WO2020188920A1 - 油圧ショベル - Google Patents

油圧ショベル Download PDF

Info

Publication number
WO2020188920A1
WO2020188920A1 PCT/JP2019/048766 JP2019048766W WO2020188920A1 WO 2020188920 A1 WO2020188920 A1 WO 2020188920A1 JP 2019048766 W JP2019048766 W JP 2019048766W WO 2020188920 A1 WO2020188920 A1 WO 2020188920A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
arm
bucket
switching valve
valve
Prior art date
Application number
PCT/JP2019/048766
Other languages
English (en)
French (fr)
Inventor
康平 小倉
小高 克明
征勲 茅根
賀裕 白川
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US17/272,688 priority Critical patent/US11891779B2/en
Priority to CN201980055518.6A priority patent/CN112601866B/zh
Priority to KR1020217005263A priority patent/KR102508281B1/ko
Priority to EP19920521.2A priority patent/EP3832031B1/en
Publication of WO2020188920A1 publication Critical patent/WO2020188920A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/166Controlling a pilot pressure in response to the load, i.e. supply to at least one user is regulated by adjusting either the system pilot pressure or one or more of the individual pilot command pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/204Control means for piston speed or actuating force without external control, e.g. control valve inside the piston
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/36Pilot pressure sensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic excavator.
  • the hydraulic excavator is equipped with a boom, an arm, a bucket, and a plurality of hydraulic actuators such as a boom cylinder, an arm cylinder, and a bucket cylinder that drive them.
  • a plurality of hydraulic actuators such as a boom cylinder, an arm cylinder, and a bucket cylinder that drive them.
  • the number of hydraulic pumps that discharge the pressure oil that drives the hydraulic actuators is smaller than the number of hydraulic actuators. Therefore, when operating a plurality of hydraulic actuators at the same time, the pressure oil discharged from one hydraulic pump is discharged from the plurality of hydraulic actuators. Need to be properly distributed to.
  • Patent Documents 1 and 2 disclose, for example, the prior art of such a hydraulic excavator.
  • a throttle is provided in front of the directional switching valve for the first arm (arm second directional switching valve) of the bypass line (parallel line), and horizontal pulling (boom raising and arm pulling) is provided.
  • the directional switching valve for the first arm (arm second directional switching valve) flows into the operation. It is configured so that the flow of the pressure oil is restricted so that the pressure oil flows preferentially to the first boom direction switching valve (boom first direction switching valve).
  • the hydraulic circuit described in Patent Document 2 is devised to solve the problems of the hydraulic circuit described in Patent Document 1, and removes the narrowing of the bypass line (parallel line) in the hydraulic circuit described in Patent Document 1.
  • an electromagnetic proportional pressure reducing valve is provided in front of the arm 2nd speed switching valve (arm 2nd direction switching valve) and the arm operating lever (arm pilot valve), and the arm 2nd speed switching valve (arm 2nd direction switching valve) is installed. By using it like a variable aperture throttle, the hydraulic loss that occurs during the horizontal pulling operation is reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce fuel consumption by reducing hydraulic loss when operating a plurality of hydraulic actuators having different loads at the same time, and to improve work efficiency.
  • the purpose is to provide hydraulic excavators that can be improved.
  • the present invention is rotatably connected to a main body composed of an upper swing body and a lower traveling body, a boom rotatably connected to the main body, and a tip portion of the boom.
  • Pressure oil is supplied from the arm, a bucket rotatably connected to the tip of the arm, a first hydraulic pump, a second hydraulic pump, the first hydraulic pump, and the second hydraulic pump.
  • a third direction switching valve that controls the direction and flow rate of the pressure oil supplied from the second hydraulic pump to the arm cylinder according to the operation amount of the second operating device is provided, and the first direction switching valve and The second direction switching valve is arranged at the most downstream side of the center bypass line in a hydraulic excavator connected in tandem to the center bypass line of the first hydraulic pump and connected in parallel to a parallel line branched from the center bypass line.
  • a center bypass flow control valve that limits the flow rate of hydraulic oil passing through the center bypass line according to the amount of operation of the second operating device when the second operating device is operated, and the above.
  • the second operating device is controlled in a state where the spool stroke amount of the third direction switching valve is controlled according to the operating amount of the second operating device. It is assumed that the spool stroke limiting device for limiting the spool stroke amount of the direction switching valve according to the operating amount of the first operating device is provided.
  • the flow rate from the first hydraulic pump through the center bypass line is limited according to the operating amount of the second operating device.
  • the spool stroke amount of the third direction switching valve is controlled according to the operating amount of the second operating device, and the second direction switching valve is operated. Since the spool stroke amount is limited according to the operation amount of the first operating device, the fuel consumption is suppressed and the work efficiency is improved by reducing the hydraulic loss when operating a plurality of hydraulic actuators having different loads at the same time. It becomes possible to improve.
  • FIG. 1 is a side view showing a hydraulic excavator according to this embodiment.
  • the hydraulic excavator 200 is composed of a lower traveling body 2 and an upper swivel body 1 which is freely swiveled, and the upper swivel body 1 includes a boom 3, an arm 4, a bucket 5, and a boom for driving them.
  • Hydraulic cylinders such as a cylinder 6, an arm cylinder 7, and a bucket cylinder 8 are mounted.
  • FIG. 2 is a hydraulic circuit diagram of the hydraulic excavator 200.
  • a positron type hydraulic circuit will be described as an example.
  • the variable displacement hydraulic pumps 9 and 10 are driven by the engine 11.
  • the first hydraulic pump 9 supplies pressure oil to the boom first direction switching valve 18, the bucket direction switching valve 22, and the arm second direction switching valve 21.
  • the direction switching valves 18, 22, and 21 are tandemly connected by the center bypass line 12 of the first hydraulic pump 9, and are connected in parallel by the parallel line 13 branched from the center bypass line 12.
  • the second hydraulic pump 10 supplies pressure oil to the boom second direction switching valve 19 and the arm first direction switching valve 20.
  • the directional switching valves 19 and 20 are tandemly connected by the center bypass line 14 of the second hydraulic pump 10, and are connected in parallel by the parallel line 15 branched from the center bypass line 14.
  • the center bypass lines 12 and 14 are connected to the hydraulic oil tank 50 at the most downstream, and discharge the hydraulic oil discharged from the hydraulic pumps 9 and 10 to the hydraulic oil tank 50 when the hydraulic actuators 6 to 8 are not operated. By doing so, the pump load can be kept low.
  • a check valve 23 is provided between the direction switching valves 18 to 22 and the parallel lines 13 and 15 to prevent the pressure oil from flowing back from the hydraulic cylinder to the parallel line.
  • Relief valves 16 and 17 are connected to the parallel lines 13 and 15 to prevent the hydraulic equipment from being damaged due to excessive pressure in the hydraulic circuit.
  • the directional switching valves 18 to 22 are tandem center type spool valves, and are operated by the secondary pressure output from the pilot valves 25 to 27.
  • the pilot valves 25 to 27 are manual pressure reducing valves, and reduce the pressure oil discharged from the fixed capacity type pilot pump 28 driven by the engine 11 according to the lever operation amount and output it as a secondary pressure. ..
  • the discharge line 40 of the pilot pump 28 is provided with a pilot relief valve 29, and the pressure of the discharge line 40 is kept constant.
  • Pressure sensors 25a, 25b, 26a, 26b, 27a, 27b are provided on the oil passage connecting the secondary pressure ports of the pilot valves 25 to 27 and the operating pressure ports of the direction switching valves 18 to 22, respectively. The secondary pressure of the pilot valve can be detected.
  • a center bypass flow rate control valve 31 is provided at the most downstream of the center bypass line 12.
  • the operating pressure port 31a of the center bypass flow control valve 31 is connected to the secondary pressure port on the arm pull (arm cloud) side of the arm pilot valve 26 via the pilot line 41.
  • the secondary pressure on the arm pulling side of the arm pilot valve 26 acts on the operating pressure port 31a of the center bypass flow control valve 31.
  • the operating pressure port 21a on the arm pulling side of the arm second direction switching valve 21 is connected to the secondary pressure port of the electromagnetic proportional pressure reducing valve 30 via the pilot line 42.
  • the primary pressure port of the electromagnetic proportional pressure reducing valve 30 is connected to the secondary pressure port on the arm pull side of the arm pilot valve 26 via the pilot line 41.
  • the electromagnetic proportional pressure reducing valve 30 can limit the operating pressure acting on the operating pressure port 21a.
  • the pressure sensors 25a, 25b, 26a, 26b, 27a, 27b and the electromagnetic proportional pressure reducing valve 30 are connected to the controller 100, and the controller 100 is an operation detected by the pressure sensors 25a, 25b, 26a, 26b, 27a, 27b.
  • the secondary pressure of the electromagnetic proportional pressure reducing valve 30 is controlled based on the pressure.
  • FIG. 4 shows the opening characteristics of the direction switching valves 18 to 22.
  • the directional control valves 18 to 22 are 6-port 3-position spool valves, and have three openings: a meter-in opening (PC), a meter-out opening (CT), and a center bypass opening (PT). have.
  • Each opening PC, CT, and PT has the characteristics as shown in FIG. 4B, and the pressure of the optimum flow rate is adjusted according to the operating pressure output from the pilot valves 25 to 27 according to the lever operating amount.
  • the oil can be controlled to flow into the hydraulic cylinders 6 to 8.
  • FIG. 5 shows the opening characteristics of the center bypass flow rate control valve 31.
  • the opening characteristic CB of the center bypass flow control valve 31 has the same characteristics as the PT opening during the arm pulling operation of the arm second direction switching valve 21 in the prior art (shown in FIG. 9), and the operating pressure increases. Therefore, it is specified that the opening area of the center bypass flow rate control valve 31 is reduced. More specifically, the opening area is reduced to about half from the maximum opening area in the region where the operating pressure is low, and the opening area gradually decreases as the operating pressure increases in the region where the operating pressure is higher than that.
  • controller 100 The operation of the controller 100 will be described with reference to FIGS. 6 to 8.
  • FIG. 6 is a block diagram showing a command value calculation of the electromagnetic proportional pressure reducing valve 30 by the controller 100.
  • the controller 100 uses the opening area calculation unit C01 for calculating the target meter-in opening (PC) area of the arm second direction switching valve 21 and the smallest opening area calculated by the opening area calculation unit C01. It has a minimum value selection unit D01 to be selected, and an operation determination unit SW01 for determining whether or not any operation of boom raising, bucket pulling, or bucket pushing has been performed.
  • PC target meter-in opening
  • the conversion tables T01 to T04 corresponding to the arm pull operation pressure PIai, the boom raising operation pressure PIbu, the bucket pull (bucket cloud) operation pressure PIbi, and the bucket push (bucket dump) operation pressure PIbo are used.
  • the target meter-in opening (PC) area of the arm second direction switching valve 21 according to each operating pressure is calculated.
  • FIG. 7 is a diagram showing a conversion table used for calculating the target meter-in opening area of the arm second direction switching valve 21.
  • FIG. 7A shows the characteristics of the conversion table T01.
  • the arm pulling (arm cloud) operating pressure PIai has a constant opening area Ao up to a certain value (PI0), and when the arm pulling operating pressure PIai exceeds a certain value PI0, the opening area increases. Then, when the arm pulling operation pressure PIai reaches the maximum operation pressure PImax, the maximum opening area Amax is obtained.
  • the opening area Ao By setting the opening area Ao to be the same opening area as the diaphragm 24 in the conventional technique (shown in FIG. 9), it is possible to obtain the same boom raising characteristics as in the conventional technique.
  • FIG. 7B shows the characteristics of the conversion table T02.
  • the curve shown by the solid line shows the characteristics of the conversion table T02
  • the curve (PTbu) shown by the alternate long and short dash line shows the characteristics of the center bypass opening (PT) on the boom raising side of the boom first direction switching valve 18. ing.
  • the maximum opening Amax is set in the region where the boom raising operation pressure PIbu is below a certain value (PImin), and the opening area decreases when the boom raising operation pressure PIbu increases and exceeds a certain value PImin. Then, the opening area becomes larger by the minimum value Abu of the target meter-in opening area than the opening area on the curve PTbu via the inclined portion X.
  • the shape of the inclined portion X is determined according to the meter-in opening (PC) characteristic on the boom raising side of the boom first direction switching valve 18, and may be a curved line. Further, when the boom raising operation pressure PIbu increases and reaches the maximum operation pressure PImax, the opening area Abu becomes constant.
  • FIG. 7 (c) shows the characteristics of the conversion table T03.
  • the curve shown by the solid line shows the characteristics of the conversion table T03
  • the curve (PTbi) shown by the alternate long and short dash line shows the characteristics of the center bypass opening (PT) on the bucket pulling side of the bucket direction switching valve 22. ..
  • the maximum opening area is Amax in the region where the bucket pulling operation pressure PIbi is below a certain value (PImin), and when the bucket pulling operation pressure PIbi increases and exceeds a certain value PImin, the opening area becomes As it decreases, the opening area becomes larger by the minimum value Abi of the target meter-in opening area than the opening area on the curve PTbi. Further, when the bucket pulling operation pressure PIbi increases and reaches the maximum operating pressure PImax, the opening area Abi becomes constant.
  • FIG. 7 (d) shows the characteristics of the conversion table T04.
  • the curve shown by the solid line shows the characteristics of the conversion table T04
  • the curve (PTbo) shown by the alternate long and short dash line shows the characteristics of the center bypass opening (PT) on the bucket push side of the bucket direction switching valve 22. ..
  • the maximum opening is Amax in the region where the bucket pushing operation pressure PIbo is below a certain value (PImin), and the opening area decreases when the bucket pushing operation pressure PIbo increases and exceeds a certain value PImin.
  • the opening area is larger than the opening area on the curve PTbo by the minimum value Abo of the target meter-in opening area.
  • the minimum values Abu, Abi, and Abo of the target meter-in opening area in the conversion tables T02 to T04 may be set to the same value as the minimum value Ao of the target meter-in opening area in the conversion table T01, or another value may be set. You may set it.
  • the operation determination unit SW01 outputs the output value of the minimum value selection unit D01 when any of the boom raising operation pressure PIbu, the bucket pull operation pressure PIbi, and the bucket push operation pressure PIbo is equal to or greater than the determination value PIth.
  • the maximum opening area Amax is output.
  • the maximum opening area Amax is set to a value equal to or larger than the maximum opening area of the PC opening characteristic at the time of arm pulling operation of the arm second direction switching valve 21.
  • the conversion table T05 calculates the target value of the secondary pressure of the electromagnetic proportional pressure reducing valve 30 corresponding to the opening area output from the operation determination unit D01.
  • the characteristic of the conversion table T05 is that the vertical axis and the horizontal axis of the meter-in opening (PC) characteristic at the time of arm pulling operation of the arm second direction switching valve 21 are exchanged.
  • the conversion table T06 calculates the drive current Ird of the electromagnetic proportional pressure reducing valve 30 corresponding to the target pressure output from the conversion table T05, and outputs the drive current Ird to the electromagnetic proportional pressure reducing valve 30.
  • the characteristics of the conversion table T06 are such that the vertical and horizontal axes of the current-pressure characteristics of the electromagnetic proportional pressure reducing valve 30 are interchanged.
  • FIG. 8 is a diagram showing a calculation flow of a command value of the electromagnetic proportional pressure reducing valve 30 by the controller 100, and is a flowchart showing a calculation block diagram of FIG. Since each operation is described with reference to FIG. 6, the description thereof will be omitted.
  • the arm pulling operation pressure PIai corresponding to the operation amount is output from the arm pulling side secondary pressure port of the arm pilot valve 26.
  • the arm pulling operating pressure PIai acts on the operating pressure port 20a on the arm pulling side of the arm first direction switching valve 20, the operating pressure port 31a of the center bypass flow control valve 31, and the primary pressure port of the electromagnetic proportional pressure reducing valve 30.
  • the pressure is detected by the pressure sensor 26b and input to the controller 100.
  • the controller 100 outputs the maximum opening area Amax in SW01. Therefore, the target value of the secondary pressure of the electromagnetic proportional pressure reducing valve 30 calculated by the conversion table T05 is the same as the operating pressure at the maximum stroke of the arm second direction switching valve 21, so that the arm second direction switching valve 21
  • the stroke amount of is not limited.
  • the arm first direction switching valve 20, the arm second direction switching valve 21, and the center bypass flow control valve 31 all stroke according to the arm pulling operation pressure PIai, so that the pressures discharged from the hydraulic pumps 9 and 10 are discharged.
  • the oil passes through the arm first direction switching valve 20 and the arm second direction switching valve 21 and flows into the arm cylinder 7.
  • the stroke amount of the arm second direction switching valve 21 is not limited, and the arm 4 operates according to the lever operation.
  • the controller 100 determines that the boom raising operation has been performed by the operation determination unit SW01, and executes the processing of the opening area calculation unit C01.
  • the arm pulling operation pressure PIai is the maximum operation pressure PImax, so that the conversion table T01 outputs the maximum opening area Amax.
  • the opening area A corresponding to the boom raising operation pressure PIbu is output.
  • the bucket pulling operation pressure PIbi and the bucket pushing operation pressure PIbo are both zero (less than PImin), so that the conversion tables T03 and T04 both output the maximum opening area Amax.
  • the outputs of the conversion tables T01, T03, and T04 in the minimum value selection unit D01 are all the maximum opening area Amax, the output of the conversion table T02 is always output in the minimum value selection unit D01. Therefore, the secondary pressure of the electromagnetic proportional pressure reducing valve 30 is controlled so that the arm pull side meter-in opening (PC) of the arm second direction switching valve 21 becomes the opening area output from the conversion table T02.
  • PC arm pull side meter-in opening
  • the arm pulling operation pressure PIai is constantly operated with the maximum operating amount PImax, and the boom raising operating pressure PIbu is gradually operated after being operated to the maximum operating amount PImax at the start of horizontal pulling.
  • the operating lever arm pilot valve 26
  • the directional switching valves 18 and 19 for the boom operate according to the boom raising operation amount PIbu, and the arm first directional switching valve 20 and the center bypass flow rate control valve 31 are in the maximum stroke state.
  • the arm pulling side meter-in opening (PC) of the arm second direction switching valve 21 has an opening area Abu at the start of horizontal pulling, and gradually increases as the boom raising operation pressure PIbu decreases from there, and the arm 4 increases.
  • the maximum opening area no spool stroke amount limit
  • FIG. 9 is a diagram showing a hydraulic circuit described in Patent Document 1 (Comparative Example 1)
  • FIG. 10 is a diagram showing a hydraulic circuit described in Patent Document 2 (Comparative Example 2).
  • a throttle 24 is provided in front of the arm second direction switching valve 21 of the parallel line 13, and the load of the boom cylinder 6 such as horizontal pulling (combined operation of boom raising and arm pulling) is provided. Even when the load pressure of the arm cylinder 7 is low with respect to the pressure, the flow of the hydraulic pressure flowing into the arm second direction switching valve 21 is restricted, and the boom first direction switching valve 18 has priority. It is configured so that pressure oil flows through the cylinder.
  • the hydraulic circuit shown in FIG. 10 was devised to solve the problem of the hydraulic circuit described in Patent Document 1.
  • the difference from the hydraulic circuit shown in FIG. 9 is that the throttle 24 of the parallel line 13 is removed, and instead, an electromagnetic proportional pressure reducing valve 30 is provided in front of the arm second direction switching valve 21 and the arm pilot valve 26.
  • the second direction switching valve 21 is used like a variable opening throttle to reduce the hydraulic loss generated during the horizontal pulling operation.
  • the main body composed of the upper swing body 1 and the lower traveling body 2, the boom 3 rotatably connected to the main body, and the tip portion of the boom 3 are rotatably connected.
  • Pressure oil is discharged from the arm 4, the bucket 5 rotatably connected to the tip of the arm 4, the first hydraulic pump 9, the second hydraulic pump 10, the first hydraulic pump 9, and the second hydraulic pump 10.
  • the boom cylinder 6 or bucket cylinder 8 that is supplied and drives the boom 3 or bucket 5, the arm cylinder 7 that is supplied with pressure oil from the first hydraulic pump 9 and drives the arm 4, and the boom cylinder 6 or bucket cylinder 8
  • the first hydraulic pumps 9 to the boom cylinder 6 according to the amount of operation of the first operating devices 25 and 27 for instructing the operation, the second operating device 26 for instructing the operation of the arm cylinder 7, and the first operating devices 25 and 27.
  • the pressure oil supplied to the bucket cylinder 8 is supplied to the arm cylinder 7 from the first hydraulic pump 9 according to the operation amount of the first direction switching valves 18 and 22 and the second operating device 26 that control the direction and flow rate of the pressure oil.
  • the direction and flow rate of the pressure oil supplied from the second hydraulic pump 10 to the arm cylinder 7 are controlled according to the operation amount of the second direction switching valve 21 and the second operating device 26 that control the direction and flow rate of the pressure oil.
  • the first direction switching valves 18 and 22 and the second direction switching valve 21 are tandemly connected to the center bypass line 12 of the first hydraulic pump 9 and branch from the center bypass line 12.
  • the hydraulic excavator 200 connected in parallel to the parallel line 13 the hydraulic excavator 200 is arranged at the most downstream of the center bypass line 12, and when the second operating device 26 is operated, according to the operation amount of the second operating device 26.
  • the third direction switching valve 20 The spool stroke amount of the second direction switching valve 21 is limited according to the operation amount of the first operation devices 25 and 27 while the spool stroke amount of the second operation device 26 is controlled according to the operation amount of the second operation device 26.
  • the stroke limiting devices 30 and 100 are provided.
  • the first operating devices 25 and 27 reduce the discharge pressure of the pilot pump 28 according to the operating amount of the first operating devices 25 and 27, and the first direction switching valve 18 , 22 has a boom pilot valve 25 and a bucket pilot valve 27 that output as operating pressures, and the second operating device 26 reduces the discharge pressure of the pilot pump 28 according to the operating amount of the second operating device 26. It has an arm pilot valve 26 that outputs as operating pressure of the two-way switching valve 21 and the third-way switching valve 20.
  • the hydraulic excavator 200 has an arm pulling operation pressure PIai output from the arm pilot valve 26, a boom raising operation pressure PIbu output from the boom pilot valve 25, and a bucket pulling output from the bucket pilot valve 27.
  • the operation pressure PIbi and the pressure sensors 26b, 25a, 27a, 27b for detecting the bucket push operation pressure PIbo output from the bucket pilot valve 27 are further provided, and the spool stroke limiting devices 30 and 100 are arm pulls of the arm pilot valve 26.
  • the first electromagnetic proportional pressure reducing valve 30 in which the primary pressure port is connected to the secondary pressure port on the side and the secondary pressure port is connected to the operating pressure port 21a on the arm pull side of the second direction switching valve 21 and the arm pull.
  • the smallest target meter-in opening area of the second-direction switching valve 21 determined based on each of the operating pressure PIai, the boom raising operating pressure PIbu, the bucket pulling operating pressure PIbi, and the bucket pushing operating pressure PIbo. It has a controller and 100 that control the secondary pressure of the first electromagnetic proportional pressure reducing valve 30 based on the above.
  • the flow rate passing through the center bypass line 12 according to the operating amount of the second operating device 26. Is limited, and when the first operating device 25, 27 and the second operating device 26 are operated at the same time, the spool stroke amount of the third direction switching valve 20 is controlled according to the operating amount of the second operating device 26.
  • the spool stroke amount of the second direction switching valve 21 is limited according to the operation amount of the first operating devices 25 and 27, so that the hydraulic pressure when a plurality of hydraulic actuators 6 to 8 having different loads are operated at the same time. By reducing the loss, it is possible to suppress the fuel consumption and improve the work efficiency.
  • the controller 100 opens the target opening area of the first electromagnetic proportional pressure reducing valve 30 to the maximum when all of the boom raising operation pressure PIbu, the bucket pull operation pressure PIbi, and the bucket push operation pressure PIbo are equal to or less than a predetermined pressure PIth.
  • the area is Amax.
  • the controller 100 has a minimum value Ao of the target meter-in opening area of the second direction switching valve 21 corresponding to each of the arm pulling operation pressure PIai, the boom raising operation pressure PIbu, the bucket pulling operation pressure PIbi, and the bucket pushing operation pressure PIbo.
  • Abu, Abi, Abo can be set individually.
  • the meter-in opening characteristic of the arm second direction switching valve 21 can be finely adjusted according to the work to be performed and the operator's preference, so that the work efficiency can be improved.
  • FIG. 3 shows the hydraulic circuit of the hydraulic excavator 200 according to the second embodiment of the present invention. Hereinafter, a part different from the first embodiment will be described.
  • the operating pressure port 31a of the center bypass flow control valve 31 is connected to the secondary pressure port of the electromagnetic proportional pressure reducing valve 32 via the pilot line 43.
  • the secondary pressure output from the electromagnetic proportional pressure reducing valve 32 acts on the operating pressure port 31a of the center bypass flow rate control valve 31.
  • the discharge line 40 of the pilot pump 28 is connected to the primary pressure port of the electromagnetic proportional pressure reducing valve 32, and the pressure oil discharged from the pilot pump 28 is supplied.
  • the secondary pressure output from the electromagnetic proportional pressure reducing valve 32 is controlled by the controller 100. Based on the arm pulling operation pressure PIai detected by the pressure sensor 26b, the controller 100 applies the secondary pressure of the electromagnetic proportional pressure reducing valve 32 so that the opening characteristic of the center bypass flow control valve 31 matches the opening characteristic CB of FIG. Control.
  • the primary pressure port is connected to the discharge line 40 of the pilot pump 28, and the secondary pressure port is connected to the operating pressure port 31a of the bypass flow control valve 31.
  • a valve 32 is further provided, and the controller 100 controls the secondary pressure of the second electromagnetic proportional pressure reducing valve 32 based on the characteristic that the operating pressure shown in FIG. 5 is the arm pulling operating pressure PIai.
  • the center bypass flow rate control valve 31 is driven by the electromagnetic proportional pressure reducing valve 32. By doing so, it is possible to finely adjust the opening characteristic of the center bypass flow rate control valve 31 at the time of arm pulling operation according to the work to be performed and the operator's preference, and it is possible to improve the work efficiency.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. It is also possible to add a part of the configuration of another embodiment to the configuration of one embodiment, delete a part of the configuration of one embodiment, or replace it with a part of another embodiment. It is possible.
  • Arm 2nd direction switching valve (1st) 2-way switching valve 21a ... Operating pressure port, 22 ... Bucket direction switching valve (1st direction switching valve), 23 ... Check valve, 24 ... Parallel throttle, 25 ... Boom pilot valve (1st operating device), 25a ... pressure sensor, 25b ... pressure sensor, 26 ... arm pilot valve (second operating device), 26a ... pressure sensor, 26b ... pressure sensor, 27 ... bucket pilot valve (first operating device), 27a ... pressure sensor, 27b ... Pressure sensor, 28 ... Pilot pump, 29 ... Pilot relief valve, 30 First electromagnetic proportional pressure reducing valve (spool stroke limiting device), 31 ... Center bypass flow control valve, 31a ... Operating pressure port, 32 ... Second electromagnetic proportional pressure reducing valve , 40 ... Discharge line, 41-43 ... Pilot line, 50 ... Hydraulic oil tank, 100 ... Controller (spool stroke limiting device), 200 ... Hydraulic excavator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

負荷の異なる複数の油圧アクチュエータを同時に動作させる場合の油圧損失を低減することにより燃料消費量を抑制し、かつ作業効率を向上することができる油圧ショベルを提供する。 油圧ショベルは、センタバイパスラインの最下流に配置されており、第2操作装置が操作された場合に、第2操作装置の操作量に応じて、センタバイパスラインを通過する圧油の流量を制限するセンタバイパス流量制御弁と、第1操作装置および第2操作装置が同時に操作された場合に、第3方向切換弁のスプールストローク量が第2操作装置の操作量に応じて制御されている状態で、第2方向切換弁のスプールストローク量を第1操作装置の操作量に応じて制限するスプールストローク制限装置とを備える。

Description

油圧ショベル
 本発明は、油圧ショベルに関する。
 油圧ショベルにはブーム、アーム、バケットとこれらを駆動するブームシリンダ、アームシリンダ、バケットシリンダなどの複数の油圧アクチュエータが搭載されている。一般に、油圧アクチュエータを駆動する圧油を吐出する油圧ポンプは油圧アクチュエータの数よりも少ないため、複数の油圧アクチュエータを同時に動作させる際には1つの油圧ポンプから吐出された圧油を複数の油圧アクチュエータに適切に分配する必要がある。このような油圧ショベルの従来技術を開示するものとして、例えば特許文献1,2がある。
 特許文献1記載の油圧回路は、バイパスライン(パラレルライン)の第1のアーム用方向切換弁(アーム第2方向切換弁)の手前に絞りが設けられており、水平引き(ブーム上げとアーム引きの複合動作)のようなブームシリンダの負荷圧に対してアームシリンダの負荷圧が低い動作を行った場合であっても、第1のアーム用方向切換弁(アーム第2方向切換弁)に流入する圧油の流れを制限し、第1のブーム用方向切換弁(ブーム第1方向切換弁)に優先的に圧油が流れるように構成されている。
 このように構成された特許文献1記載の油圧回路において、水平引き動作においてブーム上げ操作を徐々に小さくしてブームシリンダに流入する圧油を減少させた場合であっても、バイパスライン(パラレルライン)を通ってアームシリンダに流入する圧油の流量は絞りによって制限されたままであるため、絞りにおいて発生する油圧損失によって作業効率の悪化や燃料消費量の増加を招くおそれがあった。
 一方、特許文献2記載の油圧回路は、特許文献1記載の油圧回路の問題点を解決すべく考案されたものであり、特許文献1記載の油圧回路におけるバイパスライン(パラレルライン)の絞りを取り除き、代わりに、アーム2速切換弁(アーム第2方向切換弁)とアーム操作レバー(アームパイロット弁)の手前に電磁比例減圧弁を設け、アーム2速切換弁(アーム第2方向切換弁)を可変開口絞りのように用いることにより、水平引き動作時に発生する油圧損失を低減している。
特開昭58-146632号
特許5219691号
 特許文献1記載の油圧回路においては、水平引き動作においてブーム上げ操作を徐々に小さくしてブームシリンダに流入する圧油を減少させた場合であっても、バイパスライン(パラレルライン)を通ってアームシリンダに流入する圧油の流量は絞りによって制限されたままであるため、絞りにおいて発生する油圧損失によって作業効率の悪化や燃料消費量の増加を招くおそれがあった。
 一方、特許文献2記載の油圧回路においては、アーム2速切換弁(アーム第2方向切換弁)のスプールストローク量が一定量に制限されるため、水平引き動作中にアーム引き操作を大きくしていった場合であってもアーム2速切換弁(アーム第2方向切換弁)のセンタバイパス開口は閉じきらない。したがって、アーム2速切換弁(アーム第2方向切換弁)からアームシリンダに流入する圧油の量は増加しない。すなわち、特許文献2記載の油圧回路においては、油圧ポンプから吐出された圧油を有効に使い切ることができず、水平引き最大操作時のアーム引き速度が特許文献1記載の油圧回路に対して劣ってしまうという問題がある。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、負荷の異なる複数の油圧アクチュエータを同時に動作させる場合の油圧損失を低減することにより燃料消費量を抑制し、かつ作業効率を向上することができる油圧ショベルを提供することにある。
 上記目的を達成するために、本発明は、上部旋回体と下部走行体から成る本体と、前記本体に回動可能に連結されたブームと、前記ブームの先端部に回動可能に連結されたアームと、前記アームの先端部に回動可能に連結されたバケットと、第1油圧ポンプと、第2油圧ポンプと、前記第1油圧ポンプおよび前記第2油圧ポンプから圧油が供給され、前記ブームまたは前記バケットを駆動するブームシリンダまたはバケットシリンダと、前記第1油圧ポンプから圧油が供給され、前記アームを駆動するアームシリンダと、前記ブームシリンダまたは前記バケットシリンダの動作を指示する第1操作装置と、前記アームシリンダの動作を指示する第2操作装置と、前記第1操作装置の操作量に応じて前記第1油圧ポンプから前記ブームシリンダまたは前記バケットシリンダに供給される圧油の方向および流量を制御する第1方向切換弁と、前記第2操作装置の操作量に応じて前記第1油圧ポンプから前記アームシリンダに供給される圧油の方向および流量を制御する第2方向切換弁と、前記第2操作装置の操作量に応じて前記第2油圧ポンプから前記アームシリンダに供給される圧油の方向および流量を制御する第3方向切換弁とを備え、前記第1方向切換弁および前記第2方向切換弁は、前記第1油圧ポンプのセンタバイパスラインにタンデム接続され、かつ前記センタバイパスラインから分岐したパラレルラインにパラレル接続された油圧ショベルにおいて、前記センタバイパスラインの最下流に配置されており、前記第2操作装置が操作された場合に、前記第2操作装置の操作量に応じて、前記センタバイパスラインを通過する圧油の流量を制限するセンタバイパス流量制御弁と、前記第1操作装置および前記第2操作装置が同時に操作された場合に、前記第3方向切換弁のスプールストローク量が前記第2操作装置の操作量に応じて制御されている状態で、前記第2方向切換弁のスプールストローク量を前記第1操作装置の操作量に応じて制限するスプールストローク制限装置とを備えたものとする。
 以上のように構成した本発明によれば、第2操作装置が操作された場合に、第2操作装置の操作量に応じて、第1油圧ポンプからセンタバイパスラインを通過する流量が制限され、第1操作装置および第2操作装置が同時に操作された場合に、第3方向切換弁のスプールストローク量が第2操作装置の操作量に応じて制御されている状態で、第2方向切換弁のスプールストローク量が第1操作装置の操作量に応じて制限されるため、負荷の異なる複数の油圧アクチュエータを同時に動作させる場合の油圧損失を低減することにより燃料消費量を抑制し、かつ作業効率を向上することが可能となる。
 本発明によれば、負荷の異なる複数の油圧アクチュエータを同時に動作させる場合の油圧損失を低減することにより燃料消費量を抑制し、かつ作業効率を向上することが可能となる。
本発明の第1の実施例に係る油圧ショベルを示す側面図である。 本発明の第1の実施例に係る油圧ショベルの油圧回路図である。 本発明の第2の実施例に係る油圧ショベルの油圧回路図である。 方向切換弁の開口特性を示す図である。 センタバイパス流量制御弁の開口特性を示す図である。 コントローラによる電磁比例減圧弁の指令値演算を示すブロック図である。 アーム第2方向切換弁の目標メータイン開口面積の演算に使用する変換テーブルを示す図である。 コントローラによる電磁比例減圧弁の指令値の演算フローを示す図である。 特許文献1記載の油圧回路を示す図である。 特許文献2記載の油圧回路を示す図である。
 以下、本発明の実施の形態に係る油圧ショベルについて、図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。
 以下、本発明の第1の実施例を図1~図8に従って説明する。
 図1は、本実施例に係る油圧ショベルを示す側面図である。図1において、油圧ショベル200は、下部走行体2と、旋回自由に接続された上部旋回体1から成り、上部旋回体1には、ブーム3、アーム4、バケット5と、これらを駆動するブームシリンダ6、アームシリンダ7、バケットシリンダ8等の油圧シリンダが搭載されている。
 図2は、油圧ショベル200の油圧回路図である。本実施例では、ポジコン方式の油圧回路を例に説明する。図2において、可変容量型の油圧ポンプ9,10は、発動機11によって駆動される。第1油圧ポンプ9は、ブーム第1方向切換弁18、バケット方向切換弁22及びアーム第2方向切換弁21に圧油を供給する。方向切換弁18,22,21は、第1油圧ポンプ9のセンタバイパスライン12によってタンデム接続されており、かつ、センタバイパスライン12から分岐したパラレルライン13によってパラレルに接続されている。第2油圧ポンプ10は、ブーム第2方向切換弁19及びアーム第1方向切換弁20に圧油を供給する。方向切換弁19,20は、第2油圧ポンプ10のセンタバイパスライン14によってタンデム接続されており、かつ、センタバイパスライン14から分岐したパラレルライン15によってパラレルに接続されている。センタバイパスライン12,14は、最下流で作動油タンク50に接続されており、油圧アクチュエータ6~8が操作されていない時に油圧ポンプ9,10から吐出された作動油を作動油タンク50に排出することにより、ポンプ負荷を低く抑えることができる。方向切換弁18~22とパラレルライン13,15との間には逆止弁23が設けられており、油圧シリンダからパラレルラインに圧油が逆流するのを防いでいる。パラレルライン13,15にはリリーフ弁16,17が接続されており、油圧回路内の圧力が高くなり過ぎて油圧機器が破損するのを防いでいる。
 方向切換弁18~22はタンデムセンタ型スプール弁であり、パイロット弁25~27から出力された2次圧によって作動する。パイロット弁25~27は手動式の減圧弁であり、発動機11によって駆動される固定容量型のパイロットポンプ28から吐出された圧油をレバー操作量に応じて減圧し、2次圧として出力する。また、パイロットポンプ28の吐出ライン40にはパイロットリリーフ弁29が設けられており、吐出ライン40の圧力は一定に保たれる。パイロット弁25~27の2次圧ポートと方向切換弁18~22の操作圧ポートとを接続する油路上には、圧力センサ25a,25b,26a,26b,27a,27bが設けられており、各パイロット弁の2次圧を検知することができる。
 センタバイパスライン12の最下流には、センタバイパス流量制御弁31が設けられている。センタバイパス流量制御弁31の操作圧ポート31aは、パイロットライン41を介してアームパイロット弁26のアーム引き(アームクラウド)側の2次圧ポートに接続されている。これにより、センタバイパス流量制御弁31の操作圧ポート31aには、アームパイロット弁26のアーム引き側の2次圧が作用する。アーム第2方向切換弁21のアーム引き側の操作圧ポート21aは、パイロットライン42を介して電磁比例減圧弁30の2次圧ポートに接続されている。電磁比例減圧弁30の1次圧ポートは、パイロットライン41を介してアームパイロット弁26のアーム引き側の2次圧ポートに接続されている。電磁比例減圧弁30により、操作圧ポート21aに作用する操作圧を制限することができる。
 圧力センサ25a,25b,26a,26b,27a,27b及び電磁比例減圧弁30は、コントローラ100に接続されており、コントローラ100は圧力センサ25a,25b,26a,26b,27a,27bによって検知された操作圧に基づいて電磁比例減圧弁30の2次圧を制御する。
 図4に方向切換弁18~22の開口特性を示す。図4(a)に示すように、方向切換弁18~22は6ポート3位置のスプール弁であり、メータイン開口(PC)、メータアウト開口(CT)及びセンタバイパス開口(PT)の3つの開口を有している。各開口PC,CT,PTは図4(b)に示したような特性となっており、レバー操作量に応じてパイロット弁25~27から出力される操作圧に応じて、最適な流量の圧油が油圧シリンダ6~8に流入するように制御することができる。
 図5にセンタバイパス流量制御弁31の開口特性を示す。センタバイパス流量制御弁31の開口特性CBは、従来技術(図9に示す)におけるアーム第2方向切換弁21のアーム引き動作時のPT開口と同様の特性を有し、操作圧が増加するにしたがってセンタバイパス流量制御弁31の開口面積が減少する特定となっている。より詳しくは、操作圧が低い領域において開口面積を最大開口面積から半分程度に絞るようにし、操作圧がそれに比べて高い領域では操作圧が高くなるにつれ徐々に開口面積が減少するものとしている。
 コントローラ100の作動について、図6~図8に従って説明する。
 図6は、コントローラ100による電磁比例減圧弁30の指令値演算を示すブロック図である。図6において、コントローラ100は、アーム第2方向切換弁21の目標メータイン開口(PC)面積を演算する開口面積演算部C01と、開口面積演算部C01で演算された開口面積のうち最小のものを選択する最小値選択部D01と、ブーム上げ、バケット引き、バケット押しのいずれかの操作が実施されたかどうかを判定する動作判定部SW01とを有する。
 開口面積演算部C01では、アーム引き操作圧PIai、ブーム上げ操作圧PIbu、バケット引き(バケットクラウド)操作圧PIbi及びバケット押し(バケットダンプ)操作圧PIboのそれぞれに対応する変換テーブルT01~T04によって、各操作圧に応じたアーム第2方向切換弁21の目標メータイン開口(PC)面積を演算する。
 図7は、アーム第2方向切換弁21の目標メータイン開口面積の演算に使用する変換テーブルを示す図である。
 図7(a)に変換テーブルT01の特性を示す。変換テーブルT01では、アーム引き(アームクラウド)操作圧PIaiが一定の値(PI0)までは一定の開口面積Aoとなっており、アーム引き操作圧PIaiが一定の値PI0を超えると開口面積は増大してゆき、アーム引き操作圧PIaiが最大操作圧PImaxに達したときに最大開口面積Amaxとなるような特性となっている。なお、開口面積Aoは、例えば、従来技術(図9に示す)における絞り24と同じ開口面積とすることによって、従来技術と同様のブーム上げ特性を得ることが出来る。
 図7(b)に変換テーブルT02の特性を示す。図7(b)において、実線で示した曲線は変換テーブルT02の特性、一点鎖線で示した曲線(PTbu)はブーム第1方向切換弁18のブーム上げ側のセンタバイパス開口(PT)特性を示している。変換テーブルT02では、ブーム上げ操作圧PIbuが一定の値(PImin)以下の領域では最大開口Amaxとなっており、ブーム上げ操作圧PIbuが増加して行き一定の値PIminを超えると開口面積は減少してゆき、傾斜部Xを経て曲線PTbu上の開口面積よりも目標メータイン開口面積の最小値Abuだけ大きな開口面積となっている。なお、傾斜部Xの形状はブーム第1方向切換弁18のブーム上げ側のメータイン開口(PC)特性に応じて決定するものであり、曲線であっても良い。さらにブーム上げ操作圧PIbuが増加し最大操作圧PImaxに達すると、開口面積Abuで一定となる。
 図7(c)に変換テーブルT03の特性を示す。図7(c)において、実線で示した曲線は変換テーブルT03の特性、一点鎖線で示した曲線(PTbi)はバケット方向切換弁22のバケット引き側のセンタバイパス開口(PT)特性を示している。変換テーブルT03では、バケット引き操作圧PIbiが一定の値(PImin)以下の領域では最大開口面積Amaxとなっており、バケット引き操作圧PIbiが増加して行き一定の値PIminを超えると開口面積は減少してゆき、曲線PTbi上の開口面積よりも目標メータイン開口面積の最小値Abiだけ大きな開口面積となっている。さらにバケット引き操作圧PIbiが増加し最大操作圧PImaxに達すると、開口面積Abiで一定となる。
 図7(d)に変換テーブルT04の特性を示す。図7(d)において、実線で示した曲線は変換テーブルT04の特性、一点鎖線で示した曲線(PTbo)はバケット方向切換弁22のバケット押し側のセンタバイパス開口(PT)特性を示している。変換テーブルT04では、バケット押し操作圧PIboが一定の値(PImin)以下の領域では最大開口Amaxとなっており、バケット押し操作圧PIboが増加して行き一定の値PIminを超えると開口面積は減少してゆき、曲線PTbo上の開口面積よりも目標メータイン開口面積の最小値Aboだけ大きな開口面積となっている。さらにバケット押し操作圧PIboが増加し最大操作圧PImaxに達すると、開口面積Aboで一定となる。なお、変換テーブルT02~T04における目標メータイン開口面積の最小値Abu,Abi,Aboは、変換テーブルT01のおける目標メータイン開口面積の最小値Aoと同じ値に設定しても良いし、別の値を設定しても良い。
 図6に戻り、動作判定部SW01では、ブーム上げ操作圧PIbu、バケット引き操作圧PIbi及びバケット押し操作圧PIboのいずれかが判定値PIth以上である場合、最小値選択部D01の出力値を出力し、ブーム上げ操作圧PIbu、バケット引き操作圧PIbi及びバケット押し操作圧PIboのいずれも判定値PIth未満の場合、最大開口面積Amaxを出力する。最大開口面積Amaxは、アーム第2方向切換弁21のアーム引き操作時のPC開口特性の最大開口面積以上の値に設定される。
 変換テーブルT05は、動作判定部D01から出力された開口面積に対応する電磁比例減圧弁30の2次圧の目標値を演算する。変換テーブルT05の特性は、アーム第2方向切換弁21のアーム引き操作時のメータイン開口(PC)特性の縦軸と横軸を入れ替えた特性になっている。変換テーブルT06は、変換テーブルT05から出力された目標圧力に対応する電磁比例減圧弁30の駆動電流Irdを演算し、電磁比例減圧弁30へ駆動電流Irdを出力する。変換テーブルT06の特性は、電磁比例減圧弁30の電流-圧力特性の縦軸と横軸を入れ替えた特性となる。
 図8は、コントローラ100による電磁比例減圧弁30の指令値の演算フローを示す図であり、図6の演算ブロック図をフローチャートで示したものである。個々の演算については図6にて説明しているので、説明は省略する。
 このように構成された本実施例の実際の作動について、場面を分けて説明する。
 <アーム引き単独動作を行う場合>
 オペレータがアームパイロット弁26をアーム引き方向に操作すると、アームパイロット弁26のアーム引き側2次圧ポートから操作量に応じたアーム引き操作圧PIaiが出力される。アーム引き操作圧PIaiはアーム第1方向切換弁20のアーム引き側の操作圧ポート20a、センタバイパス流量制御弁31の操作圧ポート31a及び電磁比例減圧弁30の1次圧ポートに作用し、その圧力は圧力センサ26bによって検知され、コントローラ100に入力される。このとき、ブーム上げ操作圧PIbu、バケット引き操作圧PIbi及びバケット押し操作圧PIboはいずれもゼロであり、PIth未満であるので、コントローラ100は、SW01において最大開口面積Amaxを出力する。従って、変換テーブルT05によって演算される電磁比例減圧弁30の2次圧の目標値は、アーム第2方向切換弁21の最大ストローク時の操作圧と同等となるため、アーム第2方向切換弁21のストローク量は制限されない。
 この結果、アーム第1方向切換弁20、アーム第2方向切換弁21及びセンタバイパス流量制御弁31はいずれもアーム引き操作圧PIaiに応じてストロークするので、油圧ポンプ9,10から吐出された圧油はアーム第1方向切換弁20及びアーム第2方向切換弁21を通過してアームシリンダ7に流入する。これにより、アーム引き単独動作の場合はアーム第2方向切換弁21のストローク量は制限されず、レバー操作通りにアーム4が動作する。
 <水平引き動作を行う場合(最大速度)>
 最大速度で水平引き動作を行う場合、オペレータはまずブームパイロット弁25及びアームパイロット弁26を最大に操作し、その後アームパイロット弁26は最大操作のまま、バケット5の爪先が地面に沿うようにブームパイロット弁25の操作量を徐々に減少させてゆく。このとき、ブーム用の方向切換弁18,19にはブームパイロット弁25から出力されたブーム上げ操作圧PIbuが作用し、アーム第1方向切換弁20の操作圧ポート20a、電磁比例減圧弁30の1次圧ポート及びセンタバイパス流量制御弁31の操作圧ポート31aには、アームパイロット弁26から出力されたアーム引き操作圧PIaiが作用する。
 コントローラ100は、動作判定部SW01においてブーム上げ操作が行われたと判定し、開口面積演算部C01の処理を実行する。開口面積演算部C01の変換テーブルT01においては、アーム引き操作圧PIaiは最大操作圧PImaxであるので、変換テーブルT01は最大開口面積Amaxを出力する。変換テーブルT02においては、ブーム上げ操作圧PIbuは最大操作量PImaxからゼロまで変化するので、ブーム上げ操作圧PIbuに応じた開口面積Aを出力する。変換テーブルT03,T04においては、バケット引き操作圧PIbi及びバケット押し操作圧PIboはいずれもゼロ(PImin未満)であるので、変換テーブルT03,T04はいずれも最大開口面積Amaxを出力する。最小値選択部D01において、変換テーブルT01,T03,T04の出力はいずれも最大開口面積Amaxであるので、最小値選択部D01では変換テーブルT02の出力が常に出力される。従って、電磁比例減圧弁30の2次圧は、アーム第2方向切換弁21のアーム引き側メータイン開口(PC)が、変換テーブルT02から出力された開口面積となるように制御される。
 最大速度で水平引き動作を行う場合、アーム引き操作圧PIaiは最大操作量PImaxで一定に操作され、ブーム上げ操作圧PIbuは、水平引き開始時は最大操作量PImaxに操作された後、徐々に減少して行き、アーム4が地面に対して鉛直になる時点で操作レバー(アームパイロット弁26)が中立に操作されてゼロとなる。このとき、ブーム用の方向切換弁18,19はブーム上げ操作量PIbuに従って作動し、アーム第1方向切換弁20及びセンタバイパス流量制御弁31は、最大ストローク状態となる。また、アーム第2方向切換弁21のアーム引き側メータイン開口(PC)は、水平引き開始時は開口面積Abuであり、そこからブーム上げ操作圧PIbuが減少するに従って徐々に増加し、アーム4が地面に対して鉛直となった時点で、操作レバー(アームパイロット弁26)が中立に操作されてブーム上げ操作圧PIbuがゼロとなると、最大開口面積(スプールストローク量制限なし)となる。
 この結果、第1油圧ポンプ9から吐出された圧油は、水平引き開始時はほぼ全量がブームシリンダ6に流入するが、水平引き中盤以降ブーム上げ操作量PIbuが減少すると、徐々にアームシリンダ7に流入する流量が増加して行き、水平引き終盤になりブーム上げ操作量PIbuがゼロとなると、全量がアームシリンダ7に流入するようになる。一方、第2油圧ポンプ10から吐出された圧油は、ブームシリンダ6の負荷圧に対してアームシリンダ7の負荷圧が小さいため、ほぼ全量がアームシリンダ7に流入する。
 このように作動することによって、水平引き開始時はブームシリンダ6に優先的に圧油を供給してブーム上げ速度を確保し、水平引き中盤ではブーム上げ操作量の減少に応じてアームシリンダ7に流入する圧油の流量を滑らかに増加させ、水平引き終盤では変換テーブルT02の傾斜部Xによって、ブーム上げ操作を終了するときに急激にアーム速度が増加するのを抑え、滑らかにアーム速度を増加させることが出来る。これにより、水平引き時の作業効率を向上するとともに絞りによる油圧損失を低減することが出来る。
 <水平引き動作を行う場合(中間速度)>
 中間速度で水平引きを行う場合、最大速度で水平引きを行う場合に対してアーム引き操作圧PIaiのみ異なる。ここで、中間速度で水平引きを行う場合のアーム引き操作圧PIaiが図7(a)のPI0以下とした場合、変換テーブルT01から出力される開口面積AはAoとなるので、アーム第2方向切換弁21のアーム引き側メータイン開口(PC)面積は高々Aoに制限される。
 その結果、中間速度で水平引き動作を行う場合は、第1油圧ポンプ9から吐出された圧油はほとんどブームシリンダ6に流入し、第2油圧ポンプ10から吐出された圧油はほとんどアームシリンダ7に流入する。これにより、中間速度で水平引きを行う場合はブームシリンダに優先的に圧油を供給し、良好な作業性を実現することが出来る。
 <アーム引きとバケット引き又はバケット押しを同時に行う場合>
 アーム引きとバケット引き又はバケット押しを同時に行う場合については、上記水平引き時の作動におけるブーム上げ動作をバケット引き又はバケット押し動作に置き換えるだけであるので、説明は省略する。
 以下、本実施例に係る油圧ショベル200により得られる効果を従来技術と比較して説明する。
 図9は特許文献1記載の油圧回路(比較例1)を示す図であり、図10は特許文献2記載の油圧回路(比較例2)を示す図である。
 図9に示す油圧回路では、パラレルライン13のアーム第2方向切換弁21の手前に絞り24が設けられており、水平引き(ブーム上げとアーム引きの複合動作)のようなブームシリンダ6の負荷圧に対してアームシリンダ7の負荷圧が低い動作を行った場合であっても、アーム第2方向切換弁21に流入する圧油の流れを制限し、ブーム第1方向切換弁18に優先的に圧油が流れるように構成されている。
 このように構成された油圧回路においては、水平引き動作においてブーム上げ操作を徐々に小さくしてブームシリンダ6に流入する圧油を減少させた場合であっても、パラレルライン13を通ってアームシリンダ7に流入する圧油の流量は絞り24によって制限されたままであるため、絞り24において発生する油圧損失によって作業効率の悪化や燃料消費量の増加を招くおそれがあった。
 一方、図10に示す油圧回路は、特許文献1記載の油圧回路の問題点を解決すべく考案されたものである。図9に示す油圧回路との相違点は、パラレルライン13の絞り24を取り除き、代わりに、アーム第2方向切換弁21とアームパイロット弁26の手前に電磁比例減圧弁30を設けることにより、アーム第2方向切換弁21を可変開口絞りのように用い、水平引き動作時に発生する油圧損失を低減している点である。
 図9に示す油圧回路においては、水平引きを最大速度(アーム引き操作最大)で行った場合、アーム第2方向切換弁21のセンタバイパス開口は閉じているので、ブーム第1方向切換弁18のセンタバイパス開口を通過した圧油はアーム第2方向切換弁21からアームシリンダ7に流入しアーム引き速度を増加させる。
 一方、図10に示す油圧回路においては、アーム第2方向切換弁21のスプールストローク量が一定量に制限されるため、水平引き動作中にアーム引き操作を大きくしていった場合であってもアーム第2方向切換弁21のセンタバイパス開口は閉じきらない。したがって、アーム第2方向切換弁21からアームシリンダ7に流入する圧油の量は増加しない。すなわち、図10に示す油圧回路においては、油圧ポンプ9から吐出された圧油を有効に使い切ることができず、水平引き最大操作時のアーム引き速度が図9に示す油圧回路に対して劣ってしまうという問題がある。
 これに対し、本実施例では、上部旋回体1と下部走行体2から成る本体と、前記本体に回動可能に連結されたブーム3と、ブーム3の先端部に回動可能に連結されたアーム4と、アーム4の先端部に回動可能に連結されたバケット5と、第1油圧ポンプ9と、第2油圧ポンプ10と、第1油圧ポンプ9および第2油圧ポンプ10から圧油が供給され、ブーム3またはバケット5を駆動するブームシリンダ6またはバケットシリンダ8と、第1油圧ポンプ9から圧油が供給され、アーム4を駆動するアームシリンダ7と、ブームシリンダ6またはバケットシリンダ8の動作を指示する第1操作装置25,27と、アームシリンダ7の動作を指示する第2操作装置26と、第1操作装置25,27の操作量に応じて第1油圧ポンプ9からブームシリンダ6またはバケットシリンダ8に供給される圧油の方向および流量を制御する第1方向切換弁18,22と、第2操作装置26の操作量に応じて第1油圧ポンプ9からアームシリンダ7に供給される圧油の方向および流量を制御する第2方向切換弁21と、第2操作装置26の操作量に応じて第2油圧ポンプ10からアームシリンダ7に供給される圧油の方向および流量を制御する第3方向切換弁20とを備え、第1方向切換弁18,22および第2方向切換弁21は、第1油圧ポンプ9のセンタバイパスライン12にタンデム接続され、かつセンタバイパスライン12から分岐したパラレルライン13にパラレル接続された油圧ショベル200において、センタバイパスライン12の最下流に配置されており、第2操作装置26が操作された場合に、第2操作装置26の操作量に応じて、センタバイパスライン12を通過する圧油の流量を制限するセンタバイパス流量制御弁31と、第1操作装置25,27および第2操作装置26が同時に操作された場合に、第3方向切換弁20のスプールストローク量が第2操作装置26の操作量に応じて制御されている状態で、第2方向切換弁21のスプールストローク量を第1操作装置25,27の操作量に応じて制限するスプールストローク制限装置30,100とを備える。
 また、本実施例に係る油圧ショベル200は、第1操作装置25,27は、第1操作装置25,27の操作量に応じてパイロットポンプ28の吐出圧を減圧し、第1方向切換弁18,22の操作圧として出力するブームパイロット弁25およびバケットパイロット弁27を有し、第2操作装置26は、第2操作装置26の操作量に応じてパイロットポンプ28の吐出圧を減圧し、第2方向切換弁21および第3方向切換弁20の操作圧として出力するアームパイロット弁26を有する。
 また、本実施例に係る油圧ショベル200は、アームパイロット弁26から出力されるアーム引き操作圧PIai、ブームパイロット弁25から出力されるブーム上げ操作圧PIbu、バケットパイロット弁27から出力されるバケット引き操作圧PIbi、およびバケットパイロット弁27から出力されるバケット押し操作圧PIboを検出する圧力センサ26b,25a,27a,27bを更に備え、スプールストローク制限装置30,100は、アームパイロット弁26のアーム引き側の2次圧ポートに1次圧ポートが接続され、第2方向切換弁21のアーム引き側の操作圧ポート21aに2次圧ポートが接続された第1電磁比例減圧弁30と、アーム引き操作圧PIai、ブーム上げ操作圧PIbu、バケット引き操作圧PIbi、およびバケット押し操作圧PIboのそれぞれに基づいて決定した第2方向切換弁21の目標メータイン開口面積のうち最も値の小さい目標メータイン開口面積に基づいて第1電磁比例減圧弁30の2次圧を制御するコントローラと100を有する。
 以上のように構成した本実施例に係る油圧ショベル200によれば、第2操作装置26が操作された場合に、第2操作装置26の操作量に応じて、センタバイパスライン12を通過する流量が制限され、第1操作装置25,27および第2操作装置26が同時に操作された場合に、第3方向切換弁20のスプールストローク量が第2操作装置26の操作量に応じて制御されている状態で、第2方向切換弁21のスプールストローク量が第1操作装置25,27の操作量に応じて制限されるため、負荷の異なる複数の油圧アクチュエータ6~8を同時に動作させる場合の油圧損失を低減することにより燃料消費量を抑制し、かつ作業効率を向上することが可能となる。
 また、コントローラ100は、ブーム上げ操作圧PIbu、バケット引き操作圧PIbi、およびバケット押し操作圧PIboの全てが所定の圧力PIth以下の場合に、第1電磁比例減圧弁30の目標開口面積を最大開口面積Amaxとする。これにより、水平引き動作以外でアームシリンダ7を駆動する際に、アーム第2方向切換弁21のスプールストローク量が制限されないため、アームパイロット弁26の操作量に応じて第1油圧ポンプ9からアームシリンダ7に圧油を供給することが可能となる。
 また、コントローラ100は、アーム引き操作圧PIai、ブーム上げ操作圧PIbu、バケット引き操作圧PIbi、およびバケット押し操作圧PIboのそれぞれに対応する第2方向切換弁21の目標メータイン開口面積の最小値Ao,Abu,Abi,Aboを個別に設定できる。これにより、実施する作業やオペレータの好みに応じてアーム第2方向切換弁21のメータイン開口特性を微調整できるため、作業効率を向上することが可能となる。
 図3は、本発明の第2の実施例に係る油圧ショベル200の油圧回路を示したものである。以下、第1の実施例と異なる部分について説明する。
 センタバイパス流量制御弁31の操作圧ポート31aは、パイロットライン43を介して電磁比例減圧弁32の2次圧ポートに接続されている。センタバイパス流量制御弁31の操作圧ポート31aには、電磁比例減圧弁32から出力される2次圧が作用する。電磁比例減圧弁32の1次圧ポートには、パイロットポンプ28の吐出ライン40が接続されており、パイロットポンプ28から吐出された圧油が供給される。電磁比例減圧弁32から出力される2次圧は、コントローラ100によって制御される。コントローラ100は、圧力センサ26bが検知したアーム引き操作圧PIaiに基づいて、センタバイパス流量制御弁31の開口特性が図5の開口特性CBと一致するように電磁比例減圧弁32の2次圧を制御する。
 本実施例に係る油圧ショベル200は、パイロットポンプ28の吐出ライン40に1次圧ポートが接続され、バイパス流量制御弁31の操作圧ポート31aに2次圧ポートが接続された第2電磁比例減圧弁32を更に備え、コントローラ100は、図5に示された操作圧をアーム引き操作圧PIaiとした特性に基づいて第2電磁比例減圧弁32の2次圧を制御する。
 以上のように構成された本実施例に係る油圧ショベル200によれば、第1の実施例と同様の効果を得られるだけでなく、センタバイパス流量制御弁31を電磁比例減圧弁32で駆動するようにしたことによって、実施する作業やオペレータの好みに応じてアーム引き操作時のセンタバイパス流量制御弁31の開口特性を微調整することが可能となり、作業効率を向上することが可能となる。
 以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。
 1…上部旋回体(本体)、2…下部走行体(本体)、3…ブーム、4…アーム、5…バケット、6…ブームシリンダ、7…アームシリンダ、8…バケットシリンダ、9…第1油圧ポンプ、10…第2油圧ポンプ、11…発動機、12…センタバイパスライン、13…パラレルライン、14…センタバイパスライン、15…パラレルライン、16,17…リリーフ弁、18…ブーム第1方向切換弁(第1方向切換弁)、19…ブーム第2方向切換弁、20…アーム第1方向切換弁(第3方向切換弁)、20a…操作圧ポート、21…アーム第2方向切換弁(第2方向切換弁)、21a…操作圧ポート、22…バケット方向切換弁(第1方向切換弁)、23…逆止弁、24…パラレル絞り、25…ブームパイロット弁(第1操作装置)、25a…圧力センサ、25b…圧力センサ、26…アームパイロット弁(第2操作装置)、26a…圧力センサ、26b…圧力センサ、27…バケットパイロット弁(第1操作装置)、27a…圧力センサ、27b…圧力センサ、28…パイロットポンプ、29…パイロットリリーフ弁、30 第1電磁比例減圧弁(スプールストローク制限装置)、31…センタバイパス流量制御弁、31a…操作圧ポート、32…第2電磁比例減圧弁、40…吐出ライン、41~43…パイロットライン、50…作動油タンク、100…コントローラ(スプールストローク制限装置)、200…油圧ショベル。

Claims (6)

  1.  上部旋回体と下部走行体から成る本体と、
     前記本体に回動可能に連結されたブームと、
     前記ブームの先端部に回動可能に連結されたアームと、
     前記アームの先端部に回動可能に連結されたバケットと、
     第1油圧ポンプと、
     第2油圧ポンプと、
     前記第1油圧ポンプおよび前記第2油圧ポンプから圧油が供給され、前記ブームまたは前記バケットを駆動するブームシリンダまたはバケットシリンダと、
     前記第1油圧ポンプから圧油が供給され、前記アームを駆動するアームシリンダと、
     前記ブームシリンダまたは前記バケットシリンダの動作を指示する第1操作装置と、
     前記アームシリンダの動作を指示する第2操作装置と、
     前記第1操作装置の操作量に応じて前記第1油圧ポンプから前記ブームシリンダまたは前記バケットシリンダに供給される圧油の方向および流量を制御する第1方向切換弁と、
     前記第2操作装置の操作量に応じて前記第1油圧ポンプから前記アームシリンダに供給される圧油の方向および流量を制御する第2方向切換弁と、
     前記第2操作装置の操作量に応じて前記第2油圧ポンプから前記アームシリンダに供給される圧油の方向および流量を制御する第3方向切換弁とを備え、
     前記第1方向切換弁および前記第2方向切換弁は、前記第1油圧ポンプのセンタバイパスラインにタンデム接続され、かつ前記センタバイパスラインから分岐したパラレルラインにパラレル接続された油圧ショベルにおいて、
     前記センタバイパスラインの最下流に配置されており、前記第2操作装置が操作された場合に、前記第2操作装置の操作量に応じて、前記センタバイパスラインを通過する圧油の流量を制限するセンタバイパス流量制御弁と、
     前記第1操作装置および前記第2操作装置が同時に操作された場合に、前記第3方向切換弁のスプールストローク量が前記第2操作装置の操作量に応じて制御されている状態で、前記第2方向切換弁のスプールストローク量を前記第1操作装置の操作量に応じて制限するスプールストローク制限装置とを備えた
     ことを特徴とする油圧ショベル。
  2.  請求項1に記載の油圧ショベルにおいて、
     パイロットポンプを更に備え、
     前記第1操作装置は、前記第1操作装置の操作量に応じて前記パイロットポンプの吐出圧を減圧し、前記第1方向切換弁の操作圧として出力するブームパイロット弁およびバケットパイロット弁を有し、
     前記第2操作装置は、前記第2操作装置の操作量に応じて前記パイロットポンプの吐出圧を減圧し、前記第2方向切換弁および前記第3方向切換弁の操作圧として出力するアームパイロット弁を有する
     ことを特徴とする油圧ショベル。
  3.  請求項2に記載の油圧ショベルにおいて、
     前記アームパイロット弁から出力されるアーム引き操作圧、前記ブームパイロット弁から出力されるブーム上げ操作圧、前記バケットパイロット弁から出力されるバケット引き操作圧、および前記バケットパイロット弁から出力されるバケット押し操作圧を検出する圧力センサを更に備え、
     前記スプールストローク制限装置は、
     前記アームパイロット弁のアーム引き側の2次圧ポートに1次圧ポートが接続され、前記第2方向切換弁のアーム引き側の操作圧ポートに2次圧ポートが接続された第1電磁比例減圧弁と、
     前記アーム引き操作圧、前記ブーム上げ操作圧、前記バケット引き操作圧、および前記バケット押し操作圧のそれぞれに基づいて決定した前記第2方向切換弁の目標メータイン開口面積のうち最も値の小さい目標メータイン開口面積に基づいて前記第1電磁比例減圧弁の2次圧を制御するコントローラとを有する
     ことを特徴とする油圧ショベル。
  4.  請求項3に記載の油圧ショベルにおいて、
     前記パイロットポンプの吐出ラインに1次圧ポートが接続され、前記センタバイパス流量制御弁の操作圧ポートに2次圧ポートが接続された第2電磁比例減圧弁を更に備え、
     前記コントローラは、前記アーム引き操作圧に基づいて前記第2電磁比例減圧弁の2次圧を制御する
     ことを特徴とする油圧ショベル。
  5.  請求項3に記載の油圧ショベルにおいて、
     前記コントローラは、前記ブーム上げ操作圧、前記バケット引き操作圧、および前記バケット押し操作圧の全てが所定の圧力以下の場合に、前記第1電磁比例減圧弁の目標開口面積を最大開口面積とする
     ことを特徴とする油圧ショベル。
  6.  請求項3に記載の油圧ショベルにおいて、
     前記コントローラは、前記アーム引き操作圧、前記ブーム上げ操作圧、前記バケット引き操作圧、および前記バケット押し操作圧のそれぞれに対応する前記第2方向切換弁の目標メータイン開口面積の最小値を個別に設定できる
     ことを特徴とする油圧ショベル。
PCT/JP2019/048766 2019-03-20 2019-12-12 油圧ショベル WO2020188920A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/272,688 US11891779B2 (en) 2019-03-20 2019-12-12 Hydraulic excavator
CN201980055518.6A CN112601866B (zh) 2019-03-20 2019-12-12 液压挖掘机
KR1020217005263A KR102508281B1 (ko) 2019-03-20 2019-12-12 유압 셔블
EP19920521.2A EP3832031B1 (en) 2019-03-20 2019-12-12 Hydraulic shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053782 2019-03-20
JP2019053782A JP7221101B2 (ja) 2019-03-20 2019-03-20 油圧ショベル

Publications (1)

Publication Number Publication Date
WO2020188920A1 true WO2020188920A1 (ja) 2020-09-24

Family

ID=72519785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048766 WO2020188920A1 (ja) 2019-03-20 2019-12-12 油圧ショベル

Country Status (6)

Country Link
US (1) US11891779B2 (ja)
EP (1) EP3832031B1 (ja)
JP (1) JP7221101B2 (ja)
KR (1) KR102508281B1 (ja)
CN (1) CN112601866B (ja)
WO (1) WO2020188920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033080A1 (ja) * 2021-08-31 2023-03-09 日立建機株式会社 建設機械

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4191073A1 (en) * 2020-12-24 2023-06-07 Hitachi Construction Machinery Co., Ltd. Work machine
JP7379631B1 (ja) * 2022-09-30 2023-11-14 日立建機株式会社 作業機械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219691B2 (ja) 1972-10-11 1977-05-30
JPS58146632A (ja) 1982-02-24 1983-09-01 Hitachi Constr Mach Co Ltd 土木建設機械の油圧駆動システム
JPH07119709A (ja) * 1993-10-28 1995-05-09 Hitachi Constr Mach Co Ltd 油圧ポンプ制御装置
JP2007192344A (ja) * 2006-01-20 2007-08-02 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2013543086A (ja) * 2010-09-09 2013-11-28 ボルボ コンストラクション イクイップメント アーベー 建設機械用可変容量型油圧ポンプの流量制御装置
JP2014001769A (ja) * 2012-06-15 2014-01-09 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械の油圧回路及びその制御装置
JP2015036495A (ja) * 2013-08-13 2015-02-23 日立建機株式会社 作業車両

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393195B1 (en) * 1988-06-17 1994-01-12 Kabushiki Kaisha Kobe Seiko Sho Fluid control mechanism for power shovels
JP2848900B2 (ja) 1989-10-18 1999-01-20 東芝機械株式会社 負荷圧補償ポンプ吐出流量制御回路
JP3267691B2 (ja) * 1992-08-31 2002-03-18 カヤバ工業株式会社 アクチュエータの制御装置
KR950019256A (ko) * 1993-12-30 1995-07-22 김무 스윙 가변 우선이 가능한 중장비용 유압회로
JP2892939B2 (ja) * 1994-06-28 1999-05-17 日立建機株式会社 油圧掘削機の油圧回路装置
JP3501902B2 (ja) * 1996-06-28 2004-03-02 コベルコ建機株式会社 建設機械の制御回路
JP2000170212A (ja) * 1998-07-07 2000-06-20 Yutani Heavy Ind Ltd 作業機械の油圧制御装置
JP3634980B2 (ja) * 1999-05-21 2005-03-30 新キャタピラー三菱株式会社 建設機械の制御装置
JP2002106507A (ja) * 2000-07-27 2002-04-10 Komatsu Ltd 液圧アクチュエータの流量制御装置
JP2003156006A (ja) 2001-11-16 2003-05-30 Shin Caterpillar Mitsubishi Ltd 流体圧回路および流体圧回路制御方法
JP5219691B2 (ja) 2008-08-21 2013-06-26 住友建機株式会社 油圧ショベルの油圧回路
US8607557B2 (en) * 2009-06-22 2013-12-17 Volvo Construction Equipment Holding Sweden Ab Hydraulic control system for excavator
JP5388787B2 (ja) * 2009-10-15 2014-01-15 日立建機株式会社 作業機械の油圧システム
JP2012036665A (ja) 2010-08-10 2012-02-23 Tadao Osuga 油圧ショベルの油圧回路
JP5528276B2 (ja) * 2010-09-21 2014-06-25 株式会社クボタ 作業機の油圧システム
KR20140074306A (ko) * 2011-10-07 2014-06-17 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 작업장치 구동 제어시스템
JP5758348B2 (ja) * 2012-06-15 2015-08-05 住友建機株式会社 建設機械の油圧回路
JP6089665B2 (ja) * 2012-12-13 2017-03-08 コベルコ建機株式会社 建設機械の油圧制御装置
JP6220227B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 油圧ショベル駆動システム
JP6196567B2 (ja) 2014-03-06 2017-09-13 川崎重工業株式会社 建設機械の油圧駆動システム
CN103882901B (zh) * 2014-03-11 2016-01-20 山河智能装备股份有限公司 挖掘机回转制动能量回收控制方法
JP6013389B2 (ja) * 2014-03-24 2016-10-25 日立建機株式会社 作業機械の油圧システム
US9869311B2 (en) * 2015-05-19 2018-01-16 Caterpillar Inc. System for estimating a displacement of a pump
CN108884843B (zh) * 2016-03-22 2020-09-01 住友建机株式会社 挖土机及挖土机用控制阀门
JP6746333B2 (ja) 2016-03-22 2020-08-26 住友建機株式会社 ショベル
WO2018021288A1 (ja) * 2016-07-29 2018-02-01 住友建機株式会社 ショベル、ショベル用コントロールバルブ
JP6803194B2 (ja) * 2016-10-25 2020-12-23 川崎重工業株式会社 建設機械の油圧駆動システム
EP3575615B1 (en) * 2018-03-15 2022-02-16 Hitachi Construction Machinery Co., Ltd. Construction machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219691B2 (ja) 1972-10-11 1977-05-30
JPS58146632A (ja) 1982-02-24 1983-09-01 Hitachi Constr Mach Co Ltd 土木建設機械の油圧駆動システム
JPH07119709A (ja) * 1993-10-28 1995-05-09 Hitachi Constr Mach Co Ltd 油圧ポンプ制御装置
JP2007192344A (ja) * 2006-01-20 2007-08-02 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2013543086A (ja) * 2010-09-09 2013-11-28 ボルボ コンストラクション イクイップメント アーベー 建設機械用可変容量型油圧ポンプの流量制御装置
JP2014001769A (ja) * 2012-06-15 2014-01-09 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械の油圧回路及びその制御装置
JP2015036495A (ja) * 2013-08-13 2015-02-23 日立建機株式会社 作業車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832031A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033080A1 (ja) * 2021-08-31 2023-03-09 日立建機株式会社 建設機械
JP7455285B2 (ja) 2021-08-31 2024-03-25 日立建機株式会社 建設機械

Also Published As

Publication number Publication date
US11891779B2 (en) 2024-02-06
US20210348366A1 (en) 2021-11-11
KR102508281B1 (ko) 2023-03-09
CN112601866B (zh) 2022-07-05
JP7221101B2 (ja) 2023-02-13
KR20210035857A (ko) 2021-04-01
JP2020153461A (ja) 2020-09-24
EP3832031B1 (en) 2024-03-20
EP3832031A1 (en) 2021-06-09
EP3832031A4 (en) 2022-05-11
CN112601866A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
JP6467515B2 (ja) 建設機械
KR101754290B1 (ko) 건설 기계의 유압 구동 장치
US9051712B2 (en) Hydraulic system for working machine
KR910009256B1 (ko) 토목건설기계의 유압구동장치
WO2020188920A1 (ja) 油圧ショベル
US10563377B2 (en) Hydraulic pump control system of hydraulic working machine
JPH09177139A (ja) 油圧ショベルの油圧回路
JP7404258B2 (ja) 流体回路
CN114555957A (zh) 再生装置、具备该再生装置的液压驱动***及其控制装置
US10330128B2 (en) Hydraulic control system for work machine
US11692332B2 (en) Hydraulic control system
JP6782852B2 (ja) 建設機械
JP2018145984A (ja) 建設機械の油圧駆動装置
JP2010059738A (ja) 作業機械の油圧制御回路
JP6989548B2 (ja) 建設機械
US11459729B2 (en) Hydraulic excavator drive system
JP4993363B2 (ja) 流体制御回路および作業機械
JP2010065733A (ja) 作業機械の油圧制御回路
JP2015031377A (ja) 油圧駆動装置
JP2004324208A (ja) 掘削旋回作業機の油圧回路
JP2022115075A (ja) 作業機
JP2010077750A (ja) 作業機械の油圧制御回路
JPS58176328A (ja) 油圧シヨベルの油圧回路
JPH0534458B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217005263

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019920521

Country of ref document: EP

Effective date: 20210301

NENP Non-entry into the national phase

Ref country code: DE