WO2020230714A1 - 樹脂組成物、および紫外線発光装置 - Google Patents

樹脂組成物、および紫外線発光装置 Download PDF

Info

Publication number
WO2020230714A1
WO2020230714A1 PCT/JP2020/018653 JP2020018653W WO2020230714A1 WO 2020230714 A1 WO2020230714 A1 WO 2020230714A1 JP 2020018653 W JP2020018653 W JP 2020018653W WO 2020230714 A1 WO2020230714 A1 WO 2020230714A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
fluororesin
less
structural unit
molar ratio
Prior art date
Application number
PCT/JP2020/018653
Other languages
English (en)
French (fr)
Inventor
岳 吉川
邦彦 中田
悠 小野寺
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2020230714A1 publication Critical patent/WO2020230714A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a resin composition and an ultraviolet light emitting device.
  • Non-Patent Document 1 a perfluoro (4-vinyloxy-1-butene) (BVE) polymer having a CF 3 terminal is used for encapsulating a deep ultraviolet AlGaN LED because it has excellent durability against deep ultraviolet rays. It is stated that it can be done.
  • Patent Document 1 discloses an ultraviolet light emitting device in which an ultraviolet light emitting element is sealed with an amorphous fluororesin.
  • Patent Document 2 discloses that a fluoropolymer (THV) containing at least tetrafluoroethylene (TFE), hexafluoropropylene (HFP) and vinylidene fluoride (VdF) is used for encapsulating an LED element.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • VdF vinylidene fluoride
  • Patent Document 3 describes that a resin composition containing a fluororesin and a heat conductive material having a thermal conductivity of 1.5 W / mK or more is suitably used for a wavelength conversion member, a sealing member, and the like. ing.
  • a composition containing a fluororesin having high durability against ultraviolet rays is used.
  • Such a fluororesin-containing composition is expected to improve not only the durability against ultraviolet rays but also the heat resistance of the ultraviolet light emitting element against heat generation and the adhesion of the ultraviolet light emitting device to the base material and the like.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a resin composition having excellent heat resistance and adhesion. Another object of the present invention is to provide an ultraviolet light emitting device having excellent heat resistance and adhesion of a sealing portion.
  • the resin composition of the present invention and the ultraviolet light emitting device capable of solving the above problems have the following configurations.
  • the fluororesin contains a constituent unit A derived from tetrafluoroethylene, a constituent unit B derived from hexafluoropropylene, and a constituent unit C derived from vinylidene fluoride.
  • the molar ratio (A) of the structural unit A to the total of the structural unit A, the structural unit B, and the structural unit C is 0.25 or more.
  • a resin composition, wherein the molar ratio (C) of the structural unit C to the total of the structural unit A, the structural unit B, and the structural unit C is 0.60 or less.
  • the molar ratio (B) of the structural unit B to the total of the structural unit A, the structural unit B, and the structural unit C is 0.05 or more and 0.50 or less [1] to [3].
  • FIG. 1 is a cross-sectional view schematically showing an example of an ultraviolet light emitting element.
  • FIG. 2 is a cross-sectional view schematically showing an example of an ultraviolet light emitting device before the ultraviolet light emitting element is sealed by the solidified resin composition of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of an ultraviolet light emitting device in which an ultraviolet light emitting element is sealed by a solidified product of the resin composition of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing another example of an ultraviolet light emitting device in which an ultraviolet light emitting element is sealed by a solidified product of the resin composition of the present invention.
  • the resin composition of the present invention contains a fluorine resin and an inorganic filler, and the fluorine resin contains a constitutional unit A derived from tetrafluoroethylene, a constitutional unit B derived from hexafluoropropylene, and a constitutional unit C derived from vinylidene fluoride.
  • the molar ratio (A) of the constituent unit A to the total of the constituent unit A, the constituent unit B, and the constituent unit C is 0.25 or more, and the constituent unit with respect to the total of the constituent unit A, the constituent unit B, and the constituent unit C. It is characterized in that the molar ratio (C) of C is 0.60 or less.
  • a structural unit A derived from tetrafluoroethylene, a structural unit B derived from hexafluoropropylene, and a structural unit C derived from vinylidene fluoride are included, and a structural unit with respect to the total of the structural unit A, the structural unit B, and the structural unit C.
  • the molar ratio (A) of the constituent unit A to the total of the constituent unit A, the constituent unit B, and the constituent unit C is 0.25 or more. This tends to improve the adhesion. Therefore, the lower limit of the molar ratio (A) of the structural unit A is more preferably 0.28 or more, still more preferably 0.30 or more. On the other hand, the upper limit of the molar ratio (A) of the constituent unit A is preferably 0.75 or less, more preferably 0.60 or less, still more preferably 0.50 or less from the viewpoint of transparency.
  • the molar ratio (C) of the constituent unit C to the total of the constituent unit A, the constituent unit B, and the constituent unit C is 0.60 or less. This tends to improve the adhesion. Therefore, the upper limit of the molar ratio (C) of the structural unit C is preferably 0.58 or less, more preferably 0.56 or less. On the other hand, the lower limit of the molar ratio (C) of the structural unit C is preferably 0.20 or more. As a result, the solubility in an organic solvent is improved, so that the number of times the resin composition is applied can be reduced when sealing the ultraviolet light emitting element. Therefore, the lower limit of the molar ratio (C) of the structural unit C is more preferably 0.30 or more, still more preferably 0.40 or more, and even more preferably 0.50 or more.
  • the molar ratio (B) of the structural unit B to the total of the structural unit A, the structural unit B, and the structural unit C is preferably 0.05 or more and 0.50 or less.
  • the lower limit of the molar ratio (B) of the structural unit B is more preferably 0.07 or more, still more preferably 0.09 or more, from the viewpoint of solubility.
  • the upper limit of the molar ratio (B) of the constituent unit B is more preferably 0.40 or less, still more preferably 0.30 or less, still more preferably 0.20 or less from the viewpoint of heat resistance.
  • the ratio of the molar ratio (C) to the molar ratio (A) is preferably 0.20 or more and 3.50 or less.
  • the lower limit of the molar ratio (C) / molar ratio (A) is more preferably 0.50 or more, still more preferably 1.00 or more, even more preferably 1.30 or more, particularly preferably 1.45 or more, most preferably. Is 1.50 or more.
  • the upper limit of the molar ratio (C) / molar ratio (A) is more preferably 3.00 or less, still more preferably 2.50 or less, and even more preferably 2.00 or less.
  • the ratio of the molar ratio (B) to the molar ratio (A) is preferably 0.10 or more and 0.80 or less.
  • the lower limit of the molar ratio (B) / molar ratio (A) is more preferably 0.20 or more, still more preferably 0.24 or more, and even more preferably 0.28 or more.
  • the upper limit of the molar ratio (B) / molar ratio (A) is more preferably 0.60 or less, still more preferably 0.50 or less, and even more preferably 0.40 or less.
  • the molar ratio of each constituent unit of the fluororesin can be obtained by the NMR measurement described in Examples described later.
  • NMR measurement described in Examples described later.
  • calculating the molar ratio for example, Eric B. Twum et al., “Multidimensional 19F NMR Analyses of Terpolymers from Vinylidene Fluoride (VDF) -Hexafluoropropylene (HFP) -Tetrafluoroethylene (TFE)”, Macromolecules, Vol. No., p.3563-3576 can be referred to.
  • the fluororesin of the present invention contains a constituent unit A derived from tetrafluoroethylene, a constituent unit B derived from hexafluoropropylene, and a constituent unit C derived from vinylidene fluoride, but the constituent unit A, the constituent unit B, and the constituent unit It may include other structural units other than C. Examples of other structural units include ethylene-derived structural units, perfluoroalkyl vinyl ether-derived structural units, and chlorotrifluoroethylene-derived structural units.
  • the refractive index of the fluororesin of the present invention is preferably more than 1.34, more preferably 1.35 or more, still more preferably 1.36 or more.
  • the difference in the refractive index between the ultraviolet light emitting element and the sealing portion which will be described later, can be reduced, the total reflection at the interface between the ultraviolet emitting element and the sealing portion can be reduced, and the light extraction efficiency can be improved. it can.
  • the light extraction efficiency is the efficiency at which the light generated by the ultraviolet light emitting element is extracted to the outside of the ultraviolet light emitting element.
  • the upper limit of the refractive index of the fluororesin of the present invention is, for example, 1.45 or less, and may be 1.40 or less.
  • the refractive index may be a value described in a catalog value or a general physical property table, or may be measured by a method described in Examples described later using a commercially available Abbe refractive index meter or ellipsometer. You can also.
  • the refractive index described in the present application is a value at the wavelength of the commonly used sodium D line (589 nm).
  • the total molar ratio of the constituent unit A, the constituent unit B, and the constituent unit C to all the constituent units of the fluororesin of the present invention is preferably 0.70 or more, more preferably 0.80 or more, still more preferably 0.90 or more. , Especially preferably 0.95 or more, and most preferably 1. That is, it is most preferable that all the constituent units of the fluororesin of the present invention are composed of the constituent unit A, the constituent unit B, and the constituent unit C. As a result, the adhesion tends to be improved.
  • the weight average molecular weight of the fluororesin of the present invention is preferably 50,000 or more and 1,000,000 or less. By setting the weight average molecular weight to 50,000 or more, the viscosity at the time of melting can be increased, so that the shape change of the sealing resin at the time of lighting the LED can be suppressed.
  • the lower limit of the weight average molecular weight of the fluororesin of the present invention is more preferably 100,000 or more, still more preferably 200,000 or more, still more preferably 250,000 or more, and particularly preferably 300,000 or more.
  • the solubility is improved by setting the weight average molecular weight of the fluororesin of the present invention to 1,000,000 or less.
  • the upper limit of the weight average molecular weight of the fluororesin of the present invention is more preferably 800,000 or less, still more preferably 500,000 or less, even more preferably 450,000 or less, and particularly preferably 400,000 or less.
  • the weight average molecular weight is a standard polystyrene conversion value.
  • the fluororesin of the present invention may be either a random copolymer or a block copolymer, but is preferably a random copolymer.
  • the fluororesin of the present invention preferably has a melting point of 90 ° C. or higher and 278 ° C. or lower.
  • the lower limit of the melting point of the fluororesin of the present invention is more preferably 100 ° C. or higher, further preferably 110 ° C. or higher, and even more preferably 115 ° C. or higher.
  • the melting point is 278 ° C. or lower, the fluororesin of the present invention is easily melted by heating, so that the ultraviolet light emitting element can be easily sealed by heating and melting.
  • the melting point of Au-Sn (20% by mass), which is a general solder material is 278 ° C.
  • the melting point of the resin is 278 ° C. or less, so that it is easy to prevent the bumps described later from melting due to heating. can do.
  • the upper limit of the melting point of the fluororesin of the present invention is more preferably 200 ° C. or lower, still more preferably 170 ° C. or lower, still more preferably 150 ° C. or lower, and particularly preferably 130 ° C. or lower.
  • a catalog value may be used, or for example, using a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd.), the temperature rise rate is 10 ° C./min and the temperature is -50 ° C. to 200 ° C. It can be obtained by changing the temperature to the above temperature and measuring the melting peak temperature (Tm) from the melting curve obtained thereby.
  • DSC differential scanning calorimeter
  • the inorganic filler examples include metal fluoride, metal oxide, metal phosphate, metal carbonate, metal sulfonate, metal nitrate, metal nitride, boron nitride and the like.
  • the inorganic filler may be used alone or in combination of two or more.
  • the inorganic filler is preferably a metal fluoride from the viewpoint of preventing thermal decomposition and transparency.
  • the metal fluoride include calcium fluoride, barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, magnesium fluoride, glacial stone and the like. Of these, magnesium fluoride is preferable. These may be used alone or in combination of two or more.
  • the inorganic filler may be a polycrystalline body or a single crystal body, but from the viewpoint of facilitating the improvement of the light transmittance of the resin molded body by reducing the scattering of light at the grain boundaries, or the resin molding.
  • the grain boundaries contained in the particles are small, and it is particularly preferable to use a single crystal. Whether or not the inorganic filler is a single crystal can be determined by, for example, confirming the electron diffraction pattern with an electron microscope.
  • the particle size of the inorganic filler is preferably 300 ⁇ m or less. When the inorganic filler is 300 ⁇ m or less, discoloration due to an increase in temperature of the resin composition can be reduced.
  • the particle size of the inorganic filler is more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the particle size of the inorganic filler is preferably 0.5 ⁇ m or more. By setting the particle size of the inorganic filler to 0.5 ⁇ m or more, it is possible to suppress light scattering between the resin and the filler, and the transparency of the resin is excellent.
  • the lower limit of the particle size of the inorganic filler is more preferably 1 ⁇ m or more, still more preferably 5 ⁇ m or more.
  • the particle size of this inorganic filler is a particle size D 50 having a volume accumulation frequency of 50% by a laser diffraction method.
  • the difference in refractive index between the fluororesin of the present invention and the inorganic filler is preferably 0.05 or less. By reducing the difference in refractive index in this way, it is possible to suppress light scattering on the surface of the inorganic filler (the interface between the surface of the inorganic filler and the fluororesin in the composition), thereby improving the light extraction efficiency. be able to.
  • the difference in refractive index between the fluororesin of the present invention and the inorganic filler is more preferably 0.04 or less, still more preferably 0.03 or less.
  • the lower limit of the difference in refractive index between the fluororesin of the present invention and the inorganic filler is not particularly limited, but may be, for example, 0.001 or more.
  • the refractive index of the inorganic filler of the present invention may be a value described in a catalog value or a general physical property table, or may be measured by a method described in Examples described later such as an Abbe refractive index meter and an ellipsometer. Can be done.
  • the specific surface area (surface area per 1 g) of the inorganic filler is preferably 30 m 2 / g or less. By reducing the specific surface area in this way, coloring of the resin composition can be suppressed, and a resin composition having particularly excellent permeability in the ultraviolet region can be obtained.
  • the specific surface area is more preferably 20 m 2 / g or less, further preferably 10 m 2 / g or less, particularly preferably 5 m 2 / g or less, particularly preferably 3 m 2 / g or less, and 0. it may also be .1m 2 / g or more, may be 0.5 m 2 / g or more.
  • a method for measuring the specific surface area using the BET method can be used for example.
  • the amount of the inorganic filler with respect to a total of 100 parts by mass of the fluororesin and the inorganic filler of the present invention is preferably 1 part by mass or more and 60 parts by mass or less.
  • the lower limit of the amount of the inorganic filler is more preferably 10 parts by mass or more, further preferably 15 parts by mass or more, still more preferably 20 parts by mass or more, and particularly preferably 25 parts by mass or more.
  • the upper limit of the amount of the inorganic filler is more preferably 50 parts by mass or less, still more preferably 45 parts by mass or less.
  • the amount of the fluororesin of the present invention with respect to a total of 100 parts by mass of the fluororesin of the present invention and the inorganic filler is preferably 40 parts by mass or more and 99 parts by mass or less.
  • the amount of the fluororesin of the present invention is 40 parts by mass or more, the adhesion of the fluororesin of the present invention can be easily exhibited. Therefore, the lower limit of the amount of the fluororesin of the present invention is more preferably 50 parts by mass or more, still more preferably 55 parts by mass or more.
  • the upper limit of the amount of the fluororesin of the present invention is more preferably 90 parts by mass or less, still more preferably 85 parts by mass or less.
  • the resin composition can be produced by mixing the fluororesin of the present invention and an inorganic filler. These mixings may be, for example, melt kneading, or the fluororesin of the present invention may be mixed with an inorganic filler in a molten state, or the fluororesin of the present invention may be dissolved or the fluororesin may be dissolved. It may be mixed with an inorganic filler in the presence of a dispersing solvent.
  • the resin composition may be a solid material or a fluid material. In the case of a fluid, it may contain a solvent.
  • the solvent examples include organic solvents.
  • an organic solvent an ester solvent such as ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl propionate, glycol ester obtained by adding an acetate group to glycol ether; acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Ketone-based solvent such as diethyl ether, dipropyl ether, butyl ether, glycol ether, terrorahydrofuran; amide-based solvent such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide Solvents; lactam solvents such as N-methyl-2-pyrrolidone; and the like.
  • ester-based solvents, ketone-based solvents, and ether-based solvents are preferable, and ester-based solvents are more preferable.
  • These organic solvents may be used alone or in combination of two or more.
  • the amount of the solvent with respect to 100 parts by mass of the fluororesin of the present invention is preferably 100 parts by mass or more and 5000 parts by mass or less.
  • the amount is 100 parts by mass or more, the fluororesin of the present invention can be easily dissolved or dispersed.
  • the amount of the solvent is more preferably 200 parts by mass or more, further preferably 400 parts by mass or more, and even more preferably 600 parts by mass or more.
  • the amount is 5000 parts by mass or less, the number of times of coating for sealing the ultraviolet light emitting device can be reduced.
  • the amount of the solvent is more preferably 2000 parts by mass or less, further preferably 1200 parts by mass or less, and even more preferably 1000 parts by mass or less.
  • the solvent may be reduced by volatilization or the like, if necessary.
  • the amount of the solvent after reduction with respect to 100 parts by mass of the fluororesin of the present invention is preferably 200 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 50 parts by mass or less, still more preferably 20 parts by mass. It is as follows.
  • the resin composition may also contain a fluororesin, an additive, etc. other than the fluororesin of the present invention.
  • fluororesins examples include crystalline fluororesins, and specifically, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and chlorotri.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • chlorotri examples thereof include a fluoroethylene polymer (PCTFE), a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV) that does not satisfy the predetermined ratio of the constituent unit A and the constituent unit C of the present invention.
  • PCTFE fluoroethylene polymer
  • TSV tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copo
  • the amount of the other fluororesin with respect to 100 parts by mass of the fluororesin of the present invention is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 2 parts by mass or less, and particularly preferably 1 part by mass or less. Is 0 parts by mass. That is, the fluororesin contained in the resin composition of the present invention is most preferably made of the fluororesin of the present invention. As a result, the difference in refractive index between the resins can be reduced and the light extraction efficiency can be improved.
  • the total content of the total fluororesin (total of the fluororesin of the present invention and other fluororesins) and the inorganic filler with respect to the total mass of the resin composition (solid content) is preferably 90% by mass or more, preferably 95% by mass or more. Is more preferable, 97% by mass or more is even more preferable, and 99% by mass or more is particularly preferable. This makes it easier for the fluororesin to improve the adhesion and the inorganic filler to improve the heat resistance.
  • the resin composition of the present invention can be made into a solidified product (resin molded product) by, for example, lowering the temperature below the melting point or volatilizing the solvent. Since the resin composition of the present invention has excellent durability against ultraviolet rays, and also has excellent adhesion and heat resistance, it can be suitably used for sealing an ultraviolet light emitting element.
  • the heat resistance of the resin composition can be evaluated by performing thermal weight measurement (TG measurement) and measuring the temperature (10% mass change temperature) when the mass of the fluororesin itself is reduced by 10 mass%. it can.
  • the 10% mass change temperature is preferably 400 ° C. or higher because the resin composition has excellent heat resistance. In the examples described later, the 10% mass change temperature was measured under the following conditions. Sampling is preferably performed at least twice before the temperature rises by 1 ° C. as in the following conditions. Sampling is performed at predetermined intervals (seconds), and the temperature at the first sampling after the time when the mass of the fluororesin is reduced by 10% by mass is defined as the 10% mass change temperature.
  • the present invention also includes an ultraviolet light emitting device including an ultraviolet light emitting element in which the ultraviolet light emitting element is sealed with a solidified product of the above resin composition.
  • an ultraviolet light emitting device including an ultraviolet light emitting element in which the ultraviolet light emitting element is sealed with a solidified product of the above resin composition.
  • FIG. 1 is a cross-sectional view schematically showing an example of an ultraviolet light emitting element.
  • FIG. 2 is a cross-sectional view schematically showing an example of an ultraviolet light emitting device (hereinafter, may be referred to as an ultraviolet light emitting element mounting package) before being sealed by the solidified product of the resin composition of the present invention.
  • Is a cross-sectional view schematically showing an example of an ultraviolet light emitting device sealed with a solidified product of the resin composition of the present invention
  • FIG. 4 is an ultraviolet ray sealed with a solidified product of the resin composition of the present invention. It is sectional drawing which shows another example of a light emitting device schematically.
  • the ultraviolet light emitting element 2 of FIG. 1 is a flip-chip type element, has a p electrode 10 on the anode side on a part of the lower side surface, and a p layer 12 is formed on the p electrode 10. Further, another part of the lower side surface of the ultraviolet light emitting element 2 is provided with an n electrode 11 on the cathode side, and an n layer 14 is formed on the n electrode 11.
  • the n-electrode 11 and the n-layer 14 are formed by shifting upward from the p-electrode 10 and the p-layer 12, and are active between the n-layer 14 existing above and the p-layer 12 existing below. Layer 13 is formed.
  • the substrate 15 is further above the n-layer 14 that is further above.
  • Examples of the n-layer 14 include a Si-containing AlGaN layer.
  • Examples of the p-layer 12 include a Mg-containing GaN layer.
  • the p-layer 12 may have a laminated structure with an electron block layer or the like, if necessary.
  • Examples of the active layer 13 include an AlGaN layer.
  • the bandgap energy can be controlled within the range of the bandgap energy (about 3.4 eV and about 6.2 eV) that GaN and AlN can take by adjusting, for example, the AlN mole fraction of the active layer 13. It is possible to obtain ultraviolet light emission having an emission wavelength of about 200 nm to about 365 nm.
  • the emission peak wavelength of the ultraviolet light emitting element 2 is preferably 300 nm or less. Since the sterilization effect is easily exhibited when the emission peak wavelength is 300 nm or less, the ultraviolet light emitting element 2 can be used as a light emitting device for sterilization.
  • the emission peak wavelength is more preferably 280 nm or less.
  • Examples of the substrate 15 include a sapphire substrate and an aluminum nitride substrate.
  • Examples of the material of the p electrode 10 include Ni / Au, and examples of the material of the n electrode 11 include Ti / Al / Ti / Au.
  • the exposed surface between the p electrode 10 and the n electrode 11 may be covered with a protective insulating film such as SiO 2 in order to prevent a short circuit.
  • the ultraviolet light emitting element mounting package 6 of FIG. 2 has a base material 4 made of ceramics such as aluminum nitride (AlN) and alumina (Al 2 O 3 ), and wiring (shown) is provided on the base material 4. , And metal bumps 5 such as Au and Au—Sn (20% by mass) alloy are formed on the wiring.
  • the wiring (not shown) and the p-electrode 10 and n-electrode 11 of the ultraviolet light emitting element 2 are fixed so as to be electrically connected to each other via the bump 5.
  • the ultraviolet light emitting element 2 of the ultraviolet light emitting element mounting package 6 shown in FIG. 2 is sealed with the solidified product 3a of the resin composition of the present invention, and silica glass and borosilicate glass are formed on the surface thereof.
  • a condenser lens 7 made of acid glass or the like is formed. Although the light extraction efficiency can be improved by the condenser lens 7, the condenser lens 7 does not necessarily have to be provided.
  • the ultraviolet light emitting device 1a of FIG. 4 is different from the ultraviolet light emitting device 1 of FIG. 3 in that the sealing member formed of the solidified product 3b of the resin composition of the present invention is raised upward to form a lens shape.
  • the ultraviolet light emitting devices 1 and 1a of FIGS. 3 and 4 can be sealed by repeating the steps of applying and drying a solution of the resin composition of the present invention in an appropriate solvent one or more times.
  • the solvent include ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone, ester solvents such as methyl acetate, ethyl acetate and butyl acetate, cyclic ethers such as tetrahydrofuran, N-methyl-2-pyrrolidone and the like. Lactams are mentioned.
  • the concentration of the resin composition in the coating liquid is, for example, 1% by mass or more. The higher the concentration, the less the number of coatings can be applied.
  • the preferable concentration is 5% by mass or more, and more preferably 7% by mass or more.
  • the concentration is, for example, 50% by mass or less.
  • the lower the concentration the more the viscosity of the coating liquid can be prevented from being improved, and the processing accuracy can be improved.
  • the preferable concentration is 40% by mass or less, and more preferably 30% by mass or less.
  • the sealing of the ultraviolet light emitting devices 1 and 1a of FIGS. 3 and 4 can also be produced by heating the resin composition of the present invention to an appropriate temperature to melt it and pouring the melt onto the ultraviolet light emitting element 2.
  • the heating temperature is equal to or higher than the melting point of the fluororesin, preferably melting point + 10 ° C. or higher, and more preferably melting point + 20 ° C. or higher.
  • the upper limit of the heating temperature is, for example, 270 ° C, more preferably 200 ° C, and even more preferably 150 ° C.
  • the resin composition of the present invention is molded into a sheet, and the sheet is laminated on the ultraviolet light emitting element mounting side of the ultraviolet light emitting element mounting package, and then. It can also be carried out by heating the sheet above its melting point to melt it and then cooling it (hereinafter, this sealing method may be referred to as a "melt sealing method").
  • the heating temperature of the sheet is preferably 10 ° C. or higher higher than the melting point of the fluororesin, and more preferably 20 ° C. or higher higher than the melting point.
  • the upper limit of the heating temperature is, for example, 278 ° C., more preferably 250 ° C., even more preferably 200 ° C., and particularly preferably 150 ° C. At the above heating temperature, deterioration of the ultraviolet light emitting element mounting package due to heat can be suppressed.
  • the sheet may be heated in an oxygen-containing atmosphere such as the atmosphere, but it is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the fluororesin may be heated under atmospheric pressure, but it is also preferable to heat the fluororesin under reduced pressure such as in vacuum. When the fluororesin is heated under reduced pressure, the bubbles remaining in the resin after sealing are reduced and the transparency is improved.
  • the sheet can be produced by producing pellets in which the fluororesin and the filler of the present invention are mixed and pressing, or if necessary, pressing while applying heat. Further, it can also be produced by mixing an inorganic filler with a molten fluororesin and extrusion molding.
  • the pellet can be obtained by finely cutting a mixture of fluororesin and filler. For the mixture of fluororesin and filler, a method of mixing the filler with the fluororesin melted by heat, and a method of dissolving the fluororesin in a solvent to prepare a solution, then mixing the filler and drying the solvent.
  • a method of precipitating the fluororesin with the filler involved is preferable.
  • the light transmittance at a wavelength of 265 nm is preferably 8% or more, more preferably 30% or more, still more preferably 40% or more. Particularly preferably, it is 50% or more, and the transmittance of light at a wavelength of 350 nm is preferably 25% or more, more preferably 50% or more, still more preferably 60% or more, and particularly preferably 70% or more.
  • the light transmittance at a wavelength of 500 nm is preferably 60% or more, more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80% or more.
  • the transparency of the sealing portion is improved, and the light extraction efficiency from the ultraviolet light emitting element can be improved.
  • the light transmittance at a wavelength of 265 nm may be, for example, 80% or less, and the light transmittance at a wavelength of 350 nm may be, for example, 90% or less.
  • the transmittance of light at a wavelength of 500 nm may be, for example, 95% or less.
  • Measuring device JEOL ECZ-400 Sample: Approximately 60 mg / 0.8 ml ACT-d6 IS: 4-Chlorobenzodrifluoride 0.01 mL Measurement mode: 1 H, 19 F Relaxation time: 1 H 30 seconds, 19 F 20 seconds
  • Number of units in building block B Calculated by dividing the integration ratio of CF 3 by 3 (CF 3 integration ratio / 3)
  • Number of units in building block C Calculated by dividing the integration ratio of CH 2 by 2 (CH 2 integration ratio / 2)
  • the number of units of the structural unit A than the total area ratio of CF 2, calculated by dividing the minus the CF 2 constituent units derived from C and CF 2 derived from structural units B in 4 ((CF 2 Total integration ratio - structure Number of units in unit C x 2-Number of units in configuration unit B x 2) / 4)
  • Fluororesin containing no inorganic filler (resin compositions 1 and 2)
  • a dam was formed on an Al substrate with a heat-resistant tape (thickness 0.19 mm, glass cloth tape) to prepare a plurality of regions having a length of 3.5 cm and a width of 4.0 cm.
  • each of the fluororesins THV221AZ and DAI-EL G-501NK was added to propyl acetate to prepare a propyl acetate solution having a concentration of 9% by mass to obtain a resin composition 1 and a resin composition 2.
  • the resin composition 1 and the resin composition 2 were placed in different regions by 400 ⁇ l each, and then heated and cooled at 200 ° C.
  • the operation of mixing at 200 rpm for 3 minutes was performed twice to obtain a solution in which the filler was dispersed in the resin solution, that is, the resin composition 3 and the resin composition 4.
  • the evaluation was carried out in the same manner as in (1) above, except that the resin composition 3 and the resin composition 4 were used.
  • the solidified product of No. 3 showed excellent adhesion.
  • the solidified product of No. 4 was inferior in adhesion.
  • any of the following MgF 2 powders (1) to (3) was used as the inorganic filler.
  • MgF 2 powder (2) having a specific surface area of 1.4 m 2 / g was obtained.
  • Solvent Isopropyl alcohol (manufactured by Nacalai Tesque, Inc.) 100 g
  • D 50 17 ⁇ m
  • the particle size distribution of the inorganic filler is measured by obtaining an integrated distribution curve of the particle size of each prepared MgF 2 powder by a laser diffraction method under the following conditions, and obtaining the particle size D 50 , which is the particle size at a volume cumulative frequency of 50%. I went there.
  • Measuring device SALD-2000J (manufactured by Shimadzu Corporation)
  • Dispersion solvent Ion-exchanged water + Neutral detergent Dispersion method: Stirrer stirring + Ultrasonic irradiation 10 minutes Refractive index (MgF 2 ): 1.40-0.20i
  • the inorganic filler was heat-treated at 150 ° C. for 30 minutes to prepare a measurement sample.
  • the specific surface area of such a measurement sample was calculated by the BET method.
  • Example 1 0.20 g of THV221AZ was placed on a quartz glass plate and melted by heating on a hot plate at 200 ° C. 0.08 g of MgF 2 powder (3) was added thereto, mixed using two spatula-shaped spatulas, and cooled to obtain a solidified resin composition.
  • Example 2 THV221AZ was added to butyl acetate and dissolved so that the content of THV221AZ was 20% by mass. 8.0 g of the obtained mixed solution was weighed into a screw tube, and 0.29 g of MgF 2 powder (2) was added while stirring with a stirrer to obtain a uniform mixed solution. Next, 20 g of ethanol, which is a poor solvent, was added to precipitate a fluororesin containing a filler. The precipitated resin was taken out from the screw tube and dried at 80 ° C. for 5 hours to obtain a solidified resin composition.
  • Example 3 A solidified resin composition was obtained in the same manner as in Example 2 except that the amount of the added MgF 2 powder (2) was changed to 0.65 g.
  • Example 4 THV221AZ and MgF 2 powder (2) were kneaded under the following conditions to obtain a solidified resin composition.
  • Kneading device Labplast Mill 3S150 (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
  • Mixer Roller mixer R60 Set temperature: 140 ° C
  • Rotation speed 50 rpm Kneading time: 5 minutes
  • Sample amount 100 g (THV221AZ: 71.2 g, MgF 2 powder: 28.8 g)
  • Example 5 A solidified resin composition was obtained in the same manner as in Example 2 except that the amount of the added MgF 2 powder (2) was changed to 1.11 g.
  • Example 6 A solidified resin composition was obtained in the same manner as in Example 2 except that the MgF 2 powder (1) was used and the amount of the added MgF 2 powder (1) was 1.11 g.
  • Measuring device TG / DTA6200 (manufactured by SII Nanotechnology Co., Ltd.) Measurement atmosphere: Atmosphere Temperature range: 30 ° C to 500 ° C Temperature rise rate: 10 ° C / min Sampling interval: 4 seconds
  • Example 7 160 g of butyl acetate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was weighed into a separable flask placed in a water bath, and the temperature of the water bath was raised to 85 ° C. with stirring. While stirring, 40 g of THV221AZ was gradually added and dissolved to prepare a resin solution. The obtained solution was heated at 120 ° C. for 3 hours, and the solid content concentration was determined from the residue and found to be 20.2% by mass.
  • the resin solution having a concentration of 20.2% by mass prepared above was placed in a 15 g, 250 ml disposable cup, and 1.22 g of MgF 2 powder (2) was added thereto as a filler.
  • the concentration of filler calculated the density of the resin 1.95 g / cm 3, the density of the MgF 2 powder as 3.15 g / cm 3, a 20% by volume.
  • This solution is mixed with Awatori Rentaro ARV-310 at a rotation speed of 2000 rpm for 2 minutes three times to mix the solution and filler, and a magnetic stirrer is put therein and stirred to fill the filler.
  • the sample was transferred to a petri dish made of PFA, defoamed and dried in a vacuum dryer at 200 ° C. for 3 hours.
  • the sample was melted during drying and was agglomerated after drying.
  • the obtained massive sample was cut again into a size of about 2 mm square using scissors to obtain pellets.
  • the yield with respect to the total amount of the resin and the filler used was 100%.
  • a 0.1 mm thick, 15 cm square polytetrafluoroethylene (PTFE) film is laminated on a 5 mm thick, 15 cm square SUS plate, and a 3 cm square through hole is provided in the center on the PTFE film.
  • a 0.5 mm, 15 cm square SUS plate was laminated.
  • the pellet was placed in the through hole of the 3 cm square. Further, a 0.1 mm thick, 15 cm square PTFE film and a 5 mm thick, 15 cm square SUS plate were laminated in this order to assemble a mold. Next, the temperature of the press was set to 200 ° C., and the upper and lower plates of the press were held in contact with the SUS plates above and below the die for 3 minutes without pressurization to melt the pellets. Then, the pressure was increased at 50 MPa for 2 minutes.
  • Ultraviolet light emitting device 1a Ultraviolet light emitting device 2
  • Ultraviolet light emitting element 3a 3b Solidified resin composition 4
  • Base material 5 Bump 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

耐熱性および密着性に優れた樹脂組成物を提供すること、および封止部の耐熱性および密着性に優れた紫外線発光装置を提供することにある。 フッ素樹脂、及び無機フィラーを含み、上記フッ素樹脂は、テトラフルオロエチレン由来の構成単位A、ヘキサフルオロプロピレン由来の構成単位B、及びフッ化ビニリデン由来の構成単位Cを含み、上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Aのモル比(A)が0.25以上であり、上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Cのモル比(C)が0.60以下であることを特徴とする樹脂組成物。

Description

樹脂組成物、および紫外線発光装置
 本発明は、樹脂組成物、および紫外線発光装置に関する。
 これまでにLED(Light Emitting Diode)等の発光素子を備えた発光装置は数多く存在しており、発光素子の酸素や水蒸気等との接触による劣化を防ぐために発光素子は樹脂により封止されていた。
 例えば非特許文献1には、CF3末端を有するパーフルオロ(4-ビニルオキシ-1-ブテン)(BVE)系重合体は深紫外線に対する耐久性に優れるため、深紫外AlGaN系LEDの封止に用いることができることが記載されている。また特許文献1には、非晶質フッ素樹脂により紫外線発光素子が封止された紫外線発光装置が開示されている。更に特許文献2には、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)及びビニリデンフルオライド(VdF)を少なくとも含むフッ素ポリマー(THV)をLED素子の封止に用いることが開示されている。更に特許文献3には、フッ素樹脂と熱伝導率が1.5W/mK以上である熱伝導材とを含有する樹脂組成物は波長変換部材や封止部材等に好適に用いられることが記載されている。
国際公開第2014/178288号 特開2009-51876号公報 特開2014-145012号公報
 上記の通り、これまでに発光素子を樹脂により封止する技術は種々知られており、特に紫外線発光素子を封止するに当たっては、紫外線に対する耐久性の高いフッ素樹脂を含有する組成物が用いられている。このようなフッ素樹脂含有組成物には、紫外線に対する耐久性のみならず、紫外線発光素子の発熱に対する耐熱性の向上や、紫外線発光装置の基材等に対する密着性等の向上も期待されている。本発明は、上記事情に鑑みてなされたものであり、その目的は、耐熱性および密着性に優れた樹脂組成物を提供することにある。また本発明の他の目的は、封止部の耐熱性および密着性に優れた紫外線発光装置を提供することにある。
 上記課題を解決することのできた本発明の樹脂組成物、および紫外線発光装置は、以下の構成からなる。
 [1]フッ素樹脂、及び無機フィラーを含み、
 上記フッ素樹脂は、テトラフルオロエチレン由来の構成単位A、ヘキサフルオロプロピレン由来の構成単位B、及びフッ化ビニリデン由来の構成単位Cを含み、
 上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Aのモル比(A)が0.25以上であり、
 上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Cのモル比(C)が0.60以下であることを特徴とする樹脂組成物。
 [2]上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Aのモル比(A)が0.25以上、0.75以下である[1]に記載の樹脂組成物。
 [3]上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Cのモル比(C)が0.20以上、0.60以下である[1]または[2]に記載の樹脂組成物。
 [4]上記構成単位A、上記構成単位B、及び上記構成単位Cの合計に対する上記構成単位Bのモル比(B)が0.05以上、0.50以下である[1]~[3]のいずれかに記載の樹脂組成物。
 [5]上記モル比(C)の上記モル比(A)に対する比(モル比(C)/モル比(A))が0.20以上、3.50以下である[3]に記載の樹脂組成物。
 [6]上記モル比(B)の上記モル比(A)に対する比(モル比(B)/モル比(A))が0.10以上、0.80以下である[4]に記載の樹脂組成物。
 [7]上記無機フィラーが金属フッ化物である[1]~[6]のいずれかに記載の樹脂組成物。
 [8]上記無機フィラーの粒径が300μm以下である[1]~[7]のいずれかに記載の樹脂組成物。
 [9]上記フッ素樹脂、及び上記無機フィラーの合計100質量部に対する上記無機フィラーの量が1質量部以上、60質量部以下である[1]~[8]のいずれかに記載の樹脂組成物。
 [10]上記フッ素樹脂と上記無機フィラーとの屈折率の差が0.05以下である[1]~[9]のいずれかに記載の樹脂組成物。
 [11]紫外線発光素子の封止に用いられるものである[1]~[10]のいずれかに記載の樹脂組成物。
 [12]紫外線発光素子を備え、
 上記紫外線発光素子が、[1]~[11]のいずれかに記載の樹脂組成物の固化物により封止されていることを特徴とする紫外線発光装置。
 本発明によれば、上記構成により、耐熱性および密着性に優れた樹脂組成物、及び封止部の耐熱性および密着性に優れた紫外線発光装置を得ることができる。
図1は紫外線発光素子の一例を模式的に示す断面図である。 図2は本発明の樹脂組成物の固化物により紫外線発光素子が封止される前の紫外線発光装置の一例を模式的に示す断面図である。 図3は本発明の樹脂組成物の固化物により紫外線発光素子が封止された紫外線発光装置の一例を模式的に示す断面図である。 図4は本発明の樹脂組成物の固化物により紫外線発光素子が封止された紫外線発光装置の別の例を模式的に示す断面図である。
 本発明の樹脂組成物は、フッ素樹脂、及び無機フィラーを含み、フッ素樹脂は、テトラフルオロエチレン由来の構成単位A、ヘキサフルオロプロピレン由来の構成単位B、及びフッ化ビニリデン由来の構成単位Cを含み、構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Aのモル比(A)が0.25以上であり、構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Cのモル比(C)が0.60以下である点に特徴を有する。これにより紫外線発光素子の発熱に対する耐熱性、および紫外線発光装置の基材等に対する密着性を向上することができる。以下では、フッ素樹脂、及び無機フィラーの詳細について順に説明する。
 以下では、テトラフルオロエチレン由来の構成単位A、ヘキサフルオロプロピレン由来の構成単位B、及びフッ化ビニリデン由来の構成単位Cを含み、構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Aのモル比(A)が0.25以上であり、構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Cのモル比(C)が0.60以下であるフッ素樹脂を、本発明のフッ素樹脂と呼ぶ場合がある。
 構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Aのモル比(A)は0.25以上である。これにより密着性が向上する傾向となる。そのため構成単位Aのモル比(A)の下限は、より好ましくは0.28以上、更に好ましくは0.30以上である。一方、構成単位Aのモル比(A)の上限は、透明性の観点から好ましくは0.75以下、より好ましくは0.60以下、更に好ましくは0.50以下である。
 構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Cのモル比(C)は0.60以下である。これにより密着性が向上する傾向となる。そのため構成単位Cのモル比(C)の上限は、好ましくは0.58以下、より好ましくは0.56以下である。一方、構成単位Cのモル比(C)の下限は、好ましくは0.20以上である。これにより、有機溶媒に対する溶解性が向上するため、紫外線発光素子を封止するに当たって樹脂組成物の塗布回数を低減することができる。そのため構成単位Cのモル比(C)の下限は、より好ましくは0.30以上、更に好ましくは0.40以上、更により好ましくは0.50以上である。
 構成単位A、構成単位B、及び構成単位Cの合計に対する構成単位Bのモル比(B)は0.05以上、0.50以下であることが好ましい。構成単位Bのモル比(B)の下限は溶解性の観点から、より好ましくは0.07以上、更に好ましくは0.09以上である。一方、構成単位Bのモル比(B)の上限は、耐熱性の観点からより好ましくは0.40以下、更に好ましくは0.30以下、更により好ましくは0.20以下である。
 モル比(C)のモル比(A)に対する比(モル比(C)/モル比(A))は、0.20以上、3.50以下であることが好ましい。モル比(C)/モル比(A)を上記範囲に制御することによって、密着性が向上する傾向となる。また、高温加熱時の樹脂の着色を防止できる。モル比(C)/モル比(A)の下限は、より好ましくは0.50以上、更に好ましくは1.00以上、更により好ましくは1.30以上、特に好ましくは1.45以上、最も好ましくは1.50以上である。一方、モル比(C)/モル比(A)の上限は、より好ましくは3.00以下、更に好ましくは2.50以下、更により好ましくは2.00以下である。
 モル比(B)のモル比(A)に対する比(モル比(B)/モル比(A))は、0.10以上、0.80以下であることが好ましい。モル比(B)/モル比(A)を上記範囲に制御することにより、密着性が向上する傾向となる。モル比(B)/モル比(A)の下限は、より好ましくは0.20以上、更に好ましくは0.24以上、更により好ましくは0.28以上である。一方、モル比(B)/モル比(A)の上限は、より好ましくは0.60以下、更に好ましくは0.50以下、更により好ましくは0.40以下である。
 フッ素樹脂の各構成単位のモル比は、後記する実施例に記載のNMR測定により求めることができる。モル比の算出に当たっては、例えばEric B. Twum et al., “Multidimensional 19F NMR Analyses of Terpolymers from Vinylidene Fluoride (VDF)-Hexafluoropropylene (HFP)-Tetrafluoroethylene (TFE)”, Macromolecules、2015年、48巻、11号、p.3563-3576を参照することができる。
 本発明のフッ素樹脂は、テトラフルオロエチレン由来の構成単位A、ヘキサフルオロプロピレン由来の構成単位B、及びフッ化ビニリデン由来の構成単位Cを含むものであるが、構成単位A、構成単位B、及び構成単位C以外の他の構成単位を含んでいてもよい。他の構成単位としては、例えばエチレン由来の構成単位、パーフルオロアルキルビニルエーテル由来の構成単位、クロロトリフルオロエチレン由来の構成単位等が挙げられる。
 本発明のフッ素樹脂の屈折率は、好ましくは1.34超、より好ましくは1.35以上、更に好ましくは1.36以上である。これにより、後述する紫外線発光素子と封止部の屈折率の差を小さくすることができ、紫外線発光素子と封止部との界面における全反射を低減して、光取出し効率を向上させることができる。なお光取出し効率とは、紫外線発光素子で発生した光が紫外線発光素子の外部に取り出される効率のことである。一方、本発明のフッ素樹脂の屈折率の上限は、例えば1.45以下であり、1.40以下であってもよい。屈折率は、カタログ値や一般的な物性表に記載の数値を使用してもよいし、市販のアッベ屈折率計又はエリプソメーターなどを使用して後記する実施例に記載の方法により測定することもできる。なお本願で記載する屈折率は、一般的に用いられるナトリウムのD線(589nm)の波長における値である。
 本発明のフッ素樹脂の全構成単位に対する構成単位A、構成単位B、及び構成単位Cの合計モル比は、好ましくは0.70以上、より好ましくは0.80以上、更に好ましくは0.90以上、特に好ましくは0.95以上、最も好ましくは1である。即ち本発明のフッ素樹脂の全構成単位が構成単位A、構成単位B、及び構成単位Cからなることが最も好ましい。これにより、密着性が向上する傾向となる。
 本発明のフッ素樹脂の重量平均分子量は50,000以上、1,000,000以下であることが好ましい。重量平均分子量を50,000以上とすることにより融解時の粘度を高くすることができるため、LED点灯時の封止樹脂の形状変化を抑制することができる。本発明のフッ素樹脂の重量平均分子量の下限は、より好ましくは100,000以上、更に好ましくは200,000以上、更により好ましくは250,000以上、特に好ましくは300,000以上である。一方、本発明のフッ素樹脂の重量平均分子量を1,000,000以下とすることにより溶解性が良くなる。本発明のフッ素樹脂の重量平均分子量の上限は、より好ましくは800,000以下、更に好ましくは500,000以下、更により好ましくは450,000以下、特に好ましくは400,000以下である。なお、重量平均分子量は標準ポリスチレン換算値である。
 本発明のフッ素樹脂は、ランダム共重合体、またはブロック共重合体のいずれであってもよいが、ランダム共重合体であることが好ましい。これにより、構成単位Aや構成単位Cの結晶化度を抑制することができ、透明性を確保しやすい。
 本発明のフッ素樹脂は、融点が90℃以上、278℃以下であることが好ましい。融点が90℃以上であることにより、紫外線発光素子の発熱による本発明のフッ素樹脂の溶融を防止し易くすることができる。本発明のフッ素樹脂の融点の下限は、より好ましくは100℃以上、更に好ましくは110℃以上、更により好ましくは115℃以上である。一方、融点が278℃以下であることにより、本発明のフッ素樹脂は加熱溶融し易くなるため、加熱溶融による紫外線発光素子の封止を行い易くすることができる。更に一般的なハンダ材であるAu-Sn(20質量%)の融点が278℃であることから、樹脂の融点が278℃以下であることにより、加熱に伴う後述のバンプの溶融を防止し易くすることができる。本発明のフッ素樹脂の融点の上限は、より好ましくは200℃以下、更に好ましくは170℃以下、更により好ましくは150℃以下、特に好ましくは130℃以下である。本発明のフッ素樹脂の融点は、カタログ値を用いても良いし、例えば示差走査熱量計(DSC、日立ハイテクサイエンス社製)を用いて、昇温速度10℃/分で-50℃から200℃の温度まで変化させ、これにより得られる融解曲線から融解ピーク温度(Tm)を測定することにより求めることができる。
 無機フィラーとして、金属フッ化物、金属酸化物、金属リン酸塩、金属炭酸塩、金属スルホン酸塩、金属硝酸塩、金属窒化物、窒化ホウ素等が挙げられる。無機フィラーは、1種で用いてもよいし、2種以上を併用してもよい。無機フィラーと本発明のフッ素樹脂とを組み合わせることにより、無機フィラーが本発明のフッ素樹脂の熱分解を防止し易くするという効果を発揮することができる。
 無機フィラーは、熱分解の防止と透明性の観点から金属フッ化物であることが好ましい。金属フッ化物として、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、フッ化ナトリウム、フッ化マグネシウム、氷晶石等が挙げられる。このうちフッ化マグネシウムが好ましい。これらは1種で用いてもよいし、2種以上を併用してもよい。無機フィラーは、多結晶体であっても単結晶体であってもよいが、粒界での光の散乱を少なくすることにより樹脂成形体の光透過性を向上しやすくする観点、又は樹脂成形体における無機フィラーの凝集を抑制し樹脂成形体の光透過性を向上しやすくする観点からは、粒子中に含まれる粒界が少ない方が好ましく、単結晶体を用いることが特に好ましい。無機フィラーが単結晶体かどうかの確認は、例えば電子顕微鏡で電子線回折パターンを確認することで判断することができる。
 無機フィラーの粒径は300μm以下であることが好ましい。無機フィラーが300μm以下であることにより樹脂組成物の温度上昇に伴う変色を低減することができる。無機フィラーの粒径は、より好ましくは200μm以下、更に好ましくは100μm以下、更により好ましくは50μm以下、殊更好ましくは30μm以下、特に好ましくは20μm以下である。一方、無機フィラーの粒径は0.5μm以上であることが好ましい。無機フィラーの粒径を0.5μm以上とすることにより樹脂とフィラー間での光の散乱を抑えることができ、樹脂の透明性が優れる。無機フィラーの粒径の下限は、より好ましくは1μm以上、更に好ましくは5μm以上である。この無機フィラーの粒径とは、レーザー回析法による体積累積頻度50%の粒径D50である。
 本発明のフッ素樹脂と無機フィラーとの屈折率の差は、0.05以下であることが好ましい。このように屈折率の差を低減することにより、無機フィラーの表面(組成物中における、無機フィラーの表面とフッ素樹脂との界面)での光の散乱を抑制できるため、光取出し効率を向上することができる。本発明のフッ素樹脂と無機フィラーとの屈折率の差は、より好ましくは0.04以下、更に好ましくは0.03以下であることが更により好ましい。一方、本発明のフッ素樹脂と無機フィラーとの屈折率の差の下限は特に限定されないが例えば0.001以上であってもよい。本発明の無機フィラーの屈折率は、カタログ値や一般的な物性表に記載の数値を使用しても良いし、アッベ屈折率計、エリプソメーターなど後記する実施例に記載の方法により測定することができる。
 無機フィラーの比表面積(1gあたりの表面積)は30m2/g以下であることが好ましい。このように比表面積を低減することにより、樹脂組成物の着色を抑制することができ、特に紫外領域の透過性に優れる樹脂組成物を得ることができる。比表面積は、より好ましくは20m2/g以下であり、更に好ましくは10m2/gで以下あり、殊更好ましくは5m2/g以下であり、特に好ましくは3m2/g以下であり、また0.1m2/g以上であってもよく、0.5m2/g以上であってもよい。無機フィラーの比表面積は例えば、BET法を用いた比表面積測定方法を用いることができる。
 本発明のフッ素樹脂、及び無機フィラーの合計100質量部に対する無機フィラーの量は1質量部以上、60質量部以下であることが好ましい。無機フィラーの量が1質量部以上であることにより、フッ素樹脂の熱分解を防止し易くすることができる。そのため無機フィラーの量の下限は、より好ましくは10質量部以上、更に好ましくは15質量部以上、更により好ましくは20質量部以上、特に好ましくは25質量部以上である。一方、無機フィラーの量が60質量部以下であることにより、本発明のフッ素樹脂の密着性が発揮され易くなる。そのため無機フィラーの量の上限は、より好ましくは50質量部以下、更に好ましくは45質量部以下である。
 本発明のフッ素樹脂、及び無機フィラーの合計100質量部に対する本発明のフッ素樹脂の量は40質量部以上、99質量部以下であることが好ましい。本発明のフッ素樹脂の量が40質量部以上であることにより、本発明のフッ素樹脂の密着性が発揮され易くなる。そのため本発明のフッ素樹脂の量の下限は、より好ましくは50質量部以上、更に好ましくは55質量部以上である。一方、本発明のフッ素樹脂の量が99質量部以下であることにより、無機フィラーによる耐熱性向上効果が発揮され易くなる。そのため本発明のフッ素樹脂の量の上限は、より好ましくは90質量部以下、更に好ましくは85質量部以下である。
 樹脂組成物は、本発明のフッ素樹脂と無機フィラーを混合することによって製造できる。これらの混合は、例えば、溶融混錬であってもよいし、本発明のフッ素樹脂を溶融した状態で無機フィラーと混合してもよいし、本発明のフッ素樹脂を、該フッ素樹脂を溶解又は分散する溶媒の存在下で無機フィラーと混合してもよい。樹脂組成物は、固形物であってもよいし、流動物であってもよい。流動物の場合は、溶媒を含んでいてもよい。
 溶媒として有機溶媒が挙げられる。有機溶媒として、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、プロピオン酸エチル、グリコールエーテルに酢酸基を付加したグリコールエステル等のエステル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;ジエチルエーテル、ジプロピルエーテル、ブチルエーテル、グリコールエーテル、テロラヒドロフラン等のエーテル類系溶媒;N,N-ジメチルホルムアミド、N,N-ジブチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;N-メチル-2-ピロリドンなどのラクタム系溶媒;等が挙げられる。このうちエステル系溶媒、ケトン系溶媒、エーテル系溶媒が好ましく、エステル系溶媒がより好ましい。これら有機溶媒は1種で用いてもよいし、2種以上を併用してもよい。
 溶媒を用いる場合、本発明のフッ素樹脂100質量部に対する溶媒の量は、好ましくは100質量部以上、5000質量部以下である。100質量部以上であることにより本発明のフッ素樹脂を溶解又は分散し易くすることができる。溶媒の量は、より好ましくは200質量部以上、更に好ましくは400質量部以上、更により好ましくは600質量部以上である。一方、5000質量部以下であることにより、紫外線発光装置を封止するに当たっての塗布回数を減らすことができる。溶媒の量は、より好ましくは2000質量部以下、更に好ましくは1200質量部以下、更により好ましくは1000質量部以下である。なお本発明のフッ素樹脂と溶媒の混合後、必要に応じて溶媒を揮発等によって低減してもよい。その場合、本発明のフッ素樹脂100質量部に対する低減後の溶媒の量は、好ましくは200質量部以下、より好ましくは100質量部以下、更に好ましくは50質量部以下、更により好ましくは20質量部以下である。
 さらに樹脂組成物はその他に、本発明のフッ素樹脂以外の他のフッ素樹脂、添加剤等を含有していてもよい。
 他のフッ素樹脂として、結晶性フッ素樹脂が挙げられ、具体的には、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、クロロトリフルオロエチレン重合体(PCTFE)、本発明の上記構成単位Aと構成単位Cの所定比率を満たさないテトラフルオロエチレン-ヘキサフルオロプロピレン-フッ化ビニリデン共重合体(THV)等が挙げられる。これら他のフッ素樹脂は、1種で用いてもよいし、2種以上を併用してもよい。
 本発明のフッ素樹脂100質量部に対する他のフッ素樹脂の量は、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは2質量部以下、特に好ましくは1質量部以下、最も好ましくは0質量部である。即ち、本発明の樹脂組成物に含まれるフッ素樹脂は、本発明のフッ素樹脂からなることが最も好ましい。これにより樹脂間の屈折率差が低減されて光取出し効率を向上することができる。
 樹脂組成物(固形分)の総質量に対する全フッ素樹脂(本発明のフッ素樹脂と他のフッ素樹脂の合計)、及び無機フィラーの合計含量は90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることが更により好ましく、99質量%以上であることが特に好ましい。これにより、フッ素樹脂による密着性向上効果と無機フィラーによる耐熱性向上効果が発揮され易くなる。
 本発明の樹脂組成物は、例えば、融点以下に温度を下げたり、溶媒を揮発させることによって固化物(樹脂成形体)とすることができる。本発明の樹脂組成物は、紫外線に対する耐久性に優れ、かつ密着性、耐熱性にも優れているため、紫外線発光素子の封止に好適に用いることができる。
 なお、樹脂組成物の耐熱性は、熱重量測定(TG測定)を行ってフッ素樹脂自体の質量が10質量%低減したときの温度(10%質量変化温度)を測定することで評価することができる。10%質量変化温度は、400℃以上であると樹脂組成物が耐熱性に優れるため好ましい。後述の実施例では、以下の条件で10%質量変化温度を測定した。以下の条件のようにサンプリングは、温度が1℃上がる前までに少なくとも2回行われることが好ましい。所定の間隔(秒)でサンプリングを行って、フッ素樹脂の質量が10質量%低減した時点以降の最初のサンプリングにおける温度を10%質量変化温度とする。
<測定条件>
 測定装置:TG/DTA6200(エスアイアイ・ナノテクノロジー株式会社製)
 測定雰囲気:大気
 昇温範囲:30℃から500℃
 昇温速度:10℃/分
 サンプリング間隔:4秒
 更に本発明には、紫外線発光素子を備え、紫外線発光素子が上記樹脂組成物の固化物により封止されている紫外線発光装置も含まれる。以下では、紫外線発光素子、及び紫外線発光素子を備える紫外線発光装置について図1~4を参照しながら説明する。
 図1は、紫外線発光素子の一例を模式的に示す断面図である。図2は、本発明の樹脂組成物の固化物により封止される前の紫外線発光装置の一例(以下、紫外線発光素子実装パッケージという場合がある)を模式的に示す断面図であり、図3は、本発明の樹脂組成物の固化物により封止された紫外線発光装置の一例を模式的に示す断面図であり、図4は、本発明の樹脂組成物の固化物により封止された紫外線発光装置の別の例を模式的に示す断面図である。
 まずは紫外線発光素子について説明する。図1の紫外線発光素子2はフリップチップタイプの素子であり、下側面の一部にアノード側のp電極10を備え、該p電極10の上にp層12が形成されている。更に紫外線発光素子2の下側面の別の一部に、カソード側のn電極11を備え、n電極11の上にn層14が形成されている。これらn電極11とn層14は、前記p電極10とp層12よりも上方にシフトして形成されており、上方に存在するn層14と下方に存在するp層12との間に活性層13が形成されている。更に上方に存在するn層14のさらに上に基板15が存在する。
 n層14は、例えばSi含有AlGaN層が挙げられる。p層12は、例えばMg含有GaN層が挙げられる。このp層12は、必要に応じて電子ブロック層などと積層構造にしてもよい。活性層13は、例えばAlGaN層が挙げられる。
 p電極10、p層12からn層14、n電極11に向けて順方向電流を流すことにより活性層13におけるバンドギャップエネルギに応じた発光が生じる。バンドギャップエネルギは、活性層13の例えばAlNモル分率を調整することにより、GaNとAlNが取り得るバンドギャップエネルギ(約3.4eVと約6.2eV)の範囲内で制御することができ、発光波長が約200nmから約365nmまでの紫外線発光を得ることができる。
 紫外線発光素子2の発光ピーク波長は300nm以下であることが好ましい。発光ピーク波長が300nm以下であることにより殺菌効果が発揮され易くなるため、殺菌用の発光装置に紫外線発光素子2を用いることができる。発光ピーク波長は、より好ましくは280nm以下である。
 なお基板15として、サファイア基板、窒化アルミニウム基板等が挙げられる。p電極10の素材としてNi/Au、n電極11の素材として、Ti/Al/Ti/Au等が挙げられる。また図示していないがp電極10とn電極11の間の露出面は、短絡を防止するためにSiO2等の保護絶縁膜により被覆されていても良い。
 次に紫外線発光素子実装パッケージについて説明する。図2の紫外線発光素子実装パッケージ6は、窒化アルミニウム(AlN)、アルミナ(Al23)等のセラミックス等で形成された基材4を有し、この基材4上には配線(図示せず)が形成され、該配線上には、Au、Au-Sn(20質量%)合金等の金属製のバンプ5が形成されている。そしてバンプ5を介して、配線(図示せず)と紫外線発光素子2のp電極10、n電極11とがそれぞれ電気接続できるように固定されている。この紫外線発光素子実装パッケージ6を本発明の樹脂組成物の固化物で封止することで、図3、図4に示す紫外線発光装置1、1aが形成される。
 図3の紫外線発光装置1は、図2に示した紫外線発光素子実装パッケージ6の紫外線発光素子2が本発明の樹脂組成物の固化物3aで封止され、かつその表面に、シリカガラス、ホウケイ酸ガラス等で形成された集光レンズ7が形成されたものである。集光レンズ7によって光取出し効率を向上することができるが、該集光レンズ7は必ずしも設ける必要はない。
 図4の紫外線発光装置1aは、本発明の樹脂組成物の固化物3bで形成される封止部材が上方に盛り上がって、レンズ形状になっている点で図3の紫外線発光装置1と異なる。
 図3や図4の紫外線発光装置1、1aの封止は、本発明の樹脂組成物を適当な溶媒に溶解した溶液を塗布、乾燥する工程を1回以上繰り返すことによって行うことができる。溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル系溶媒、テトラヒドロフランなどの環状エーテル、N-メチル-2-ピロリドンなどのラクタム類が挙げられる。
 塗布液中の樹脂組成物の濃度は、例えば、1質量%以上である。濃度を高くするほど、塗布回数を減らすことができる。好ましい濃度は5質量%以上であり、より好ましくは7質量%以上である。また前記濃度は、例えば、50質量%以下である。濃度を低くするほど、塗布液の粘性の向上を防ぐことができ、処理精度を高めることができる。好ましい濃度は40質量%以下であり、より好ましくは30質量%以下である。なお図4の紫外線発光装置1aを形成する場合、レンズ部の形成段階では、粘度の比較的高い塗布溶液にすることが好ましい。
 図3や図4の紫外線発光装置1、1aの封止は、本発明の樹脂組成物を適当な温度に加熱して溶融し、溶融物を紫外線発光素子2上に流し込むことによっても製造できる。該加熱温度は、前記フッ素樹脂の融点以上であり、融点+10℃以上が好ましく、融点+20℃以上がより好ましい。加熱温度の上限は、例えば、270℃であり、より好ましくは200℃であり、更により好ましくは150℃である。
 また図3や図4の紫外線発光装置1、1aの封止は、本発明の樹脂組成物をシート状に成形し、該シートを紫外線発光素子実装パッケージの紫外線発光素子実装側に積層した後、該シートを融点以上に加熱して溶融し、冷却することによっても行うこともできる(以下この封止方法を「溶融封止法」という場合がある)。
 溶融封止法を行う場合のシートの加熱温度は、前記フッ素樹脂の融点より10℃以上高い温度が好ましく、融点より20℃以上高い温度がより好ましい。加熱温度の上限は、例えば、278℃であり、より好ましくは250℃であり、更により好ましくは200℃であり、特に好ましくは150℃である。上記の加熱温度であれば、熱による紫外線発光素子実装パッケージの劣化などを抑制することができる。
 前記シートの加熱は、大気中などの酸素含有雰囲気下で行ってもよいが、窒素雰囲気中、アルゴン雰囲気中などの不活性ガス雰囲気下で行う方が好ましい。さらにフッ素樹脂の加熱は、大気圧下で行ってもよいが、真空中などの減圧下で行うことも好ましい。減圧下でフッ素樹脂を加熱すると、封止後の樹脂中に残存する気泡が低減されて透明性が向上する。
 なお、前記シートは、本発明のフッ素樹脂とフィラーが混合されたペレットを作製して、プレス、もしくは必要に応じて熱をかけながらプレスを行うことにより作製することができる。また、溶融状態のフッ素樹脂に無機フィラーを混合し、押出成形により作製することもできる。上記ペレットは、フッ素樹脂とフィラーの混合体を細かく切断することにより得ることができる。フッ素樹脂とフィラーの混合体は、熱により溶融状態になったフッ素樹脂にフィラーを混ぜ込む方法、及びフッ素樹脂を溶媒に溶解させて溶液とした後、フィラーを混合し、溶媒を乾燥させる方法、フッ素樹脂とフィラーと溶媒とを混合して、混合溶液にフッ素樹脂に対する貧溶媒を加え、フィラーを巻き込んだ状態でフッ素樹脂を析出させ、乾燥させる方法等により得ることができる。このうちフィラーを巻き込んだ状態でフッ素樹脂を析出させる方法が好ましい。
 本発明の樹脂組成物を0.5mm厚のシートに形成した際の波長265nmにおける光の透過率は、8%以上であることが好ましく、より好ましくは30%以上、更に好ましくは40%以上、特に好ましくは50%以上であり、また波長350nmにおける光の透過率は、25%以上であることが好ましく、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは70%以上であり、また波長500nmにおける光の透過率は、60%以上であることが好ましく、より好ましくは70%以上、更に好ましくは75%以上、特に好ましくは80%以上である。これにより封止部の透明性が向上し、紫外線発光素子からの光取出し効率を向上することができる。なお、光の透過率は高いほど好ましいが、波長265nmにおける光の透過率は、例えば80%以下であってもよく、波長350nmにおける光の透過率は、例えば90%以下であってもよく、波長500nmにおける光の透過率は、例えば95%以下であってもよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 〈NMR測定〉
 フッ素樹脂であるスリーエムジャパン株式会社製のダイニオンTHV221AZ粉末(以下ではTHV221AZと呼ぶ)と、ダイキン工業株式会社製のDAI-EL G-501NK(以下ではDAI-EL G-501NKと呼ぶ)のそれぞれについて、下記条件で構成単位A、構成単位B、構成単位Cの各モル比を求めた。その結果を表1に示す。
 測定装置:JEOL ECZ-400
 試料:約60mg/0.8ml ACT-d6
 IS:4-クロロベンゾドリフルオリド 0.01mL
 測定モード:1H、19
 緩和時間:1H 30秒、19F 20秒
 構成単位Bのユニット数:CF3の積分比を3で除して算出(CF3積分比/3)
 構成単位Cのユニット数:CH2の積分比を2で除して算出(CH2積分比/2)
 構成単位Aのユニット数:CF2の合計積分比より、構成単位B由来のCF2と構成単位C由来のCF2を差し引いたものを4で除して算出((CF2合計積分比-構成単位Cのユニット数×2-構成単位Bのユニット数×2)/4)
Figure JPOXMLDOC01-appb-T000001
 〈密着性評価〉
 フッ素樹脂の密着性は、以下の2種類のフッ素樹脂を使用して碁盤目試験を行うことで評価した。固化物の剥がれが全く無かったものを剥がれ「無」、固化物が全て剥がれたものを剥がれ「有」と評価した。評価結果を表2に示す。
 (1)無機フィラーを含まないフッ素樹脂(樹脂組成物1、2)
 まずAl基板上に耐熱テープ(厚み0.19mm、ガラスクロステープ)でダムを作り縦3.5cm×横4.0cmの領域を複数作製した。更にフッ素樹脂であるTHV221AZとDAI-EL G-501NKのそれぞれを酢酸プロピルに添加して、濃度が9質量%の酢酸プロピル溶液を調製して樹脂組成物1、樹脂組成物2を得た。次いで、樹脂組成物1、樹脂組成物2をそれぞれ400μlずつ異なる上記領域に入れた後、200℃、3時間、加熱して、冷却することによりフッ素樹脂が固化した固化物をそれぞれ得た。得られた固化物に対して、カッターとカッタガイドを用いて切込を入れて、それぞれ1mm角の基盤目を100個作り、基盤目を全て覆うようにスコッチ(登録商標)メンディングテープ(3M社製の「810-3-18」)を貼り付けた。その後、Al基板に対して上方向にスコッチテープを剥がし、固化物の剥がれの有無をデジタルマイクロスコープ(20倍)で観察した。
 (2)無機フィラーを含むフッ素樹脂(樹脂組成物3、4)
 上記(1)と同様にして、THV221AZとDAI-EL G-501NKのそれぞれを酢酸プロピルに添加して、濃度が9質量%の酢酸プロピル溶液を調製した。その後、それぞれの溶液10gに対して、後述する粒径が11μmのMgF2粉末(2)を0.36g混合し、自転公転ミキサー(あわとり練太郎ARV-310、株式会社シンキー社製)で、200rpmで3分間混合する操作を2回行って、樹脂溶液中にフィラーが分散した溶液、即ち樹脂組成物3、樹脂組成物4を得た。この樹脂組成物3、樹脂組成物4を使用したこと以外は、上記(1)と同様にして評価を行った。
Figure JPOXMLDOC01-appb-T000002
 表1、2に示す通り、構成単位Aのモル比(A)が0.25以上であり、且つ構成単位Cのモル比(C)が0.60以下であるTHV221AZを含有する樹脂組成物1、3の固化物は、優れた密着性を示した。一方、構成単位Aのモル比(A)が0.25未満であり、且つ構成単位Cのモル比(C)が0.60超であるDAI-EL G-501NKを含有する樹脂組成物2、4の固化物は、密着性に劣っていた。
 以下の実施例では、無機フィラーとして以下のMgF2粉末(1)~(3)のいずれかを使用した。
 <MgF2粉末(1)(D50=218μm)>
 ピアーオプティックス株式会社製のMgF2粉末(品番:MFGR3-6を粉砕し、60メッシュの篩を通過したもの、D50=218μm)を粉砕せずに使用した。
 <MgF2粉末(2)(D50=11μm)>
 ピアーオプティックス株式会社製のMgF2粉末(D50=218μm)を、以下の条件にてボールミルで粉砕することにより、MgF2粉末の粒度を調節して、D50=11μm、BET法により測定した比表面積が1.4m2/gのMgF2粉末(2)を得た。
 粉砕条件
 粉砕装置:ボールミルANZ-51S(日陶科学株式会社製)
 容器:250mlアイボーイ(アズワン株式会社製 品番5-002-03)
 メディア:400g ジルコニアボール 5mmφ(アズワン株式会社製 品番:2-9191-16)
 MgF2粉末:60g
 溶媒:イソプロピルアルコール(ナカライテクス株式会社製) 100g
 回転数:126rpm
 粉砕時間:4時間
 <MgF2粉末(3)(D50=17μm)>
 日清エンジニアリング株式会社製のMgF2粉末(D50=17μm、BET法により測定した比表面積が43m2/g)を粉砕せずに使用した。
 〈MgF2粉末の粒度分布測定〉
 無機フィラーの粒度分布測定は、下記条件のレーザー回折法により、各調製済のMgF2粉末の粒度の積算分布曲線を得て、体積累積頻度50%における粒径である粒径D50を求める方法で行った。
 測定装置:SALD-2000J (株式会社島津製作所製)
 分散溶媒:イオン交換水+中性洗剤
 分散方法:スターラー撹拌+超音波照射 10分
 屈折率(MgF2):1.40-0.20i
 〈屈折率測定〉
 ジェー・エー・ウーラム・ジャパン株式会社製の高速分光エリプソメーター(M-2000)を用いて、THV221AZ、及びMgF2粉末(1)の波長589nmの光に対する屈折率を測定したところ、それぞれ1.36、1.38であった。なおMgF2粉末(2)の屈折率は測定していないが、上記程度の粉砕条件では屈折率はほとんど変化しないため、MgF2粉末(2)はMgF2粉末(1)と同等の屈折率を示すと考えられる。
 〈比表面積測定〉
 前処理として、150℃で30分の処理条件で無機フィラーを加熱処理し、測定試料を調製した。かかる測定試料について、BET法により比表面積を算出した。
 測定装置:MONOSORB(ユアサ アイオニクス株式会社製)
 吸着質:N2
 〈樹脂組成物の固化物の調製〉
 実施例1
 0.20gのTHV221AZを石英ガラス板上に乗せて、200℃のホットプレート上で加熱融解させた。その上にMgF2粉末(3)を0.08g添加し、ヘラ状のスパチュラ2本を用いて混合し、冷却して樹脂組成物の固化物を得た。
 実施例2
 THV221AZの含量が20質量%となるように、THV221AZを酢酸ブチルに添加し、溶解させた。得られた混合溶液をスクリュー管に8.0g秤とり、撹拌子で攪拌しながらMgF2粉末(2)を0.29g添加して均一の混合溶液とした。次いで、貧溶媒であるエタノール20gを入れてフィラーを含有したフッ素樹脂を析出させた。析出した樹脂をスクリュー管から取り出し、80℃、5時間の条件で乾燥させて樹脂組成物の固化物を得た。
 実施例3
 添加したMgF2粉末(2)の量を0.65gに変更したこと以外は実施例2と同様にして樹脂組成物の固化物を得た。
 実施例4
 THV221AZとMgF2粉末(2)を下記の条件で混錬して樹脂組成物の固化物を得た。
 混錬装置:ラボプラストミル 3S150(株式会社東洋精機製作所製)
 ミキサー:ローラミキサ R60
 設定温度:140℃
 回転数:50rpm
 混錬時間:5分
 サンプル量:100g(THV221AZ:71.2g、MgF2粉末:28.8g)
 実施例5
 添加したMgF2粉末(2)の量を1.11gに変更したこと以外は実施例2と同様にして樹脂組成物の固化物を得た。
 実施例6
 MgF2粉末(1)を用いたこと、及び添加したMgF2粉末(1)の量を1.11gとした以外は実施例2と同様にして樹脂組成物の固化物を得た。
 比較例1
 THV221AZをそのまま測定した。
 〈耐熱性評価〉
 実施例1~6で得られた樹脂組成物、及び比較例1のTHV221AZの固化物の耐熱性を評価するために、下記条件で熱重量測定(TG測定)を行って、フッ素樹脂自体の質量が10質量%低減したときの温度(10%質量変化温度)を測定した。例えば樹脂組成物の固化物におけるフッ素樹脂の質量が71.2質量%の場合には、フッ素樹脂が7.12質量%減少したときの温度を測定した。また、データサンプリング間にフッ素樹脂自体の質量が10質量%以上低減した場合は、10質量%低減した直後のサンプリングの温度を10%質量変化温度とした。実施例1~6、比較例1の耐熱性評価の結果を表3に示す。
 測定装置:TG/DTA6200(エスアイアイ・ナノテクノロジー株式会社製)
 測定雰囲気:大気
 昇温範囲:30℃から500℃
 昇温速度:10℃/分
 サンプリング間隔:4秒
Figure JPOXMLDOC01-appb-T000003
 〈透明性評価〉
 下記に記載の方法でシートを作製し、透過率を測定した。
 実施例7
 ウォーターバスに置いたセパラブルフラスコに、酢酸ブチル(富士フイルム和光純薬株式会社製)160gを測り入れ、攪拌しながら、ウォーターバスを85℃まで昇温した。攪拌しながら、THV221AZを少しずつ40g加えて溶解させ、樹脂溶液を作製した。得られた溶液を120℃、3時間加熱し、残分から固形分濃度を求めたところ20.2質量%であった。
 上記で作製した20.2質量%の濃度の樹脂溶液を15g、250mlのディスポカップに入れ、そこにフィラーとしてMgF2粉末(2)を1.22g添加した。フィラーの濃度は、樹脂の密度を1.95g/cm3、MgF2粉末の密度を3.15g/cm3として計算すると、20体積%である。この溶液を、あわとり練太郎ARV-310を用いて、回転数2000rpmで2分間混合する操作を3回実施して、溶液とフィラーとを混合し、そこにマグネットスターラーを入れて攪拌してフィラーが均一に溶液中に舞っている状態を維持しながら、イソプロピルアルコール(IPA、ナカライテクス株式会社製)70gを一気に入れたところ、フィラーと一部の溶媒を巻き込みながら、樹脂が一気にゲル化して析出した。
 ゲル化した塊状の試料を取り出し、該試料からスターラーを取り出した後、アルミカップの上に置いて、常温で乾燥させた。4時間程度乾燥させたところで、乾燥を促進させるためにハサミを用いておおよそ3cm角ぐらいのサイズに切り、その後、一晩乾燥させた。試料をハサミで5mm角程度に切り、100℃に設定したホットプレートの上で3時間乾燥させた。
 その後、試料をPFA製のシャーレに移し、真空乾燥機中で200℃で3時間、脱泡、および乾燥させた。乾燥中は、試料は溶融しており、乾燥後はひと塊になっていた。得られた塊状の試料を再度、ハサミを用いて、2mm角程度のサイズに切り、ペレットとした。使用した樹脂とフィラーの合計量に対する収率は100%であった。
 厚さ5mm、15cm角のSUS板の上に厚さ0.1mm、15cm角のポリテトラフルオロエチレン(PTFE)フィルムを積層し、PTFEフィルムの上に、中心に3cm角の貫通孔を備える厚さ0.5mm、15cm角のSUS板を積層した。次いで上記ペレットを、上記3cm角の貫通孔の中に1.2g入れた。更に厚さ0.1mm、15cm角のPTFEフィルムと、厚さ5mm、15cm角のSUS板とを順に積層して金型を組立てた。次いで、プレス機の温度を200℃に設定し、加圧せずにプレス機の上下板を金型の上下の上記SUS板に接触させた状態で3分保持してペレットを溶融させた。その後50MPaの圧力で2分間加圧した。加圧後に金型を取り出して、別途、水を通した2枚のSUS板で金型を挟んで十分に冷却して、金型を分解して、0.5mm厚みのフィラー含有フッ素樹脂シートを得、265nm、350nm、及び500nmにおける透過率を下記の条件に基づいて測定した。結果を表4に示す。
測定条件
 測定装置:紫外可視近赤外分光光度計UV-3600(株式会社島津製作所製)
 アタッチメント:積分球 ISR-3100
 バックグラウンド測定:大気
Figure JPOXMLDOC01-appb-T000004
 表3に示す通り、MgF2粉末を含有しない比較例1では10%質量変化温度が400℃未満であり耐熱性に劣っていたが、MgF2粉末を含有する実施例1~6では10%質量変化温度が400℃以上であり優れた耐熱性を発揮した。表2、3の結果より、樹脂組成物中に構成単位Aのモル比(A)が0.25以上であり、且つ構成単位Cのモル比(C)が0.60以下である本発明のフッ素樹脂と、無機フィラーとを含むことにより、優れた密着性と耐熱性を両立できることが分かる。
 1 紫外線発光装置
 1a 紫外線発光装置
 2 紫外線発光素子
 3a、3b 樹脂組成物の固化物
 4 基材
 5 バンプ
 6 紫外線発光素子実装パッケージ
 7 集光レンズ
 10 p電極
 11 n電極
 12 p層
 13 活性層
 14 n層
 15 基板

Claims (12)

  1.  フッ素樹脂、及び無機フィラーを含み、
     前記フッ素樹脂は、テトラフルオロエチレン由来の構成単位A、ヘキサフルオロプロピレン由来の構成単位B、及びフッ化ビニリデン由来の構成単位Cを含み、
     前記構成単位A、前記構成単位B、及び前記構成単位Cの合計に対する前記構成単位Aのモル比(A)が0.25以上であり、
     前記構成単位A、前記構成単位B、及び前記構成単位Cの合計に対する前記構成単位Cのモル比(C)が0.60以下であることを特徴とする樹脂組成物。
  2.  前記構成単位A、前記構成単位B、及び前記構成単位Cの合計に対する前記構成単位Aのモル比(A)が0.25以上、0.75以下である請求項1に記載の樹脂組成物。
  3.  前記構成単位A、前記構成単位B、及び前記構成単位Cの合計に対する前記構成単位Cのモル比(C)が0.20以上、0.60以下である請求項1または2に記載の樹脂組成物。
  4.  前記構成単位A、前記構成単位B、及び前記構成単位Cの合計に対する前記構成単位Bのモル比(B)が0.05以上、0.50以下である請求項1に記載の樹脂組成物。
  5.  前記モル比(C)の前記モル比(A)に対する比(モル比(C)/モル比(A))が0.20以上、3.50以下である請求項3に記載の樹脂組成物。
  6.  前記モル比(B)の前記モル比(A)に対する比(モル比(B)/モル比(A))が、0.10以上、0.80以下である請求項4に記載の樹脂組成物。
  7.  前記無機フィラーが金属フッ化物である請求項1に記載の樹脂組成物。
  8.  前記無機フィラーの粒径が300μm以下である請求項1に記載の樹脂組成物。
  9.  前記フッ素樹脂、及び前記無機フィラーの合計100質量部に対する前記無機フィラーの量が1質量部以上、60質量部以下である請求項1に記載の樹脂組成物。
  10.  前記フッ素樹脂と前記無機フィラーとの屈折率の差が0.05以下である請求項1に記載の樹脂組成物。
  11.  紫外線発光素子の封止に用いられるものである請求項1に記載の樹脂組成物。
  12.  紫外線発光素子を備え、
     前記紫外線発光素子が、請求項1に記載の樹脂組成物の固化物により封止されていることを特徴とする紫外線発光装置。
PCT/JP2020/018653 2019-05-16 2020-05-08 樹脂組成物、および紫外線発光装置 WO2020230714A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092838 2019-05-16
JP2019-092838 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230714A1 true WO2020230714A1 (ja) 2020-11-19

Family

ID=73290083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018653 WO2020230714A1 (ja) 2019-05-16 2020-05-08 樹脂組成物、および紫外線発光装置

Country Status (3)

Country Link
JP (1) JP2020189964A (ja)
TW (1) TW202043362A (ja)
WO (1) WO2020230714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153336A1 (ja) * 2020-01-30 2021-08-05 住友化学株式会社 フッ素樹脂シート及びその製造方法
WO2021153335A1 (ja) * 2020-01-30 2021-08-05 住友化学株式会社 電子部品及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039883A1 (ja) * 2002-10-29 2004-05-13 Daikin Industries, Ltd. 含フッ素樹脂組成物、含フッ素成形品、含フッ素層含有積層体及び含フッ素層含有積層体使用方法
JP2013175462A (ja) * 2012-02-24 2013-09-05 Daikin Ind Ltd 電線被覆材及び電線
JP2014185294A (ja) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp 樹脂組成物、反射部材、発光装置、及び照明器具
WO2014178288A1 (ja) * 2013-04-30 2014-11-06 創光科学株式会社 紫外線発光装置
US20170229614A1 (en) * 2014-07-30 2017-08-10 Lg Innotek Co., Ltd. Light emitting device and light source module having thereof
JP2017149839A (ja) * 2016-02-24 2017-08-31 ダイキン工業株式会社 フッ素ゴム組成物及び成形品
US20170263833A1 (en) * 2016-03-14 2017-09-14 Lite-On Opto Technology (Changzhou) Co., Ltd. Led package structure
JP2017532426A (ja) * 2014-10-31 2017-11-02 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. フルオロエラストマー組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039883A1 (ja) * 2002-10-29 2004-05-13 Daikin Industries, Ltd. 含フッ素樹脂組成物、含フッ素成形品、含フッ素層含有積層体及び含フッ素層含有積層体使用方法
JP2013175462A (ja) * 2012-02-24 2013-09-05 Daikin Ind Ltd 電線被覆材及び電線
JP2014185294A (ja) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp 樹脂組成物、反射部材、発光装置、及び照明器具
WO2014178288A1 (ja) * 2013-04-30 2014-11-06 創光科学株式会社 紫外線発光装置
US20170229614A1 (en) * 2014-07-30 2017-08-10 Lg Innotek Co., Ltd. Light emitting device and light source module having thereof
JP2017532426A (ja) * 2014-10-31 2017-11-02 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. フルオロエラストマー組成物
JP2017149839A (ja) * 2016-02-24 2017-08-31 ダイキン工業株式会社 フッ素ゴム組成物及び成形品
US20170263833A1 (en) * 2016-03-14 2017-09-14 Lite-On Opto Technology (Changzhou) Co., Ltd. Led package structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153336A1 (ja) * 2020-01-30 2021-08-05 住友化学株式会社 フッ素樹脂シート及びその製造方法
WO2021153335A1 (ja) * 2020-01-30 2021-08-05 住友化学株式会社 電子部品及びその製造方法

Also Published As

Publication number Publication date
TW202043362A (zh) 2020-12-01
JP2020189964A (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2020230714A1 (ja) 樹脂組成物、および紫外線発光装置
WO2020230716A1 (ja) 電子部品の製造方法および電子部品
JP5783902B2 (ja) 太陽電池の光電地要素のための白色顔料を含む不透明フルオロポリマー組成物
TWI360583B (ja)
TWI629305B (zh) Composition for interlayer filler of laminated semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device
WO2011065016A1 (ja) Led実装用基板
TWI600777B (zh) Sputtering target and its manufacturing method
TWI592950B (zh) 太陽能電池電極用的糊料及使用其製備的太陽能電池電極
JPWO2020153505A1 (ja) フィラー組成物、シリコーン樹脂組成物及び放熱部品
TWI461438B (zh) 供光伏打電池應用而建基於不帶有丙烯酸系聚合物味道之氟聚合物與氧化鋅的膜
JP2015170601A (ja) 太陽電池の電極のために使用される導電性ペースト
JP2020180221A (ja) 複合フィラー
CN113853690A (zh) 电子部件和其制造方法
JP2021109825A (ja) 熱伝導性フィラー、及びそれを含有する熱伝導性組成物
JP2021161270A (ja) 樹脂成形体、紫外線発光装置、および樹脂成形体の製造方法
JP6365922B2 (ja) スパッタリングターゲット及びその製造方法
CN109233577A (zh) 非水电解液二次电池用涂料
JP2021163876A (ja) 電子装置
JP2016124908A (ja) 樹脂成形体
WO2021153337A1 (ja) フッ素樹脂及びその製造方法
JP2021161271A (ja) フッ素樹脂シート、および電子装置
TW201432066A (zh) 濺鍍靶及其製造方法
JP6998362B2 (ja) 電子部品及びその製造方法
WO2021200279A1 (ja) フッ素樹脂シート及びその製造方法
JP5533607B2 (ja) スパッタリングターゲット及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806700

Country of ref document: EP

Kind code of ref document: A1