WO2020216479A1 - Elektromechanischer bremsdruckerzeuger für ein hydraulisches bremssystem - Google Patents

Elektromechanischer bremsdruckerzeuger für ein hydraulisches bremssystem Download PDF

Info

Publication number
WO2020216479A1
WO2020216479A1 PCT/EP2020/052784 EP2020052784W WO2020216479A1 WO 2020216479 A1 WO2020216479 A1 WO 2020216479A1 EP 2020052784 W EP2020052784 W EP 2020052784W WO 2020216479 A1 WO2020216479 A1 WO 2020216479A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
bearing
brake pressure
drive wheel
pressure generator
Prior art date
Application number
PCT/EP2020/052784
Other languages
English (en)
French (fr)
Inventor
Matthias Greiner
Sebastian Martin REICHERT
Claus Oehler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN202080030829.XA priority Critical patent/CN113692370A/zh
Priority to KR1020217038115A priority patent/KR20220002425A/ko
Priority to JP2021563002A priority patent/JP7449960B2/ja
Priority to US17/601,667 priority patent/US20220144239A1/en
Publication of WO2020216479A1 publication Critical patent/WO2020216479A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/746Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive and mechanical transmission of the braking action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4018Pump units characterised by their drive mechanisms
    • B60T8/4022Pump units driven by an individual electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • F16H57/022Adjustment of gear shafts or bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type

Definitions

  • the present invention relates to an electromechanical
  • Brake pressure generator for a hydraulic brake system of a vehicle according to the features of the preamble of claim 1 and a vehicle comprising an electromechanical brake pressure generator according to the
  • the electromechanical brake pressure generator includes in particular a screw drive arrangement for converting a drive-side
  • the driver's foot force is usually not sufficient to brake motor vehicles, so that these are usually equipped with a brake booster.
  • Conventional brake boosters usually work with a negative pressure generated by the internal combustion engine. The pressure difference between the engine pressure and the ambient pressure is used to apply a boosting force to the piston rod of the piston / cylinder unit in addition to the driver's foot force.
  • Electromechanical brake pressure generators of this type can be used not only to provide an auxiliary force, but also in brake-by-wire systems for the sole provision of the actuating force. Electromechanical brake pressure generators are therefore particularly advantageous with regard to autonomous driving.
  • a conventional electromechanical brake booster which is shown in FIG. 1, is known from WO 2017/045804 A1.
  • the invention is directed to an electromechanical brake pressure generator which can apply a braking force independently of an actuation of the brake pedal.
  • the previously known brake booster 1 comprises a
  • the spindle nut 2 is in operative engagement with a spindle 4, which is why the spindle 4 can be set in a translational movement along its spindle axis 5 by means of the spindle nut 2 set in rotation. So that the spindle 4 does not rotate due to the rotation of the spindle nut 2, the brake booster 1 has a bearing arrangement 6 to which the spindle 4 is firmly connected.
  • the bearing arrangement 6 comprises a bracket 6a, on the edges of which two slide bearings 6b are arranged.
  • the slide bearings 6b run on tie rods 7, which run essentially parallel to the spindle axis 5.
  • the spindle 4 is movable in the axial direction and is secured against rotation.
  • the object of the present invention is to specify an electromechanical brake pressure generator which is improved in terms of installation space, functionality and manufacturing costs.
  • the invention specifies an electromechanical brake pressure generator for a hydraulic brake system of a vehicle.
  • the electromechanical brake pressure generator comprises at least one screw drive arrangement for converting a rotational movement on the drive side into one
  • the screw drive arrangement comprises a spindle which can be rotated via an electric motor, a spindle nut which interacts with a thread of the spindle so that the spindle nut is axially displaceable when the spindle rotates, and a housing which at least partially surrounds the spindle and the spindle nut .
  • the screw drive arrangement comprises a drive wheel which is arranged in a rotationally fixed manner on the spindle and via which the spindle is connected to the electric motor, the spindle and the drive wheel being rotatably supported with respect to the stationary housing via a common bearing.
  • a ball screw drive is a screw drive with balls inserted between the spindle and the spindle nut. Both parts each have a helical groove which together form a helical tube filled with balls. The positive connection in the thread across the helical line does not take place between the thread groove and dam, as is the case with the pure spindle drive, but via the balls.
  • the drive wheel can be in direct engagement with the electric motor.
  • the electric motor can also be directly connected to an upstream transmission, which is in direct engagement with the drive wheel.
  • the spindle and the drive wheel are mounted on the housing via a common bearing. Such an arrangement is possible because the drive wheel is rotatably connected to the spindle. Preferably that is
  • the bearing is also at least partially surrounded radially by the drive wheel.
  • the bearing is arranged at least partially in a region of the drive wheel, so that the bearing and the drive wheel cover the same axial regions of the spindle.
  • the bearing is preferably completely surrounded radially by the drive wheel.
  • the bearing is designed as a roller bearing.
  • Such bearings are widely available so that an optimal bearing can be selected in terms of size and load capacity, for example.
  • the bearing is preferably arranged between the spindle and the housing.
  • the spindle is mounted directly on the housing via the bearing.
  • the bearing thus rests directly on the spindle and on the housing, so that the spindle is supported in relation to the housing via the bearing.
  • the drive wheel is mounted indirectly. This means that the drive wheel is also supported via the connection to the spindle. This enables the spindle to be properly supported.
  • a small bearing can be installed so that space and weight are saved.
  • the bearing is between the drive wheel and
  • the drive wheel is thus directly via the camp to the Housing stored.
  • the spindle is only supported indirectly. This means that the spindle has the connection to the
  • Drive wheel is also mounted. This enables a direct mounting of the drive wheel.
  • the bearing is advantageously arranged on an end face of the drive wheel facing away from the spindle.
  • the face facing away from the spindle is understood to be the side which points away from a longitudinal extension of the spindle.
  • Brake pressure generator can be mounted on the spindle after the drive wheel.
  • an additional housing part must generally be provided which engages around the drive wheel. Further devices of the brake pressure generator can be attached to this housing part.
  • the bearing is arranged on an end face of the drive wheel facing the spindle.
  • the end face facing the spindle is the side of the drive wheel which points to a longitudinal extension of the spindle.
  • the bearing must be mounted on the spindle in front of the drive wheel during assembly of the electromechanical brake pressure generator. This can have advantages in terms of assembly or construction.
  • no housing part which engages around the drive wheel is necessary, so that such a part
  • electromechanical brake pressure generator can be made smaller.
  • the bearing and the drive wheel are preferably arranged at one end of the spindle.
  • the spindle does not protrude significantly beyond the bearing / drive wheel arrangement, so that no additional installation space has to be provided for it.
  • the bearing and the drive wheel can be more easily assembled from the spindle end.
  • the invention also provides a vehicle with an electromechanical brake pressure generator for a hydraulic brake system. With such a vehicle, the advantages mentioned for the electromechanical brake pressure generator can be achieved. In a preferred embodiment, this vehicle can be an automated or completely autonomous vehicle.
  • FIG. 2 Schematic representation of a hydraulic brake system for a
  • Figure 3 longitudinal section of a first embodiment of a
  • Screw drive arrangement for an electromechanical brake pressure generator is provided.
  • FIG. 2 shows a schematic representation of a hydraulic brake system 10 for a vehicle with an electromechanical brake pressure generator 14.
  • the hydraulic brake system 10 comprises the electromechanical brake pressure generator 14.
  • This brake pressure generator 14 comprises a piston / cylinder unit 18, which via a brake fluid reservoir 22 with
  • Brake fluid is supplied.
  • the piston / cylinder unit 18 can be controlled via a brake pedal 26 actuated by the driver and the resulting brake pedal travel is determined by a
  • Pedal travel sensor 30 is measured and passed on to a control unit 34.
  • FIG. 2 shows a brake booster in principle, it is essential here that the brake pedal travel is measured via the pedal travel sensor 30. Brake pressure generation is also possible without a brake pedal travel, so that the vehicle can also be braked in the autonomous driving state.
  • the control unit 34 generates a control signal for an electric motor 38 of the brake pressure generator 14 based on the measured brake pedal travel.
  • the electric motor 38 which is connected to a transmission (not shown) of the
  • Brake pressure generator 14 is connected, amplified according to the
  • Control signal the braking force input from the brake pedal 26.
  • the brake pedal 26 For this purpose, according to the actuation of the brake pedal 26, one in the
  • Brake pressure generator 14 arranged screw drive arrangement 40 controlled by the electric motor 38 so that the rotational movement of the electric motor 38 is converted into a translational movement.
  • the brake hydraulics 46 which is shown here only as a box, is formed by various valves and other components for forming an electronic stability program (ESP), for example.
  • ESP electronic stability program
  • the hydraulic brake system 46 is additionally connected to at least one wheel brake device 50, so that a braking force can be applied to the wheel brake device 50 by a corresponding switching of valves.
  • Figure 3 shows a longitudinal section of a first embodiment of the
  • the screw drive arrangement 40 comprises a housing 64 which surrounds part of a spindle 68.
  • the housing 64 is formed from metal in this exemplary embodiment.
  • the screw drive assembly 40 includes a spindle nut 72 which surrounds a portion of the spindle 68 and engages a thread 76 of the spindle 68.
  • a drive wheel 84 is connected to the spindle 68 in a rotationally test manner, so that the spindle 68 can be driven by the electric motor 38 shown in FIG.
  • the spindle 68 is set in rotary motion by the electric motor 38 and thereby displaces the spindle nut 72, which cooperates with the thread 76, in an axial direction.
  • the screw drive arrangement 40 additionally comprises a bearing 88 which is designed as a roller bearing.
  • a bearing 88 which is designed as a roller bearing.
  • the spindle 68 is the spindle 68 and that
  • Spindle end 80 is arranged between housing 64 and spindle 68.
  • the drive wheel 84 forms a cutout 92 on an end face facing the spindle 68, so that the bearing 88 is positioned in the cutout 92 of the drive wheel 84.
  • the bearing 88 is radially surrounded by the drive wheel 84 and is arranged on an end face of the drive wheel 84 facing the spindle 68.
  • FIG. 4 A second exemplary embodiment of the screw drive arrangement 40 for the electromechanical brake pressure generator 14 is shown in FIG. This exemplary embodiment differs from the first exemplary embodiment shown in FIG. 3 in that the bearing 88 is arranged on an end face of the drive wheel 84 facing away from the spindle 68. Correspondingly, the cutout 92 is formed in the drive wheel 84 on this end face. In this exemplary embodiment, an additional housing part 64a is formed which engages around the drive wheel 84, so that the spindle 68 is mounted on the housing 64 via the bearing 88.
  • Figure 5 is a longitudinal section of a third embodiment of the
  • Screw drive arrangement 40 for the electromechanical brake pressure generator 14 is shown.
  • This exemplary embodiment has a similar structure to the first exemplary embodiment shown in FIG. Unlike the first
  • the bearing 88 is not arranged between the spindle 68 and the housing 64, but rather between the housing 64 and the drive wheel 84, so that the spindle 68 is supported via the drive wheel 84.
  • the bearing 88 is arranged on an end face of the drive wheel 84 facing the spindle 68. It is also possible for the bearing 88 to be arranged on an end face of the drive wheel 84 facing away from the spindle 68.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

Die Erfindung betrifft einen elektromechanischen Bremsdruckerzeuger (14) für ein hydraulisches Bremssystem (10) eines Fahrzeugs. Der elektromechanische Bremsdruckerzeuger (14) umfasst eine Gewindetriebanordnung (40) zum Umwandeln einer antriebsseitigen Rotationsbewegung in eine Translationsbewegung zur Bremsdruckerzeugung. Die Gewindetriebanordnung (40) umfasst dabei eine Spindel (68), welche über einen Elektromotor (38) drehbar ist, eine Spindelmutter (72), welche mit einem Gewinde (76) der Spindel (68) zusammenwirkt, so dass die Spindelmutter (72) mit Drehung der Spindel (68) axial verschiebbar ist, und ein Gehäuse (64, 64a), welches die Spindel (68) und die Spindelmutter (72) wenigstens teilweise umgibt. Zusätzlich umfasst die Gewindetriebanordnung (40) ein Antriebsrad (84), welches drehfest an der Spindel (68) angeordnet ist, und über welches die Spindel (68) mit dem Elektromotor (38) verbunden ist, wobei die Spindel (68) und das Antriebsrad (84) über ein gemeinsames Lager (88) drehbar gegenüber dem ortsfesten Gehäuse (64, 64a) gelagert sind und das Lager (88) wenigstens teilweise von dem Antriebsrad (84) radial umgeben ist.

Description

Beschreibung
Titel:
Elektromechanischer Bremsdruckerzeuger für ein hydraulisches Bremssystem
Die vorliegende Erfindung betrifft einen elektromechanischen
Bremsdruckerzeuger für ein hydraulisches Bremssystem eines Fahrzeuges nach den Merkmalen des Oberbegriffs des Anspruchs 1 sowie ein Fahrzeug umfassend einen elektromechanischen Bremsdruckerzeuger nach den
Merkmalen des Anspruchs 8.
Der elektromechanische Bremsdruckerzeuger umfasst insbesondere eine Gewindetriebanordnung zum Umwandeln einer antriebseitigen
Rotationsbewegung in eine Translationsbewegung zur Bremsdruckerzeugung.
Zum Bremsen von Kraftfahrzeugen reicht die Fußkraft des Fahrers zumeist nicht aus, so dass diese üblicherweise mit einem Bremskraftverstärker ausgestattet werden. Herkömmliche Bremskraftverstärker arbeiten in der Regel mit einem vom Verbrennungsmotor erzeugten Unterdrück. Dabei wird die Druckdifferenz zwischen dem Motordruck und dem Umgebungsdruck genutzt, um zusätzlich zur Fußkraft des Fahrers eine Verstärkungskraft auf die Kolbenstange der Kolben- /Zylindereinheit aufzubringen.
Für zukünftige Antriebskonzepte von Kraftfahrzeugen werden alternative Bremsdruckaufbaugeräte benötigt, da der Unterdrück nicht mehr zur Verfügung steht, um einen konventionellen Vakuumbremskraftverstärker zu betreiben. Hierfür wurden die hier interessierenden elektromechanischen
Bremsdruckerzeuger entwickelt. Die Betätigungskraft an der Kolben-/Zylindereinheit wird dabei mittels eines Elektromotors erzeugt. Derartige elektromechanische Bremsdruckerzeuger können nicht nur zur Bereitstellung einer Hilfskraft, sondern in Brake-by-wire- Systemen auch zur alleinigen Bereitstellung der Betätigungskraft eingesetzt werden. Daher sind elektromechanische Bremsdruckerzeuger insbesondere im Hinblick auf das autonome Fahren von Vorteil.
Stand der Technik
Aus der WO 2017/045804 Al ist ein herkömmlicher elektromechanischer Bremskraftverstärker bekannt, der in Fig. 1 dargestellt ist. Im Unterschied dazu ist die Erfindung auf einen elektromechanischen Bremsdruckerzeuger gerichtet, welcher unabhängig von einer Betätigung des Bremspedales eine Bremskraft aufbringen kann. Der vorbekannte Bremskraftverstärker 1 umfasst eine
Spindelmutter 2 und einen (nicht skizzierten) elektrischen Motor, mit dessen Betrieb die Spindelmutter 2 über ein Stirnrad 3 in eine Rotation versetzbar ist.
Die Spindelmutter 2 liegt mit einer Spindel 4 in einem Wirkeingriff vor, weshalb die Spindel 4 mittels der in die Rotation versetzten Spindelmutter 2 in eine Translationsbewegung entlang ihrer Spindelachse 5 versetzbar ist. Damit sich die Spindel 4 aufgrund der Rotation der Spindelmutter 2 nicht mit dreht, weist der Bremskraftverstärker 1 eine Lageranordnung 6 auf, mit welcher die Spindel 4 fest verbunden ist.
Die Lageranordnung 6 umfasst einen Bügel 6a, an dessen Rändern zwei Gleitlager 6b angeordnet sind. Die Gleitlager 6b laufen an Zugankern 7, welche im Wesentlichen parallel zu der Spindelachse 5 verlaufen. Über diese
Lageranordnung 6 ist die Spindel 4 in axialer Richtung beweglich und wird gegen ein Verdrehen gesichert.
Es ist die Aufgabe der vorliegenden Erfindung einen elektromechanischen Bremsdruckerzeuger anzugeben, welcher hinsichtlich Bauraum, Funktionalität und Herstellungskosten verbessert ist.
Offenbarung der Erfindung Die Aufgabe wird durch einen elektromechanischen Bremsdruckerzeuger für ein hydraulisches Bremssystem mit den Merkmalen nach Anspruch 1 gelöst. Die jeweils rückbezogenen abhängigen Ansprüche geben vorteilhafte
Weiterbildungen der Erfindung wieder.
Die Erfindung gibt einen elektromechanischen Bremsdruckerzeuger für ein hydraulisches Bremssystem eines Fahrzeugs an. Der elektromechanische Bremsdruckerzeuger umfasst zumindest einer Gewindetriebanordnung zum Umwandeln einer antriebsseitigen Rotationsbewegung in eine
Translationsbewegung zur Bremsdruckerzeugung. Die Gewindetriebanordnung umfasst dabei eine Spindel, welche über einen Elektromotor drehbar ist, eine Spindelmutter, welche mit einem Gewinde der Spindel zusammenwirkt, so dass die Spindelmutter mit Drehung der Spindel axial verschiebbar ist, und ein Gehäuse, welches die Spindel und die Spindelmutter wenigstens teilweise umgibt.
Darüber hinaus umfasst die Gewindetriebanordnung ein Antriebsrad, welches drehfest an der Spindel angeordnet ist, und über welches die Spindel mit dem Elektromotor verbunden ist, wobei die Spindel und das Antriebsrad über ein gemeinsames Lager drehbar gegenüber dem ortsfesten Gehäuse gelagert sind.
Als Gewindetriebanordnung wird sowohl ein reiner Spindeltrieb, bei welchem die Spindelmutter in direktem Kontakt mit der Spindel ist, als auch ein
Kugelgewindetrieb, verstanden. Ein Kugelgewindetrieb ist ein Schraubgetriebe mit zwischen Spindel und Spindelmutter eingefügten Kugeln. Beide Teile haben je eine schraubenförmige Rille, die gemeinsam eine mit Kugeln gefüllte schraubenförmige Röhre bilden. Die formschlüssige Verbindung im Gewinde quer zur Schraubenlinie findet nicht wie beim reinen Spindeltrieb zwischen Gewinde-Nut und -Damm, sondern über die Kugeln statt.
Das Antriebsrad kann dabei direkt im Eingriff mit dem Elektromotor sein. Ebenso kann der Elektromotor mit einem vorgelagerten Getriebe direkt verbunden sein, welches in einem direkten Eingriff mit dem Antriebsrad ist. Gemäß der Erfindung ist die Spindel und das Antriebsrad über ein gemeinsames Lager zu dem Gehäuse gelagert. Eine solche Anordnung ist möglich, da das Antriebsrad drehfest mit der Spindel verbunden ist. Vorzugweise ist das
Antriebsrad zusätzlich in einer axialen Richtung auf der Spindel fixiert. Durch diese Anordnung muss somit kein weiteres Lager für die Spindel oder das Antriebsrad vorgesehen werden. Dadurch kann Bauraum, Gewicht und Kosten für ein zusätzliches Lager eingespart werden. Zusätzlich werden die Funktion der Lagerung des Antriebsrads und der Spindel durch ein Lager erfüllt. Ein solcher elektromechanischer Bremserzeuger ist dadurch kleiner und wirtschaftlicher herstellbar.
Das Lager ist zudem wenigstens teilweise von dem Antriebsrad radial umgeben. Mit anderen Worten ist das Lager wenigstens teilweise in einem Bereich des Antriebsrads angeordnet, so dass das Lager und das Antriebsrad gleiche axiale Bereiche der Spindel überdecken. Vorzugsweise ist das Lager vollständig von dem Antriebsrad radial umgeben. Durch eine solche Anordnung des Lagers kann der benötigte Bauraum von Antriebsrad und Lager reduziert werden, so dass ein solcher elektromechanische Bremsdruckerzeuger kleiner ausgebildet werden kann.
In einer weiteren bevorzugten Ausführung der Erfindung ist das Lager als Wälzlager ausgebildet. Solche Lager sind vielfältig erhältlich, so dass ein optimales Lager hinsichtlich beispielsweise Größe und Tragkraft auswählbar ist.
Vorzugsweise ist das Lager zwischen Spindel und Gehäuse angeordnet. Mit anderen Worten ist die Spindel direkt über das Lager zu dem Gehäuse gelagert. Das Lager liegt somit direkt an der Spindel und an dem Gehäuse an, so dass über das Lager eine Lagerung der Spindel zu dem Gehäuse gewährleistet wird. Im Gegensatz zu der Spindel ist das Antriebsrad indirekt gelagert. Dies bedeutet, dass das Antriebsrad über die Verbindung zu der Spindel ebenfalls gelagert ist. Dadurch wird eine gute Lagerung der Spindel ermöglicht. Zusätzlich kann ein kleines Lager verbaut werden, so dass Bauraum und Gewicht eingespart wird.
In einer alternativen Ausbildung ist das Lager zwischen Antriebsrad und
Gehäuse angeordnet. Das Antriebsrad ist somit direkt über das Lager zu dem Gehäuse gelagert. Das Gehäuse, wie auch das Antriebsrad, liegen beide direkt an dem Lager an, so dass über das Lager eine Lagerung des Antriebsrads zu dem Gehäuse gewährleistet wird. Dahingegen ist die Spindel lediglich indirekt gelagert. Dies bedeutet, dass die Spindel über die Verbindung zu dem
Antriebsrad ebenfalls gelagert ist. Dies ermöglicht eine direkte Lagerung des Antriebsrads.
Vorteilhafterweise ist das Lager auf einer der Spindel abgewandten Stirnseite des Antriebsrads angeordnet. Als der Spindel abgewandte Stirnseite wird die Seite verstanden, welche von einer Längserstreckung der Spindel weg zeigt. Das Lager muss dadurch während einer Montage des elektromechanischen
Bremsdruckerzeuger nach dem Antriebsrad auf der Spindel montiert werden. Um das Gehäuse zu dem Lager zu lagern, muss ist in der Regel ein zusätzliches Gehäuseteil vorgesehen werden, welches das Antriebsrad umgreift. An diesem Gehäuseteil können weitere Einrichtungen des Bremsdruckerzeugers befestigt werden.
Bei einer weiteren vorteilhaften Ausführung ist das Lager auf einer der Spindel zugewandten Stirnseite des Antriebsrads angeordnet. Die der Spindel zugewandte Stirnseite ist dabei die Seite des Antriebsrades, welche zu einer Längserstreckung der Spindel zeigt. Dadurch muss das Lager während einer Montage des elektromechanischen Bremsdruckerzeugers vor dem Antriebsrad auf der Spindel montiert werden. Dies kann Vorteile hinsichtlich der Montage oder dem Aufbau aufweisen. Zusätzlich ist im Gegensatz zu der Anordnung des Lagers auf einer der Spindel abgewandten Stirnseite kein Gehäuseteil notwendig, welches das Antriebsrad umgreift, so dass ein solcher
elektromechanischer Bremsdruckerzeuger kleiner ausgebildet werden kann.
Das Lager und das Antriebsrad sind vorzugsweise an einem Spindelende angeordnet. Mit anderen Worte ragt die Spindel nicht wesentlich über die Lager- Antriebsrad-Anordnung hinaus, so dass dafür kein zusätzlicher Bauraum vorgesehen sein muss. Darüber hinaus kann das Lager und das Antriebsrad einfacher von dem Spindelende aus montiert werden. Die Erfindung gibt darüber hinaus ein Fahrzeug mit einem elektromechanischen Bremsdruckerzeuger für ein hydraulisches Bremssystem an. Mit einem solchen Fahrzeug können die zu dem elektromechanischen Bremsdruckerzeuger genannten Vorteile erzielt werden. In einer bevorzugten Ausführung kann dieses Fahrzeug ein automatisiertes oder vollständig autonomes Fahrzeug sein.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:
Figur 1 Darstellung eines aus dem Stand der Technik bekannten
elektromechanischen Bremskraftverstärkers,
Figur 2 Schematische Darstellung eines hydraulischen Bremssystems für ein
Fahrzeug mit einem elektromechanischen Bremsdruckerzeuger,
Figur 3 Längsschnitt eines ersten Ausführungsbeispiels einer
Gewindetriebanordnung für einen elektromechanischen Bremsdruckerzeuger,
Figur 4 Längsschnitt eines zweiten Ausführungsbeispiels einer
Gewindetriebanordnung für einen elektromechanischen Bremsdruckerzeuger, und
Figur 5 Längsschnitt eines dritten Ausführungsbeispiels einer
Gewindetriebanordnung für einen elektromechanischen Bremsdruckerzeuger.
In Figur 2 ist eine schematische Darstellung eines hydraulischen Bremssystems 10 für ein Fahrzeug mit einem elektromechanischen Bremsdruckerzeuger 14 gezeigt. Das hydraulische Bremssystem 10 umfasst den elektromechanischen Bremsdruckerzeuger 14. Dieser Bremsdruckerzeuger 14 umfasst eine Kolben- /Zylindereinheit 18, welcher über ein Bremsflüssigkeitsreservoir 22 mit
Bremsflüssigkeit versorgt wird. Die Kolben-/Zylindereinheit 18 kann über ein vom Fahrer betätigtes Bremspedal 26 angesteuert und der ergebende Bremspedalweg wird durch einen
Pedalwegsensor 30 gemessen und an ein Steuergerät 34 weitergegeben.
Obwohl die Figur 2 im Prinzip einen Bremskraftverstärker zeigt, ist hier wesentlich, dass der Bremspedalweg über den Pedalwegsensor 30 gemessen wird. Auch ist eine Bremsdruckerzeugung ohne einen Bremspedalweg möglich, so dass das Fahrzeug auch im autonomen Fahrzustand bremsbar ist.
Das Steuergerät 34 erzeugt aufgrund des gemessenen Bremspedalweges ein Steuersignal für einen Elektromotor 38 des Bremsdruckerzeugers 14. Der Elektromotor 38, welcher mit einem Getriebe (nicht gezeigt) des
Bremsdruckerzeugers 14 verbunden ist, verstärkt entsprechend des
Steuersignals die vom Bremspedal 26 eingegebene Bremskraft. Dazu wird entsprechend der Betätigung des Bremspedals 26 eine in dem
Bremsdruckerzeuger 14 angeordnete Gewindetriebanordnung 40 durch den Elektromotor 38 angesteuert, so dass die Rotationsbewegung des Elektromotors 38 in eine Translationsbewegung umgewandelt wird.
Durch Betätigung des Bremspedals 26 wird mithilfe des Bremsdruckerzeugers 14 die in der Kolben-/Zylindereinheit 18 vorliegende Bremsflüssigkeit unter Druck gesetzt. Dieser Bremsdruck wird über Bremsleitungen 42 an eine Bremshydraulik 46 weitergeleitet. Die Bremshydraulik 46, welche hier nur als Kasten dargestellt ist, wird durch verschiedene Ventile und weiterer Komponenten zum Ausbilden eines beispielsweise elektronischen Stabilitätsprogramms (ESP) gebildet. Die Bremshydraulik 46 ist zusätzlich mit wenigstens einer Radbremseinrichtung 50 verbunden, so dass durch eine entsprechende Schaltung von Ventilen eine Bremskraft an der Radbremseinrichtung 50 aufbringbar ist.
Figur 3 zeigt einen Längsschnitt eines ersten Ausführungsbeispiels der
Gewindetriebanordnung 40 für den elektromechanischen Bremsdruckerzeuger 14. Die Gewindetriebanordnung 40 umfasst ein Gehäuse 64, welches einen Teil einer Spindel 68 umgibt. Das Gehäuse 64 ist in diesem Ausführungsbeispiel aus Metall ausgeformt. Zusätzlich umfasst die Gewindetriebanordnung 40 eine Spindelmutter 72, welche einen Abschnitt der Spindel 68 umgibt und mit einem Gewinde 76 der Spindel 68 im Eingriff ist. An einem Spindelende 80 ist ein Antriebsrad 84 drehtest mit der Spindel 68 verbunden, so dass die Spindel 68 über den in Figur 2 gezeigten Elektromotor 38, antreibbar ist. Die Spindel 68 wird durch den Elektromotor 38 in eine Drehbewegung versetzt und verschiebt dadurch die mit dem Gewinde 76 zusammenwirkende Spindelmutter 72 in einer axialen Richtung.
Die Gewindetriebanordnung 40 umfasst zusätzlich ein Lager 88, welches als Wälzlager ausgebildet ist. Über das Lager 88 ist die Spindel 68 und das
Antriebsrad 84 zu dem Gehäuse 64 gelagert. Das Wälzlager ist an dem
Spindelende 80 zwischen dem Gehäuse 64 und der Spindel 68 angeordnet. Insbesondere formt das Antriebsrad 84 auf einer der Spindel 68 zugewandten Stirnseite einen Ausschnitt 92 aus, so dass das Lager 88 in dem Ausschnitt 92 des Antriebsrades 84 positioniert ist. Dadurch ist das Lager 88 radial von dem Antriebsrad 84 umgeben und ist auf einer der Spindel 68 zugewandten Stirnseite des Antriebsrades 84 angeordnet.
Ein zweites Ausführungsbeispiel der Gewindetriebanordnung 40 für den elektromechanischen Bremsdruckerzeuger 14 ist in Figur 4 gezeigt. Dieses Ausführungsbeispiel unterscheidet sich von dem in Figur 3 gezeigten ersten Ausführungsbeispiel dahingehend, dass das Lager 88 auf einer der Spindel 68 abgewandten Stirnseite des Antriebsrades 84 angeordnet ist. Dementsprechend ist der Ausschnitt 92 im Antriebsrad 84 auf dieser Stirnseite ausgebildet. In diesem Ausführungsbeispiel ist ein zusätzliches Gehäuseteil 64a ausgebildet, welches das Antriebsrad 84 umgreift, so dass die Spindel 68 über das Lager 88 zu dem Gehäuse 64 gelagert ist.
In Figur 5 ist ein Längsschnitt eines dritten Ausführungsbeispiels der
Gewindetriebanordnung 40 für den elektromechanischen Bremsdruckerzeuger 14 gezeigt. Dieses Ausführungsbeispiel ist ähnlich aufgebaut wie das in Figur 3 gezeigte erste Ausführungsbeispiel. Im Gegensatz zu dem ersten
Ausführungsbeispiel ist das Lager 88 jedoch nicht zwischen der Spindel 68 und dem Gehäuse 64 angeordnet, sondern zwischen dem Gehäuse 64 und dem Antriebsrad 84, so dass die Spindel 68 über das Antriebsrad 84 gelagert ist. In dem in Figur 5 gezeigten Ausführungsbeispiel ist das Lager 88 auf einer der Spindel 68 zugewandten Stirnseite des Antriebsrades 84 angeordnet. Ebenso ist es möglich, dass das Lager 88 auf einer der Spindel 68 abgewandten Stirnseite des Antriebsrades 84 angeordnet ist.

Claims

Ansprüche
1. Elektromechanischer Bremsdruckerzeuger (14) für ein hydraulisches
Bremssystem (10) eines Fahrzeugs, mit zumindest einer
Gewindetriebanordnung (40) zum Umwandeln einer antriebsseitigen
Rotationsbewegung in eine Translationsbewegung und mit einer von der Gewindetriebanordnung (40) betätigbaren Kolben-/Zylindereinheit (18) zur Bremsdruckerzeugung, wobei die Gewindetriebanordnung (40) umfasst: eine Spindel (68), welche über einen Elektromotor (38) drehbar ist, eine Spindelmutter (72), welche mit einem Gewinde (76) der Spindel (68) zusammenwirkt, so dass die Spindelmutter (72) mit Drehung der Spindel (68) axial verschiebbar ist,
ein Gehäuse (64, 64a), welches die Spindel (68) und die Spindelmutter (72) wenigstens teilweise umgibt, und
ein Antriebsrad (84), welches drehfest an der Spindel (68) angeordnet ist, und über welches die Spindel (68) mit dem Elektromotor (38) verbunden ist,
dadurch gekennzeichnet, dass
die Spindel (68) und das Antriebsrad (84) über ein gemeinsames Lager (88) drehbar gegenüber dem ortsfesten Gehäuse (64, 64a) gelagert sind, und das Lager (88) wenigstens teilweise von dem Antriebsrad (84) radial umgeben ist.
2. Elektromechanischer Bremsdruckerzeuger (14) nach Anspruch 1, dadurch gekennzeichnet, dass das Lager (88) als Wälzlager ausgebildet ist.
3. Elektromechanischer Bremsdruckerzeuger (14) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Lager (88) zwischen Spindel (68) und Gehäuse (64, 64a) angeordnet ist.
4. Elektromechanischer Bremsdruckerzeuger (14) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Lager (88) zwischen Antriebsrad (84) und Gehäuse (64, 64a) angeordnet ist.
5. Elektromechanischer Bremsdruckerzeuger (14) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Lager (88) auf einer der Spindel (68) abgewandten Stirnseite des Antriebsrads (84) angeordnet ist.
6. Elektromechanischer Bremsdruckerzeuger (14) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Lager (88) auf einer der Spindel (68) zugewandten Stirnseite des Antriebsrads (84) angeordnet ist.
7. Elektromechanischer Bremsdruckerzeuger (14) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Lager (88) und das
Antriebsrad (84) an einem Spindelende (80) angeordnet sind.
8. Fahrzeug umfassend einen elektromechanischen Bremsdruckerzeuger (14) für ein hydraulisches Bremssystem (10) nach einem der vorherigen
Ansprüche.
PCT/EP2020/052784 2019-04-25 2020-02-04 Elektromechanischer bremsdruckerzeuger für ein hydraulisches bremssystem WO2020216479A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080030829.XA CN113692370A (zh) 2019-04-25 2020-02-04 用于液压制动***的机电的制动压力产生器
KR1020217038115A KR20220002425A (ko) 2019-04-25 2020-02-04 유압식 제동 시스템을 위한 전기 기계식 제동 압력 생성기
JP2021563002A JP7449960B2 (ja) 2019-04-25 2020-02-04 液圧式のブレーキシステムのための電気機械式のブレーキ圧発生器
US17/601,667 US20220144239A1 (en) 2019-04-25 2020-02-04 Electromechanical brake pressure generator for a hydraulic braking system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019205974.0 2019-04-25
DE102019205974.0A DE102019205974A1 (de) 2019-04-25 2019-04-25 Elektromechanischer Bremsdruckerzeuger für ein hydraulisches Bremssystem eines Fahrzeugs und Fahrzeug umfassend einen elektromechanischen Bremsdruckerzeuger

Publications (1)

Publication Number Publication Date
WO2020216479A1 true WO2020216479A1 (de) 2020-10-29

Family

ID=69528804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/052784 WO2020216479A1 (de) 2019-04-25 2020-02-04 Elektromechanischer bremsdruckerzeuger für ein hydraulisches bremssystem

Country Status (6)

Country Link
US (1) US20220144239A1 (de)
JP (1) JP7449960B2 (de)
KR (1) KR20220002425A (de)
CN (1) CN113692370A (de)
DE (1) DE102019205974A1 (de)
WO (1) WO2020216479A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019205979A1 (de) * 2019-04-25 2020-10-29 Robert Bosch Gmbh Elektromechanischer Bremsdruckerzeuger für ein hydraulisches Bremssystem eines Fahrzeugs sowie Fahrzeug umfassend einen elektromechanischen Bremsdruckerzeuger
AT524824A1 (de) * 2021-02-23 2022-09-15 Trumpf Maschinen Austria Gmbh & Co Kg Elektromechanischer Spindelantrieb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039916A1 (de) * 2009-09-01 2011-03-03 Continental Teves Ag & Co. Ohg Lineareinheit
DE102011007025A1 (de) * 2011-04-08 2012-10-11 Robert Bosch Gmbh Plungervorrichtung
WO2017045804A1 (de) 2015-09-14 2017-03-23 Robert Bosch Gmbh Elektromechanischer bremskraftverstärker und bremssystem

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558409A (en) * 1994-12-14 1996-09-24 General Motors Corporation Electrohydraulic braking system
DE19519308C2 (de) * 1995-05-26 1999-01-21 Continental Ag Bremsaktor mit Getriebe
DE10035220B4 (de) * 2000-07-20 2014-01-23 Robert Bosch Gmbh Verfahren zum Betrieb einer Radbremsvorrichtung
US8777331B2 (en) * 2011-09-23 2014-07-15 Robert Bosch Gmbh Brake booster
DE102014212413A1 (de) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Druckerzeuger für eine hydraulische Fahrzeugbremsanlage
DE102015222286A1 (de) * 2015-11-12 2017-05-18 Robert Bosch Gmbh Hydraulikblock und Hydraulikaggregat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039916A1 (de) * 2009-09-01 2011-03-03 Continental Teves Ag & Co. Ohg Lineareinheit
DE102011007025A1 (de) * 2011-04-08 2012-10-11 Robert Bosch Gmbh Plungervorrichtung
WO2017045804A1 (de) 2015-09-14 2017-03-23 Robert Bosch Gmbh Elektromechanischer bremskraftverstärker und bremssystem

Also Published As

Publication number Publication date
JP2022531130A (ja) 2022-07-06
KR20220002425A (ko) 2022-01-06
JP7449960B2 (ja) 2024-03-14
US20220144239A1 (en) 2022-05-12
DE102019205974A1 (de) 2020-10-29
CN113692370A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
DE102013006795A1 (de) Betätigungseinrichtung für eine Kraftfahrzeug-Bremsanlage
DE102006027039B4 (de) Elektromechanischer Bremskraftverstärker
DE102019210669B3 (de) Elektromechanischer Bremsdruckerzeuger oder Bremsdruckverstärker mit einer Gewindetriebanordnung
EP2563630B1 (de) Bremsanlage für kraftfahrzeuge
WO2009068404A2 (de) Bremsbetätigungseinheit
DE102019205977A1 (de) Elektromechanischer Bremsdruckerzeuger für ein hydraulisches Bremssystem eines Fahrzeugs und Verfahren zum Herstellen eines elektromechanischen Bremsdruckerzeugers
DE102012014361A1 (de) Betätigungseinrichtung für einen Hauptbremszylinder eines Kraftfahrzeugs
DE102019205911A1 (de) Elektromechanischer Bremsdruckerzeuger mit einer Gewindetriebanordnung und Fahrzeug umfassend einen elektromechanischen Bremsdruckerzeuger
DE102020202843A1 (de) Elektromechanischer Bremsdruckerzeuger mit einer Gewindetriebanordnung
DE102010063404A1 (de) Verfahren zum Einstellen der von einer Feststellbremse ausgeübten Klemmkraft
DE102019205972A1 (de) Elektromechanischer Bremsdruckerzeuger für ein hydraulisches Bremssystem eines Fahrzeugs sowie Fahrzeug umfassend einen elektromechanischen Bremsdruckerzeuger
WO2020216492A1 (de) Elektromechanisch antreibbarer bremsdruckerzeuger für ein hydraulisches bremssystem eines fahrzeugs sowie fahrzeug umfassend einen elektromechanischen bremsdruckerzeuger
WO2020216479A1 (de) Elektromechanischer bremsdruckerzeuger für ein hydraulisches bremssystem
DE102010043209A1 (de) Elektrischer Verstärker
DE102018119977A1 (de) Lenkgetriebe für ein Steer-by-Wire-Lenksystem
DE102009029594A1 (de) Bremskraftverstärker
DE19601749B4 (de) Pumpe, vorzugsweise für Fahrzeuge, insbesondere für Kraftfahrzeuge
DE102017008196A1 (de) Trommelbremse mit einem elektromechanisch-hydraulischen Bremsaktuator
DE102016214195A1 (de) Verfahren zur Funktionsprüfung einer elektromechanischen Bremsvorrichtung
EP3350045B1 (de) Elektromechanischer bremskraftverstärker
WO2021099080A1 (de) Elektromechanisch antreibbarer bremsdruckerzeuger
DE102022208668A1 (de) Elektrische feststellbremse und fahrzeug mit derselben
DE19829514C2 (de) Feststellbremsanlage für Fahrzeuge
DE102007010765A1 (de) Elektromechanischer Kupplungsaktuator
WO2020216480A1 (de) Elektromechanisch antreibbarer bremsdruckerzeuger für ein hydraulisches bremssystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20704468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038115

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20704468

Country of ref document: EP

Kind code of ref document: A1