WO2020253193A1 - 自起动同步磁阻电机转子结构及具有其的电机 - Google Patents

自起动同步磁阻电机转子结构及具有其的电机 Download PDF

Info

Publication number
WO2020253193A1
WO2020253193A1 PCT/CN2019/128070 CN2019128070W WO2020253193A1 WO 2020253193 A1 WO2020253193 A1 WO 2020253193A1 CN 2019128070 W CN2019128070 W CN 2019128070W WO 2020253193 A1 WO2020253193 A1 WO 2020253193A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting
self
slot
synchronous reluctance
rotor core
Prior art date
Application number
PCT/CN2019/128070
Other languages
English (en)
French (fr)
Inventor
史进飞
陈彬
李霞
肖勇
余钦宏
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP19933797.3A priority Critical patent/EP3926796A4/en
Publication of WO2020253193A1 publication Critical patent/WO2020253193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the technical field of electrical equipment, and in particular to a rotor structure of a self-starting synchronous reluctance motor and a motor having the same.
  • This application claims the priority of a patent application filed to the State Intellectual Property Office of China on June 19, 2019, with application number 201910533727.9, and the title of the invention "self-starting synchronous reluctance motor rotor structure and motor with the same”.
  • the self-starting synchronous reluctance motor combines the advantages of the asynchronous motor on the basis of the synchronous reluctance motor. It realizes self-starting through the asynchronous torque generated by the rotor bar. It does not need to be driven by a frequency converter. Compared with the asynchronous motor, the motor The loss is low, the operation efficiency is improved, and constant speed operation can also be realized; compared with the asynchronous start permanent magnet synchronous motor, the permanent magnet material is not used, the cost is low, and there is no permanent magnet demagnetization problem.
  • the traditional synchronous reluctance motor requires a frequency converter to drive starting and control operation, the efficiency of the motor system is low during operation, and the driving process is complicated.
  • the patent with the patent publication number CN105122613A provides a rotor, but the long arc-shaped magnetic flux obstructions in the outer rotor area are all filled with aluminum or aluminum alloy, resulting in poor starting ability of the motor.
  • the main purpose of this application is to provide a self-starting synchronous reluctance motor rotor structure and a motor with the same, so as to solve the problem of poor starting ability of the motor in the prior art.
  • a self-starting synchronous reluctance motor rotor structure including: a rotor core, the outer edge of the rotor core is provided with a starting slot, the starting slot is located in the rotor core At the q axis, a plurality of slit slots are provided between the starting slot and the shaft hole of the rotor core, and both ends of each slit slot are respectively provided with a filling slot to form a magnetic barrier layer, which is located at the q axis of a magnetic pole
  • the cross-sectional area of the starting tank is more than twice the cross-sectional area of a single filling tank.
  • the starting slot occupies the central angle of the rotor core as ⁇ 1, where ⁇ /3 ⁇ 1 ⁇ /4, and ⁇ is the pole arc of the rotor core.
  • the depth of the starting slot along the radial direction of the rotor core is r
  • the depth from the wall of the rotor core shaft hole to the outer edge of the rotor core is R, where R/4 ⁇ r ⁇ R/5.
  • the distance between the outer side wall of the starting slot and the outer circumferential surface of the rotor core is greater than the width of the air gap between the stator core and the rotor core.
  • the starting tank includes a plurality of independent unit tank structures.
  • reinforcing ribs are arranged between the slit grooves and the filling grooves in the same magnetic barrier layer, the width of the reinforcing ribs is L1, where 0.8 ⁇ L1 ⁇ 2 ⁇ , and ⁇ is the difference between the stator core and the rotor core The width of the air gap.
  • the distance between adjacent magnetic barrier layers is L2, where L2 ⁇ 1.8h, and h is the width of the magnetic barrier layer with the smaller width among the two adjacent magnetic barrier layers.
  • the filling slot is a closed slot, and the distance from the end of the filling slot to the outer edge of the rotor core is greater than the width of the air gap formed between the stator core and the rotor core.
  • the ratio of the cross-sectional area of the filling groove to the cross-sectional area of the magnetic barrier layer is greater than 0.4.
  • the ratio of the cross-sectional area of the filling groove to the cross-sectional area of the magnetic barrier layer is between 0.4 and 0.6.
  • the cross-sectional area of the filling groove gradually increases, and the length of the filling groove extending toward the axial hole of the rotor core is longer.
  • the starting groove and the filling groove are filled with the same material and short-circuited with the conductive end rings at both ends of the rotor core to form a squirrel cage.
  • the slit groove is connected to the filling groove, and the difference between the width of the slit groove and the width of the filling groove is within 0.1.
  • a motor including a self-starting synchronous reluctance motor rotor structure, and the self-starting synchronous reluctance motor rotor structure is the above-mentioned self-starting synchronous reluctance motor rotor structure.
  • the cross-sectional area of the starting slot at the q-axis of one magnetic pole is set to be more than twice the cross-sectional area of a single filling slot.
  • This setting can increase the starting ability of the motor without affecting the overload capacity of the motor.
  • the specific area design of the starting slot can effectively improve the motor's overload starting capacity while ensuring the mechanical strength of the rotor structure and reducing the part of the rotor magnetic leakage. ability.
  • Fig. 1 shows a schematic structural diagram of a first embodiment of a rotor structure of a self-starting synchronous reluctance motor according to the present application
  • FIG. 2 shows a schematic structural diagram of a second embodiment of the rotor structure of a self-starting synchronous reluctance motor according to the present application
  • FIG. 3 shows a schematic structural view of an embodiment of a conductive end ring of a rotor structure of a self-starting synchronous reluctance motor according to the present application
  • Fig. 4 shows a comparison diagram of the rotation speed of the motor according to the present application and the motor in the prior art.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between a device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here is explained accordingly.
  • a rotor structure of a self-starting synchronous reluctance motor is provided.
  • the rotor structure includes a rotor core 10.
  • a starting slot 20 is provided at the outer edge of the rotor core 10.
  • the starting slot 20 is located at the q axis of the rotor core 10.
  • a plurality of slit slots 30 are provided between the starting slot 20 and the shaft hole of the rotor core 10.
  • a filling groove 40 is provided at both ends of each slit groove 30 to form a magnetic barrier layer.
  • the cross-sectional area of the starting groove 20 at the q-axis of a magnetic pole is more than twice that of a single filling groove 40. area.
  • the cross-sectional area of the starting groove 20 at the q-axis of one magnetic pole is set to be more than twice the cross-sectional area of the single filling groove 40.
  • This setting can increase the starting ability of the motor without affecting the overload capacity of the motor.
  • the specific area design of the starting slot can effectively improve the motor's overload starting capacity while ensuring the mechanical strength of the rotor structure and reducing the part of the rotor magnetic leakage. ability.
  • the starting slot 20 occupies the central angle of the rotor core 10 as ⁇ 1, where ⁇ /3 ⁇ 1 ⁇ /4, and ⁇ is the pole arc of the rotor core 10.
  • the depth of the starting slot 20 along the radial direction of the rotor core 10 is r, and the depth from the wall of the shaft hole of the rotor core 10 to the outer edge of the rotor core 10 is R, where R/4 ⁇ r ⁇ R/5.
  • the distance between the outer side wall of the starting slot 20 and the outer circumferential surface of the rotor core 10 is greater than the width of the air gap between the stator core and the rotor core 10. This setting can increase the rotating torque of the motor, thereby improving the starting ability of the motor.
  • the starting tank 20 includes a plurality of independent unit tank structures. As shown in FIG. 2, the starting slot 20 includes two independently arranged unit slot structures, wherein a reinforcing rib is formed between the unit slots, so that the arrangement can improve the strength of the rotor structure.
  • reinforcing ribs are provided between the slit groove 30 and the filling groove 40 in the same magnetic barrier layer.
  • the width of the reinforcing rib is L1, where 0.8 ⁇ L1 ⁇ 2 ⁇ , and ⁇ is the width of the air gap between the stator core and the rotor core 10.
  • the distance between adjacent magnetic barrier layers is L2, where L2 ⁇ 1.8h, and h is the width of the magnetic barrier layer with the smaller width among the two adjacent magnetic barrier layers.
  • the filling slot 40 is a closed slot, and the distance from the end of the filling slot 40 to the outer edge of the rotor core 10 is greater than the width of the air gap formed between the stator core and the rotor core 10.
  • the ratio of the cross-sectional area of the filling groove 40 to the cross-sectional area of the magnetic barrier layer is greater than 0.4.
  • the ratio of the cross-sectional area of the filling groove 40 to the cross-sectional area of the magnetic barrier layer is between 0.4 and 0.6. This setting can improve the starting ability of the motor.
  • the cross-sectional area of the filling groove 40 is set to gradually increase along the d-axis direction of the rotor core 10 gradually, and the filling groove 40 faces the rotor iron. The longer the core 10 extends in the axial hole direction.
  • the starting groove 20 and the filling groove 40 are filled with the same material and short-circuited with the conductive end rings at both ends of the rotor core 10 to form a squirrel cage.
  • the rotor structure in the foregoing embodiment can also be used in the technical field of electrical equipment, that is, according to another aspect of the present application, a motor is provided.
  • the motor includes a self-starting synchronous reluctance motor rotor structure, and the self-starting synchronous reluctance motor rotor structure is the above-mentioned self-starting synchronous reluctance motor rotor structure.
  • a special starting slot is provided on the rotor to increase the asynchronous torque of the motor during the starting phase and enhance the starting ability of the motor.
  • the rotor of the motor is composed of a rotor punching piece with a specific structure and conductive end rings 50 at both ends of the rotor core.
  • the rotor punching piece is provided with a plurality of slit slots and filling grooves, and there are evenly distributed starting slots along the circumference of the rotor.
  • the film also has a shaft hole matched with the rotating shaft.
  • the slit groove and the filling groove are smoothly connected to form a rotor magnetic barrier layer, and the filling groove and the slit groove in each layer of the magnetic barrier layer need to be separated.
  • the interval width L1 between the filling slot and the slit slot satisfies 0.8 ⁇ L1 ⁇ 2 ⁇ , and ⁇ is the width of the air gap between the stator inner diameter and the rotor outer diameter.
  • is the width of the air gap between the stator inner diameter and the rotor outer diameter.
  • the difference between the width of the filling groove and the slit groove in each magnetic barrier layer is within 10%.
  • it can ensure the mechanical strength of the rotor structure and reduce the magnetic leakage between the filling groove and the slit groove.
  • controlling the width between the filling slot and the slit slot can make the magnetic path of the rotor sector smooth and reduce the magnetic resistance of the rotor magnetic circuit.
  • the distance L2 between the connected magnetic barrier layers should be greater than 1.8h, and h is the width of the smaller magnetic barrier layer in the two adjacent magnetic barrier layers.
  • h is the width of the smaller magnetic barrier layer in the two adjacent magnetic barrier layers.
  • the filling slot is a closed slot, and the slot is filled with conductive and non-magnetic materials.
  • the interval L3 between the filling slot and the outer circle of the rotor should be greater than ⁇ , which is the difference between the inner diameter of the stator and the outer diameter of the rotor The width of the air gap.
  • the filling slot should account for more than 40% of the area of the magnetic barrier. More preferably, the area ratio of the filled groove in the magnetic barrier should be between 40% and 60%.
  • the longer the filling slot extends into the rotor the larger the area of the filling slot. Larger filling slot area can increase the starting torque of the motor and help enhance the self-starting of the motor ability.
  • the starting slots are evenly distributed along the circumference of the rotor in the q-axis direction of the rotor.
  • the starting slot area needs to be 2 times or more of the maximum filling slot area.
  • Special starting slots can improve the asynchronous rotation of the self-starting synchronous reluctance motor during the starting phase. Torque to enhance the starting ability of the motor.
  • the span angle ⁇ 1 of the starting slot on the circumference of the rotor should satisfy ⁇ /3 ⁇ 1 ⁇ /4, ⁇ is the rotor pole arc, too small a span angle cannot meet the area requirement of the starting slot, a too large span angle It will cause the structure in the q-axis direction of the rotor to be fragile and easily deformed.
  • the radial depth r of the starting slot should satisfy R/4 ⁇ r ⁇ R/5, and R is the rotor depth.
  • R is the rotor depth.
  • the distance L4 between the starting slot and the outer circle of the rotor should be greater than ⁇ .
  • the starting slot span angle With sufficient rotor structural strength, the starting slot can reach the required area; on the other hand, if the starting slot is too deep, it will affect the distribution of the rotor magnetic barrier layer and reduce the ability of the motor to pull in synchronization.
  • the starting groove is filled with the same material as the filling groove, and the filling groove and the starting groove are self-short-circuited through the conductive end ring to form a squirrel cage.
  • the material of the conductive end ring is the same as the filling material in the filling groove.
  • Fig. 4 is a comparison diagram of the speed of the motor in the starting process of the motor according to the present application and the motor in the prior art.
  • the motor of the present application can successfully start the motor under load and enhance the self-starting ability of the motor.
  • the shape of the starting groove is not limited to rectangular or other shapes, and the number of blocks is not limited to two or more blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种自起动同步磁阻电机转子结构及具有其的电机。自起动同步磁阻电机转子结构包括转子铁芯,转子铁芯的外边缘处设置有起动槽,起动槽位于转子铁芯的q轴处,起动槽与转子铁芯的轴孔之间设置有多个狭缝槽,各狭缝槽的两端分别设置有一个填充槽以形成磁障层,位于一个磁极的q轴处的起动槽的横截面的面积大于两倍以上的单个填充槽的横截面的面积。这样设置能够使得电机起动能力增强的同时,不影响电机的过载能力,起动槽的特定面积设计,在保证转子结构机械强度和减小转子部分漏磁的条件下,能够有效地提升电机过载起动的能力。

Description

自起动同步磁阻电机转子结构及具有其的电机 技术领域
本申请涉及电机设备技术领域,具体而言,涉及一种自起动同步磁阻电机转子结构及具有其的电机。本申请要求于2019年6月19日提交至中国国家知识产权局、申请号为201910533727.9、发明名称为“自起动同步磁阻电机转子结构及具有其的电机”的专利申请的优先权。
背景技术
自起动同步磁阻电机在同步磁阻电机的基础上,结合了异步电机的优点,通过转子导条产生的异步转矩实现自起动,不需要再使用变频器驱动,与异步电机相比,电机损耗低,运行时的效率提升,也可实现恒速运行;与异步起动永磁同步电机相比,不使用永磁体材料,成本低,同时不存在永磁体退磁问题。
传统的同步磁阻电机需要变频器进行驱动起动和控制运行,电机***运行时效率低,且驱动过程复杂。现有技术中,专利公开号为CN105122613A的专利提供了一种转子,但由于外部转子区域有的长弧形磁通阻碍物全部填入铝或铝合金,导致电机起动能力差。
发明内容
本申请的主要目的在于提供一种自起动同步磁阻电机转子结构及具有其的电机,以解决现有技术中电机起动能力差的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种自起动同步磁阻电机转子结构,包括:转子铁芯,转子铁芯的外边缘处设置有起动槽,起动槽位于转子铁芯的q轴处,起动槽与转子铁芯的轴孔之间设置有多个狭缝槽,各狭缝槽的两端分别设置有一个填充槽以形成磁障层,位于一个磁极的q轴处的起动槽的横截面的面积大于两倍以上的单个填充槽的横截面的面积。
进一步地,起动槽占转子铁芯的圆心角为θ1,其中,θ/3≤θ1≤θ/4,θ为转子铁芯的极弧。
进一步地,起动槽沿转子铁芯的径向方向的深度为r,转子铁芯轴孔的孔壁至转子铁芯外边缘的深度为R,其中,R/4≤r≤R/5。
进一步地,起动槽的外侧壁与转子铁芯的外周面之间的距离大于定子铁芯和转子铁芯之间气隙的宽度。
进一步地,起动槽包括多个独立的单元槽结构。
进一步地,位于同一个磁障层内的狭缝槽与填充槽之间设置有加强筋,加强筋的宽度为L1,其中,0.8σ≤L1≤2σ,σ为定子铁芯和转子铁芯之间气隙的宽度。
进一步地,相邻磁障层之间的距离为L2,其中,L2≥1.8h,h为相邻两个磁障层中宽度较小的磁障层的宽度。
进一步地,填充槽为闭口槽,填充槽的端部至转子铁芯的外边缘的距离大于定子铁芯与转子铁芯之间形成的气隙宽度。
进一步地,各磁障层中,填充槽的横截面的面积与该磁障层的横截面的面积的比值大于0.4。
进一步地,各磁障层中,填充槽的横截面的面积与该磁障层的横截面的面积的比值位于0.4至0.6之间。
进一步地,沿逐渐靠近转子铁芯的d轴方向,填充槽的横截面的面积逐渐增大,且填充槽朝向转子铁芯的轴孔方向延伸的长度越长。
进一步地,起动槽和填充槽内填入相同的材料并与转子铁芯两端的导电端环短接以形成鼠笼。
进一步地,同一个磁障层中,狭缝槽与填充槽相连通,狭缝槽的宽度与所述填充槽的宽度的差在0.1以内。
根据本申请的另一方面,提供了一种电机,包括自起动同步磁阻电机转子结构,自起动同步磁阻电机转子结构为上述的自起动同步磁阻电机转子结构。
应用本申请的技术方案,将位于一个磁极的q轴处的起动槽的横截面的面积设置成大于两倍以上的单个填充槽的横截面的面积。这样设置能够使得电机起动能力增强的同时,不影响电机的过载能力,起动槽的特定面积设计,在保证转子结构机械强度和减小转子部分漏磁的条件下,能够有效地提升电机过载起动的能力。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的自起动同步磁阻电机转子结构的第一实施例的结构示意图;
图2示出了根据本申请的自起动同步磁阻电机转子结构的第二实施例的结构示意图;
图3示出了根据本申请的自起动同步磁阻电机转子结构的导电端环的实施例的结构示意图;
图4示出了根据本申请的电机与现有技术中的电机转速对比图。
其中,上述附图包括以下附图标记:
10、转子铁芯;
20、起动槽;
30、狭缝槽;
40、填充槽;
50、导电端环。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实 施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图4所示,根据本申请的实施例,提供了一种自起动同步磁阻电机转子结构。
具体地,该转子结构包括转子铁芯10。转子铁芯10的外边缘处设置有起动槽20,起动槽20位于转子铁芯10的q轴处,起动槽20与转子铁芯10的轴孔之间设置有多个狭缝槽30。各狭缝槽30的两端分别设置有一个填充槽40以形成磁障层,位于一个磁极的q轴处的起动槽20的横截面的面积大于两倍以上的单个填充槽40的横截面的面积。
在本实施例中,将位于一个磁极的q轴处的起动槽20的横截面的面积设置成大于两倍以上的单个填充槽40的横截面的面积。这样设置能够使得电机起动能力增强的同时,不影响电机的过载能力,起动槽的特定面积设计,在保证转子结构机械强度和减小转子部分漏磁的条件下,能够有效地提升电机过载起动的能力。
如图1所示,起动槽20占转子铁芯10的圆心角为θ1,其中,θ/3≤θ1≤θ/4,θ为转子铁芯10的极弧。起动槽20沿转子铁芯10的径向方向的深度为r,转子铁芯10轴孔的孔壁至转子铁芯10外边缘的深度为R,其中,R/4≤r≤R/5。起动槽20的外侧壁与转子铁芯10的外周面之间的距离大于定子铁芯和转子铁芯10之间气隙的宽度。这样设置能够提高电机的转动力矩,从而提高了电机的启动能力。
起动槽20包括多个独立的单元槽结构。如图2所示,起动槽20包括两个独立设置单元槽结构,其中,单元槽之间形成加强筋,这样设置能够提高转子结构的强度。
进一步地,位于同一个磁障层内的狭缝槽30与填充槽40之间设置有加强筋。加强筋的宽度为L1,其中,0.8σ≤L1≤2σ,σ为定子铁芯和转子铁芯10之间气隙的宽度。相邻磁障层之间的距离为L2,其中,L2≥1.8h,h为相邻两个磁障层中宽度较小的磁障层的宽度。这样设置同样能够提高转子结构的强度,提高了该转子结构的稳定性和可靠性。
其中,填充槽40为闭口槽,填充槽40的端部至转子铁芯10的外边缘的距离大于定子铁芯与转子铁芯10之间形成的气隙宽度。各磁障层中,填充槽40的横截面的面积与该磁障层的横截面的面积的比值大于0.4。优选地,各磁障层中,填充槽40的横截面的面积与该磁障层的横截面的面积的比值位于0.4至0.6之间。这样设置能够提高电机的启动能力。
在本实施例中,为了进一步提高电机的启动能力,将沿逐渐靠近转子铁芯10的d轴方向,填充槽40的横截面的面积设置成逐渐增大的方式,且填充槽40朝向转子铁芯10的轴孔方向延伸的长度越长。起动槽20和填充槽40内填入相同的材料并与转子铁芯10两端的导电端环短接以形成鼠笼。
上述实施例中的转子结构还可以用于电机设备技术领域,即根据本申请的另一方面,提供了一种电机。该电机包括自起动同步磁阻电机转子结构,自起动同步磁阻电机转子结构为上述的自起动同步磁阻电机转子结构。
具体地,本申请的自起动同步磁阻电机转子结构,通过在转子上设置特殊的起动槽,提升电机在起动阶段的异步转矩,增强电机的起动能力。该电机的转子由具有特定结构的转子冲片和转子铁芯两端的导电端环50构成,转子冲片上开有多个狭缝槽和填充槽,沿转子圆周有均匀分布的起动槽,转子冲片上还开有与转轴配合的轴孔。狭缝槽和填充槽顺畅连接形成转子磁障层,其中每层磁障层中的填充槽和狭缝槽都需隔开。
填充槽和狭缝槽之间的间隔宽度L1满足0.8σ≤L1≤2σ,σ为定子内径和转子外径之间气隙的宽度。同时,每层磁障层中填充槽和狭缝槽宽度之间的差值在10%以内,一方面可以保证转子部分结构的机械强度,减小填充槽和狭缝槽之间的漏磁,另一方面控制填充槽和狭缝槽之间的宽度可使得转子部门的磁路通道顺畅,减小转子磁路磁阻。在磁障层中,相连磁障层之间的距离L2应大于1.8h,h为两相邻磁障层中较小磁障层的宽度,一方面可以降低转子的加工难度,另一方面也可保证转子部分磁密分布的均匀度,降低转子磁密的饱和度。
填充槽为闭口槽,槽内填充导电不导磁的材料,考虑转子结构强度和漏磁的影响,填充槽与转子外圆之间的间隔L3应大于σ,σ为定子内径和转子外径之间气隙的宽度。为了保证转子具有自起动的能力,填充槽在磁障面积中的占比应大于40%。更优地,填充槽在磁障中的面积占比应在40%~60%之间。随着q轴方向到d轴方向的过渡,填充槽延伸入转子的部分越长,填充槽的面积越大,大的填充槽面积可以提升电机的起动转矩,有助于增强电机的自起动能力。
起动槽沿转子圆周均匀分布于转子的q轴方向上,该起动槽面积需是最大填充槽面积的2倍及以上,设置特殊的起动槽可以提升自起动同步磁阻电机在起动阶段的异步转矩,增强电机的起动能力。起动槽在转子圆周上的跨距角θ1应满足θ/3≤θ1≤θ/4,θ为转子极弧,太小的跨距角无法满足起动槽的面积要求,太大的跨距角则会导致转子q轴方向上结构脆弱,易发生变形。起动槽的径向深度r应满足R/4≤r≤R/5,R为转子深度,同时,起动槽与转子外圆的距离L4应大于σ,一方面使得在一定的起动槽跨距角和足够的转子结构强度的条件下,起动槽可达到所需要的面积;另一方面,若起动槽过深,则会影响转子磁障层的分布,降低电机牵入同步的能力。起动槽内填充与填充槽内相同的材料,填充槽和起动槽均通过导电端环进行自行短路连接,形成鼠笼,导电端环的材料与填充槽内填充材料相同。
图4所示为本申请的电机与现有技术下电机起动过程的转速对比图,本申请的电机可以成功实现电机的带载起动,增强了电机的自起动能力。起动槽形状不限于矩形或其他形状,其块数不限于两块或多块。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种自起动同步磁阻电机转子结构,其特征在于,包括:
    转子铁芯(10),所述转子铁芯(10)的外边缘处设置有起动槽(20),所述起动槽(20)位于所述转子铁芯(10)的q轴处,所述起动槽(20)与所述转子铁芯(10)的轴孔之间设置有多个狭缝槽(30),各所述狭缝槽(30)的两端分别设置有一个填充槽(40)以形成磁障层,位于一个磁极的所述q轴处的所述起动槽(20)的横截面的面积大于两倍以上的单个所述填充槽(40)的横截面的面积。
  2. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述起动槽(20)占所述转子铁芯(10)的圆心角为θ1,其中,θ/3≤θ1≤θ/4,θ为所述转子铁芯(10)的极弧。
  3. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述起动槽(20)沿所述转子铁芯(10)的径向方向的深度为r,所述转子铁芯(10)轴孔的孔壁至所述转子铁芯(10)外边缘的深度为R,其中,R/4≤r≤R/5。
  4. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述起动槽(20)的外侧壁与所述转子铁芯(10)的外周面之间的距离大于定子铁芯和所述转子铁芯(10)之间气隙的宽度。
  5. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述起动槽(20)包括多个独立的单元槽结构。
  6. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,位于同一个所述磁障层内的所述狭缝槽(30)与所述填充槽(40)之间设置有加强筋,所述加强筋的宽度为L1,其中,0.8σ≤L1≤2σ,σ为定子铁芯和所述转子铁芯(10)之间气隙的宽度。
  7. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,相邻所述磁障层之间的距离为L2,其中,L2≥1.8h,h为相邻两个所述磁障层中宽度较小的所述磁障层的宽度。
  8. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述填充槽(40)为闭口槽,所述填充槽(40)的端部至所述转子铁芯(10)的外边缘的距离大于定子铁芯与所述转子铁芯(10)之间形成的气隙宽度。
  9. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,各所述磁障层中,所述填充槽(40)的横截面的面积与该所述磁障层的横截面的面积的比值大于0.4。
  10. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,各所述磁障层中,所述填充槽(40)的横截面的面积与该所述磁障层的横截面的面积的比值位于0.4至0.6之间。
  11. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,沿逐渐靠近所述转子铁芯(10)的d轴方向,所述填充槽(40)的横截面的面积逐渐增大,且所述填充槽(40)朝向所述转子铁芯(10)的轴孔方向延伸的长度越长。
  12. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述起动槽(20)和所述填充槽(40)内填入相同的材料并与所述转子铁芯(10)两端的导电端环短接以形成鼠笼。
  13. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,同一个所述磁障层中,所述狭缝槽(30)与所述填充槽(40)相连通,所述狭缝槽(30)的宽度与所述填充槽(40)的宽度的差在0.1以内。
  14. 一种电机,包括自起动同步磁阻电机转子结构,其特征在于,所述自起动同步磁阻电机转子结构为权利要求1至13中任一项所述的自起动同步磁阻电机转子结构。
PCT/CN2019/128070 2019-06-19 2019-12-24 自起动同步磁阻电机转子结构及具有其的电机 WO2020253193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19933797.3A EP3926796A4 (en) 2019-06-19 2019-12-24 SELF-STARTING SYNCHRONOUS RELUCTANCE MOTOR ROTOR STRUCTURE, AND MOTOR PROVIDED WITH SAID STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910533727.9A CN110112848B (zh) 2019-06-19 2019-06-19 自起动同步磁阻电机转子结构及具有其的电机
CN201910533727.9 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020253193A1 true WO2020253193A1 (zh) 2020-12-24

Family

ID=67495627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128070 WO2020253193A1 (zh) 2019-06-19 2019-12-24 自起动同步磁阻电机转子结构及具有其的电机

Country Status (3)

Country Link
EP (1) EP3926796A4 (zh)
CN (1) CN110112848B (zh)
WO (1) WO2020253193A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112848B (zh) * 2019-06-19 2023-12-08 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构及具有其的电机
CN110445335B (zh) * 2019-08-23 2024-06-25 江苏华胜电机(集团)有限公司 自启动同步磁阻电机
CN112713741A (zh) * 2020-12-21 2021-04-27 中车永济电机有限公司 自起动三相同步磁阻电动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238418A (ja) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp リラクタンスモータ
CN1427527A (zh) * 2001-12-19 2003-07-02 三菱电机株式会社 同步电动机和压缩机
CN102017366A (zh) * 2007-03-09 2011-04-13 Lg电子株式会社 电动机和包括电动机的压缩机
CN105122613A (zh) 2013-02-01 2015-12-02 Ksb股份公司 转子、磁阻机器以及转子的制造方法
CN106537740A (zh) * 2014-08-04 2017-03-22 Ksb 股份公司 转子、磁阻机器和用于转子的制造方法
CN110112848A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构及具有其的电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258220A (ja) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp リラクタンスモータ
JP3743348B2 (ja) * 2001-11-12 2006-02-08 三菱電機株式会社 同期誘導電動機、同期誘導電動機の製造方法、圧縮機
JP2003259615A (ja) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp リラクタンスモータ
JP4528825B2 (ja) * 2007-12-21 2010-08-25 日立アプライアンス株式会社 自己始動型永久磁石同期電動機及びこれを用いた圧縮機
CN103208894B (zh) * 2012-01-11 2015-07-29 珠海格力电器股份有限公司 自起动式同步磁阻电机及其转子
CN106341015B (zh) * 2016-09-26 2020-09-04 威灵(芜湖)电机制造有限公司 转子和具有其的自起动同步磁阻电机
IT201600110554A1 (it) * 2016-11-03 2018-05-03 Bonfiglioli Riduttori Spa Motore sincrono a riluttanza autoavviante
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN209805522U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构及具有其的电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238418A (ja) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp リラクタンスモータ
CN1427527A (zh) * 2001-12-19 2003-07-02 三菱电机株式会社 同步电动机和压缩机
CN102017366A (zh) * 2007-03-09 2011-04-13 Lg电子株式会社 电动机和包括电动机的压缩机
CN105122613A (zh) 2013-02-01 2015-12-02 Ksb股份公司 转子、磁阻机器以及转子的制造方法
CN106537740A (zh) * 2014-08-04 2017-03-22 Ksb 股份公司 转子、磁阻机器和用于转子的制造方法
CN110112848A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构及具有其的电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926796A4

Also Published As

Publication number Publication date
CN110112848A (zh) 2019-08-09
EP3926796A1 (en) 2021-12-22
CN110112848B (zh) 2023-12-08
EP3926796A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
WO2020253193A1 (zh) 自起动同步磁阻电机转子结构及具有其的电机
WO2020253195A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
WO2020253192A1 (zh) 异步起动同步磁阻电机转子结构、电机及压缩机
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
WO2020253194A1 (zh) 直接起动同步磁阻电机转子结构及具有其的电机
WO2017085814A1 (ja) 電動機および空気調和機
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
JP7427019B2 (ja) 直接起動同期リラクタンス・モータの回転子構造及びモータ
JP2006121765A (ja) リラクタンス式回転電機
US11777346B2 (en) Rotor assembly and motor
CN110601481A (zh) 一种双转子永磁同步磁阻电机及配置方法
US20220200375A1 (en) Four-pole synchronous reluctance motor
CN210839094U (zh) 直接起动同步磁阻电机转子结构、电机
CN209805522U (zh) 自起动同步磁阻电机转子结构及具有其的电机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
WO2023142548A1 (zh) 电机转子及其自起动同步磁阻电机、压缩机
WO2020050280A1 (ja) ロータ及び該ロータを有するモータ
JP2005287262A (ja) ロータおよびモータ
CN207504658U (zh) 交替极电机及具有其的压缩机
US10404109B2 (en) Single phase permanent magnet motor and stator core
US20200083767A1 (en) Permanent magnet motor
US20210104927A1 (en) Permanent magnet motor
KR20240108521A (ko) 회전 전기 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019933797

Country of ref document: EP

Effective date: 20210915

NENP Non-entry into the national phase

Ref country code: DE