) * 2014-03-14 2015-09-16 西铁城电子株式会社 发光装置
CN106462033A (zh) * 2014-06-17 2017-02-22 皇家飞利浦有限公司 包含磷转换led的反射器杯的阵列的闪光灯模块
CN107403791A (zh) * 2016-05-18 2017-11-28 光宝光电(常州)有限公司 发光显示器以及形成发光显示器的方法
CN108257949A (zh) * 2018-01-24 2018-07-06 福州大学 可实现光效提取和色彩转换微米级led显示装置及制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032576A1 (en) * 2002-10-01 2004-04-15 Philips Intellectual Property & Standards Gmbh Electroluminescent display with improved light outcoupling
EP2460191A2 (en) * 2009-07-30 2012-06-06 3M Innovative Properties Company Pixelated led
TWI439779B (zh) * 2010-06-24 2014-06-01 Prime View Int Co Ltd 顯示裝置、雷射轉印方法及雷射轉印色板
CN102064171A (zh) * 2010-10-22 2011-05-18 友达光电股份有限公司 发光二极管装置
JP6345266B2 (ja) * 2014-03-10 2018-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 波長変換素子、波長変換素子を含む発光半導体コンポーネント、波長変換素子の製造方法、および波長変換素子を含む発光半導体コンポーネントの製造方法
CN103925523B (zh) * 2014-04-02 2016-06-15 京东方科技集团股份有限公司 一种背光模组及显示装置
KR102416470B1 (ko) * 2015-12-21 2022-07-04 엘지디스플레이 주식회사 광효율 향상을 위한 표시패널, 표시장치 및 표시패널을 제조하는 방법
KR102263041B1 (ko) * 2016-02-26 2021-06-09 삼성전자주식회사 멀티 컬러를 구현할 수 있는 발광 소자
US10466534B2 (en) * 2016-05-06 2019-11-05 Sharp Kabushiki Kaisha Backlight device, and display apparatus including same
CN107507845A (zh) * 2016-06-14 2017-12-22 群创光电股份有限公司 显示装置
CN106206871A (zh) * 2016-08-03 2016-12-07 纳晶科技股份有限公司 发光器件的制备方法与发光器件
KR102553630B1 (ko) * 2016-08-11 2023-07-10 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
KR102611980B1 (ko) * 2016-12-14 2023-12-08 삼성전자주식회사 멀티 컬러를 구현할 수 있는 발광 소자
US10546979B2 (en) * 2017-05-31 2020-01-28 Innolux Corporation Display device and lighting apparatus
CN109755355B (zh) * 2017-11-02 2021-12-07 深圳光峰科技股份有限公司 波长转换元件及其制备方法
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置
TWI683157B (zh) * 2018-10-19 2020-01-21 友達光電股份有限公司 顯示面板及其製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202058783U (zh) * 2011-05-13 2011-11-30 华中科技大学 一种led封装反光杯
US20130092961A1 (en) * 2011-10-14 2013-04-18 Samsung Electronics Co., Ltd. Light emitting device module
CN104916759A (zh) * 2014-03-14 2015-09-16 西铁城电子株式会社 发光装置
CN106462033A (zh) * 2014-06-17 2017-02-22 皇家飞利浦有限公司 包含磷转换led的反射器杯的阵列的闪光灯模块
CN107403791A (zh) * 2016-05-18 2017-11-28 光宝光电(常州)有限公司 发光显示器以及形成发光显示器的方法
CN108257949A (zh) * 2018-01-24 2018-07-06 福州大学 可实现光效提取和色彩转换微米级led显示装置及制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089565A1 (en) * 2021-11-18 2023-05-25 Hyperlume, Inc. Micro-led display co-packaged with optics and method of fabrication

Also Published As

Publication number Publication date
CN112216774A (zh) 2021-01-12
KR20220008378A (ko) 2022-01-20

Similar Documents

Publication Publication Date Title
US11069753B2 (en) Display apparatus and method of manufacturing the same
WO2020258864A1 (zh) 色彩转化组件及其制作方法、显示面板
US20070290607A1 (en) Organic electroluminescent display device
WO2020258898A1 (zh) 显示面板、显示装置及显示面板的制备方法
US20190103584A1 (en) Light-Emitting Device and Manufacturing Method Thereof, Electronic Apparatus
WO2021004090A1 (zh) 色彩转换组件、显示面板及制作方法
CN112750862B (zh) 色彩转换结构、显示装置及色彩转换结构的制备方法
KR20210003993A (ko) 색변환 기판 및 이를 포함하는 표시 장치
CN112213879B (zh) 色彩转化组件、显示面板及显示装置
WO2020258755A1 (zh) 色彩转化组件、显示面板及色彩转化组件的制造方法
US20230369546A1 (en) Light source device and manufacturing method of light source device
CN112147809B (zh) 色彩转化组件及其制作方法、显示面板
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
TWI830395B (zh) 顯示裝置
CN217426779U (zh) 一种显示装置
CN115377320A (zh) 显示面板和显示装置
US20210273024A1 (en) Color conversion assembly, display panel and manufacturing method of color conversion assembly
WO2023201699A1 (zh) 显示基板及显示装置
TWI793857B (zh) 顯示裝置
US12032179B2 (en) Color conversion component and display device
US11957022B2 (en) Display panel having intra-substrate filler configuration, method of manufacturing such a display panel, and display device
WO2023216744A1 (zh) 一种显示装置
US20210341653A1 (en) Color conversion component and display device
WO2023195239A1 (ja) 表示装置
CN113936567B (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227000045

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20837461

Country of ref document: EP

Kind code of ref document: A1