WO2020253192A1 - 异步起动同步磁阻电机转子结构、电机及压缩机 - Google Patents

异步起动同步磁阻电机转子结构、电机及压缩机 Download PDF

Info

Publication number
WO2020253192A1
WO2020253192A1 PCT/CN2019/128068 CN2019128068W WO2020253192A1 WO 2020253192 A1 WO2020253192 A1 WO 2020253192A1 CN 2019128068 W CN2019128068 W CN 2019128068W WO 2020253192 A1 WO2020253192 A1 WO 2020253192A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
rotor
synchronous reluctance
reluctance motor
slot
Prior art date
Application number
PCT/CN2019/128068
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
史进飞
肖勇
李霞
余钦宏
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020253192A1 publication Critical patent/WO2020253192A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0012Manufacturing cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present application relates to the technical field of compressor equipment, and in particular to an asynchronous starting synchronous reluctance motor rotor structure, motor and compressor.
  • This application claims the priority of the patent application filed to the State Intellectual Property Office of China on June 19, 2019 with the application number 201910532908.X and the invention title "Asynchronous start synchronous reluctance motor rotor structure, motor and compressor”.
  • Asynchronous start synchronous reluctance motor combines the structural characteristics of induction motor and synchronous reluctance motor.
  • the start is realized by generating torque by squirrel cage induction, and the multi-layer reluctance slot is set on the rotor to generate reluctance torque to achieve constant speed operation. It can be asynchronous Connect the power supply to realize the start operation.
  • asynchronous start synchronous reluctance motors have no rare earth permanent magnet materials and no demagnetization problems.
  • the motor has low cost and good reliability.
  • there are many air magnetic barriers on the motor rotor which has good heat dissipation effect and low rotor loss. Compared with asynchronous motors, it has high efficiency and constant speed.
  • the starting process of a direct-start synchronous reluctance motor includes two parts.
  • One part is the squirrel cage formed by the ring guide bars at the outer end of the rotor.
  • the asynchronous torque generated by the squirrel cage makes the motor start.
  • the other part is that when the speed is close to the synchronous speed, the asynchronous torque and the reluctance torque are brought into synchronization, that is, the synchronous ability. Since the synchronization capability of a direct-start synchronous reluctance motor is related to the rotor inertia of the motor, the smaller the rotor inertia, the easier the motor will be brought into synchronization.
  • the patented rotor slot is filled with aluminum, the amount of aluminum is relatively large, the motor cost is high, and the end rings at both ends of the rotor cover On the entire rotor surface, there are no air circulation holes (magnetic barrier air slots) on the rotor, and the motor has poor heat dissipation performance.
  • the main purpose of this application is to provide an asynchronous start synchronous reluctance motor rotor structure, motor and compressor to solve the problem of low motor efficiency in the prior art.
  • a rotor structure of an asynchronous start synchronous reluctance motor which includes a rotor core, and the rotor core is provided with a first type of slit slot and a second type of slit slot ,
  • the first type of slit grooves and the second type of slit grooves are staggered along the q-axis direction of the rotor core, wherein the two ends of the first type of slit groove are respectively provided with a filling slit groove, the second type of slit
  • the slot is an air slot.
  • first type slit grooves there are a plurality of first type slit grooves, a plurality of second type slit grooves, a plurality of first type slit grooves and a plurality of second type slit grooves are alternately arranged, and the second type slit grooves It is arranged between two adjacent first-type slit grooves.
  • a reinforcing rib is provided in the middle of the second type of slit groove, and the geometric center line of the reinforcing rib along the radial direction of the rotor core coincides with the q axis.
  • the first type of slot is an air slot
  • the filling slot is used for inserting or injecting conductive and non-magnetic materials.
  • an independent filling slot is also provided on the rotor core, and the independent filling slot is arranged close to the outer edge of the rotor core and located at the q axis.
  • the rotor structure of the asynchronous start synchronous reluctance motor further includes: a conductive end ring, there are two conductive end rings, the two conductive end rings are arranged at the first end and the second end of the rotor core, and the outer circumference of the conductive end ring
  • the surface is provided with slots corresponding to the independent filling slot and the filling slit slot; there are a plurality of guide bars, and the plurality of guide bars are inserted through the slots of the conductive end ring at the first end of the rotor core
  • the slot of the conductive end ring is arranged in the independent filling groove and the filling slit groove and extends to the second end of the rotor core to form a squirrel cage.
  • the length of the filling slot is gradually reduced in the direction close to the q axis.
  • a method for manufacturing a rotor of an asynchronously-started synchronous reluctance motor is used to manufacture the above-mentioned asynchronously-started synchronous reluctance motor rotor structure.
  • the method includes the following steps: The rotor core is formed; the guide bar is inserted into the filling slit slot and the independent filling slot of the rotor core; the conductive end rings are respectively arranged at both ends of the rotor core, and the guide bar is inserted into the slot of the conductive end ring Inside; the conductive end ring and the rotor core are pressed tightly, and the guide bar and the conductive end ring are welded to form a squirrel cage.
  • a motor including an asynchronous start synchronous reluctance motor rotor structure, and the asynchronous start synchronous reluctance motor rotor structure is the aforementioned asynchronous start synchronous reluctance motor rotor structure.
  • a compressor including an asynchronous start synchronous reluctance motor rotor structure, and the asynchronous start synchronous reluctance motor rotor structure is the aforementioned asynchronous start synchronous reluctance motor rotor structure.
  • the rotor structure is adopted, by setting the first type of slit grooves and the second type of slit grooves, and setting the filling slit grooves at both ends of the first type of slit grooves, and the second type
  • the slit groove is provided as an air groove.
  • Fig. 1 shows a schematic structural diagram of a first embodiment of a rotor structure of an asynchronous start synchronous reluctance motor according to the present application
  • Figure 2 shows a schematic structural diagram of an embodiment of a conductive end ring according to the present application
  • Fig. 3 shows a schematic structural diagram of a second embodiment of the rotor structure of an asynchronous start synchronous reluctance motor according to the present application
  • FIG. 4 shows a schematic structural diagram of a third embodiment of the rotor structure of an asynchronous start synchronous reluctance motor according to the present application
  • Fig. 5 shows a flowchart of a method for manufacturing a rotor structure of an asynchronous start synchronous reluctance motor according to the present application.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between a device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here is explained accordingly.
  • a rotor structure of an asynchronous start synchronous reluctance motor is provided.
  • the rotor structure of the asynchronous start synchronous reluctance motor includes a rotor core 10.
  • the rotor core 10 is provided with a first type of slit groove 20 and a second type of slit groove 30.
  • the first-type slit grooves 20 and the second-type slit grooves 30 are alternately arranged along the q-axis direction of the rotor core 10.
  • both ends of the first type of slit groove 20 are respectively provided with a filling slit groove 40
  • the second type of slit groove 30 is an air groove.
  • the rotor structure is adopted, the first type of slit grooves and the second type of slit grooves are provided, and filling slit grooves are provided at both ends of the first type of slit grooves, and the second type of slit
  • the slot is set as an air slot.
  • first-type slit grooves 20 there are multiple first-type slit grooves 20, multiple second-type slit grooves 30, multiple first-type slit grooves 20 and multiple second-type slit grooves 30 are alternately arranged, and the second type The slit groove 30 is arranged between two adjacent first-type slit grooves 20.
  • the first type of slit grooves 20 and the second type of slit grooves 30 are both arc-shaped structures and are bent at a side away from the shaft hole of the rotor core.
  • the first type of slit groove 20 and both ends are respectively provided with a filling slit groove 40 and the second type of slit groove 30, which are combined into a magnetic barrier layer to form a salient pole difference and generate a reluctance torque.
  • a reinforcing rib 50 is provided in the middle of the second type of slit groove 30.
  • the geometric center line of the rib 50 along the radial direction of the rotor core 10 coincides with the q axis. This arrangement can effectively improve the stability and reliability of the rotor structure.
  • the first type of slot 20 is an air slot, and the filling slot 40 is used to insert or inject conductive and non-magnetic materials.
  • the method of inserting conductive and non-magnetic materials can effectively reduce the deformation of the rotor structure during manufacture, and improve the quality assurance of the rotor structure.
  • an independent filling groove 70 is also provided on the rotor core 10.
  • the independent filling slot 70 is arranged close to the outer edge of the rotor core 10 and located at the q axis. This arrangement can effectively increase the magnetic flux difference between the q-axis and the d-axis of the rotor structure, further improve the performance of the rotor structure, and at the same time help the motor start.
  • the rotor's q-axis and d-axis are arranged at an angle of 45°, with a total of four magnetic poles.
  • the rotor structure of the asynchronous start synchronous reluctance motor further includes a conductive end ring 61 and a guide bar 63.
  • a conductive end ring 61 There are two conductive end rings 61, the two conductive end rings 61 are provided at the first end and the second end of the rotor core 10, and the outer circumferential surface of the conductive end ring 61 is provided with an independent filling groove 70 and a filling slit groove. 40 one-to-one corresponding slot 62.
  • the conductive end ring 61 at the second end of the core 10 is in the slot 62 to form a squirrel cage.
  • the squirrel cage induces a current, which interacts with the stator magnetic field to generate asynchronous torque to start the motor.
  • the length of the filling slot 40 is gradually reduced in the direction close to the q-axis.
  • a method for manufacturing a rotor of an asynchronously-started synchronous reluctance motor is provided.
  • the method is used for manufacturing the rotor structure of an asynchronously-started synchronous reluctance motor of the above-mentioned embodiment.
  • the method includes the following steps: laminating the rotor blades to form the rotor core 10, inserting the guide bar 63 into the filling slit groove 40 and the independent filling groove 70 of the rotor core 10, respectively setting the conductive end rings 61 on the rotor iron
  • the two ends of the core 10, and the guide bar 63 is inserted into the slot 62 of the conductive end ring 61, the conductive end ring 61 and the rotor core 10 are pressed tightly, and the guide bar 63 and the conductive end ring 61 are welded and connected to Form a squirrel cage.
  • the rotor structure manufactured by the method has small rotor deformation, easy processing, convenient operation and saving production materials.
  • the rotor structure in the foregoing embodiment can also be used in the technical field of electrical equipment, that is, according to another aspect of the present application, a motor is provided.
  • the motor includes an asynchronous starting synchronous reluctance motor rotor structure.
  • the rotor structure of the asynchronous start synchronous reluctance motor is the rotor structure of the asynchronous start synchronous reluctance motor in the above embodiment.
  • the rotor structure in the above embodiment can also be used in the technical fields of equipment such as compressors and fans. That is, according to another aspect of the present application, a compressor is provided.
  • the compressor includes an asynchronous start synchronous reluctance motor rotor structure, and the asynchronous start synchronous reluctance motor rotor structure is the asynchronous start synchronous reluctance motor rotor structure in the above embodiment.
  • the use of the synchronous reluctance motor rotor can overcome the disadvantages of the rotor structure in the prior art.
  • the synchronous reluctance motor rotor reduces the amount of material used to manufacture the rotor, reduces the cost of the motor, and at the same time reduces the magnetic flux leakage of the rotor and improves the efficiency of the motor.
  • the method of inserting conductive and non-magnetic materials is adopted to avoid serious deformation of the rotor during manufacturing, and improve the manufacturing quality.
  • the rotor punching piece is provided with a plurality of slit slots, which are arranged in layers in the radial direction to form a magnetic barrier layer.
  • the magnetic barrier layer is arranged in at least two layers in the radial direction of the rotor.
  • the slit slots are divided into air slots. Slots and filling slots. Filling slots need to be filled with conductive and non-magnetic materials such as aluminum. Filling slots are distributed on the outer circumference of the rotor and at both ends of the air slot, and the slot is filled under one pole. Interval configuration, as shown at A in Figure 1.
  • the rotor with this structure can reduce the filling slot, can reduce the amount of filling material, reduce the cost, can also reduce the number of stiffeners, reduce the magnetic flux leakage, and improve the efficiency of the motor.
  • the guide bar is made of aluminum, and the structural shape is consistent with the corresponding filling slit groove. It is inserted into the filling slit groove of the rotor by inserting, instead of using pressure-cast aluminum, to avoid serious deformation of the rotor.
  • the rotor is composed of a rotor core formed by laminating rotor cores with a specific structure and conductive end rings and guide bars at both ends of the rotor core.
  • the rotor cores are provided with a plurality of slit slots (the first type of slit slots and the first type).
  • the second type of slit grooves) filling slit grooves and shaft holes matching the shaft.
  • the filling slit grooves are distributed on the outer circumference of the rotor at both ends of the air slit groove, and the filling slit grooves at both ends of the air slit groove under one pole are arranged at intervals, and the slit grooves are arranged in layers in the radial direction to form a magnetic field.
  • the magnetic barrier layer is arranged at least two layers in the radial direction of the rotor.
  • the magnetic barrier layer increases the inductance gap between the d-axis and q-axis of the motor, and generates reluctance torque to make the motor run.
  • the slot of the first type and the filling slot of the corresponding two ends are divided by two reinforcing ribs, which are independent of each other.
  • the reinforcing ribs ensure the structural strength of the rotor.
  • the magnetic barrier layer composed of the second type of slit grooves has only one rib partition, which can reduce the number of ribs, reduce magnetic flux leakage, and improve motor efficiency.
  • Filling the slit slots requires filling or inserting conductive and non-magnetic materials such as aluminum.
  • the motor When the motor starts, it can induce current and interact with the stator to generate asynchronous torque to help the motor start.
  • the first type of slot, the second type of slot The inside is air, which can increase the circulation area of the rotor and achieve the heat dissipation effect.
  • the guide bar is inserted into the opposite filling slit on the rotor.
  • the conductive end ring is arranged at both ends of the rotor core.
  • the conductive end ring is provided with a guide bar slot. As shown in Figure 2, the shape of the slot is consistent with the corresponding guide bar.
  • the bar can be inserted into the corresponding slot.
  • the structure of the bar is consistent with the corresponding filling slot. Insert the bar into the corresponding filling slot on the rotor core.
  • the conductive end ring and the conductive bar are connected by welding, etc., through the conductive end
  • the ring short-circuits all the guide bars to form a squirrel cage, as shown in Figure 3, which is a three-dimensional exploded view of the rotor.
  • the method for manufacturing the rotor of the asynchronous synchronous moving reluctance motor includes: a rotor core formed by laminating rotor punching sheets with a specific structure, and a conductive end ring and a conductive bar composed of conductive and non-magnetic materials.
  • the bar is inserted into the corresponding filling slit slot on the rotor core, and the length of the guide bar is greater than the length of the core.
  • the guide bar can be extended from both ends of the core, and then the conductive end ring is placed at both ends of the rotor.
  • the guide bar is inserted correspondingly, and finally the core and end ring are compressed, and the guide bar and end ring are welded by welding, and finally the rotor is manufactured into a whole.
  • the axial view of the rotor is shown in Figure 4, and Figure 5 is the process flow of the rotor manufacturing method. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种异步起动同步磁阻电机转子结构、电机及压缩机。异步起动同步磁阻电机转子结构包括:转子铁芯,转子铁芯上开设有第一类狭缝槽和第二类狭缝槽,第一类狭缝槽和第二类狭缝槽沿转子铁芯的q轴方向交错地设置,其中,第一类狭缝槽的两端分别设置有一个填充狭缝槽,第二类狭缝槽为空气槽。通过设置第一类狭缝槽和第二类狭缝槽,并在第一类狭缝槽的两端设置填充狭缝槽,同时将第二类狭缝槽设置成空气槽。这样设置能够有效地提升了具有该转子结构的电机效率,同时采用该转子结构能够避免制造时出现严重变形的情况,还能够减少制造转子结构的材料用量,有效地降低了电机生产成本。

Description

异步起动同步磁阻电机转子结构、电机及压缩机 技术领域
本申请涉及压缩机设备技术领域,具体而言,涉及一种异步起动同步磁阻电机转子结构、电机及压缩机。本申请要求于2019年6月19日提交至中国国家知识产权局、申请号为201910532908.X、发明名称为“异步起动同步磁阻电机转子结构、电机及压缩机”的专利申请的优先权。
背景技术
异步起动同步磁阻电机结合了感应电机与同步磁阻电机的结构特点,通过鼠笼感应产生力矩实现起动,通过转子上设置多层磁阻槽,产生磁阻转矩实现恒转速运行,能够异步通入电源实现起动运行。异步起动同步磁阻电机与永磁电机相比,没有稀土永磁材料,也不存在退磁问题,电机成本低,可靠性好。而且电机转子上设有很多空气磁障,散热效果好,转子损耗小。与异步电机相比,效率高,转速恒定。
另外,直接起动同步磁阻电机起动过程包括两个部分,一部分是转子***端环导条形成鼠笼,鼠笼产生的异步转矩,使电机起动。另一部分是接近同步转速时,异步转矩和磁阻转矩牵入同步,即同步能力。由于直接起动同步磁阻电机的同步能力与电机转子惯量有关,转子惯量越小,电机越容易牵入同步。
现有技术中,直接起动同步磁阻电机转子端环导条均是通过高压压铸铸造,高压铸造会使转子磁阻槽严重变形,而且压铸材料用料多。专利号为US2975310A的专利提供一种同步感应电机转子结构,产生磁阻转矩,结构简单,但是该专利转子槽里全部注入铝,铝用量比较大,电机成本高,另外转子两端端环覆盖整个转子表面,转子上没有空气流通散热孔(磁障空气槽),电机散热性能差。
发明内容
本申请的主要目的在于提供一种异步起动同步磁阻电机转子结构、电机及压缩机,以解决现有技术中电机效率低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种异步起动同步磁阻电机转子结构,包括:转子铁芯,转子铁芯上开设有第一类狭缝槽和第二类狭缝槽,第一类狭缝槽和第二类狭缝槽沿转子铁芯的q轴方向交错地设置,其中,第一类狭缝槽的两端分别设置有一个填充狭缝槽,第二类狭缝槽为空气槽。
进一步地,第一类狭缝槽为多个,第二类狭缝槽为多个,多个第一类狭缝槽与多个第二类狭缝槽交替地设置,第二类狭缝槽设置于相邻的两个第一类狭缝槽之间。
进一步地,第二类狭缝槽的中部设置有加强筋,加强筋的沿转子铁芯的径向方向的几何中心线与q轴相重合。
进一步地,第一类狭缝槽为空气槽,填充狭缝槽用于***或注入导电不导磁材料。
进一步地,转子铁芯上还设置有独立填充槽,独立填充槽靠近转子铁芯的外边缘设置并位于q轴处。
进一步地,异步起动同步磁阻电机转子结构还包括:导电端环,导电端环为两个,两个导电端环设置于转子铁芯的第一端和第二端处,导电端环的外周面上设置有与独立填充槽和填充狭缝槽一一对应的插槽;导条,导条为多个,多个导条通过从转子铁芯的第一端的导电端环的插槽插设于独立填充槽和填充狭缝槽内并延伸至转子铁芯的第二端的导电端环的插槽内以形成鼠笼。
进一步地,填充狭缝槽的长度沿靠近q轴的方向逐渐减小地设置。
根据本申请的另一方面,提供了一种异步起同步动磁阻电机转子制造的方法,方法用于制造上述的异步起动同步磁阻电机转子结构,方法包括以下步骤:将转子冲片叠压形成转子铁芯;将导条***转子铁芯的填充狭缝槽和独立填充槽内;分别将导电端环设置于转子铁芯的两端,并将导条插设于导电端环的插槽内;将导电端环和转子铁芯压紧,并将导条与导电端环焊接连接以形成鼠笼。
根据本申请的另一方面,提供了一种电机,包括异步起动同步磁阻电机转子结构,异步起动同步磁阻电机转子结构为上述的异步起动同步磁阻电机转子结构。
根据本申请的另一方面,提供了一种压缩机,包括异步起动同步磁阻电机转子结构,异步起动同步磁阻电机转子结构为上述的异步起动同步磁阻电机转子结构。
应用本申请的技术方案,采用该转子结构,通过设置第一类狭缝槽和第二类狭缝槽,并在第一类狭缝槽的两端设置填充狭缝槽,同时将第二类狭缝槽设置成空气槽。这样设置能够有效地提升了具有该转子结构的电机效率,同时采用该转子结构能够避免制造时出现严重变形的情况,还能够减少制造转子结构的材料用量,有效地降低了电机生产成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的异步起动同步磁阻电机转子结构的第一实施例的结构示意图;
图2示出了根据本申请的导电端环的实施例的结构示意图;
图3示出了根据本申请的异步起动同步磁阻电机转子结构的第二实施例的结构示意图;
图4示出了根据本申请的异步起动同步磁阻电机转子结构的第三实施例的结构示意图;
图5示出了根据本申请的异步起动同步磁阻电机转子结构的制造方法的流程图。
其中,上述附图包括以下附图标记:
10、转子铁芯;
20、第一类狭缝槽;
30、第二类狭缝槽;
40、填充狭缝槽;
50、加强筋;
61、导电端环;62、插槽;63、导条;
70、独立填充槽。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图5所示,根据本申请的实施例,提供了一种异步起动同步磁阻电机转子结构。
具体地,如图1所示,该异步起动同步磁阻电机转子结构包括转子铁芯10。转子铁芯10上开设有第一类狭缝槽20和第二类狭缝槽30。第一类狭缝槽20和第二类狭缝槽30沿转子铁芯10的q轴方向交错地设置。其中,第一类狭缝槽20的两端分别设置有一个填充狭缝槽40,第二类狭缝槽30为空气槽。
在本实施例中,采用该转子结构,通过设置第一类狭缝槽和第二类狭缝槽,并在第一类狭缝槽的两端设置填充狭缝槽,同时将第二类狭缝槽设置成空气槽。这样设置能够提升了具有该转子结构的电机效率,同时采用该转子结构能够避免制造时出现严重变形的情况,还能够减少制造转子结构的材料用量,有效地降低了电机生产成本。
其中,第一类狭缝槽20为多个,第二类狭缝槽30为多个,多个第一类狭缝槽20与多个第二类狭缝槽30交替地设置,第二类狭缝槽30设置于相邻的两个第一类狭缝槽20之间。其中,第一类狭缝槽20和第二类狭缝槽30均为弧形结构且背离转子铁芯的轴孔一侧弯折地设置。第一类狭缝槽20及两端分别设置有一个填充狭缝槽40,及第二类狭缝槽30,组合成磁障层,形成凸极差,产生磁阻转矩。
第二类狭缝槽30的中部设置有加强筋50。加强筋50的沿转子铁芯10的径向方向的几何中心线与q轴相重合。这样设置能够有效地提高该转子结构的稳定性和可靠性。
第一类狭缝槽20为空气槽,填充狭缝槽40用于***或注入导电不导磁材料。其中,采用***导电不导磁材料的方式能够有效地减小转子结构在制作中发生变形的情况,提高了转子结构的质量保证。
进一步地,转子铁芯10上还设置有独立填充槽70。独立填充槽70靠近转子铁芯10的外边缘设置并位于q轴处。这样设置能够有效地提高转子结构的q轴与d轴之间的磁通量之差,进一步提高了转子结构的性能,同时有助于电机起动。如图1所示,该转子的q轴与d轴之间呈45°角设置,共四个磁极。
如图2和图3所示,异步起动同步磁阻电机转子结构还包括导电端环61和导条63。导电端环61为两个,两个导电端环61设置于转子铁芯10的第一端和第二端处,导电端环61的外周面上设置有与独立填充槽70和填充狭缝槽40一一对应的插槽62。导条63为多个,多个导条63通过从转子铁芯10的第一端的导电端环61的插槽62插设于独立填充槽70和填充狭缝槽40内并延伸至转子铁芯10的第二端的导电端环61的插槽62内以形成鼠笼。电机起动 过程中,鼠笼感应产生电流,与定子磁场作用产生异步转矩,使电机起动。其中,填充狭缝槽40的长度沿靠近q轴的方向逐渐减小地设置。
根据本申请的另一方面,提供了一种异步起同步动磁阻电机转子制造的方法,方法用于制造上述实施例的异步起动同步磁阻电机转子结构。该方法包括以下步骤:将转子冲片叠压形成转子铁芯10,将导条63***转子铁芯10的填充狭缝槽40和独立填充槽70内,分别将导电端环61设置于转子铁芯10的两端,并将导条63插设于导电端环61的插槽62内,将导电端环61和转子铁芯10压紧,并将导条63与导电端环61焊接连接以形成鼠笼。采用该方法制造的转子结构,转子变形小,加工容易,操作方便且节省生产材料。
上述实施例中的转子结构还可以用于电机设备技术领域,即根据本申请的另一方面,提供了一种电机。该电机包括异步起动同步磁阻电机转子结构。异步起动同步磁阻电机转子结构为上述实施例中的异步起动同步磁阻电机转子结构。
上述实施例中的转子结构也可以用于压缩机、风机等设备技术领域,即根据本申请的另一方面,提供了一种压缩机。该压缩机包括异步起动同步磁阻电机转子结构,异步起动同步磁阻电机转子结构为上述实施例中的异步起动同步磁阻电机转子结构。
具体地,采用该同步磁阻电机转子,能够克服现有技术中转子结构存在的缺点。而且该同步磁阻电机转子,减少了制造转子的材料用量,降低电机成本,同时减小转子漏磁,提升电机效率。采用***导电不导磁材料的方式避免转子制造时出现严重变形,提高制造质量。
转子冲片设置有多个狭缝槽,狭缝槽在径向方向分层配置,组合成磁障层,磁障层在转子径向方向上至少布置两层以上,狭缝槽分为空气狭缝槽和填充狭缝槽,填充狭缝槽需要填入铝等导电不导磁材料,填充狭缝槽分布在转子外周部并位于空气狭缝槽的两端,而且一极下填充狭缝槽间隔配置,如图1中A处所示。采用该结构的转子,减少了填充狭缝槽,可以减少填充材料的用量,降低成本,还可以减少加强筋数量,减小漏磁,提升电机效率。其中,导条采用铝条,结构形状与对应填充狭缝槽一致,通过***方式***转子填充狭缝槽中,而不是采用压力铸铝,避免转子出现严重变形。
转子由具有特定结构的转子冲片叠压而成的转子铁芯和转子铁芯两端的导电端环及导条组成,转子冲片上设置有多个狭缝槽(第一类狭缝槽和第二类狭缝槽)、填充狭缝槽以及和转轴配合的轴孔。填充狭缝槽分布在转子外周部位于空气狭缝槽的两端,而且一极下位于空气狭缝槽两端的填充狭缝槽间隔配置,狭缝槽在径向方向分层配置,组合成磁障层,磁障层在转子径向方向上至少布置两层以上,磁障层增加电机d轴、q轴电感差距,产生磁阻转矩,使电机运行。第一类狭缝槽与对应两端的填充狭缝槽之间通过两个加强筋分割,各自独立。加强筋保证转子结构强度。第二类狭缝槽组成的磁障层仅有一个加强筋分割,可以减少加强筋数量,减小漏磁,提升电机效率。
填充狭缝槽需要填入或***铝等导电不导磁材料,电机起动时能够感应产生电流,与定子作用产生异步转矩,帮助电机起动,第一类狭缝槽、第二类狭缝槽内为空气,可以增加转子流通面积,达到散热效果。
导条***转子上相对于的填充狭缝中,导电端环设置于转子铁芯两端,导电端环上设置导条插槽,如图2所示,插槽形状与对应导条一致,导条能够***对应插槽中,导条结构形状与对应填充狭缝槽一致,将导条***转子铁芯上对应的填充狭缝槽中,导电端环及导条通过焊接等连接,通过导电端环将所有导条短接,形成鼠笼,如图3所示,为转子三维***视图,在电机起动时,鼠笼与定子作用产生异步转矩,帮助电机起动。其中,该异步起同步动磁阻电机转子制造方法,包括:将具有特定结构的转子冲片叠压而成的转子铁芯,以及由导电不导磁材料组成的导电端环及导条,导条***转子铁芯上对应填充狭缝槽中,并且导条长度大于铁芯长度,导条能够从铁芯两端伸出,再把导电端环置于转子两端,端环上插槽与导条对应***,最后压紧铁芯及端环,通过焊接将导条及端环焊接,最终制造成为转子,形成一个整体,转子轴向视图如图4所示,图5为转子制造方法流程。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种异步起动同步磁阻电机转子结构,其特征在于,包括:
    转子铁芯(10),所述转子铁芯(10)上开设有第一类狭缝槽(20)和第二类狭缝槽(30),所述第一类狭缝槽(20)和所述第二类狭缝槽(30)沿所述转子铁芯(10)的q轴方向交错地设置,其中,所述第一类狭缝槽(20)的两端分别设置有一个填充狭缝槽(40),所述第二类狭缝槽(30)为空气槽。
  2. 根据权利要求1所述的异步起动同步磁阻电机转子结构,其特征在于,所述第一类狭缝槽(20)为多个,所述第二类狭缝槽(30)为多个,多个所述第一类狭缝槽(20)与多个所述第二类狭缝槽(30)交替地设置,所述第二类狭缝槽(30)设置于相邻的两个所述第一类狭缝槽(20)之间。
  3. 根据权利要求1或2所述的异步起动同步磁阻电机转子结构,其特征在于,所述第二类狭缝槽(30)的中部设置有加强筋(50),所述加强筋(50)的沿所述转子铁芯(10)的径向方向的几何中心线与所述q轴相重合。
  4. 根据权利要求1所述的异步起动同步磁阻电机转子结构,其特征在于,所述第一类狭缝槽(20)为空气槽,所述填充狭缝槽(40)用于***或注入导电不导磁材料。
  5. 根据权利要求1所述的异步起动同步磁阻电机转子结构,其特征在于,所述转子铁芯(10)上还设置有独立填充槽(70),所述独立填充槽(70)靠近所述转子铁芯(10)的外边缘设置并位于所述q轴处。
  6. 根据权利要求5所述的异步起动同步磁阻电机转子结构,其特征在于,所述异步起动同步磁阻电机转子结构还包括:
    导电端环(61),所述导电端环(61)为两个,两个所述导电端环(61)设置于所述转子铁芯(10)的第一端和第二端处,所述导电端环(61)的外周面上设置有与所述独立填充槽(70)和所述填充狭缝槽(40)一一对应的插槽(62);
    导条(63),所述导条(63)为多个,多个所述导条(63)通过从所述转子铁芯(10)的第一端的所述导电端环(61)的插槽(62)插设于所述独立填充槽(70)和所述填充狭缝槽(40)内并延伸至所述转子铁芯(10)的第二端的所述导电端环(61)的插槽(62)内以形成鼠笼。
  7. 根据权利要求1所述的异步起动同步磁阻电机转子结构,其特征在于,所述填充狭缝槽(40)的长度沿靠近所述q轴的方向逐渐减小地设置。
  8. 一种异步起同步动磁阻电机转子制造的方法,所述方法用于制造权利要求1至7中任一项所述的异步起动同步磁阻电机转子结构,其特征在于,所述方法包括以下步骤:
    将转子冲片叠压形成所述转子铁芯(10);
    将导条(63)***所述转子铁芯(10)的填充狭缝槽(40)和独立填充槽(70)内;
    分别将导电端环(61)设置于转子铁芯(10)的两端,并将导条(63)插设于所述导电端环(61)的插槽(62)内;
    将所述导电端环(61)和所述转子铁芯(10)压紧,并将所述导条(63)与导电端环(61)焊接连接以形成鼠笼。
  9. 一种电机,包括异步起动同步磁阻电机转子结构,其特征在于,所述异步起动同步磁阻电机转子结构为权利要求1至7中任一项所述的异步起动同步磁阻电机转子结构。
  10. 一种压缩机,包括异步起动同步磁阻电机转子结构,其特征在于,所述异步起动同步磁阻电机转子结构为权利要求1至7中任一项所述的异步起动同步磁阻电机转子结构。
PCT/CN2019/128068 2019-06-19 2019-12-24 异步起动同步磁阻电机转子结构、电机及压缩机 WO2020253192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910532908.XA CN110138115B (zh) 2019-06-19 2019-06-19 异步起动同步磁阻电机转子结构、电机及压缩机
CN201910532908.X 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020253192A1 true WO2020253192A1 (zh) 2020-12-24

Family

ID=67578070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128068 WO2020253192A1 (zh) 2019-06-19 2019-12-24 异步起动同步磁阻电机转子结构、电机及压缩机

Country Status (2)

Country Link
CN (1) CN110138115B (zh)
WO (1) WO2020253192A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138115B (zh) * 2019-06-19 2020-10-20 珠海格力电器股份有限公司 异步起动同步磁阻电机转子结构、电机及压缩机
CN110445335B (zh) * 2019-08-23 2024-06-25 江苏华胜电机(集团)有限公司 自启动同步磁阻电机
CN113078750A (zh) * 2020-01-03 2021-07-06 哈尔滨理工大学 一种新型同步磁阻电机转子结构
CN112688511A (zh) * 2020-12-10 2021-04-20 山东大学 一种非对称集成转子式永磁同步磁阻电机、方法及应用
CN112713741A (zh) * 2020-12-21 2021-04-27 中车永济电机有限公司 自起动三相同步磁阻电动机
CN114520551A (zh) * 2022-01-26 2022-05-20 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537740A (zh) * 2014-08-04 2017-03-22 Ksb 股份公司 转子、磁阻机器和用于转子的制造方法
US20170117784A1 (en) * 2015-10-21 2017-04-27 Mcmaster University Double-rotor switched reluctance machine with segmented rotors
CN108711969A (zh) * 2018-07-13 2018-10-26 珠海格力电器股份有限公司 转子组件及电机
CN109347224A (zh) * 2017-12-14 2019-02-15 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN110138115A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201353A1 (de) * 2012-02-10 2013-08-14 Ksb Aktiengesellschaft Rotor und Reluktanzmotor
CN104917350A (zh) * 2014-12-09 2015-09-16 江苏爱尔玛科技有限公司 一种异步起动永磁电动机转子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537740A (zh) * 2014-08-04 2017-03-22 Ksb 股份公司 转子、磁阻机器和用于转子的制造方法
US20170117784A1 (en) * 2015-10-21 2017-04-27 Mcmaster University Double-rotor switched reluctance machine with segmented rotors
CN109347224A (zh) * 2017-12-14 2019-02-15 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN108711969A (zh) * 2018-07-13 2018-10-26 珠海格力电器股份有限公司 转子组件及电机
CN110138115A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机

Also Published As

Publication number Publication date
CN110138115A (zh) 2019-08-16
CN110138115B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2020253192A1 (zh) 异步起动同步磁阻电机转子结构、电机及压缩机
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
JP4763320B2 (ja) 同期誘導電動機の回転子及び圧縮機
KR101310529B1 (ko) 스위치드 릴럭턴스 모터
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
CN109378956B (zh) 转子结构、异步起动同步磁阻电机及压缩机
JP6595443B2 (ja) 回転電機
WO2020253194A1 (zh) 直接起动同步磁阻电机转子结构及具有其的电机
US10720818B2 (en) Synchronous reluctance type rotary electric machine
JPH033457B2 (zh)
WO2020253195A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
WO2020253198A1 (zh) 直接起动同步磁阻电机转子结构、电机
US9966824B2 (en) Magnetic inductor electric motor and manufacturing method therefor
JP2006121765A (ja) リラクタンス式回転電機
WO2013020312A1 (zh) 电动机转子及具有其的电动机
US20200395799A1 (en) Rotor Structure, Permanent Magnet Assisted Synchronous Reluctance Motor and Electric Car
JP2010081787A (ja) 集中巻きモータ
WO2020253193A1 (zh) 自起动同步磁阻电机转子结构及具有其的电机
US20160285328A1 (en) Rotor, motor including the same, and method of manufacturing the same
US20210296948A1 (en) Rotor, synchronous reluctance motor, and rotor forming method
CN110601481A (zh) 一种双转子永磁同步磁阻电机及配置方法
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
CN209805522U (zh) 自起动同步磁阻电机转子结构及具有其的电机
CN104617725A (zh) 一种双转子结构的异步起动永磁同步电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933417

Country of ref document: EP

Kind code of ref document: A1