WO2020204125A1 - 全芳香族ポリエステル及びポリエステル樹脂組成物 - Google Patents

全芳香族ポリエステル及びポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2020204125A1
WO2020204125A1 PCT/JP2020/015150 JP2020015150W WO2020204125A1 WO 2020204125 A1 WO2020204125 A1 WO 2020204125A1 JP 2020015150 W JP2020015150 W JP 2020015150W WO 2020204125 A1 WO2020204125 A1 WO 2020204125A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
aromatic polyester
total
acid
respect
Prior art date
Application number
PCT/JP2020/015150
Other languages
English (en)
French (fr)
Inventor
俊明 横田
俊紀 川原
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202080026453.5A priority Critical patent/CN113767134B/zh
Priority to JP2020553558A priority patent/JP6852233B2/ja
Publication of WO2020204125A1 publication Critical patent/WO2020204125A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds

Definitions

  • the present invention relates to a total aromatic polyester having very few side reactions during a polymerization reaction and having excellent hue and toughness, and this polyester resin composition.
  • Liquid crystal resins such as all-aromatic polyester have excellent fluidity, mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and are therefore suitably widely used as high-performance engineering plastics.
  • Patent Document 1 a totally aromatic polyester having a specific structure containing 6-hydroxy-2-naphthoic acid as a main component has been proposed.
  • the all-aromatic polyester of Patent Document 1 has a problem that a ketone bond is formed by a side reaction during the polymerization reaction, and the product produced by the ketone bond deteriorates the hue of the polymer and lowers the toughness.
  • An object of the present invention is to provide a total aromatic polyester having very few side reactions during a polymerization reaction and having excellent hue and toughness, and a polyester resin composition thereof.
  • the present inventors consist of the following constituent units (I), (II), (III) and (IV) as essential constituents, and the content of the constituent unit (I) is 40 to 40 to all the constituent units. It is 75 mol%, the content of the constituent unit (II) is 0.5 to 7.5 mol% with respect to all the constituent units, and the content of the constituent unit (III) with respect to all the constituent units is 8.
  • the content of the constituent unit (IV) is 8.5 to 30 mol% with respect to all the constituent units, and the constituent units (I), (II), ( A total aromatic polyester characterized in that the total content of III) and (IV) is 100 mol%, which has an ester bond or a combination of an ester bond and a ketone bond in the molecule.
  • the present inventors have found that the above-mentioned problems can be solved by a total aromatic polyester in which the amount of the ketone bond is 0.0000 to 0.0010 mol% with respect to the total of the ester bond and the ketone bond. Has been completed. More specifically, the present invention provides the following.
  • the essential constituents consist of the following constituent units (I), (II), (III) and (IV).
  • the content of the constituent unit (I) is 40 to 75 mol% with respect to all the constituent units.
  • the content of the constituent unit (II) is 0.5 to 7.5 mol% with respect to all the constituent units.
  • the content of the constituent unit (III) is 8.5 to 30 mol% with respect to all the constituent units.
  • the content of the constituent unit (IV) is 8.5 to 30 mol% with respect to all the constituent units.
  • the total content of the constituent units (I), (II), (III) and (IV) with respect to all the constituent units is 100 mol%.
  • All aromatic polyester Total aromatics having an ester bond or a combination of an ester bond and a ketone bond in the molecule, and the amount of the ketone bond relative to the total of the ester bond and the ketone bond is 0.0000 to 0.0010 mol%.
  • polyester. (2) A polyester resin composition containing the total aromatic polyester according to (1).
  • (3) A polyester molded product obtained by molding the total aromatic polyester or polyester resin composition according to (1) or (2).
  • (4) A method for producing an all-aromatic polyester It comprises the steps of acylating 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, and 4,4'-dihydroxybiphenyl with fatty acid anhydride and transesterifying with 1,4-phenylenedicarboxylic acid.
  • 6-hydroxy-2-naphthoic acid 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, and 4,4'-dihydroxybiphenyl.
  • the amount of 6-hydroxy-2-naphthoic acid used is 40-75 mol%
  • the amount of 4-hydroxybenzoic acid used is 0.5 to 7.5 mol%
  • the amount of 1,4-phenylenedicarboxylic acid used is 8.5 to 30 mol%
  • 4,4'-dihydroxybiphenyl used is 8.5 to 30 mol%
  • the total amount of 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, and 4,4'-dihydroxybiphenyl used is 100 mol%.
  • the method for producing a totally aromatic polyester according to (4) which comprises using a nitrogen-containing heterocyclic compound as a catalyst.
  • the method for producing a totally aromatic polyester according to (4) which comprises using a potassium compound and / or a trivalent cobalt compound as a catalyst.
  • the method for producing a total aromatic polyester according to (7) or (8), wherein the trivalent cobalt compound is tris (2,4-pentanedionato) cobalt (III).
  • the present invention it is possible to provide a total aromatic polyester having a very small amount of side reaction during a polymerization reaction and having excellent hue and toughness, and a polyester resin composition thereof.
  • the total aromatic polyester according to the present invention comprises the following constituent units (I), (II), (III) and (IV) as essential constituents, and the constituent units (I) are contained in all the constituent units.
  • the amount is 40 to 75 mol%
  • the content of the constituent unit (II) is 0.5 to 7.5 mol% with respect to all the constituent units
  • the content of the constituent unit (III) is contained with respect to all the constituent units.
  • the amount is 8.5 to 30 mol%, and the content of the constituent unit (IV) is 8.5 to 30 mol% with respect to all the constituent units, and the constituent units (I), ( A total aromatic polyester characterized in that the total content of II), (III) and (IV) is 100 mol%, and an ester bond or a combination of an ester bond and a ketone bond in the molecule. It is a total aromatic polyester having, and the amount of the ketone bond is 0.0000 to 0.0010 mol% with respect to the sum of the ester bond and the ketone bond.
  • the structural unit (I) is derived from 6-hydroxy-2-naphthoic acid (hereinafter, also referred to as "HNA").
  • the total aromatic polyester of the present invention contains 40 to 75 mol% of the structural unit (I) with respect to all the structural units. If the content of the structural unit (I) is less than 40 mol%, the melting point is lowered and the heat resistance is insufficient. If the content of the structural unit (I) exceeds 75 mol%, solidification occurs during polymerization and a polymer cannot be obtained.
  • the content of the structural unit (I) is preferably 40 to 70 mol%, more preferably 40 to 65 mol%, still more preferably 40 to 63 mol%, and more. It is more preferably 40 to 62 mol%, and particularly preferably 40 to 60 mol%.
  • the structural unit (II) is derived from 4-hydroxybenzoic acid (hereinafter, also referred to as "HBA").
  • the total aromatic polyester of the present invention contains 0.5 to 7.5 mol% of the constituent unit (II) with respect to all the constituent units. If the content of the structural unit (II) is less than 0.5 mol%, solidification occurs during polymerization and a polymer cannot be obtained. If the content of the structural unit (II) exceeds 7.5 mol%, the melting point is lowered and the heat resistance is insufficient.
  • the content of the structural unit (II) is preferably 0.5 to 7.0 mol%, more preferably 1.0 to 7.0 mol%, and further preferably 1. It is .2 to 7.0 mol%, more preferably 1.5 to 6.5 mol%, and particularly preferably 2.0 to 6.0 mol%.
  • the structural unit (III) is derived from 1,4-phenylenedicarboxylic acid (hereinafter, also referred to as "TA").
  • the total aromatic polyester of the present invention contains 8.5 to 30 mol% of the constituent unit (III) with respect to all the constituent units. If the content of the structural unit (III) is less than 8.5 mol% or more than 30 mol%, at least one of lower melting point and heat resistance tends to be insufficient. From the viewpoint of achieving both a low melting point and heat resistance, the content of the structural unit (III) is preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 14 to 28. It is mol%, more preferably 15 to 28 mol%, and particularly preferably 17 to 27 mol%.
  • the structural unit (IV) is derived from 4,4'-dihydroxybiphenyl (hereinafter, also referred to as "BP").
  • the total aromatic polyester of the present invention contains 8.5 to 30 mol% of structural units (IV) with respect to all structural units. If the content of the structural unit (IV) is less than 8.5 mol% or more than 30 mol%, at least one of lower melting point and heat resistance tends to be insufficient. From the viewpoint of achieving both a low melting point and heat resistance, the content of the structural unit (IV) is preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 14 to 28 mol%. It is mol%, more preferably 15 to 28 mol%, and particularly preferably 17 to 27 mol%.
  • the total aromatic polyester of the present invention contains specific structural units (I) to (IV) in a specific amount with respect to all the structural units, and contains an ester bond or an ester bond and a ketone in the molecule. Since it has a combination with a bond and the amount of the ketone bond with respect to the total of the ester bond and the ketone bond is 0.0000 to 0.0010 mol%, there are very few side reactions during the polymerization reaction, and the hue Is excellent.
  • the amount of the ketone bond to the total of the ester bond and the ketone bond is preferably 0.0000 to 0.0008 mol%, preferably 0.0000 to 0.0006.
  • the total aromatic polyester of the present invention contains 100 mol% of the constituent units (I) to (IV) in total with respect to all the constituent units.
  • the total aromatic polyester of the present invention exhibits optical anisotropy when melted. Exhibiting optical anisotropy when melted means that the all-aromatic polyester of the present invention is a liquid crystal polymer.
  • the fact that the total aromatic polyester is a liquid crystal polymer is an indispensable element for the total aromatic polyester to have both thermal stability and easy workability.
  • the total aromatic polyester composed of the constituent units (I) to (IV) may not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the polymer, but the polymer of the present invention has. Limited to all aromatic polyesters that exhibit optical anisotropy when melted.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the confirmation of melt anisotropy can be carried out by melting a sample placed on a hot stage manufactured by Linkham Co., Ltd. using a polarizing microscope manufactured by Olympus Corporation and observing it at a magnification of 150 times in a nitrogen atmosphere. Liquid crystal polymers are optically anisotropic and transmit light when inserted between orthogonal polarizers. If the sample is optically anisotropic, polarized light is transmitted even in a molten static liquid state, for example.
  • a nematic liquid crystal polymer causes a significant decrease in viscosity above the melting point, it is generally an index of processability to exhibit liquid crystallinity at a temperature above the melting point.
  • the melting point is preferably as high as possible from the viewpoint of heat resistance, but it is preferably 380 ° C. or lower in consideration of thermal deterioration during melt processing of the polymer and the heating capacity of the molding machine. It should be noted that the temperature is more preferably 260 to 370 ° C, even more preferably 270 to 370 ° C, and particularly preferably 280 to 360 ° C.
  • the melt viscosity of the total aromatic polyester at a temperature 10 to 40 ° C. higher than the melting point of the total aromatic polyester of the present invention and a shear rate of 1000 / sec is preferably 1000 Pa ⁇ s or less, more preferably 4 to 500 Pa. It is s, more preferably 4 to 250 Pa ⁇ s, and particularly preferably 5 to 100 Pa ⁇ s.
  • the melt viscosity means the melt viscosity measured according to ISO11443.
  • the total aromatic polyester of the present embodiment is polymerized by using a direct polymerization method, a transesterification method, or the like.
  • a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of the melt polymerization method and the solid phase polymerization method is used. Is preferably used.
  • an acylating agent for the polymerized monomer or a monomer having an activated terminal can be used as an acid chloride derivative.
  • the acylating agent include fatty acid anhydrides such as acetic anhydride.
  • the total amount of fatty acid anhydride used is 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, and 4,4'-dihydroxybiphenyl from the viewpoint of hue. It is preferably less than 1.08 times the hydroxyl group equivalent of, more preferably 1.00 to 1.07 times, further preferably 1.01 to 1.07 times, and 1.01 to 1 It is more preferably .06 times, and particularly preferably 1.02 to 1.06 times.
  • the amount of the ketone bond tends to be 0.0000 to 0.0010 mol% with respect to the total of the ester bond and the ketone bond.
  • catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2).
  • 4-Pentandionato) Examples include metal salt-based catalysts such as cobalt (III) and organic compound-based catalysts such as 1-methylimidazole and 4-dimethylaminopyridine.
  • melt polymerization is carried out by starting depressurization to a predetermined decompression degree.
  • an inert gas is introduced, and the pressure is changed from a reduced pressure state to a normal pressure state to a predetermined pressure state, and the total aromatic polyester is discharged from the reaction system.
  • the total aromatic polyester produced by the above polymerization method can be further increased in molecular weight by solid phase polymerization of normal pressure, reduced pressure, or heating in an inert gas.
  • 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, and 4,4'-dihydroxybiphenyl are acylated with a fatty acid anhydride to form 1,4-phenylene. It is preferable to include a step of transesterifying with a dicarboxylic acid. For all monomers consisting of 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, and 4,4'-dihydroxybiphenyl.
  • the amount of 6-hydroxy-2-naphthoic acid used is 40 to 75 mol%, preferably 40 to 70 mol%, more preferably 40 to 65 mol%, still more preferably 40 to 63, from the viewpoint of heat resistance and polymerizable property. Mol%, even more preferably 40-62 mol%, particularly preferably 40-60 mol%, The amount of 4-hydroxybenzoic acid used is 0.5 to 7.5 mol%, preferably 0.5 to 7.0 mol%, more preferably 1.0 to 7.0 from the viewpoint of heat resistance and polymerizable property.
  • the amount of 1,4-phenylenedicarboxylic acid used is 8.5 to 30 mol%, preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further, from the viewpoint of achieving both a low melting point and heat resistance.
  • 14-28 mol% even more preferably 15-28 mol%, particularly preferably 17-27 mol%
  • the amount of 4,4'-dihydroxybiphenyl used is 8.5 to 30 mol%, preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further, from the viewpoint of achieving both a low melting point and heat resistance.
  • 14-28 mol%, even more preferably 15-28 mol%, particularly preferably 17-27 mol% The total amount of 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, and 4,4'-dihydroxybiphenyl is preferably 100 mol%.
  • the final polymerization temperature is preferably 340 ° C. or lower, more preferably 330 ° C. or lower, further preferably 320 ° C. or lower, even more preferably 310 ° C. or lower, and 300 ° C. or lower. Is particularly preferable.
  • the nitrogen-containing heterocyclic compound used as a catalyst is 1-methylimidazole.
  • a potassium compound and / or a trivalent cobalt compound as a catalyst.
  • the potassium compound used as a catalyst is potassium acetate.
  • the trivalent cobalt compound used as a catalyst is tris (2,4-pentanedionato) cobalt (III).
  • the amount of 1,4-phenylenedicarboxylic acid used (mol%) and the amount of 4,4'-dihydroxybiphenyl used (mol%) is preferably 1.00 mol% or less, more preferably 0.75 mol% or less, further preferably 0.50 mol% or less, and more preferably 0.25 mol% or less. It is even more preferable that the amount of 1,4-phenylenedicarboxylic acid used (mol%) and the amount of 4,4'-dihydroxybiphenyl used (mol%) are equal.
  • polyester resin composition Various fibrous, powdery, plate-like inorganic and organic fillers can be blended in the above-mentioned all-aromatic polyester of the present invention depending on the purpose of use.
  • the inorganic filler blended in the polyester resin composition of the present invention includes fibrous, powdery, and plate-like fillers.
  • fibrous inorganic filler glass fiber, milled glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, wollastonite
  • silicate fibers such as magnesium sulfate fibers, aluminum borate fibers
  • inorganic fibrous substances such as metal fibrous materials such as stainless steel, aluminum, titanium, copper and brass.
  • a particularly typical fibrous filler is glass fiber.
  • the powdery granular inorganic filler carbon black, graphite, silica, quartz powder, glass beads, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, clay, diatomaceous earth, wollastonite and the like.
  • Acid salts iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate, and other ferrites.
  • examples of the plate-shaped inorganic filler include mica, glass flakes, talc, and various metal foils.
  • organic fillers examples include aromatic polyester fibers, liquid crystal polymer fibers, aromatic polyamides, and heat-resistant high-strength synthetic fibers such as polyimide fibers.
  • inorganic and organic fillers can be used alone or in combination of two or more.
  • the combined use of the fibrous inorganic filler and the granular or plate-like inorganic filler is a preferable combination in terms of combining mechanical strength, dimensional accuracy, electrical properties, and the like.
  • glass fiber is used as the fibrous filler
  • mica and talc are used as the plate-shaped filler, and the blending amount thereof is 120 parts by mass or less, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the total aromatic polyester. Is.
  • the polyester resin composition is particularly remarkable in improving the thermal deformation temperature, mechanical properties and the like.
  • a converging agent or a surface treatment agent can be used if necessary.
  • the polyester resin composition of the present invention contains the all-aromatic polyester of the present invention as an essential component, and optionally contains an inorganic or organic filler, as long as it does not impair the effects of the present invention.
  • other components may be contained.
  • the other component may be any component, and examples thereof include additives such as other resins, antioxidants, stabilizers, pigments, and crystal nucleating agents.
  • the method for producing the polyester resin composition of the present invention is not particularly limited, and the polyester resin composition can be prepared by a conventionally known method.
  • the polyester molded product of the present invention can be obtained by molding the all-aromatic polyester or polyester resin composition of the present invention.
  • the molding method is not particularly limited, and a general molding method can be adopted. Examples of general molding methods include injection molding, extrusion molding, compression molding, blow molding, vacuum molding, foam molding, rotary molding, gas injection molding, and inflation molding.
  • the polyester molded product obtained by molding the all-aromatic polyester or the like of the present invention has excellent heat resistance. Further, the polyester molded product obtained by molding the polyester resin composition of the present invention has excellent heat resistance and contains an inorganic or organic filler as required, so that the mechanical strength and the like are further improved.
  • the all-aromatic polyester and polyester resin composition of the present invention are excellent in moldability, they can be processed into various three-dimensional molded products, fibers, films and the like.
  • Preferred applications of the polyester molded product of the present invention having the above properties include connectors, CPU sockets, relay switch parts, bobbins, actuators, noise reduction filter cases, electronic circuit boards, heating fixing rolls for OA equipment, and the like. Be done.
  • Example 1 The following raw material monomers, fatty acid metal salt catalysts, and acylating agents were charged into a polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a depressurization / outflow line, and nitrogen substitution was started.
  • melt viscosity Using a capillograph manufactured by Toyo Seiki Seisakusho Co., Ltd., using an orifice with an inner diameter of 0.5 mm and a length of 30 mm at a temperature 10 to 30 ° C higher than the melting point of all aromatic polyester, at a shear rate of 1000 / sec, ISO11443. The melt viscosity of the total aromatic polyester was measured according to the above.
  • [Ketone bond amount] The amount of ketone bond was calculated by the pyrolysis gas chromatography method described in Polymer Degradation and Stability 76 (2002) 85-94. Specifically, using a pyrolysis device (“PY2020iD” manufactured by Frontier Lab Co., Ltd.), all aromatic polyester is heated in the presence of tetramethylammonium hydroxide (TMAH), and gas is pyrolyzed / methylated. Was generated. This gas is analyzed using gas chromatography (“GC-6890N” manufactured by Agilent Technologies, Inc.), and the amount of ketone bond is calculated from the ratio of the peak area derived from the ketone bond to the peak area derived from the ester bond. did.
  • TMAH tetramethylammonium hydroxide
  • the L value of the polymer was measured using a spectral color difference meter (“SE6000” manufactured by Nippon Denshoku Industries Co., Ltd.).
  • Examples 2 and 3 The type of raw material monomer, amount used (mol%), catalyst, heating rate, and final polymerization temperature are as shown in Table 1, and the prepolymer is prepared under a nitrogen stream at 290 ° C. for 10 hours and at 300 ° C. for 10 hours, 310.
  • a polymer was obtained in the same manner as in Example 1 except that heat treatment (solid phase polymerization) was carried out at ° C. for 10 hours and at 320 ° C. for 10 hours. Moreover, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
  • Examples 4 and 5 A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer, the amount used (mol%), the catalyst, the rate of temperature rise, and the final polymerization temperature were as shown in Table 1. Further, the same evaluation as in Example 1 was performed (the melt viscosity of Example 5 was measured at a temperature of 350 ° C.). The evaluation results are shown in Table 1.
  • the temperature was further raised under the speed conditions shown in Table 1, and the final polymerization temperature was set as shown in Table 1, respectively.
  • the pressure was reduced to 10 Torr (ie, 1330 Pa) over 20 minutes, and melt polymerization was carried out while distilling acetic acid, excess acetic anhydride, and other low boiling points.
  • nitrogen is introduced to change the pressure from a reduced pressure state to a pressurized state through normal pressure, and the product is discharged from the lower part of the polymerization vessel and pelletized to obtain a pellet-shaped prepolymer. It was.
  • the obtained prepolymer was heat-treated (solid phase polymerization) at 300 ° C. for 5 hours under a nitrogen stream to obtain the desired polymer.
  • Example 6> The total aromatic polyester obtained in Example 1 and the following components were mixed using a twin-screw extruder to obtain a resin composition.
  • the extrusion conditions are as follows.
  • the blending amount of each component is as shown in Table 2.
  • Fibrous filler Mild fiber EPH-80M manufactured by Nippon Electric Glass Co., Ltd., fiber diameter 10.5 ⁇ m, average fiber length 80 ⁇ m (manufacturer's nominal value)
  • Plate-shaped filler Mica AB-25S manufactured by Yamaguchi Mica Industry Co., Ltd., average particle size 25 ⁇ m
  • Example 6 having a ketone bond amount of 0.0001 mol% had a larger bending strain than Comparative Example 4 having a ketone bond amount of 0.12 mol%. This means that the greater the bending strain, the better the toughness, and thus the problem of the present invention is solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】重合反応時の副反応が非常に少なく、色相及び靭性に優れた全芳香族ポリエステル、及びこのポリエステル樹脂組成物を提供する 【解決手段】必須の構成成分として、下記構成単位(I)、(II)、(III)及び(IV)からなり、全構成単位に対して構成単位(I)の含有量は40~75モル%であり、全構成単位に対して構成単位(II)の含有量は0.5~7.5モル%であり、全構成単位に対して構成単位(III)の含有量は8.5~30モル%であり、全構成単位に対して構成単位(IV)の含有量は8.5~30モル%であり、全構成単位に対して構成単位(I)、(II)、(III)及び(IV)の合計の含有量は100モル%であることを特徴とする、全芳香族ポリエステルであって、分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0010モル%である、全芳香族ポリエステルにより、上記の課題を解決する。

Description

全芳香族ポリエステル及びポリエステル樹脂組成物
 本発明は、重合反応時の副反応が非常に少なく、色相及び靭性に優れた全芳香族ポリエステル、及びこのポリエステル樹脂組成物に関する。
 全芳香族ポリエステルなどの液晶性樹脂は、優れた流動性、機械強度、耐熱性、耐薬品性、電気的性質等をバランス良く有するため、高機能エンジニアリングプラスチックスとして好適に広く利用されている。
 全芳香族ポリエステルとして現在市販されているものの多くは4-ヒドロキシ安息香酸が主成分である。しかし、4-ヒドロキシ安息香酸のホモポリマーは、融点が分解点よりも高くなってしまう為、種々の成分を共重合する事により、低融点化する必要がある。
 共重合成分として1,4-フェニレンジカルボン酸、1,4-ジヒドロキシベンゼン、4,4’-ジヒドロキシビフェニル等を用いた全芳香族ポリエステルは、融点が350℃以上と高く、汎用の装置にて溶融加工を行うには高すぎる。又、このような高い融点のものを、汎用の溶融加工機器で加工できる温度まで融点を下げるために種々の方法が試みられているが、低融点化がある程度実現される一方で高温(融点下近傍)での機械的強度を保てないという問題がある。
 この問題を解決するために、6-ヒドロキシ-2-ナフトエ酸を主成分とした特定構造からなる全芳香族ポリエステルが提案されている(特許文献1)。
特開2002-179776号公報
 しかし、特許文献1の全芳香族ポリエステルは、重合反応時に副反応によってケトン結合が形成され、該ケトン結合によって生じた生成物によってポリマーの色相が悪化するとともに、靭性が低下する問題があった。
 本発明は、重合反応時の副反応が非常に少なく、色相及び靭性に優れた全芳香族ポリエステル、及びこのポリエステル樹脂組成物を提供することを課題とする。
 本発明者らは、必須の構成成分として、下記構成単位(I)、(II)、(III)及び(IV)からなり、全構成単位に対して構成単位(I)の含有量は40~75モル%であり、全構成単位に対して構成単位(II)の含有量は0.5~7.5モル%であり、全構成単位に対して構成単位(III)の含有量は8.5~30モル%であり、全構成単位に対して構成単位(IV)の含有量は8.5~30モル%であり、全構成単位に対して構成単位(I)、(II)、(III)及び(IV)の合計の含有量は100モル%であることを特徴とする、全芳香族ポリエステルで
あって、分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0010モル%である、全芳香族ポリエステルにより、上記の課題を解決できることを見出し、本発明者らは本発明を完成させるに至った。より具体的には、本発明は以下のものを提供する。
Figure JPOXMLDOC01-appb-C000002
 
(1)必須の構成成分として、下記構成単位(I)、(II)、(III)及び(IV)からなり、
 全構成単位に対して構成単位(I)の含有量は40~75モル%であり、
 全構成単位に対して構成単位(II)の含有量は0.5~7.5モル%であり、
 全構成単位に対して構成単位(III)の含有量は8.5~30モル%であり、
 全構成単位に対して構成単位(IV)の含有量は8.5~30モル%であり、
 全構成単位に対して構成単位(I)、(II)、(III)及び(IV)の合計の含有量は100モル%であることを特徴とする、
 全芳香族ポリエステルであって、
 分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0010モル%である、全芳香族ポリエステル。
Figure JPOXMLDOC01-appb-C000003
 
(2)(1)に記載の全芳香族ポリエステルを含有するポリエステル樹脂組成物。
(3)(1)または(2)に記載の全芳香族ポリエステルまたはポリエステル樹脂組成物を成形して得られるポリエステル成形品。
(4)全芳香族ポリエステルの製造方法であって、
 6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、及び4,4’-ジヒドロキシビフェニルを脂肪酸無水物でアシル化して、1,4-フェニレンジカルボン酸とエステル交換する工程を含み、
 6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニルからなる全モノマーに対し、
 6-ヒドロキシ-2-ナフトエ酸の使用量が40~75モル%、
 4-ヒドロキシ安息香酸の使用量が0.5~7.5モル%、
 1,4-フェニレンジカルボン酸の使用量が8.5~30モル%、
 4,4’-ジヒドロキシビフェニルの使用量が8.5~30モル%、
 6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニルの合計の使用量が100モル%であり、
 最終重合温度が340℃以下である、全芳香族ポリエステルの製造方法。
(5)触媒として含窒素複素環式化合物を使用することを特徴とする、(4)に記載の全芳香族ポリエステルの製造方法。
(6)含窒素複素環式化合物が1-メチルイミダゾールである、(5)に記載の全芳香族ポリエステルの製造方法。
(7)触媒としてカリウム化合物および/または三価のコバルト化合物を使用することを特徴とする、(4)に記載の全芳香族ポリエステルの製造方法。
(8)カリウム化合物が酢酸カリウムである、(7)に記載の全芳香族ポリエステルの製造方法。
(9)三価のコバルト化合物がトリス(2,4-ペンタンジオナト)コバルト(III)である、(7)または(8)に記載の全芳香族ポリエステルの製造方法。
 本発明によれば、重合反応時の副反応量が非常に少なく、色相及び靭性に優れた全芳香族ポリエステル、及びこのポリエステル樹脂組成物を提供することができる。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。なお、本発明において「A~B」とは、「A以上B以下」であることを意味している。
[全芳香族ポリエステル]
 本発明に係る全芳香族ポリエステルは、必須の構成成分として、下記構成単位(I)、(II)、(III)及び(IV)からなり、  全構成単位に対して構成単位(I)の含有量は40~75モル%であり、全構成単位に対して構成単位(II)の含有量は0.5~7.5モル%であり、全構成単位に対して構成単位(III)の含有量は8.5~30モル%であり、全構成単位に対して構成単位(IV)の含有量は8.5~30モル%であり、全構成単位に対して構成単位(I)、(II)、(III)及び(IV)の合計の含有量は100モル%であることを特徴とする、全芳香族ポリエステルであって、分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0010モル%である、全芳香族ポリエステルである。
Figure JPOXMLDOC01-appb-C000004
 
 構成単位(I)は、6-ヒドロキシ-2-ナフトエ酸(以下、「HNA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(I)を40~75モル%含む。構成単位(I)の含有量が40モル%未満であると、融点が低下し、耐熱性が不足する。構成単位(I)の含有量が75モル%を超えると、重合時に固化が発生し、ポリマーが得られない。耐熱性と重合性の観点から、構成単位(I)の含有量は、好ましくは40~70モル%、より好ましくは40~65モル%であり、更に好ましくは40~63モル%であり、より更に好ましくは40~62モル%であり、特に好ましくは40~60モル%である。
 構成単位(II)は、4-ヒドロキシ安息香酸(以下、「HBA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(II)を0.5~7.5モル%含む。構成単位(II)の含有量が0.5モル%未満であると、重合時に固化が発生し、ポリマーが得られない。構成単位(II)の含有量が7.5モル%を超えると、融点が低下し、耐熱性が不足する。耐熱性と重合性の観点から、構成単位(II)の含有量は、好ましくは0.5~7.0モル%、より好ましくは1.0~7.0モル%であり、更に好ましくは1.2~7.0モル%であり、より更に好ましくは1.5~6.5モル%であり、特に好ましくは2.0~6.0モル%である。
 構成単位(III)は、1,4-フェニレンジカルボン酸(以下、「TA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(III)を8.5~30モル%含む。構成単位(III)の含有量が8.5モル%未満、または30モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(III)の含有量は、好ましくは10~30モル%であり、より好ましくは12~28モル%であり、更に好ましくは14~28モル%であり、より更に好ましくは15~28モル%であり、特に好ましくは17~27モル%である。
 構成単位(IV)は、4,4’-ジヒドロキシビフェニル(以下、「BP」ともいう。)から誘導される。本発明の全芳香族ポリエステルには、全構成単位に対して構成単位(IV)を8.5~30モル%含む。構成単位(IV)の含有量が8.5モル%未満、または30モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(IV)の含有量は、好ましくは10~30モル%であり、より好ましくは12~28モル%であり、更に好ましくは14~28モル%であり、より更に好ましくは15~28モル%であり、特に好ましくは17~27モル%である。
 以上の通り、本発明の全芳香族ポリエステルは、特定の構成単位である(I)~(IV)を、全構成単位に対して特定の量含有し、分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0010モル%であるため、重合反応時の副反応が非常に少なく、色相に優れている。なお、本発明の全芳香族ポリエステルにおいて、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0008モル%であることが好ましく、0.0000~0.0006モル%であることがより好ましく、0.0000~0.0005モル%であることが更に好ましく、0.0000~0.0004モル%であることがより更に好ましく、0.0000~0.0002モル%であることが特に好ましい。また、本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(I)~(IV)を合計で100モル%含む。
 次いで、全芳香族ポリエステルの性質について説明する。本発明の全芳香族ポリエステルは、溶融時に光学的異方性を示す。溶融時に光学的異方性を示すことは、本発明の全芳香族ポリエステルが液晶性ポリマーであることを意味する。
 本発明において、全芳香族ポリエステルが液晶性ポリマーであることは、全芳香族ポリエステルが熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)~(IV)から構成される全芳香族ポリエステルは、構成成分及びポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明のポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認は、オリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。液晶性ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。
 ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点又はそれ以上の温度で液晶性を示すことが加工性の指標となる。融点は、でき得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、380℃以下であることが好ましい目安となる。なお、より好ましくは260~370℃であり、更により好ましくは270~370℃であり、特に好ましくは280~360℃である。
 本発明の全芳香族ポリエステルの融点より10~40℃高い温度、かつ、剪断速度1000/秒における前記全芳香族ポリエステルの溶融粘度は、好ましくは1000Pa・s以下であり、より好ましくは4~500Pa・sであり、更により好ましくは4~250Pa・sであり、特に好ましくは5~100Pa・sである。上記溶融粘度が上記範囲内であると、前記全芳香族ポリエステルそのもの、又は、前記全芳香族ポリエステルを含有する組成物は、その成形時において、流動性が確保されやすく、充填圧力が過度になりにくい。なお、本明細書において、溶融粘度とは、ISO11443に準拠して測定した溶融粘度をいう。
 次いで、本実施形態の全芳香族ポリエステルの製造方法について説明する。本実施形態の全芳香族ポリエステルは、直接重合法やエステル交換法等を用いて重合される。重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。
 本実施形態では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の脂肪酸無水物が挙げられる。
 本実施形態の全芳香族ポリエステルの製造方法は、色相の観点から、脂肪酸無水物の使用量が6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、及び4,4’-ジヒドロキシビフェニルの合計の水酸基当量の1.08倍未満であることが好ましく、1.00~1.07倍であることがより好ましく、1.01~1.07倍であることが更に好ましく、1.01~1.06倍であることがより更に好ましく、1.02~1.06倍であることが特に好ましい。なお、上記脂肪酸無水物の使用量が上記範囲内であると、エステル結合とケトン結合との合計に対するケトン結合の量が0.0000~0.0010モル%となりやすい。
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、1-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒を挙げることができる。
 反応は、全原料モノマー(6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニル)、アシル化剤、及び触媒を同一反応容器に仕込んで反応を開始させることもできるし(一段方式)、6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、及び4,4’-ジヒドロキシビフェニルの水酸基をアシル化剤によりアシル化させた後、1,4-フェニレンジカルボン酸のカルボキシル基と反応させることもできる(二段方式)。
 溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系から全芳香族ポリエステルを排出する。
 上記重合方法により製造された全芳香族ポリエステルは、更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。
 本実施形態の全芳香族ポリエステルの製造方法は、6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、及び4,4’-ジヒドロキシビフェニルを脂肪酸無水物でアシル化して、1,4-フェニレンジカルボン酸とエステル交換する工程を含むことが好ましく、
 6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニルからなる全モノマーに対し、
 6-ヒドロキシ-2-ナフトエ酸の使用量が40~75モル%、耐熱性と重合性の観点から、好ましくは40~70モル%、より好ましくは40~65モル%、更に好ましくは40~63モル%、より更に好ましくは40~62モル%、特に好ましくは40~60モル%、
 4-ヒドロキシ安息香酸の使用量が0.5~7.5モル%、耐熱性と重合性の観点から、好ましくは0.5~7.0モル%、より好ましくは1.0~7.0モル%、更に好ましくは1.2~7.0モル%、より更に好ましくは1.5~6.5モル%、特に好ましくは2.0~6.0モル%、
 1,4-フェニレンジカルボン酸の使用量が8.5~30モル%、低融点化と耐熱性との両立の観点から、好ましくは10~30モル%、より好ましくは12~28モル%、更に好ましくは14~28モル%、より更に好ましくは15~28モル%、特に好ましくは17~27モル%、
 4,4’-ジヒドロキシビフェニルの使用量が8.5~30モル%、低融点化と耐熱性との両立の観点から、好ましくは10~30モル%、より好ましくは12~28モル%、更に好ましくは14~28モル%、より更に好ましくは15~28モル%、特に好ましくは17~27モル%、
 6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニルの合計の使用量が100モル%であることが好ましく、
 最終重合温度が340℃以下であることが好ましく、330℃以下であることがより好ましく、320℃以下であることが更に好ましく、310℃以下であることがより更に好ましく、300℃以下であることが特に好ましい。
 本実施形態の全芳香族ポリエステルの製造方法は、触媒として含窒素複素環式化合物を使用することが好ましい。
 本実施形態の全芳香族ポリエステルの製造方法は、触媒として用いられる含窒素複素環式化合物が1-メチルイミダゾールであることが好ましい。
 本実施形態の全芳香族ポリエステルの製造方法は、触媒としてカリウム化合物および/または三価のコバルト化合物を使用することが好ましい。
 本実施形態の全芳香族ポリエステルの製造方法は、触媒として用いられるカリウム化合物が酢酸カリウムであることが好ましい。
 本実施形態の全芳香族ポリエステルの製造方法は、触媒として用いられる三価のコバルト化合物がトリス(2,4-ペンタンジオナト)コバルト(III)であることが好ましい。
 本実施形態の全芳香族ポリエステルの製造方法は、高分子量化の観点から、1,4-フェニレンジカルボン酸の使用量(モル%)と4,4’-ジヒドロキシビフェニルの使用量(モル%)の差が1.00モル%以下であることが好ましく、0.75モル%以下であることがより好ましく、0.50モル%以下であることが更に好ましく、0.25モル%以下であることがより更に好ましく、1,4-フェニレンジカルボン酸の使用量(モル%)と4,4’-ジヒドロキシビフェニルの使用量(モル%)が等しいことが特に好ましい。
[ポリエステル樹脂組成物]
 上記の本発明の全芳香族ポリエステルには、使用目的に応じて各種の繊維状、粉粒状、板状の無機及び有機の充填剤を配合することができる。
 本発明のポリエステル樹脂組成物に配合される、無機充填剤としては、繊維状、粉粒状、板状のものがある。
 繊維状無機充填剤としてはガラス繊維、ミルドガラスファイバー、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトなどの珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。
 また、粉粒状無機充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイトなどの硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナなどの金属の酸化物、炭酸カルシウム、炭酸マグネシウムなどの金属の炭酸塩、硫酸カルシウム、硫酸バリウムなどの金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。
 また、板状無機充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。
 有機充填剤の例を示せば芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。
 これらの無機及び有機充填剤は一種又は二種以上を併用することができる。繊維状無機充填剤と粒状又は板状無機充填剤との併用は、機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。特に好ましくは、繊維状充填剤としてガラス繊維、板状充填剤としてマイカ及びタルクであり、その配合量は、全芳香族ポリエステル100質量部に対して120質量部以下、好ましくは20~80質量部である。ガラス繊維をマイカ又はタルクと組み合わせることで、ポリエステル樹脂組成物は、熱変形温度、機械的物性等の向上が特に顕著である。
 これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。
 本発明のポリエステル樹脂組成物は、上述の通り、必須成分として、本発明の全芳香族ポリエステルを含み、必要に応じて無機又は有機充填剤を含むが、本発明の効果を害さない範囲であれば、その他の成分が含まれていてもよい。ここで、その他の成分とは、どのような成分であってもよく、例えば、その他の樹脂、酸化防止剤、安定剤、顔料、結晶核剤等の添加剤を挙げることができる。
 また、本発明のポリエステル樹脂組成物の製造方法は特に限定されず、従来公知の方法で、ポリエステル樹脂組成物を調製することができる。
[ポリエステル成形品]
 本発明のポリエステル成形品は、本発明の全芳香族ポリエステル又はポリエステル樹脂組成物を成形して得ることができる。成形方法としては、特に限定されず一般的な成形方法を採用することができる。一般的な成形方法としては、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、発泡成形、回転成形、ガスインジェクション成形、インフレーション成形等の方法を例示することができる。
 本発明の全芳香族ポリエステル等を成形して得られるポリエステル成形品は、耐熱性に優れる。また、本発明のポリエステル樹脂組成物を成形して得られるポリエステル成形品は、耐熱性に優れるとともに、必要に応じて無機又は有機充填剤を含むため、機械的強度等が更に改善される。
 また、本発明の全芳香族ポリエステル、ポリエステル樹脂組成物は、成形性に優れるため、種々の立体成形品、繊維、フィルム等に加工できる。
 以上のような性質を有する本発明のポリエステル成形品の好ましい用途としては、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、電子回路基板又はOA機器の加熱定着ロール等が挙げられる。
 以下に実施例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
<実施例1> 
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、脂肪酸金属塩触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)6-ヒドロキシ-2-ナフトエ酸 0.883モル(48モル%)(HNA)
(II)4-ヒドロキシ安息香酸 0.037モル(2モル%)(HBA)
(III)1,4-フェニレンジカルボン酸 0.46モル(25モル%)(TA)
(IV)4,4’-ジヒドロキシビフェニル 0.46モル(25モル%)(BP)
1-メチルイミダゾール触媒 1100ppm
無水酢酸 1.91モル(HNA、HBA、及びBPの合計の水酸基当量の1.04倍)
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に表1に示す速度条件で昇温し、最終重合温度を表1にそれぞれ示す通りとして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して加圧状態にして、重合容器の下部から生成物を排出し、粉砕して粉末状のプレポリマーを得た。得られたプレポリマーを、窒素気流下、230℃で10時間、320℃で30時間、330℃で30時間、加熱処理(固相重合)を行い、目的とするポリマーを得た。
<評価>
 実施例1の全芳香族ポリエステルについて、融点、溶融粘度、ケトン結合量及び色相(L値)の評価を以下の方法で行った。評価結果を表1に示す。
[融点]
 示差走査熱量計(DSC、パーキンエルマー社製)にて、全芳香族ポリエステルを室温から20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度(Tm1)の測定後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で加熱した際に観測される吸熱ピークの温度を測定した。
[溶融粘度]
 (株)東洋精機製作所製キャピログラフを使用し、全芳香族ポリエステルの融点よりも10~30℃高い温度で、内径0.5mm、長さ30mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、全芳香族ポリエステルの溶融粘度を測定した。
[ケトン結合量] 
 Polymer  Degradation  and  Stability  76(2002)85-94に記載される、熱分解ガスクロマトグラフィー法によってケトン結合量を算出した。具体的には、熱分解装置(フロンティア・ラボ(株)製「PY2020iD」)を用いて、全芳香族ポリエステルを水酸化テトラメチルアンモニウム(TMAH)共存下で加熱し、熱分解/メチル化によりガスを発生させた。このガスをガスクロマトグラフィー(アジレント・テクノロジー(株)製「GC-6890N」)を用いて分析し、ケトン結合に由来するピーク面積とエステル結合に由来するピーク面積との比からケトン結合量を算出した。
[色相(L値)] 
 分光色差計(日本電色工業株式会社製「SE6000」)を用いて、ポリマーのL値を測定した。
<実施例2、3> 
 原料モノマーの種類、使用量(モル%)、触媒、昇温速度、最終重合温度を表1に示す通りとし、プレポリマーを、窒素気流下、290℃で10時間、300℃で10時間、310℃で10時間、320℃で10時間、熱処理(固相重合)を行った以外は、実施例1と同様にしてポリマーを得た。また、実施例1と同様の評価を行った。評価結果を表1に示す。
<実施例4、5> 
 原料モノマーの種類、使用量(モル%)、触媒、昇温速度、最終重合温度を表1に示す通りとした以外は、実施例1と同様にしてポリマーを得た。また、実施例1と同様の評価を行った(実施例5の溶融粘度は温度350℃で測定した)。評価結果を表1に示す。
<比較例1> 
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、脂肪酸金属塩触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)6-ヒドロキシ-2-ナフトエ酸 0.883モル(48モル%)(HNA)
(II)4-ヒドロキシ安息香酸 0.037モル(2モル%)(HBA)
(III)1,4-フェニレンジカルボン酸 0.46モル(25モル%)(TA)
(IV)4,4’-ジヒドロキシビフェニル 0.46モル(25モル%)(BP)
酢酸カリウム触媒 150ppm
トリス(2,4-ペンタンジオナト)コバルト(III)触媒 150ppm
無水酢酸 1.91モル(HNA、HBA、及びBPの合計の水酸基当量の1.04倍) 
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に表1に示す速度条件で昇温し、最終重合温度を表1にそれぞれ示す通りとした。そこから20分かけて10Torr(すなわち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部から生成物を排出し、ペレタイズしてペレット状のプレポリマーを得た。得られたプレポリマーを、窒素気流下、300℃で5時間、熱処理(固相重合)を行い、目的とするポリマーを得た。
<比較例2、3> 
 原料モノマーの種類、使用量(モル%)、触媒、昇温速度、最終重合温度を表1に示す通りとした以外は、比較例1と同様にしてポリマーを得た。また、実施例1と同様の評価を行った(比較例3の溶融粘度は温度350℃で測定した)。評価結果を表1に示す。
<実施例6>
 実施例1で得られた全芳香族ポリエステルと、下記の成分とを二軸押出機を使用して混合し、樹脂組成物を得た。押出条件は以下のとおりである。各成分の配合量は表2に示したとおりである。
繊維状充填剤
 ミルドファイバー:日本電気硝子(株)製EPH-80M、繊維径10.5μm、平均繊維長80μm(メーカー公称値)
板状充填剤
 マイカ:(株)山口雲母工業製AB-25S、平均粒径25μm
(押出条件)
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて360℃とした。全芳香族ポリエステルはすべてをメインフィード口から供給した。また、充填剤はサイドフィード口から供給した。
<比較例4>
 比較例1で得られた全芳香族ポリエステルを使用した以外は、実施例1と同様にして樹脂組成物を得た。
(曲げ試験)
 下記成形条件で、樹脂組成物を射出成形して130mm×13mm×0.8mm厚の成形品を得、ASTM D790に準拠し、曲げ強度、曲げ弾性率、及び曲げ歪みを測定した。評価結果を表2に示す。

 <成形条件>
成形機:住友重機械工業、SE100DU
シリンダー温度:370℃
金型温度:80℃
射出速度:33mm/sec
保圧:50MPa
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 なお、表2に示す通り、ケトン結合量が0.0001モル%である実施例6は、ケトン結合量が0.12モル%である比較例4に比べ、曲げ歪みが大きかった。これは、曲げ歪みが大きいほど靭性が良いと判断されるため、本発明の課題が解決されていることを意味している。
 

Claims (9)

  1.  必須の構成成分として、下記構成単位(I)、(II)、(III)及び(IV)からなり、
     全構成単位に対して構成単位(I)の含有量は40~75モル%であり、
     全構成単位に対して構成単位(II)の含有量は0.5~7.5モル%であり、
     全構成単位に対して構成単位(III)の含有量は8.5~30モル%であり、
     全構成単位に対して構成単位(IV)の含有量は8.5~30モル%であり、
     全構成単位に対して構成単位(I)、(II)、(III)及び(IV)の合計の含有量は100モル%であることを特徴とする、
     全芳香族ポリエステルであって、
     分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0.0000~0.0010モル%である、全芳香族ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
     
  2.  請求項1に記載の全芳香族ポリエステルを含有するポリエステル樹脂組成物。
  3.  請求項1または2に記載の全芳香族ポリエステルまたはポリエステル樹脂組成物を成形して得られるポリエステル成形品。
  4.  全芳香族ポリエステルの製造方法であって、
     6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、及び4,4’-ジヒドロキシビフェニルを脂肪酸無水物でアシル化して、1,4-フェニレンジカルボン酸とエステル交換する工程を含み、
     6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニルからなる全モノマーに対し、
     6-ヒドロキシ-2-ナフトエ酸の使用量が40~75モル%、
     4-ヒドロキシ安息香酸の使用量が0.5~7.5モル%、
     1,4-フェニレンジカルボン酸の使用量が8.5~30モル%、
     4,4’-ジヒドロキシビフェニルの使用量が8.5~30モル%、
     6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニルの合計の使用量が100モル%であり、
     最終重合温度が340℃以下である、全芳香族ポリエステルの製造方法。
  5.  触媒として含窒素複素環式化合物を使用することを特徴とする、請求項4に記載の全芳香族ポリエステルの製造方法。
  6.  含窒素複素環式化合物が1-メチルイミダゾールである、請求項5に記載の全芳香族ポリエステルの製造方法。
  7.  触媒としてカリウム化合物および/または三価のコバルト化合物を使用することを特徴とする、請求項4に記載の全芳香族ポリエステルの製造方法。
  8.  カリウム化合物が酢酸カリウムである、請求項7に記載の全芳香族ポリエステルの製造方法。
  9.  三価のコバルト化合物がトリス(2,4-ペンタンジオナト)コバルト(III)である、請求項7または8に記載の全芳香族ポリエステルの製造方法。
     
PCT/JP2020/015150 2019-04-03 2020-04-02 全芳香族ポリエステル及びポリエステル樹脂組成物 WO2020204125A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080026453.5A CN113767134B (zh) 2019-04-03 2020-04-02 全芳香族聚酯和聚酯树脂组合物
JP2020553558A JP6852233B2 (ja) 2019-04-03 2020-04-02 全芳香族ポリエステル及びポリエステル樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019071070 2019-04-03
JP2019-071070 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020204125A1 true WO2020204125A1 (ja) 2020-10-08

Family

ID=72669045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015150 WO2020204125A1 (ja) 2019-04-03 2020-04-02 全芳香族ポリエステル及びポリエステル樹脂組成物

Country Status (4)

Country Link
JP (1) JP6852233B2 (ja)
CN (1) CN113767134B (ja)
TW (1) TW202100610A (ja)
WO (1) WO2020204125A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085240A1 (ja) * 2019-10-31 2021-05-06 ポリプラスチックス株式会社 樹脂組成物及びコネクター
WO2022014663A1 (ja) * 2020-07-16 2022-01-20 ポリプラスチックス株式会社 樹脂組成物及びその成形品
WO2022088565A1 (zh) * 2020-10-30 2022-05-05 金发科技股份有限公司 一种液晶聚酯、液晶聚酯组合物及应用
WO2023145516A1 (ja) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター
WO2023145517A1 (ja) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183373A (ja) * 2001-12-18 2003-07-03 Polyplastics Co 液晶性ポリマーの製造方法
JP2003206342A (ja) * 2001-11-12 2003-07-22 Sumitomo Chem Co Ltd 液晶性ポリエステルおよびその製造方法
JP2011122148A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd コネクタ用液晶ポリエステル組成物およびこれを用いたコネクタ
WO2017068867A1 (ja) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 全芳香族ポリエステル及びその製造方法
WO2017179474A1 (ja) * 2016-04-15 2017-10-19 ポリプラスチックス株式会社 液晶性樹脂組成物
JP2017216236A (ja) * 2016-05-27 2017-12-07 住友化学株式会社 アクチュエータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191755A (ja) * 1998-12-28 2000-07-11 Toray Ind Inc 液晶性樹脂の製造方法
JP3730150B2 (ja) * 2000-09-22 2005-12-21 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2003313402A (ja) * 2002-04-24 2003-11-06 Nippon Petrochemicals Co Ltd 全芳香族液晶ポリエステル樹脂組成物および光ピックアップ部品
JP4510420B2 (ja) * 2003-10-02 2010-07-21 上野製薬株式会社 液晶ポリエステル樹脂
JP2010037364A (ja) * 2008-07-31 2010-02-18 Polyplastics Co コネクター
JP6900151B2 (ja) * 2016-03-30 2021-07-07 Eneos株式会社 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
KR102244483B1 (ko) * 2016-09-26 2021-04-23 도레이 카부시키가이샤 액정성 폴리에스테르 수지 조성물, 성형품 및 성형품의 제조 방법
JP2018104506A (ja) * 2016-12-22 2018-07-05 ポリプラスチックス株式会社 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
CN110494471B (zh) * 2017-03-28 2021-11-02 Jxtg能源株式会社 全芳香族液晶聚酯树脂、成型品以及电气电子部件
KR102085262B1 (ko) * 2017-05-10 2020-03-05 포리프라스틱 가부시키가이샤 전방향족 폴리에스테르 및 폴리에스테르 수지 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206342A (ja) * 2001-11-12 2003-07-22 Sumitomo Chem Co Ltd 液晶性ポリエステルおよびその製造方法
JP2003183373A (ja) * 2001-12-18 2003-07-03 Polyplastics Co 液晶性ポリマーの製造方法
JP2011122148A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd コネクタ用液晶ポリエステル組成物およびこれを用いたコネクタ
WO2017068867A1 (ja) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 全芳香族ポリエステル及びその製造方法
WO2017179474A1 (ja) * 2016-04-15 2017-10-19 ポリプラスチックス株式会社 液晶性樹脂組成物
JP2017216236A (ja) * 2016-05-27 2017-12-07 住友化学株式会社 アクチュエータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085240A1 (ja) * 2019-10-31 2021-05-06 ポリプラスチックス株式会社 樹脂組成物及びコネクター
WO2022014663A1 (ja) * 2020-07-16 2022-01-20 ポリプラスチックス株式会社 樹脂組成物及びその成形品
JP7048828B1 (ja) * 2020-07-16 2022-04-05 ポリプラスチックス株式会社 樹脂組成物及びその成形品
WO2022088565A1 (zh) * 2020-10-30 2022-05-05 金发科技股份有限公司 一种液晶聚酯、液晶聚酯组合物及应用
WO2023145516A1 (ja) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター
WO2023145517A1 (ja) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター
JP7393590B1 (ja) 2022-01-26 2023-12-06 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター

Also Published As

Publication number Publication date
JPWO2020204125A1 (ja) 2021-04-30
CN113767134A (zh) 2021-12-07
TW202100610A (zh) 2021-01-01
JP6852233B2 (ja) 2021-03-31
CN113767134B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
JP6852233B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6157778B1 (ja) 全芳香族ポリエステル及びその製造方法
JP6837189B1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP5032957B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6157779B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
KR102120296B1 (ko) 전방향족 폴리에스테르 및 폴리에스테르 수지 조성물
JP6388749B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
WO2018207774A1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6133000B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP7136636B2 (ja) 全芳香族ポリエステル
JP7332285B2 (ja) 全芳香族ポリエステルアミド、ポリエステルアミド樹脂組成物及びポリエステルアミド成形品
JP6345373B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
WO2022210967A1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
WO2023176816A1 (ja) 全芳香族ポリエステル、樹脂組成物、成形品及び全芳香族ポリエステルの製造方法
JP6189750B2 (ja) 全芳香族ポリエステル、ポリエステル樹脂組成物、及びポリエステル成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020553558

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782847

Country of ref document: EP

Kind code of ref document: A1