WO2022088565A1 - 一种液晶聚酯、液晶聚酯组合物及应用 - Google Patents

一种液晶聚酯、液晶聚酯组合物及应用 Download PDF

Info

Publication number
WO2022088565A1
WO2022088565A1 PCT/CN2021/077961 CN2021077961W WO2022088565A1 WO 2022088565 A1 WO2022088565 A1 WO 2022088565A1 CN 2021077961 W CN2021077961 W CN 2021077961W WO 2022088565 A1 WO2022088565 A1 WO 2022088565A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
formula
phenylene
repeating unit
Prior art date
Application number
PCT/CN2021/077961
Other languages
English (en)
French (fr)
Inventor
邢羽雄
肖中鹏
黄险波
叶南飚
姜苏俊
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to EP21884309.2A priority Critical patent/EP4249535A1/en
Publication of WO2022088565A1 publication Critical patent/WO2022088565A1/zh
Priority to US18/234,901 priority patent/US20230391950A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K2003/343Peroxyhydrates, peroxyacids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the technical field of liquid crystal polymers, in particular to a liquid crystal polyester, a liquid crystal polyester composition and applications.
  • Liquid crystal polyester as a high-performance special engineering plastic, is widely used in electronic appliances and small precision thin-walled parts and other fields.
  • LCP Liquid crystal polyester
  • Solder resistant temperature below 260°C.
  • CN 108026258 A provides a fully aromatic polyester comprising specific structural units, the content of each structural unit is a specific range, and the amount of ketone bonds is a specific range, and the fully aromatic polyester is a liquid crystal polymer, It fully balances low melting point and heat resistance, and has excellent color tone, and its heat distortion temperature is in the range of 245-260°C.
  • CN 108026269 A discloses a fully aromatic polyester amide containing specific structural units, the content of each structural unit is a specific range, and the amount of ketone bonds is a specific range, and the fully aromatic polyester amide is a liquid crystal polymer.
  • the purpose of the present invention is to overcome the above-mentioned limitations of the prior art, and provide a new technical solution, by providing a liquid crystal polyester, a liquid crystal polyester composition and an application to improve the heat resistance of the liquid crystal polyester and the liquid crystal composition. performance.
  • the technical scheme adopted by the present invention is:
  • a liquid crystal polyester comprising the following repeating units of formula (1), repeating units of formula (2) and repeating units of formula (3):
  • Ar 1 is at least one of 2,6-naphthylene, 1,4-phenylene and 4,4'-biphenylene;
  • Ar 2 is 1,4-phenylene, 1,3 -Phenylene or 4,4'-biphenylene;
  • Ar 3 is 2,6-naphthylene, 1,4-phenylene, 1,3-phenylene or 4,4'-biphenylene base;
  • the melting enthalpy of the liquid crystal polyester is greater than 1.5 J/g, the melting enthalpy is measured by DSC for the second melting curve, and the melting peak area is calculated as the melting enthalpy.
  • Melting enthalpy is often used to characterize the energy required for the melting process of plastic products.
  • the order of the molecular chain arrangement of the liquid crystal polyester polymer, the tightness of the lattice packing, the difficulty of the molecular chain segment and the crystal movement can be reflected by the melting enthalpy.
  • liquid crystal polyester in molar percentage, comprises the following repeating units:
  • Ar 1 is 1 to 6 mol% of the repeating unit of formula (1) in which 1,4-phenylene is used;
  • liquid crystal polyester in molar percentage, comprises the following repeating units:
  • Ar 1 is 1 to 5 mol% of the repeating unit of formula (1) in which 1,4-phenylene is used;
  • Ar 2 is 19 to 26 mol% of the repeating unit of formula (2) of 1,4-phenylene
  • the prepared liquid crystal polyester has high heat resistance, good anti-foaming performance and low dielectric loss, and is suitable for high-frequency communication electronic components.
  • the present invention also provides a preparation method of the above-mentioned liquid crystal polyester, and the preparation method comprises the following steps:
  • the monomer of the repeating unit of formula (1), the monomer of the repeating unit of formula (3) and the acylating agent are acylated under the catalysis of the ionic liquid;
  • step S2 The acylation product of step S1 and the monomer of the repeating unit of formula (2) are subjected to melt polycondensation and compression reduction polymerization under the catalysis of the ionic liquid to obtain a prepolymer, wherein, in the melt polycondensation stage, at 280-300 ° C Keep the constant temperature for more than 15min, from the perspective of production efficiency and energy consumption, more preferably 15-30min;
  • the ionic liquid is an ionic liquid formed by the reaction of a heterocyclic organic base compound containing two or more nitrogen atoms and an anionic functional compound.
  • ionic liquid is introduced as a high-efficiency catalyst in the early stage of the reaction of the liquid crystal polyester. Due to the strong Coulomb force between anions and cations, the ionic liquid has excellent stability and long-lasting catalytic effect; In the reaction, it shows high acylation efficiency, and the side reactions such as molecular chain branching and crosslinking are reduced, which is conducive to the formation of a polymer structure with regular molecular segments, so that it is easy to crystallize and form crystal regions, and form liquid crystals with higher melting enthalpy. polymer.
  • maintaining a constant temperature at 280-300°C for more than 15 minutes, preferably 15-30 minutes can promote the full polymerization of the monomer of the repeating unit of formula (2), reduce the monomer loss of the repeating unit of formula (2), and improve the
  • the regularity of the molecular segments of the liquid crystal polyester makes it easier to form a crystal structure, so that the liquid crystal polyester exhibits the characteristics of high melting enthalpy.
  • the addition amount of the ionic liquid is more than 500 ppm of the theoretical discharge weight of the liquid crystal polyester, preferably 500-3000 ppm from an economical point of view, within this range, the acylation rate is high, which is more conducive to improving the liquid crystal polyester. enthalpy of fusion, heat distortion temperature and anti-foaming properties.
  • theoretical discharge weight of liquid crystal polyester refers to the monomer of the repeating unit of formula (1), the monomer of the repeating unit of formula (2), the monomer of the repeating unit of formula (3) and the acylating agent.
  • the theoretical yield of liquid crystal polyester synthesized through acylation reaction melt polycondensation, compression reduction polymerization and solid phase polymerization.
  • the heterocyclic organic base compound containing two or more nitrogen atoms is an imidazole compound, a triazole compound or a bipyridyl compound
  • the imidazole compound is 1-methylimidazole, 2-methylimidazole , 4-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 4-ethylimidazole, 1,2-dimethylimidazole, 1,4-dimethylimidazole or 2,4-dimethylimidazole imidazole, preferably 1-methylimidazole
  • the triazole compound includes but is not limited to at least one of 1,2,4-triazole, 1,2,3-triazole and benzotriazole
  • the two Pyridyl compounds include, but are not limited to, at least one of 2,2'-dipyridyl and 4,4'-dipyridyl.
  • the anion functional compound is acetic acid, propionic acid or butyric acid, preferably acetic acid.
  • the ionic liquid is imidazole acetate
  • the preparation method of the imidazole acetate is as follows: an imidazole compound and acetic acid are stirred and reacted at 80° C. for 24 hours.
  • the imidazole compound is preferably 1-methylimidazole, and the 1-methylimidazole acetate ionic liquid is prepared by the reaction.
  • the monomer of the repeating unit of formula (1) is shown as formula (1'
  • the monomer of the repeating unit of formula (2) is shown as formula (2')
  • the monomer of the repeating unit of formula (3) is shown as formula (3');
  • Ar 1 is at least one of 2,6-naphthylene, 1,4-phenylene and 4,4'-biphenylene;
  • Ar 2 is 1,4-phenylene, 1,3 -Phenylene or 4,4'-biphenylene;
  • Ar 3 is 2,6-naphthylene, 1,4-phenylene, 1,3-phenylene or 4,4'-biphenylene 3
  • G 1 each independently represents a hydrogen atom or an alkylcarbonyl group;
  • 3 G 2 each independently represents a hydroxyl group, an alkoxy group, an aryloxy group, an alkylcarbonyloxy group or a halogen atom.
  • the monomer of formula (1) repeating unit is preferably at least one in 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid;
  • the monomer of the repeating unit of formula (2) is preferably at least one of terephthalic acid, isophthalic acid, and 4,4'-biphthalic acid, more preferably terephthalic acid;
  • the monomer of the repeating unit of formula (3) is preferably at least one of hydroquinone and 4,4'-dihydroxybiphenyl.
  • the molar ratio of the functional group capable of acylating hydroxyl groups in the acylating agent to the monomer of the repeating unit of formula (1) and the total amount of hydroxyl groups in the repeating unit of formula (3) is 1.01:1 to 1.10:1, and the acylation reaction temperature The temperature is controlled at 120-150°C to ensure that the acylation reaction is fully carried out and the acylation rate is improved.
  • acylating agents can be used, such as acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, and the like.
  • the temperature is raised to 280-300°C at a heating rate of 0.3-1.5°C/min, maintained at a constant temperature of 280-300°C for 15-30min, and finally continues to be heated at a temperature of 0.3-1.5°C/min
  • the rate is heated to below the melting point of the target product of 10°C and above 30°C ([ Tm -10] ⁇ [ Tm +30]°C), during which acetic acid and its by-products are continuously distilled.
  • the melt viscosity of the prepolymer is controlled at 1 ⁇ 10Pa.s, the melt viscosity is tested by Dynisco LCR7000 capillary rheometer, and the test temperature is higher than that of liquid crystal polyester.
  • the melting point is 30°C, the shear rate is 1000s -1 , and it is measured using a die with an inner diameter of 1mm and a length of 40mm.
  • the target vacuum degree is 40kPa ⁇ 0.1kPa
  • the decompression polymerization time is controlled within 3 hours
  • the temperature of the prepolymer melt during the final control discharge is more than 5°C of the target product melting point
  • the melting point is 30°C or lower ([ Tm +5] ⁇ [ Tm +30]°C).
  • valve, extruder and gear pump can be selected as the equipment used for the discharge of prepolymer, and the discharge of prepolymer is preferably carried out under an inert atmosphere such as nitrogen atmosphere; the prepolymer is cooled while continuously being carried out in one direction.
  • a wire cutter, a sheet cutter or a pulverizer can be used to cut or pulverize to obtain prepolymer particles or powder, and the particle size of the prepolymer particles or powder is preferably 0.1 mm to 5 mm;
  • the phase polymerization stage is preferably carried out under the condition of vacuum degree of 0.1Pa ⁇ 50kPa, or inert protective gas such as nitrogen, the polymerization temperature is 20 ⁇ 340°C, and the reaction time is 0.5 ⁇ 40 hours to ensure the full progress of the reaction, and the solid phase polymerization can be carried out. It is carried out in a static state with or without agitation.
  • the present invention adopts ionic liquid as a high-efficiency catalyst, and by optimizing the reaction conditions of the above-mentioned acylation reaction, melt polycondensation, compression reduction polymerization and solid phase polymerization, the synthesized liquid crystal polyester has a melting enthalpy of >1.5 J/g.
  • the melting point of the liquid crystal polyester should be as high as possible, but considering the dischargeability of the prepolymer and the heating capacity of the polymerization equipment, the melting point of the prepolymer is preferably below 365°C, more preferably 200°C or higher and 360°C or lower, more preferably 270°C or higher and 360°C or lower.
  • the melting point is heated from room temperature at a heating rate of 20 °C/min to the highest temperature of melting point + (20 ⁇ 80) °C, and then stays at this temperature for 2 minutes at a rate of 20 °C/min. Cool down to room temperature; after the test sample stays at room temperature for 2 minutes, it is heated up again at a heating rate of 20 °C/min to the highest temperature of melting point + (20 ⁇ 80) °C to obtain the second melting curve of the test, and the melting peak is selected as the melting point .
  • the present invention also provides a liquid crystal polyester composition, the liquid crystal polyester composition, in parts by weight, includes the following components:
  • the liquid crystal polyester of the present invention has a high melting enthalpy, and the liquid crystal polyester added with a reinforcing filler to form a liquid crystal polyester composition also has the characteristics of high melting enthalpy, and exhibits excellent heat distortion temperature and anti-foaming properties.
  • the melting enthalpy of the prepared liquid crystal polyester composition is greater than 1.0 J/g, the melting enthalpy is measured by DSC for the second melting curve, and the melting peak area is calculated as the melting enthalpy.
  • the test sample was injection molded into a sample of 80mm ⁇ 10mm ⁇ 4mm, and the sample was used to measure the heat distortion temperature under a load of 1.82MPa and a heating rate of 2°C/min with reference to the ISO 75-22013 standard.
  • the prepared liquid crystal polyester composition has good heat resistance and mechanical properties, such as tensile strength and the like.
  • the reinforcing filler includes at least one of fibrous reinforcing filler and non-fibrous reinforcing filler.
  • the non-fibrous reinforcing filler includes at least one of flaky reinforcing filler and particulate reinforcing filler.
  • the average length of the fibrous reinforcing filler is preferably 20-2000 microns.
  • the fibrous reinforcing fillers include but are not limited to glass fibers, potassium titanate fibers, metal-clad glass fibers, ceramic fibers, wollastonite fibers, metal carbide fibers, metal cured fibers, asbestos fibers, alumina fibers, carbonized fibers One or more of silicon fibers, gypsum fibers or boron fibers, preferably glass fibers.
  • the average particle size of the non-fibrous reinforcing filler is preferably 0.01-100 microns. When the average particle size of the reinforcing filler is greater than 100 microns, the anti-foaming properties of the liquid crystal polyester composition will be deteriorated.
  • Non-fibrous reinforcing fillers are selected from talc, mica, titanium dioxide, potassium titanate whiskers, zinc oxide whiskers, aluminum borate whiskers, carbon black, gypsum, asbestos, zeolite, sericite, kaolin, montmorillonite, clay , Hectorite, Synthetic Mica, Aluminosilicate, Silica, Titanium Oxide, Alumina, Zinc Oxide, Zirconia, Iron Oxide, Calcium Carbonate, Magnesium Titanate, Dolomite, Aluminum Sulfate, Barium Sulfate, Sulfuric Acid One or more of magnesium, calcium carbonate, quartz powder, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride or silicon carbide.
  • the liquid crystalline polyester composition may also be compounded with antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, mold release agents, colorants, and plasticizers within the range that does not impair the heat-resistant effect of the present invention.
  • antistatic agents and other processing aids can be mixed with liquid crystal polyesters of other structures or polymers other than liquid crystal polyesters
  • the liquid crystal polyesters of other structures or polymers other than liquid crystal polyesters can be wholly aromatic or semi-aromatic One or more of aromatic thermotropic liquid crystal polymer, aromatic or semi-aromatic polyamide, polyetheretherketone, polyethersulfone, polyolefin homopolymer or copolymer, etc.
  • Such compounding can further impart desired properties to the liquid crystalline polyester composition.
  • the mixing method of the liquid crystal polyester, reinforcing filler, processing aid, etc. is not particularly limited, and dry blending, solution mixing, melt-kneading, etc. can be used.
  • the tempering temperature is equal to or higher than the melting point of the liquid crystal polyester and equal to or lower than the melting point + 50°C (T m to [T m +50]° C.).
  • the mixing equipment can be a kneader, a single- or double-screw extruder, a rubber roller, etc., preferably a double-screw extruder.
  • the above-mentioned mixing method can be carried out by adding liquid crystal polyester, reinforcing filler and processing aid together from the rear feeder; it can also use the liquid crystal polyester and processing aid from the rear feeding machine. , a method of adding reinforcing fillers from a side feeder for mixing; it is also possible to first prepare a liquid crystal polyester composition masterbatch containing a high concentration of liquid crystal polyester and processing aids, and then mix the masterbatch with liquid crystal polyester and reinforcing fillers. Kneading is performed to obtain a liquid crystalline polyester composition of a desired concentration.
  • the liquid crystalline polyester composition of the present invention is melt-molded by known production processes such as injection molding, injection compression molding, compression molding, extrusion molding, blow molding, and compression molding spinning.
  • the molded product mentioned here may be various film products such as injection molded product, extrusion molded product, press molded product, sheet, tube, unstretched film, uniaxially stretched film, biaxially stretched film, etc.
  • the present invention also provides applications of the above liquid crystal polyester composition in the fields of automobiles, home appliances, communication equipment and electronic appliances.
  • the molded articles formed by the liquid crystal polyester or the liquid crystal polyester composition obtained in the present invention can be used in the following applications: various gears, various housings, sensors, LED lamps, connectors, sockets, resistors, relay housings, Relay bases, spools for relays, switches, coil shafts, capacitors, variable capacitor housings, optical pickups, resonators, various terminal blocks, transformers, plugs, printed wiring boards, tuners, speakers, microphones, heads Wearable earphones, small motors, magnetic head bases, power modules, housings, semiconductors, liquid crystal display parts, FDD brackets, FDD chassis, HDD parts, motor brush holders, parabolic antennas, computer-related parts, etc.
  • VTR parts TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio parts, audio, laser discs, CDs and other audio equipment parts, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, etc.
  • Machine-related parts represented by igniters, typewriters, etc., optical equipment represented by microscopes, binoculars, cameras, clocks, etc., and precision machinery-related parts; alternator terminals, alternator connectors, IC regulators, regulators Potentiometer base for optical device, various valves such as exhaust valve, fuel related, various pipes of exhaust system and intake system, intake port nozzle breather pipe, intake manifold, fuel pump, engine cooling water connector, Carburetor body, Carburetor spacer, Exhaust gas sensor, Cooling water sensor, Oil temperature sensor, Throttle position sensor, Crankshaft position sensor, Air flow meter, Brake pad wear sensor, Thermostat base for air conditioner, Motor insulator for air conditioner , Motor insulators for vehicles such as power windows, heater heater flow control valves, brush holders for radiator motors, water pump impellers, turbine blades, wiper motor related components, distributors, starter switches, starter relays, transmission devices Wire harnesses, window washer nozzles, switch boards for air conditioner panels
  • the liquid crystal polyester and the composition containing the liquid crystal polyester of the present invention have high melting enthalpy, exhibit excellent heat resistance, high heat distortion temperature, and anti-foaming properties, and are suitable for applications in automobiles, home appliances, communication equipment and Electronics field.
  • HNA 6-hydroxy-2-naphthoic acid, Sigma-Aldrich
  • TA terephthalic acid, Sigma-Aldrich
  • HBA 4-hydroxybenzoic acid, Sigma-Aldrich
  • IA isophthalic acid, Sigma-Aldrich
  • 1-methylimidazole acetate ionic liquid is self-made, and its specific preparation method is as follows: 1-methylimidazole and acetic acid are stirred and reacted at 80 ° C for 24 hours to obtain 1-Methylimidazolium acetate ionic liquid.
  • Melting temperature measured by DSC 200F3 of NETZSCH Company, from room temperature, the temperature is raised to the highest temperature of melting point + (20 ⁇ 80)°C at a heating rate of 20°C/min. The temperature is lowered to room temperature at the rate of /min, and the test sample is kept at room temperature for 2min, and then heated to the highest temperature of melting point+(20 ⁇ 80)°C at a heating rate of 20°C/min to obtain the second melting curve of the polymer. The melting peak is the melting point.
  • Melting enthalpy adopt the second melting curve in (1), select the melting start temperature and melting end temperature of the melting peak, and calculate the melting peak area as the melting enthalpy.
  • the liquid crystal polyester or its composition was molded into a sheet-like sample with a thickness of 1.0 mm and a length and width of 60 mm at 5°C above the melting temperature of the liquid crystal polyester and an injection speed of 60 mm/s. 10 of these samples were put into an oven at 260° C. for 5 min, and then the samples were taken out to observe the generation of air bubbles on the surface of each sample.
  • the raw material components of the liquid crystal polyesters of Examples 1-8 and Comparative Examples 1-8 are shown in Table 1, and the preparation method of the liquid crystal polyester includes the following steps:
  • Acetylation section In the first reaction vessel equipped with a stirrer, a monomer feeding port, a reflux condenser, a thermometer and a nitrogen inlet, add the monomer, acetic anhydride and catalyst, and after the feeding is completed, completely replace it with nitrogen In the atmosphere in the reaction vessel, the temperature of the reaction system was raised to 140°C under nitrogen protection, and the temperature was maintained at reflux for 2 hours to carry out the acetylation reaction;
  • Melt polycondensation section after the acetylation reaction is completed, transfer the material into the second reaction vessel equipped with a torque sensor agitator, a protective gas inlet, a extraction device and a vacuum device, and stir at a temperature of 1°C/min.
  • the heating rate is raised to 280-300 °C, and the temperature is kept constant at 280-300 °C for a certain period of time, and then the temperature is raised to 360 °C at a heating rate of 1 °C/min. out;
  • the liquid crystal polyester in molar percentage, comprises the following repeating units: (A) Ar 1 is a 2,6-naphthylene group.
  • Example 2 From the results of Example 2, Example 4, Example 8 and Comparative Example 3, it can be seen that in the process of melt polycondensation of liquid crystal polyester, a constant temperature of 280 to 300°C for 15 to 30 minutes is beneficial to increase the melting enthalpy of liquid crystal polyester, thereby increasing the thermal conductivity. deformation temperature, and reduce the foaming rate.
  • Example 2 The results of Example 2, Example 5 and Comparative Examples 1-2 show that, compared with Comparative Example 1, magnesium acetate is used as a catalyst, and the present invention selects 1-methylimidazole acetate ionic liquid as a catalyst, and the acetylation rate is high, It is more beneficial to obtain liquid crystal polyester with high melting enthalpy, high heat distortion temperature and low foaming rate.
  • the addition amount of 1-methylimidazolium acetate ionic liquid is more than 500ppm of the theoretical output weight of the liquid crystal polyester, the effect is better.
  • liquid crystal polyesters of Examples 1-4 and Comparative Example 1 and the reinforcing fillers were mixed uniformly with a high-speed mixer according to the proportions in Table 2, then added to a twin-screw extruder, melted and mixed, extruded and pelletized, cooled, A liquid crystal polyester composition was obtained.
  • Table 2 shows the raw material components, melting enthalpy, HDT, foaming ratio and tensile strength of the liquid crystal polyester compositions obtained in Examples 1'-11' and Comparative Examples 1'-3'.
  • Example 1' From the results of Example 1', Examples 3'-4', and Comparative Example 1', it can be seen that when the amount of liquid crystal polyester, the type of reinforcing filler and the amount thereof are the same, the higher the melting enthalpy of liquid crystal polyester, the better the combination of liquid crystal polyester.
  • the melting enthalpy of the material increases accordingly, and it has a high heat distortion temperature and a low foaming rate.
  • the liquid crystal polyester composition in parts by weight, includes 50-80 parts of liquid crystal polyester and 20-50 parts of reinforcing filler" .
  • Example 2' From the results of Example 2', Example 6', Example 9'-Example 10', it can be seen that when the average length of the glass fiber is within a certain range, the prepared liquid crystal polyester composition can take into account good thermal deformation temperature and Mechanical tensile properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种液晶聚酯、液晶聚酯组合物及应用。所述液晶聚酯包括下述式(1)重复单元、式(2)重复单元和式(3)重复单元:(1)-O-Ar 1-CO-;(2)-CO-Ar 2-CO-;(3)-O-Ar 3-O-;其中,Ar 1为2,6-亚萘基、1,4-亚苯基和4,4'-亚联苯基中的至少一种;Ar 2为1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;Ar 3为2,6-亚萘基、1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;所述液晶聚酯的熔融焓>1.5J/g。本发明的液晶聚酯以及含有该液晶聚酯的组合物具有较高的热变形温度,展现出优良的耐热性、抗起泡性能。

Description

一种液晶聚酯、液晶聚酯组合物及应用 技术领域
本发明涉及液晶聚合物技术领域,尤其是一种液晶聚酯、液晶聚酯组合物及应用。
背景技术
液晶聚酯(LCP)作为一种高性能的特种工程塑料,广泛应用于电子电器及小型精密薄壁零部件等领域。随着电子电器制件向薄轻小方面发展,集成电路的密集化,特别是表面安装技术的应用,对液晶聚酯材料的耐热性能提出了更高的要求,液晶聚酯材料需具备不低于260℃的耐焊料温度。
为了改善液晶聚酯耐热性,本领域专业人员做了较多尝试。CN 108026258 A提供了一种包含特定的结构单元、各结构单元的含量为特定的范围、酮键的量为特定的范围的全芳香族聚酯,该全芳香族聚酯为液晶性聚合物,充分兼顾低熔点化与耐热性、且色调优异,其热变形温度处于245-260℃范围。CN 108026269 A公开了一种包含特定的结构单元、各结构单元的含量为特定的范围、酮键的量为特定的范围的全芳香族聚酯酰胺,该全芳香族聚酯酰胺为液晶性聚合物,充分兼顾低熔点化与耐热性,具备245-270℃的热变形温度。CN 109561791 A通过在液晶聚酯树脂中添加滑石等填料,制备得到的耐热器皿的热变形温度可达270℃以上。
到目前为止,通过提供高熔融焓液晶聚酯配方及方法,以实现液晶聚酯及组合物高耐热性的手段,未出现报道。
发明内容
基于此,本发明的目的在于克服上述现有技术局限,而提供了新技术方案,通过提供一种液晶聚酯、液晶聚酯组合物及应用,以改善液晶聚酯和液晶组合物的耐热性能。
为实现上述目的,本发明所采取的技术方案为:
一种液晶聚酯,所述液晶聚酯包括下述式(1)重复单元、式(2)重复单元和式(3)重复单元:
(1)-O-Ar 1-CO-
(2)-CO-Ar 2-CO-
(3)-O-Ar 3-O-
其中,Ar 1为2,6-亚萘基、1,4-亚苯基和4,4'-亚联苯基中的至少一种;Ar 2为1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;Ar 3为2,6-亚萘基、1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;
所述液晶聚酯的熔融焓>1.5J/g,熔融焓采用DSC测得第二次熔融曲线,计算出熔融峰面积即为熔融焓。
熔融焓通常用于表征塑料制品熔融过程所需能量。液晶聚酯聚合物分子链排列的有序性、晶格堆砌紧密程度、分子链段及晶体运动的难易程度均可通过熔融焓反映。发明人研究发现,液晶聚酯包括上述特定的重复单元,且当液晶聚酯的熔融焓>1.5J/g时,液晶聚酯的热变形温度>290℃,体现出优异的热变形温度及抗起泡性能。
进一步地,所述液晶聚酯按摩尔百分比计,包含如下重复单元:
(A)Ar 1为2,6-亚萘基的式(1)重复单元45~65mol%;
(B)Ar 1为1,4-亚苯基的式(1)重复单元1~6mol%;
(C)Ar 2为1,4-亚苯基的式(2)重复单元15~26mol%;
(D)Ar 3为4,4'-亚联苯基的式(3)重复单元15~26mol%。
更进一步地,所述液晶聚酯按摩尔百分比计,包含如下重复单元:
(A)Ar 1为2,6-亚萘基的式(1)重复单元45~60mol%;
(B)Ar 1为1,4-亚苯基的式(1)重复单元1~5mol%;
(C)Ar 2为1,4-亚苯基的式(2)重复单元19~26mol%;
(D)Ar 3为4,4'-亚联苯基的式(3)重复单元19~26mol%。
在上述范围内,制备得到的液晶聚酯具有高耐热性、同时兼顾良好抗起泡性能、低介电损耗,适用于高频率通信电子部件。
本发明还提供了上述的液晶聚酯的制备方法,所述制备方法包括以下步骤:
S1.式(1)重复单元的单体、式(3)重复单元的单体与酰化剂在离子液体的催化作用下进行酰化反应;
S2.步骤S1的酰化产物与式(2)重复单元的单体在离子液体的催化作用下进行熔融缩聚和减压缩聚,得到预聚物,其中,在熔融缩聚阶段,在280-300℃保持恒温15min以上,从生产效率及能耗角度,更优选15-30min;
S3.预聚物排出、冷却固化并造粒,进行固相聚合,得到所述液晶聚酯;
其中,所述离子液体为含有两个或两个以上氮原子的杂环有机碱类化合物与阴离子功能化合物反应成的离子液体。
本发明在液晶聚酯反应前期引入离子液体作为高效催化剂,离子液体由于阴阳离子之间有较强的库伦力,稳定性优良,催化效果持久;离子液体催化剂具有高效定向催化性,催化效果明显,在反应中体现出高酰化效率,且分子链支化交联等副反应减少,有利于形成分子链段规整的聚合物结构,从而易于结晶生长及形成晶区,形成较高熔融焓的液晶聚合物。
另外,在熔融缩聚阶段,在280~300℃保持恒温15min以上,优选15~30min,可促进式(2)重复单元的单体充分聚合,减少式(2)重复单元的单体损失,从而提高液晶聚酯分子链段的规整程度,更易于形成晶体结构,从而使液晶聚酯表现出高熔融焓的特性。
进一步地,所述离子液体的添加量为液晶聚酯的理论出料重量的500ppm 以上,从经济性角度优选为500~3000ppm,在此范围内,酰化率高,更有利于提高液晶聚酯的熔融焓、热变形温度和抗起泡性能。
本发明中“液晶聚酯的理论出料重量”是指式(1)重复单元的单体、式(2)重复单元的单体、式(3)重复单元的单体与酰化剂在离子液体的作用下,经酰化反应、熔融缩聚、减压缩聚和固相聚合阶段所合成的液晶聚酯的理论产量。
进一步地,所述含有两个或两个以上氮原子的杂环有机碱类化合物为咪唑化合物、***化合物或二吡啶基化合物,所述咪唑化合物为1-甲基咪唑、2-甲基咪唑、4-甲基咪唑、1-乙基咪唑、2-乙基咪唑、4-乙基咪唑、1,2-二甲基咪唑、1,4-二甲基咪唑或2,4-二甲基咪唑,优选为1-甲基咪唑;所述***化合物包括但不限于1,2,4-***、1,2,3-***和苯并***中的至少一种;所述二吡啶基化合物包括但不限于2,2’-二吡啶基和4,4’-二吡啶基中的至少一种。
进一步地,所述的阴离子功能化合物为乙酸、丙酸或丁酸,优选为乙酸。
更进一步地,所述离子液体为咪唑乙酸盐,所述咪唑乙酸盐的制备方法为:咪唑化合物与乙酸在80℃搅拌反应24小时。所述咪唑化合物优选为1-甲基咪唑,反应制备得到1-甲基咪唑乙酸盐离子液体。
进一步地,式(1)重复单元的单体如式(1’)所示、式(2)重复单元的单体如式(2’)所示、式(3)重复单元的单体如式(3’)所示;
(1’)G 1-O-Ar 1-CO-G 2
(2’)G 2-CO-Ar 2-CO-G 2
(3’)G 1-O-Ar 3-O-G 1
其中,Ar 1为2,6-亚萘基、1,4-亚苯基和4,4'-亚联苯基中的至少一种;Ar 2为1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;Ar 3为2,6-亚萘基、1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;3个G 1各自独立地表示氢原子或烷基羰基;3个G 2各自独立地表示羟基、烷氧基、芳氧基、烷基羰基氧基或卤原子。
进一步地,式(1)重复单元的单体优选为4-羟基苯甲酸、6-羟基-2-萘甲酸 中的至少一种;
式(2)重复单元的单体优选为对苯二甲酸、间苯二甲酸、4,4'-联苯二甲酸的至少一种,进一步优选对苯二甲酸;
式(3)重复单元的单体优选为对苯二酚、4,4'-二羟基联苯中的至少一种。
进一步地,酰化剂中能够酰化羟基的官能团与式(1)重复单元的单体和式(3)重复单元中总羟基量的摩尔比为1.01:1~1.10:1,酰化反应温度控制为120~150℃,确保酰化反应充分进行,提高酰化率。
本发明可选用常规的酰化剂,比如醋酸酐、丙酸酐、丁酸酐、戊酸酐等。
进一步地,在步骤S2的熔融缩聚阶段,以0.3~1.5℃/min的升温速率升温至280~300℃,在280~300℃保持恒温15~30min,最后继续采用0.3~1.5℃/min的升温速率升温至目标产品熔点10℃以下,且熔点30℃以上([T m-10]~[T m+30]℃),升温期间不断馏出醋酸及其副产物。
为避免预聚物在熔融状态下粘度较高而影响排出性,预聚物的熔融粘度控制在1~10Pa.s,熔融粘度采用Dynisco LCR7000型毛细管流变仪测试,测试温度为大于液晶聚酯的熔点30℃,剪切速率1000s -1,使用内径1mm,长度40mm的口模测量。
进一步地,在步骤S2的减压缩聚阶段,目标真空度为40kPa~0.1kPa,减压缩聚时间控制在3小时以内,最终控制排出时预聚物熔体的温度为目标产品熔点5℃以上,且熔点30℃以下([T m+5]~[T m+30]℃)。
步骤S3中,预聚物排出所用的设备可选择阀门、挤出机和齿轮泵,预聚物的排出优选在惰性气氛如氮气气氛下进行;预聚物冷却,同时以一个方向对其进行连续传送,在传送方向下游可利用线材切割机、片材切割机或粉碎机进行切割或粉碎,得到预聚物颗粒或粉末,预聚物颗粒或粉末的粒径优选为0.1mm~5mm;在固相聚合阶段,优选在真空度为0.1Pa~50kPa,或者通氮气等惰性保护气体条件下进行,聚合温度为20~340℃,反应时间0.5~40小时,保证反应的充分进行,固相聚合可在搅拌或无搅拌的静止状态下进行。
本发明采用离子液体作为高效催化剂,且通过优选上述酰化反应、熔融缩聚、减压缩聚和固相聚合阶段的反应条件,合成的液晶聚酯熔融焓>1.5J/g。为提高液晶聚酯的耐热性,液晶聚酯的熔点应尽可能的高,但考虑到预聚物的排出性,以及聚合设备的加热能力,预聚物的熔点优选365℃以下,更优选200℃以上且360℃以下,进一步优选270℃以上且360℃以下。熔点根据差示扫描量热DSC法,从室温起以20℃/min的升温速率升温到熔点+(20~80)℃的最高温度,在此温度下停留2min后再以20℃/min的速率降至室温;测试样品在室温下停留2min后再次以20℃/min的升温速率升温到熔点+(20~80)℃的最高温度,得到测试的第二次熔融曲线,选取熔融峰值即为熔点。
本发明还提供了一种液晶聚酯组合物,所述液晶聚酯组合物按重量份计,包括以下组分:
上述液晶聚酯         50~80份
增强填料             20~50份;
本发明的液晶聚酯熔融焓高,该液晶聚酯添加增强填料形成液晶聚酯组合物也同样具备高熔融焓特性,体现出优异的热变形温度及抗起泡性能。在上述配比范围内,制备得到的液晶聚酯组合物的熔融焓>1.0J/g,熔融焓采用DSC测得第二次熔融曲线,计算出熔融峰面积即为熔融焓。热变形温度>290℃,将测试样品注塑成型为80mm×10mm×4mm的试样,使用该试样参照ISO 75-22013标准在1.82MPa载荷下以2℃/min的加热速率测量热变形温度。
此外,液晶聚酯和增强填料在上述用量范围内,制备的液晶聚酯组合物具备较好耐热性和力学性能,如拉伸强度等。
进一步地,所述增强填料包括纤维状增强填料、非纤维状增强填料中的至少一种。
所述非纤维状增强填料包括片状增强填料、颗粒状增强填料中的至少一种。
纤维状增强填料,其平均长度优选为20~2000微米,当所选纤维状增强填料的尺寸在上述范围内时,液晶聚酯组合物可兼顾良好的热变形温度、力学拉 伸性能。所述纤维状增强填料包括但不仅限于玻璃纤维、钛酸钾纤维、金属包层的玻璃纤维、陶瓷纤维、硅灰石纤维、金属碳化物纤维、金属固化纤维、石棉纤维、氧化铝纤维、碳化硅纤维、石膏纤维或硼纤维的一种或几种,优选为玻璃纤维。
非纤维状增强填料,其平均粒径优选为0.01~100微米,当增强填料的平均粒径大于100微米,导致液晶聚酯组合物的抗起泡性能变差。非纤维状增强填料选自滑石粉、云母、钛白粉、钛酸钾晶须、氧化锌晶须、硼酸铝晶须、炭黑、石膏、石棉、沸石、绢云母、高岭土、蒙脱土、粘土、锂蒙脱土、合成云母、硅铝酸盐、二氧化硅、氧化钛、氧化铝、氧化锌、氧化锆、氧化铁、碳酸钙、钛酸镁、白云石、硫酸铝、硫酸钡、硫酸镁、碳酸钙、石英粉、氢氧化镁、氢氧化钙、氢氧化铝、玻璃珠、陶瓷珠、氮化硼或碳化硅的一种或几种。
进一步地,所述液晶聚酯组合物在不损坏本发明的耐热效果的范围内,还可以配合抗氧化剂、热稳定剂、紫外线吸收剂、润滑剂、脱模剂、着色剂、增塑剂、抗静电剂等加工助剂;或可以配合其他结构的液晶聚酯或液晶聚酯以外的聚合物,所述其他结构的液晶聚酯或液晶聚酯以外的聚合物可以为全芳香族或半芳香族热致性液晶聚合物,芳香族或半芳香族聚酰胺,聚醚醚酮,聚醚砜,聚烯烃均聚物或共聚物等的一种或几种。通过这样的配合,可以进一步赋予液晶聚酯组合物所需的特性。
本发明中,对于液晶聚酯、增强填料、加工助剂等的混合方法,没有特定的限定,可以使用干式掺混、溶液混合法、熔融混炼等,其中优选为熔融混炼,熔融混炼的温度为液晶聚酯的熔点以上,熔点+50℃以下(T m~[T m+50]℃)。混合的设备可选用捏合机,单轴或双轴挤出机、胶辊机等,优选使用双轴挤出机。
上述混炼方法,可以使用从后装进料机一并投入液晶聚酯、增强填料和加工助剂来进行混炼的方法;也可以使用从后装进料机投入液晶聚酯和加工助剂,从侧进料机添加增强填料进行混炼的方法;亦可以先制备高浓度包含液晶聚酯和加工助剂的液晶性聚酯组合物母粒,再将母粒与液晶聚酯、增强填料进行混炼以获得所需浓度的液晶性聚酯组合物。
本发明的液晶聚酯组合物通过进行注射成型,注射压缩成型、压缩成型、挤出成型、吹塑成型、压制成型纺丝等公知的制备工艺获得熔融成型品。这里所述的成型品,可以为注射成型品、挤出成型品、压制成型品、片、管、未拉伸薄膜、单轴拉伸薄膜、双轴拉伸薄膜等各种膜制品、未拉伸丝、超拉伸丝等各种纤维丝等。其中,液晶聚酯组合物通过进行注射成型,可显著获得本发明的效果。
本发明还提供了上述液晶聚酯组合物在汽车、家电、通信设备及电子电器领域的应用。本发明所获得的液晶聚酯或液晶聚酯组合物形成的成型品可以有如下应用,以各种齿轮、各种壳体、传感器、LED灯、连接器、插座、电阻器、继电器壳体、继电器底座、继电器用绕线轴、开关、线圈轴、电容器、可变电容器壳体、光拾波器、共振器、各种端子板、变压器、插头、印刷布线板、调谐器、扬声器、传声器、头戴式听筒、小型电动机、磁头底座、功率模块、外壳、半导体、液晶显示器部件、FDD托架、FDD底盘、HDD部件、电动机刷握、抛物面天线、计算机相关部件等为代表的电气电子部件、以VTR部件、电视部件、熨斗、电吹风、电饭煲部件、微波炉部件、音响部件、音频、激光盘、光盘等语音设备部件、照明部件、电冰箱部件、空调部件、打字机部件、文字处理机部件等为代表的家庭、企业电气制品部件、办公室计算机相关部件、电话机相关部件、传真机相关部件、复印机相关部件、洗涤用夹具、无油轴承、船尾轴承、水中轴承等各种轴承、电动机部件、以点火器、打字机等为代表的机械相关部件、以显微镜、双筒望远镜、照相机、钟表等为代表的光学设备、精密机械相关部件;交流发电机端子、交流发电机连接器、IC调节器、调光器用电位器底座、排气气阀等各种阀、燃料关联、排气系、吸气系的各种管、进气口喷嘴通气管、进气歧管、燃料泵、发动机冷却水接头、汽化器主体、汽化器隔离物、排气气体传感器、冷却水传感器、油温传感器、节气门位置传感器、曲轴位置传感器、空气流量计、制动衬块磨耗传感器、空调用恒温器底座、空调用电动机绝缘体、电动窗等车载用电动机绝缘体、取暖器暖风流量控制阀、散热器电动机用刷握、水泵叶轮、涡轮叶片、刮水器电动机相关部件、分电器、起动器开关、起动器继电器、传动装置用线束、窗户洗涤器喷嘴、空调面板开关基板、燃料关联电磁阀用线圈、保险丝用连接器、喇叭端子、电装部件绝缘 板、步进电动机转子、灯圈、灯座、灯光反射器、灯壳、制动活塞、螺线管线轴、发动机滤油器、点火装置壳体等汽车、车辆相关部件等,在印刷布线板,小型薄壁电子器件等中特别有用。
与现有技术相比,本发明的有益效果为:
本发明的液晶聚酯以及含有该液晶聚酯的组合物具有较高的熔融焓,展现出优良的耐热性、具备高热变形温度,抗起泡性能,适合应用于汽车、家电、通信设备及电子电器领域。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
对以下实施例和对比例的原料做如下说明:
HNA:6-羟基-2-萘甲酸,Sigma-Aldrich公司;
BP:4,4'-二羟基联苯,Sigma-Aldrich公司;
TA:对苯二甲酸,Sigma-Aldrich公司;
HBA:4-羟基苯甲酸,Sigma-Aldrich公司;
IA:间苯二甲酸,Sigma-Aldrich公司;
APAP:乙酰氨基酚,Sigma-Aldrich公司
醋酸镁:Sigma-Aldrich公司;
玻璃纤维、滑石粉、云母粉和钛白粉均来自市售;1-甲基咪唑乙酸盐离子液体为自制,其具体制备方法如下:1-甲基咪唑与乙酸在80℃搅拌反应24小时得到1-甲基咪唑乙酸盐离子液体。
对本发明的熔融温度、熔融焓、熔融粘度、热变形温度和抗起泡性的测定方法做如下说明:
(1)熔融温度:采用NETZSCH公司DSC 200F3测得,从室温起以20℃/min的升温速率升温到熔点+(20~80)℃的最高温度,在此温度下停留2min后再以20℃/min的速率降温至室温,测试样品在室温下停留2min后再次以20℃/min的升温速率升温到熔点+(20~80)℃的最高温度,得到聚合物的第二次熔融曲线,选取熔融峰值即为熔点。
(2)熔融焓:采用(1)中的第二次熔融曲线,并选取熔融峰的熔融起始温度和熔融结束温度,并计算出熔融峰面积即为熔融焓。
(3)熔融粘度:采用Dynisco LCR7000型毛细管流变仪测试,测试温度在液晶聚酯熔融温度以上30℃,剪切速率1000s -1,使用内径1mm、长度40mm的口模测量。
(4)热变形温度:将测试样品注塑成型为80mm×10mm×4mm的试样,使用该试样按照ISO 75-2 2013标准在1.82MPa载荷下以2℃/min的加热速率测量热变形温度。
(5)抗起泡性:在液晶聚酯熔融温度以上5℃以及60mm/s的注射速度下,将液晶聚酯或其组合物成型为厚度1.0mm,长宽为60mm的薄片状试样。将这些试样中的10个试样放入260℃的烘箱中5min,然后将试样取出,观察各试样表面的气泡产生情况。抗起泡性采用起泡率进行衡量,起泡率=起泡块数/总块数*100%,起泡率越低,抗起泡性越好。
实施例1-8和对比例1-8:液晶聚酯
实施例1-8和对比例1-8的液晶聚酯的原料成分如表1所示,液晶聚酯的制备方法包括以下步骤:
S1.乙酰化工段:在装有搅拌器、单体投料口、回流冷凝器、温度计和氮气导入口的第一反应容器中,加入单体、醋酸酐和催化剂,投料完成后,用氮气彻底置换反应容器内的气氛,在氮气保护下将反应体系的温度升高至140℃,维持此温度回流2小时进行乙酰化反应;
S2.熔融缩聚工段:乙酰化反应结束后,把物料转入配有扭矩传感器的搅拌 器、保护气导入口、采出装置和真空装置的第二反应容器中,搅拌并以1℃/min的升温速率升温至280~300℃,并在280~300℃恒温一定时间,然后再以1℃/min的升温速率升温至360℃,在此过程中,通过醋酸采出装置将聚合生成的醋酸采出;
S3.减压缩聚工段:待物料温度达到360℃后,在30min内将第二反应容器中的压力降低至10kPa;
S4.待扭矩达到设定值后,通过保护气导入口通入氮气,使第二反应容器的压力至0.3MPa,此时将预聚物经第二反应容器的排出口以熔融态排出,冷却固化后造粒,投入转鼓进行固相聚合增粘,增粘温度290℃,真空度至100Pa以下,达到既定熔融粘度降温,得到液晶聚酯。
实施例1-8和对比例1-8的液晶聚酯的原料成分、合成工艺参数、熔融粘度、熔点、熔融焓、HDT和起泡率如表1所示。
表1
Figure PCTCN2021077961-appb-000001
Figure PCTCN2021077961-appb-000002
由表1中,比较上述实施例1-3、实施例6-7和对比例4-8的结果发现,本发明通过优选聚合单体的种类及其用量,有利于提高液晶聚酯熔融焓,从而提高热变形温度,并降低起泡率,这也是本申请中具体进一步限定“所述液晶聚酯按摩尔百分比计,包含如下重复单元:(A)Ar 1为2,6-亚萘基的式(1)重复单元45~65mol%;(B)Ar 1为1,4-亚苯基的式(1)重复单元1~6mol%;(C)Ar 2为1,4-亚苯基的式(2)重复单元15~26mol%;(D)Ar 3为4,4'-亚联苯基的式(3)重复单元15~26mol%”的原因。
实施例2、实施例4、实施例8和对比例3结果可知,液晶聚酯在熔融缩聚过程中,采用280~300℃恒温15~30min,有利于提高液晶聚酯的熔融焓,从而提高热变形温度,并降低起泡率。
实施例2、实施例5和对比例1-2的结果可知,相较于对比例1采用醋酸镁作为催化剂,本发明选用1-甲基咪唑乙酸盐离子液体作为催化剂,乙酰化率高,更有利于获得熔融焓高、热变形温度高、起泡率低的液晶聚酯。当1-甲基咪唑乙酸盐离子液体的添加量为液晶聚酯的理论出料重量的500ppm以上效果较好。
实施例1’-11’和对比例1’-3’:液晶聚酯组合物
按表2配比分别将实施例1-4和对比例1的液晶聚酯,以及增强填料用高速混合机混合均匀后,加入双螺杆挤出机,通过熔融混合,挤出造粒,冷却,得到液晶聚酯组合物。
实施例1’-11’和对比例1’-3’得到的液晶聚酯组合物的原料成分、熔融焓、HDT、起泡率和拉伸强度如表2所示。
表2
Figure PCTCN2021077961-appb-000003
Figure PCTCN2021077961-appb-000004
由实施例1’、实施例3’-4’、对比例1’结果可知,在液晶聚酯用量、增强填料种类及其用量相同情况下,液晶聚酯熔融焓越高,其液晶聚酯组合物熔融焓随之提高,且具有高热变形温度、低起泡率。
由实施例5’、对比例2’-3’结果可知,在液晶聚酯的熔融焓相同的情况下,液晶聚酯及增强填料用量处于一定比例,制备得到的液晶聚酯组合物可兼顾良好的耐热性、抗起泡性、力学性能,因此,本申请中具体进一步限定“所述液晶聚酯组合物按重量份计,包括液晶聚酯50~80份和增强填料20~50份”。
由实施例2’、实施例6’、实施例9’-实施例10’结果可知,玻璃纤维的平均长度在一定范围内时,制备得到的液晶聚酯组合物可兼顾良好的热变形温度和力学拉伸性能。
由实施例6’-8’、实施例11’结果可知,滑石粉、云母粉、钛白粉等非纤维状增强填料的平均粒径过大,会导致制备得到的液晶聚酯组合物抗起泡性变差。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种液晶聚酯,其特征在于,包括下述式(1)重复单元、式(2)重复单元和式(3)重复单元:
    (1)-O-Ar 1-CO-
    (2)-CO-Ar 2-CO-
    (3)-O-Ar 3-O-
    其中,Ar 1为2,6-亚萘基、1,4-亚苯基和4,4'-亚联苯基中的至少一种;Ar 2为1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;Ar 3为2,6-亚萘基、1,4-亚苯基、1,3-亚苯基或4,4'-亚联苯基;
    所述液晶聚酯的熔融焓>1.5J/g,熔融焓采用DSC测得第二次熔融曲线,计算出熔融峰面积即为熔融焓。
  2. 根据权利要求1所述的液晶聚酯,其特征在于,按摩尔百分比计,包含如下重复单元:
    (A)Ar 1为2,6-亚萘基的式(1)重复单元45~65mol%;
    (B)Ar 1为1,4-亚苯基的式(1)重复单元1~6mol%;
    (C)Ar 2为1,4-亚苯基的式(2)重复单元15~26mol%;
    (D)Ar 3为4,4'-亚联苯基的式(3)重复单元15~26mol%。
  3. 根据权利要求2所述的液晶聚酯,其特征在于,按摩尔百分比计,包含如下重复单元:
    (A)Ar 1为2,6-亚萘基的式(1)重复单元45~60mol%;
    (B)Ar 1为1,4-亚苯基的式(1)重复单元1~5mol%;
    (C)Ar 2为1,4-亚苯基的式(2)重复单元19~26mol%;
    (D)Ar 3为4,4'-亚联苯基的式(3)重复单元19~26mol%。
  4. 权利要求1-3任一项所述的液晶聚酯的制备方法,其特征在于,包括以下步骤:
    S1.式(1)重复单元的单体、式(3)重复单元的单体与酰化剂在离子液体的催化作用下进行酰化反应;
    S2.步骤S1的酰化产物与式(2)重复单元的单体在离子液体的催化作用下进行熔融缩聚和减压缩聚,得到预聚物,其中,在熔融缩聚阶段,在280~300℃保持恒温15min以上,优选15~30min;
    S3.预聚物排出、冷却固化并造粒,进行固相聚合,得到所述液晶聚酯;
    其中,所述离子液体为含有两个或两个以上氮原子的杂环有机碱类化合物与阴离子功能化合物反应成的离子液体。
  5. 根据权利要求4所述的液晶聚酯的制备方法,其特征在于,所述离子液体的添加量为液晶聚酯的理论出料重量的500ppm以上,优选为500~3000ppm。
  6. 根据权利要求4所述的液晶聚酯的制备方法,其特征在于,所述含有两个或两个以上氮原子的杂环有机碱类化合物为咪唑化合物、***化合物或二吡啶基化合物,所述咪唑化合物为1-甲基咪唑、2-甲基咪唑、4-甲基咪唑、1-乙基咪唑、2-乙基咪唑、4-乙基咪唑、1,2-二甲基咪唑、1,4-二甲基咪唑或2,4-二甲基咪唑,优选为1-甲基咪唑。
  7. 根据权利要求4所述的液晶聚酯的制备方法,其特征在于,所述的阴离子功能化合物为乙酸、丙酸或丁酸,优选为乙酸。
  8. 一种液晶聚酯组合物,其特征在于,按重量份计,包括以下组分:
    权利要求1-3任一项所述的液晶聚酯                 50~80份
    增强填料                                       20~50份,
    所述液晶聚酯组合物的熔融焓>1.0J/g,熔融焓采用DSC测得第二次熔融 曲线,计算出熔融峰面积即为熔融焓。
  9. 根据权利要求8所述的液晶聚酯组合物,其特征在于,所述增强填料包括纤维状增强填料、非纤维状增强填料中的至少一种;所述纤维状增强填料的平均长度优选为20~2000微米;所述非纤维状增强填料的平均粒径优选为0.01~100微米。
  10. 权利要求8或9所述的液晶聚酯组合物在汽车、家电、通信设备及电子电器领域的应用。
PCT/CN2021/077961 2020-10-30 2021-02-25 一种液晶聚酯、液晶聚酯组合物及应用 WO2022088565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21884309.2A EP4249535A1 (en) 2020-10-30 2021-02-25 Liquid crystal polyester, liquid crystal polyester composition, and use thereof
US18/234,901 US20230391950A1 (en) 2020-10-30 2023-08-17 Liquid crystal polyester (lcp), lcp composition, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011199975.3 2020-10-30
CN202011199975.3A CN112250846B (zh) 2020-10-30 2020-10-30 一种液晶聚酯、液晶聚酯组合物及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/234,901 Continuation US20230391950A1 (en) 2020-10-30 2023-08-17 Liquid crystal polyester (lcp), lcp composition, and use thereof

Publications (1)

Publication Number Publication Date
WO2022088565A1 true WO2022088565A1 (zh) 2022-05-05

Family

ID=74268331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077961 WO2022088565A1 (zh) 2020-10-30 2021-02-25 一种液晶聚酯、液晶聚酯组合物及应用

Country Status (4)

Country Link
US (1) US20230391950A1 (zh)
EP (1) EP4249535A1 (zh)
CN (1) CN112250846B (zh)
WO (1) WO2022088565A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250846B (zh) * 2020-10-30 2022-12-02 金发科技股份有限公司 一种液晶聚酯、液晶聚酯组合物及应用
CN114805773B (zh) * 2022-04-01 2023-11-28 珠海万通特种工程塑料有限公司 一种液晶聚合物及其制备方法和应用
CN116063668A (zh) * 2022-12-26 2023-05-05 珠海万通特种工程塑料有限公司 一种液晶聚合物及其聚合方法和一种液晶聚合物组合物
CN116102723A (zh) * 2022-12-26 2023-05-12 珠海万通特种工程塑料有限公司 一种液晶聚酯及其制备方法和一种液晶聚酯组合物

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684712A (en) * 1982-09-02 1987-08-04 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Process for producing wholly aromatic polyesters
US5454910A (en) * 1990-08-30 1995-10-03 Korea Institute Of Science And Technology Pulp-like short fibers from liquid crystal polyesters
JPH08134195A (ja) * 1994-11-04 1996-05-28 Toray Ind Inc 液晶性樹脂およびその射出成形品
CN103570927A (zh) * 2012-07-06 2014-02-12 金发科技股份有限公司 热致性液晶聚酯及其制备方法
CN104725619A (zh) * 2013-12-19 2015-06-24 金发科技股份有限公司 一种液晶聚酯和由其组成的液晶聚酯组合物及其应用
JP2015124276A (ja) * 2013-12-26 2015-07-06 東レ株式会社 液晶性ポリエステル樹脂組成物およびその成形品
CN105837808A (zh) * 2016-02-01 2016-08-10 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN108026258A (zh) 2015-10-21 2018-05-11 宝理塑料株式会社 全芳香族聚酯和其制造方法
CN108026269A (zh) 2015-10-21 2018-05-11 宝理塑料株式会社 全芳香族聚酯酰胺和其制造方法
CN108276567A (zh) * 2017-12-14 2018-07-13 金发科技股份有限公司 离子液体在液晶聚酯的制备中作为催化剂的用途及一种液晶聚酯的制备方法
CN109561791A (zh) 2016-08-04 2019-04-02 住友化学株式会社 耐热器皿、耐热器皿的制造方法及耐热器皿成形用树脂组合物
CN110903612A (zh) * 2019-12-20 2020-03-24 江门市德众泰工程塑胶科技有限公司 一种液晶聚酯组合物及其制备方法
WO2020204125A1 (ja) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
CN112250846A (zh) * 2020-10-30 2021-01-22 金发科技股份有限公司 一种液晶聚酯、液晶聚酯组合物及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285301A (ja) * 2003-03-25 2004-10-14 Sumitomo Chem Co Ltd 芳香族液晶ポリエステル溶液組成物
CN105837805A (zh) * 2016-02-01 2016-08-10 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN105837807B (zh) * 2016-02-01 2019-03-29 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684712A (en) * 1982-09-02 1987-08-04 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Process for producing wholly aromatic polyesters
US5454910A (en) * 1990-08-30 1995-10-03 Korea Institute Of Science And Technology Pulp-like short fibers from liquid crystal polyesters
JPH08134195A (ja) * 1994-11-04 1996-05-28 Toray Ind Inc 液晶性樹脂およびその射出成形品
CN103570927A (zh) * 2012-07-06 2014-02-12 金发科技股份有限公司 热致性液晶聚酯及其制备方法
CN104725619A (zh) * 2013-12-19 2015-06-24 金发科技股份有限公司 一种液晶聚酯和由其组成的液晶聚酯组合物及其应用
JP2015124276A (ja) * 2013-12-26 2015-07-06 東レ株式会社 液晶性ポリエステル樹脂組成物およびその成形品
CN108026269A (zh) 2015-10-21 2018-05-11 宝理塑料株式会社 全芳香族聚酯酰胺和其制造方法
CN108026258A (zh) 2015-10-21 2018-05-11 宝理塑料株式会社 全芳香族聚酯和其制造方法
CN105837808A (zh) * 2016-02-01 2016-08-10 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN109561791A (zh) 2016-08-04 2019-04-02 住友化学株式会社 耐热器皿、耐热器皿的制造方法及耐热器皿成形用树脂组合物
CN108276567A (zh) * 2017-12-14 2018-07-13 金发科技股份有限公司 离子液体在液晶聚酯的制备中作为催化剂的用途及一种液晶聚酯的制备方法
WO2020204125A1 (ja) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
CN110903612A (zh) * 2019-12-20 2020-03-24 江门市德众泰工程塑胶科技有限公司 一种液晶聚酯组合物及其制备方法
CN112250846A (zh) * 2020-10-30 2021-01-22 金发科技股份有限公司 一种液晶聚酯、液晶聚酯组合物及应用

Also Published As

Publication number Publication date
CN112250846B (zh) 2022-12-02
EP4249535A1 (en) 2023-09-27
CN112250846A (zh) 2021-01-22
US20230391950A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2022088565A1 (zh) 一种液晶聚酯、液晶聚酯组合物及应用
EP2540777B1 (en) Liquid-crystalline polyester resin composition, method for producing same, and molded article made thereof
CN105837803B (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
KR20080114513A (ko) 액정 폴리에스테르 조성물
WO2017133448A1 (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
JP5098168B2 (ja) 全芳香族液晶性ポリエステルおよびその組成物
EP1760104B1 (en) Liquid-crystalline resin, process for producing the same, composition of liquid-crystalline resin, and molded article
EP2660265B1 (en) Liquid-crystalline polyester and process for preparing same
CN105837806B (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN105860036B (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN105860035B (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN111936547B (zh) 液晶聚酯树脂、其制造方法及由其形成的成型品
CN105837805A (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
JP6206174B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
CN105837808B (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
JP5182240B2 (ja) 液晶性ポリエステルおよびその製造方法、組成物、成形品
JP5742706B2 (ja) 液晶性ポリエステル樹脂の製造方法
JP2008143996A (ja) 液晶性ポリエステル組成物
CN105837804B (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN105860037A (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
JP6866609B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
TW202246382A (zh) 液晶性樹脂組成物及由其所構成之成形品
JPH0741665A (ja) 熱可塑性樹脂組成物
JPH10180753A (ja) 液晶性樹脂ペレットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021884309

Country of ref document: EP

Effective date: 20230530