WO2020238505A1 - 一种基于交联蛋白质的吸附材料及其回收贵金属的应用 - Google Patents

一种基于交联蛋白质的吸附材料及其回收贵金属的应用 Download PDF

Info

Publication number
WO2020238505A1
WO2020238505A1 PCT/CN2020/086452 CN2020086452W WO2020238505A1 WO 2020238505 A1 WO2020238505 A1 WO 2020238505A1 CN 2020086452 W CN2020086452 W CN 2020086452W WO 2020238505 A1 WO2020238505 A1 WO 2020238505A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
protein
adsorption material
hours
layer
Prior art date
Application number
PCT/CN2020/086452
Other languages
English (en)
French (fr)
Inventor
杨鹏
杨发翠
Original Assignee
陕西师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西师范大学 filed Critical 陕西师范大学
Publication of WO2020238505A1 publication Critical patent/WO2020238505A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4856Proteins, DNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to an adsorption material based on cross-linked protein, and a method for selectively extracting gold and other precious metals from ore leach liquor or other metal ion waste liquid by using the adsorption material.
  • the methods for separation and recovery of precious metal ions include adsorption, membrane filtration, and hydrometallurgy.
  • the adsorption method is the most economical and effective method for recovering precious metal ions.
  • Commonly used adsorption materials are activated carbon and ion exchange resin.
  • Activated carbon is rich in mesoporous and microporous structure and has a large specific surface area to become an effective gold absorbing material.
  • its own pore structure slows down the adsorption of gold.
  • the recycling of activated carbon requires higher energy consumption.
  • the ion exchange resin has high selectivity but high cost. Therefore, it is necessary to find an adsorption material that can quickly and efficiently adsorb gold and can be reused.
  • biosorption method Because of its low cost, high efficiency, and environmental friendliness, the biosorption method has been regarded as a promising wastewater precious metal recovery technology in recent years.
  • microorganisms such as bacteria, fungi, algae, etc.
  • microbial bioadsorbent materials have shortcomings such as small particle size, poor mechanical strength, difficulty in solid-liquid separation, immature microbiological technology for recovering precious metals, and inability to be applied on a large scale.
  • the purpose of the present invention is to provide a cross-linked protein-based adsorption material and provide new applications for the adsorption material.
  • the absorbent material of the present invention is a double-layer film formed of microparticles formed by crosslinking phase-transition protein crosslinked by a crosslinking agent or a dense nano-film on the lower layer and a densely packed layer of microparticles on the upper layer, wherein the protein is lysozyme Or bovine serum albumin.
  • the above-mentioned adsorption material is prepared by the following method: the 4-hydroxyethylpiperazine ethanesulfonic acid buffer solution of 15 ⁇ 100mmol/L tris(2-carboxyethyl)phosphine hydrochloride is adjusted to pH 4.0 with NaOH After ⁇ 11.0, mix with the 4-hydroxyethylpiperazine ethanesulfonic acid buffer solution of 1 ⁇ 50mg/mL protein in equal volume, incubate at room temperature for 1 ⁇ 12 hours, centrifuge and wash the obtained phase change protein microparticles, and then at 0.2 % ⁇ 5% cross-linking agent aqueous solution at room temperature for 0.5-6 hours, and finally the cross-linked microparticles are washed and freeze-dried to obtain a cross-linked protein adsorption material; or 15 ⁇ 100mmol/L tris(2- The 4-hydroxyethylpiperazine ethanesulfonic acid buffer solution of carboxyethyl) phosphin
  • a double-layer protein film with a dense nano-film in the lower layer and a close-packed layer of micro-particles on the upper layer is obtained, that is, a cross-linked protein adsorption material.
  • the above-mentioned adsorbent is preferably prepared by the following method: the 4-hydroxyethylpiperazine ethanesulfonic acid buffer solution of 40-60mmol/L tris(2-carboxyethyl)phosphine hydrochloride is adjusted to the pH value with NaOH After 5.0 ⁇ 8.0, mix with 20 ⁇ 40mg/mL protein 4-hydroxyethylpiperazine ethanesulfonic acid buffer solution in equal volume, incubate at room temperature for 2 ⁇ 12 hours, centrifuge and wash the obtained phase change protein microparticles, and then 1% ⁇ 2% cross-linking agent aqueous solution is cross-linked at room temperature for 1 ⁇ 3 hours, and finally the cross-linked microparticles are washed and freeze-dried to obtain cross-linked protein adsorption material; or 40 ⁇ 60mmol/L three (2 -Carboxyethyl) phosphine hydrochloride 4-hydroxyethylpiperazine ethanesulfonic acid
  • the above-mentioned crosslinking agent is any one of glutaraldehyde, genipin, transglutaminase, and carbodiimide.
  • the application of the adsorption material based on the cross-linked protein in the recovery of precious metals in the present invention can be specifically used for the recovery of precious metals in ore leaching solution and the recovery of precious metals in electronic waste leaching solution, preferably the ore leaching solution or electronic waste leaching
  • the pH of the liquid is 2-5, and the precious metal is any one or more of gold, silver, platinum, palladium, ruthenium, rhodium, osmium, and iridium.
  • the adsorption material of the invention has a simple preparation method, low cost, good adsorption effect on precious metals, can quickly and selectively extract gold and other precious metals from ore leachate or other metal ion waste liquids, is economical and practical, simple to operate, and has better Good prospects for promotion and application.
  • Figure 1 is a scanning electron micrograph of the adsorption material of cross-linked lysozyme.
  • Figure 2 shows the effect of different temperatures and different concentrations of gold ion solutions on the amount of gold ion adsorbed by the adsorption material of cross-linked lysozyme.
  • Figure 3 shows the adsorption time of cross-linked lysozyme adsorbent for gold ions in different concentrations of gold ion solutions.
  • Figure 4 shows the adsorption rate of the cross-linked lysozyme adsorbent in the mixed precious metal ion solution.
  • Figure 5 shows the selective adsorption of gold by the cross-linked lysozyme adsorbent in the ore extract diluted 40 times.
  • Figure 6 shows the selective extraction of gold by the cross-linked lysozyme adsorbent in the 50 times diluted e-waste extract.
  • phase transition lysozyme microparticles were centrifuged and washed, and then cross-linked in 1% glutaraldehyde aqueous solution at room temperature for 1 hour, and finally cross-linked The latter microparticles are washed and freeze-dried to obtain a cross-linked lysozyme adsorption material.
  • the 4-hydroxyethylpiperazine ethanesulfonic acid buffer solution of 50mmol/L tris(2-carboxyethyl)phosphine hydrochloride was adjusted to pH 7.0 with NaOH, and then it was mixed with 30mg/mL lysozyme 4-
  • the hydroxyethylpiperazine ethanesulfonic acid buffer solution was mixed in equal volumes, and the resulting mixture was directly spread on the surface of the glass slide, incubated at room temperature for 3 hours, and a film was deposited on the glass slide, which was cleaned with clean water.
  • the adsorption material has a thickness of 23 ⁇ m and consists of two upper and lower layers, the lower layer is a dense nano-film, and the upper layer is a densely packed layer of microparticles assembled by phase-transition lysozyme aggregates deposited on the nano-film.
  • Example 2 Prepare a mixed solution of precious metal ions containing gold, platinum, palladium, ruthenium, rhodium, osmium and iridium, where the concentration of each precious metal ion is 0.5, 1, 10 or 50 ppm, and adjust the pH to 3, then add to Example 2
  • the dosage of the adsorption material is 0.4g/L.
  • the content of each precious metal ion in the solution is measured by ICP-MS. The results show that the adsorbent has good adsorption properties for mixed precious metal ions with a concentration of less than 1 ppm, and the adsorption rate reaches more than 90% (see Figure 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种基于交联蛋白质的吸附材料及其回收贵金属的应用,吸附材料是由交联剂交联相转变蛋白质形成的微颗粒或者下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层蛋白质薄膜,其中蛋白质为溶菌酶或牛血清白蛋白。吸附材料用于处理含有贵金属的矿石浸取液以及电子垃圾中贵金属的浸取液。

Description

一种基于交联蛋白质的吸附材料及其回收贵金属的应用 技术领域
本发明涉及一种基于交联蛋白质的吸附材料,以及采用该吸附材料从矿石浸提液或其他金属离子废液中选择性地提取金及其他贵金属的方法。
背景技术
贵金属离子分离回收的方法有吸附法、膜过滤法、湿法冶金法等。其中吸附法是回收贵金属离子最经济有效的方法。常用的吸附材料是活性炭和离子交换树脂。活性炭含有丰富的介孔及微孔结构,具有较大的比表面积成为有效的吸金材料,然而其自身的孔道结构减慢了金的吸附,同时,活性炭的回收利用需要较高的能量消耗。离子交换树脂选择性高但是成本高。因此有必要寻找一种能快速高效吸附金,且能重复使用的吸附材料。
生物吸附法因其成本低、效率高、环境友好等优点,近年来被认为是一种很有前途的废水贵金属回收技术。在生物吸附中,主要是利用微生物(如细菌、真菌、藻类等)对溶液中的贵金属进行回收。然而,微生物的生物吸附材料存在粒径小、机械强度差、固液分离困难、微生物法回收贵金属技术不成熟、不能大规模应用等缺点。
技术问题
本发明的目的是提供一种基于交联蛋白质的吸附材料,并为该吸附材料提供新的应用。
技术解决方案
针对上述目的,本发明吸附材料是由交联剂交联相转变蛋白质形成的微颗粒或者下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层薄膜,其中所述的蛋白质为溶菌酶或牛血清白蛋白。
上述的吸附材料由下述方法制备得到:将15~100mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为4.0~11.0后,与1~50mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,室温培育1~12小时后,将所得相转变蛋白质微颗粒离心并清洗,然后在0.2%~5%的交联剂水溶液中室温交联0.5~6小时,最后将交联后的微颗粒清洗并冷冻干燥,得到交联蛋白质的吸附材料;或者将15~100mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为4.0~11.0后,与1~50mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,所得混合液直接铺满玻璃片表面,室温培育1~12小时,使玻璃片上沉积一层相转变蛋白质膜;然后将沉积一层相转变蛋白质膜的玻璃片置于质量分数为0.2%~5%的交联剂水溶液中,室温交联0.5~6小时,再置于0.5~3mol/L氢氧化钠水溶液中浸泡0.5~2小时,最后将膜从玻璃片上剥离下来,得到下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层蛋白质薄膜,即交联蛋白质的吸附材料。
上述的吸附材料优选由下述方法制备得到:将40~60mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为5.0~8.0后,与20~40mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,室温培育2~12小时后,将所得相转变蛋白质微颗粒离心并清洗,然后在1%~2%的交联剂水溶液中室温交联1~3小时,最后将交联后的微颗粒清洗并冷冻干燥,得到交联蛋白质的吸附材料;或者将40~60mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为5.0~8.0后,与20~40mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,所得混合液直接铺满玻璃片表面,室温培育2~12小时,使玻璃片上沉积一层相转变蛋白质膜;然后将沉积一层相转变蛋白质膜的玻璃片的置于质量分数为1%~2%的交联剂水溶液中,室温交联1~3小时,再置于1~2mol/L氢氧化钠水溶液中浸泡在1~2小时,最后将膜从玻璃片上剥离下来,得到下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层蛋白质薄膜,即交联蛋白质的吸附材料。
上述的交联剂为戊二醛、京尼平、谷氨酰胺转氨酶、碳二亚胺中任意一种。
本发明基于交联蛋白质的吸附材料在回收贵金属中的应用,具体可用于矿石浸取液中贵金属的回收,以及电子垃圾浸取液中贵金属的回收,优选所述矿石浸取液或电子垃圾浸取液的pH为2~5,所述的贵金属为金、银、铂、钯、钌、铑、锇、铱中任意一种或多种。
有益效果
本发明吸附材料的制备方法简单,成本低廉,对贵金属的吸附效果好,能够快速选择性地从矿石浸提液或其他金属离子废液中提取金及其他贵金属,经济实用,操作简便,具有较好的推广应用前景。
附图说明
图1是交联溶菌酶的吸附材料的扫描电镜图。
图2是不同温度及不同浓度的金离子溶液对交联溶菌酶的吸附材料对金离子吸附量的影响。
图3是交联溶菌酶的吸附材料在不同浓度的金离子溶液中对金离子的吸附时间。
图4是交联溶菌酶的吸附材料在混合贵金属离子溶液中的吸附率。
图5是交联溶菌酶的吸附材料在稀释40倍的矿石浸提液中对金的选择性吸附。
图6是交联溶菌酶的吸附材料在稀释50倍的电子垃圾浸取液中对金的选择性提取。
本发明的实施方式
实施例 1
将50mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为7.0后,与30mg/mL溶菌酶的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,室温培育4小时后,将所得相转变溶菌酶微颗粒离心并清洗,然后在1%的戊二醛水溶液中室温交联1小时,最后将交联后的微颗粒清洗并冷冻干燥,得到交联溶菌酶的吸附材料。
实施例 2
将50mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为7.0,然后将其与30mg/mL溶菌酶的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,所得混合液直接铺满玻璃片表面,室温培育3小时,在玻璃片上会沉积一层膜,用清水清洗干净。然后将沉积膜的玻璃片浸泡在质量分数为1%的戊二醛水溶液中,室温交联1小时后用清水清洗干净,再将玻璃片在1mol/L的氢氧化钠水溶液中浸泡1小时,最后将膜从玻璃片上剥离下来,得到交联溶菌酶的吸附材料。由图1可见,该吸附材料厚度为23μm且由上下两层组成,下层为致密的纳米薄膜、上层为沉积在纳米薄膜上的相转变溶菌酶聚集体组装而成的微颗粒密堆积层。
实施例 3
将50mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为5.0,然后将其与40mg/mL牛血清白蛋白的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,所得混合液直接铺满玻璃片表面,室温培育12小时,在玻璃片上会沉积一层膜,用清水清洗干净。然后将沉积膜的玻璃片浸泡在质量分数为2%的戊二醛水溶液中,室温交联2小时后用清水清洗干净,再将玻璃片在1mol/L的氢氧化钠水溶液中浸泡1小时,最后将膜从玻璃片上剥离下来,得到交联牛血清白蛋白的吸附材料。
实施例 4
交联溶菌酶的吸附材料吸附金离子的应用
1、pH对吸附材料吸附性能的影响
分别将2mmol/L HAuCl 4水溶液的pH值调节为1~11,然后加入实施例2中交联溶菌酶的吸附材料,吸附材料的投加量为0.4g/L,置于振荡器中震荡12小时后用ICP-MS测溶液中所含金离子的含量。结果显示,该吸附材料在pH为2~5的范围对金的吸附率达到90%以上。
2、金离子浓度及温度对吸附材料吸附性能的影响
分别将1、2、3、4、5mmol/L HAuCl 4水溶液的pH值调节为3,然后加入实施例2中交联溶菌酶的吸附材料,吸附材料的投加量为0.4g/L,考察在不同温度(10、37和60℃)下对金离子的吸附,置于振荡器中震荡24小时后,用ICP-MS测溶液中所含金离子的含量。结果显示,随着温度的升高金的吸附量增加(见图2),其中60℃时该吸附材料对金的最大饱和吸附量为1034.4mg/g。
3、吸附时间对不同金离子浓度时吸附材料吸附性能的影响
分别将0.5、1、1.5、2、2.5、3mmol/L HAuCl 4水溶液的pH值调节为3,然后加入实施例2中交联溶菌酶的吸附材料,吸附材料的投加量为0.4g/L,考察在不同时间吸附材料对金离子的吸附,用ICP-MS测溶液中所含金离子的含量。结果显示,当HAuCl 4的初始浓度<1.5mmol/L时,吸附材料对金离子的吸附率在前3小时内急剧上升至80%,在5.0小时内缓慢上升并达到平衡。当HAuCl 4的初始浓度>1.5mmol/L时,吸附时间延长至24小时达到平衡。说明在低浓度时,该吸附材料对金离子具有较快的吸附速率(见图3)。
由上述可见,在pH为2~5的范围内,温度越高,贵金属离子的浓度越低,越有利于本发明吸附材料对贵金属离子的吸附。
实施例 5
交联溶菌酶的吸附材料在混合贵金属离子溶液中的吸附
配制含有金、铂、钯、钌、铑、锇和铱的贵金属离子混合溶液,其中每种贵金属离子的浓度均为0.5、1、10或50ppm,并调节pH值为3,然后加入实施例2中交联溶菌酶的吸附材料,吸附材料的投加量为0.4g/L,置于振荡器中震荡24小时后,用ICP-MS测溶液中所含各贵金属离子的含量。结果显示,该吸附材料对混合贵金属离子浓度低于1ppm时有较好的吸附性,吸附率达到90%以上(见图4)。
实施例 6
交联溶菌酶的吸附材料在矿石浸提液中金的选择性提取
在100mL圆底烧瓶中加入1g金原矿粉(中国,江西),然后缓慢加入20mL配制好的王水(浓盐酸:浓硝酸=3:1),加入磁子并用带气球的三通阀盖住圆底烧瓶,使气球与圆底烧瓶保持连通,在300rpm下反应24小时。反应结束后,将滤液用0.22μm的滤芯过滤,得到矿石浸提液。取所得矿石浸提液1mL用蒸馏水稀释至40mL后,加入实施例2中交联溶菌酶的吸附材料,置于振荡器中震荡12小时后,用ICP-MS测溶液中所含的金离子含量。由图5可见,该吸附材料在矿石浸取液稀释至40倍后能较好的选择性吸附金,2小时后吸附率达到90%以上。
实施例 7
交联溶菌酶的吸附材料对废弃电子产品中金的选择性提取
在100mL烧杯中加入80g手机芯片,然后缓慢加入100mL配制好的王水(浓盐酸:浓硝酸=3:1),加入磁子并用带气球的三通阀盖住圆底烧瓶,使气球与圆底烧瓶保持连通,在300rpm下反应24小时。反应结束后,将滤液用0.22μm的滤芯过滤,得到电子垃圾浸取液。取所得电子垃圾浸取液1mL用蒸馏水稀释至50mL后,加入实施例2中交联溶菌酶的吸附材料,置于振荡器中震荡12小时后,用ICP-MS测溶液中所含的金离子含量。由图6可见,该吸附材料在电子垃圾浸取液稀释至50倍后能较好的选择性吸附金,2小时后吸附率达到90%以上。
实施例 8
交联溶菌酶的吸附材料对金的解吸-吸附实验
将吸附金后的吸附材料加入到含130mmol/L硫脲、780mmol/L硫氰酸胺、28mmol/L硫酸铁的水溶液中,缓慢震荡12小时,用ICP-MS测溶液中所含的金离子浓度。对解析后的吸附材料再次进行吸附实验,解吸-吸附重复三次。结果显示进行三次吸附-脱附后,金的吸附仍可达到90%。
实施例 9
交联牛血清白蛋白的吸附材料吸附金离子的应用
分别将1、2、3、4、5mmol/L HAuCl 4水溶液的pH值调节为3,然后加入实施例3中交联牛血清白蛋白的吸附材料,吸附材料的投加量为0.4g/L,考察吸附材料在室温下对金离子的吸附,置于振荡器中震荡24小时后,用ICP-MS测溶液中所含金离子的含量。结果显示,该吸附材料在室温下对金的最大饱和吸附量为713.2mg/g。
实施例 10
交联溶菌酶的吸附材料吸附金离子的应用
将2mmol/L HAuCl 4水溶液的pH值调节为3,然后加入实施例1中交联溶菌酶的吸附材料,吸附材料的投加量为0.4g/L,考察吸附材料在室温下对金离子的吸附,置于振荡器中震荡24小时后,用ICP-MS测溶液中所含金离子的含量。结果显示,该吸附材料在室温下对金的吸附率达到99.2%。

Claims (10)

  1. 一种基于交联蛋白质的吸附材料,其特征在于:该吸附材料是由交联剂交联相转变蛋白质形成的微颗粒或者下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层蛋白质薄膜,其中所述的蛋白质为溶菌酶或牛血清白蛋白。
  2. 根据权利要求1所述的基于交联蛋白质的吸附材料,其特征在于所述的吸附材料由下述方法制备得到:将15~100mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为4.0~11.0后,与1~50mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,室温培育1~12小时后,将所得相转变蛋白质微颗粒离心并清洗,然后在0.2%~5%的交联剂水溶液中室温交联0.5~6小时,最后将交联后的微颗粒清洗并冷冻干燥,得到交联蛋白质的吸附材料。
  3. 根据权利要求2所述的基于交联蛋白质的吸附材料,其特征在于所述的吸附材料由下述方法制备得到:将40~60mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为5.0~8.0后,与20~40mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,室温培育2~12小时后,将所得相转变蛋白质微颗粒离心并清洗,然后在1%~2%的交联剂水溶液中室温交联1~3小时,最后将交联后的微颗粒清洗并冷冻干燥,得到交联蛋白质的吸附材料。
  4. 根据权利要求1所述的基于交联蛋白质的吸附材料,其特征在于所述的吸附材料由下述方法制备得到:将15~100mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为4.0~11.0后,与1~50mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,所得混合液直接铺满玻璃片表面,室温培育1~12小时,使玻璃片上沉积一层相转变蛋白质膜;然后将沉积一层相转变蛋白质膜的玻璃片置于质量分数为0.2%~5%的交联剂水溶液中,室温交联0.5~6小时,再置于0.5~3mol/L氢氧化钠水溶液中浸泡0.5~2小时,最后将膜从玻璃片上剥离下来,得到下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层蛋白质薄膜,即交联蛋白质的吸附材料。
  5. 根据权利要求4所述的基于交联蛋白质的吸附材料,其特征在于所述的吸附材料由下述方法制备得到:将40~60mmol/L三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液用NaOH调节至pH值为5.0~8.0后,与20~40mg/mL蛋白质的4-羟乙基哌嗪乙磺酸缓冲溶液等体积混合,所得混合液直接铺满玻璃片表面,室温培育2~12小时,使玻璃片上沉积一层相转变蛋白质膜;然后将沉积一层相转变蛋白质膜的玻璃片的置于质量分数为1%~2%的交联剂水溶液中,室温交联1~3小时,再置于1~2mol/L氢氧化钠水溶液中浸泡在1~2小时,最后将膜从玻璃片上剥离下来,得到下层为致密的纳米薄膜、上层为微颗粒密堆积层的双层蛋白质薄膜,即交联蛋白质的吸附材料。
  6. 根据权利要求2~5任意一项所述的基于交联蛋白质的吸附材料,其特征在于:所述的交联剂为戊二醛、京尼平、谷氨酰胺转氨酶、碳二亚胺中任意一种。
  7. 权利要求1所述的基于交联蛋白质的吸附材料在回收贵金属中的应用。
  8. 根据权利要求7所述的基于交联蛋白质的吸附材料在回收贵金属中的应用,其特征在于:所述的回收贵金属是回收矿石浸取液或电子垃圾浸取液中的贵金属。
  9. 根据权利要求8所述的基于交联蛋白质的吸附材料在回收贵金属中的应用,其特征在于:所述的矿石浸取液或电子垃圾浸取液的pH为2~5。
  10. 根据权利要求7所述的基于交联蛋白质的吸附材料在回收贵金属中的应用,其特征在于:所述的贵金属为金、银、铂、钯、钌、铑、锇、铱中任意一种或多种。
     
PCT/CN2020/086452 2019-05-30 2020-04-23 一种基于交联蛋白质的吸附材料及其回收贵金属的应用 WO2020238505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910460157.5A CN110975826B (zh) 2019-05-30 2019-05-30 一种基于交联蛋白质的吸附材料及其回收贵金属的应用
CN201910460157.5 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020238505A1 true WO2020238505A1 (zh) 2020-12-03

Family

ID=70081639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086452 WO2020238505A1 (zh) 2019-05-30 2020-04-23 一种基于交联蛋白质的吸附材料及其回收贵金属的应用

Country Status (2)

Country Link
CN (1) CN110975826B (zh)
WO (1) WO2020238505A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769610A (zh) * 2022-04-02 2022-07-22 西北工业大学 一种利用蛋白质组装体制备金钯纳米合金的方法
CN115286958A (zh) * 2022-08-31 2022-11-04 陕西师范大学 一种生物质基防污材料及其应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975826B (zh) * 2019-05-30 2022-03-22 陕西师范大学 一种基于交联蛋白质的吸附材料及其回收贵金属的应用
CN111957302A (zh) * 2020-08-17 2020-11-20 陕西师范大学 多糖掺杂的蛋白质相转变复合吸附材料及其吸附水中重金属离子的应用
CN112387262B (zh) * 2020-11-10 2021-12-07 泰州学院 一种基于光催化交联蛋白的手性固定相的制备方法、手性固定相及应用
CN112574578B (zh) * 2020-11-19 2022-06-28 陕西师范大学 蛋白质/多糖复合纳米薄膜及其防止导电涂层产生裂纹的应用
CN114700111A (zh) * 2022-04-02 2022-07-05 西北工业大学 一种利用蛋白质组装体制备纳米钯催化剂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072863A1 (ja) * 2004-01-29 2005-08-11 Muromachi Chemicals Inc. 貴金属吸着剤およびこれを使用した貴金属吸着方法ならびに貴金属回収方法
CN105153443A (zh) * 2015-08-27 2015-12-16 陕西师范大学 利用溶菌酶制备的生物蛋白质二维纳米薄膜及其制备方法
CN108854599A (zh) * 2018-05-14 2018-11-23 陕西师范大学 一种基于交联溶菌酶的透析膜及其应用
CN110975826A (zh) * 2019-05-30 2020-04-10 陕西师范大学 一种基于交联蛋白质的吸附材料及其回收贵金属的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829545B (zh) * 2010-05-12 2012-01-11 北京航空航天大学 一种利用蛋壳膜作为基体的重金属生物吸附剂及其制备方法
CN103191701B (zh) * 2013-04-17 2015-05-06 北京工业大学 一种基于废弃蛋膜生物材料金吸附剂的制备方法
CN104492391B (zh) * 2014-12-18 2016-08-17 西南科技大学 一种壳聚糖修饰的白蛋白纳米球重金属吸附材料的制备方法
CN108251644B (zh) * 2016-12-29 2019-12-06 财团法人工业技术研究院 选择性吸附贵金属的电极与选择性回收贵金属的方法
CN108671859B (zh) * 2018-06-08 2020-10-13 陕西师范大学 基于溶菌酶纳米薄膜制备Janus颗粒的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072863A1 (ja) * 2004-01-29 2005-08-11 Muromachi Chemicals Inc. 貴金属吸着剤およびこれを使用した貴金属吸着方法ならびに貴金属回収方法
CN105153443A (zh) * 2015-08-27 2015-12-16 陕西师范大学 利用溶菌酶制备的生物蛋白质二维纳米薄膜及其制备方法
CN108854599A (zh) * 2018-05-14 2018-11-23 陕西师范大学 一种基于交联溶菌酶的透析膜及其应用
CN110975826A (zh) * 2019-05-30 2020-04-10 陕西师范大学 一种基于交联蛋白质的吸附材料及其回收贵金属的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769610A (zh) * 2022-04-02 2022-07-22 西北工业大学 一种利用蛋白质组装体制备金钯纳米合金的方法
CN114769610B (zh) * 2022-04-02 2023-08-11 西北工业大学 一种利用蛋白质组装体制备金钯纳米合金的方法
CN115286958A (zh) * 2022-08-31 2022-11-04 陕西师范大学 一种生物质基防污材料及其应用

Also Published As

Publication number Publication date
CN110975826A (zh) 2020-04-10
CN110975826B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2020238505A1 (zh) 一种基于交联蛋白质的吸附材料及其回收贵金属的应用
CN100346872C (zh) 一种新型硅胶负载交联壳聚糖重金属离子吸附剂
JP2008506519A5 (zh)
CN105131329B (zh) 一种螯合金属离子的大孔壳聚糖‑聚乙烯醇交联亲和膜的制备方法及应用
CN109097591B (zh) 海藻酸钙固定化微生物吸附剂及其制备方法和在回收铂族金属二次资源中的应用
WO2005072863A1 (ja) 貴金属吸着剤およびこれを使用した貴金属吸着方法ならびに貴金属回収方法
CN107512738B (zh) 一种多孔MnFe2O4纳米材料及其制备方法
CN108262026A (zh) 一种改性二氧化硅纳米吸附剂及其制备方法和应用
CN111921497A (zh) 一种利用热解苹果渣制备磁性生物炭的方法
CN108079969A (zh) 一种负载多胺的开孔材料及其制备方法与应用
JP2016040032A (ja) セルロース誘導体および/または架橋キトサン誘導体を含む吸着材ならびに金属イオンの吸着方法および回収方法
CN104789774B (zh) 一种利用还原与吸附耦合选择性回收水溶液中金的方法
CN105749872A (zh) 一种固定化丝胶蛋白凝胶颗粒吸附材料在处理含镉重金属废水中的应用
CN106076270B (zh) 一种功能***联壳聚糖金属离子吸附剂
CN113304730A (zh) 一种用于废旧三元电池中钴回收的特种吸附剂的制备方法
CN109535474B (zh) 一种包覆型浸渍树脂及其制备方法和其在选择性吸附污酸中铼的应用
CN104549172A (zh) 一种制备巯基修饰壳聚糖浅孔微球的方法
US20180187320A1 (en) Valuable metal selectively adsorbing electrode and method for selectively recovering valuable metals
CN108816201B (zh) 一种银离子吸附材料及其制备方法与应用
CN108745001B (zh) 沉积物中甲基汞和金属汞离子的dgt固定膜、制备方法、dgt装置和洗脱液
CN109569547A (zh) 一种功能化磁性材料及其制备方法和应用
CN106215851B (zh) 一种铜试剂修饰的纳米氧化铝的制备方法及其应用
CN113105647B (zh) 一种Cu-MOF的应用
CN108479725B (zh) 一种改性树脂材料、制备方法及其应用
CN108251644B (zh) 选择性吸附贵金属的电极与选择性回收贵金属的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814974

Country of ref document: EP

Kind code of ref document: A1