WO2020177575A1 - 一种绝缘阻值的检测方法、装置、电子设备及存储介质 - Google Patents

一种绝缘阻值的检测方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2020177575A1
WO2020177575A1 PCT/CN2020/076577 CN2020076577W WO2020177575A1 WO 2020177575 A1 WO2020177575 A1 WO 2020177575A1 CN 2020076577 W CN2020076577 W CN 2020076577W WO 2020177575 A1 WO2020177575 A1 WO 2020177575A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation resistance
signal
module
resistance value
insulation
Prior art date
Application number
PCT/CN2020/076577
Other languages
English (en)
French (fr)
Inventor
孙卫平
但志敏
张伟
侯贻真
李盟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020177575A1 publication Critical patent/WO2020177575A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters

Definitions

  • the embodiments of the present application relate to the field of integrated circuits, and in particular, to a method, device, electronic device, and storage medium for detecting insulation resistance.
  • the battery pack is one of the key components of electric vehicles, and its high-voltage safety must be one of the primary considerations of the battery system. Therefore, the detection of the insulation performance of electric vehicles is an essential part of the design.
  • Most of the existing insulation detection modules use the national standard method for insulation resistance detection.
  • the principle of the national standard method to detect the insulation resistance is to calculate the insulation resistance by detecting the voltage of the high-voltage positive and high-voltage negative terminals to the reference potential terminal, and bringing the detected voltage value into the formula.
  • the insulation resistance of the entire vehicle system can be detected only after the entire vehicle is applied to high voltage. Before the high voltage is applied to the whole vehicle, the insulation resistance of the whole vehicle system cannot be detected.
  • the purpose of the embodiments of the present application is to provide an insulation resistance detection method, device, electronic equipment, and storage medium, so that the insulation resistance detection of the entire vehicle system can be completed before the high voltage is applied.
  • the embodiments of the present application provide an insulation resistance detection method, which is applied to an insulation detection circuit.
  • the insulation detection circuit includes an isolation module, a voltage divider module, and a signal generation module.
  • the positive pole of the battery pack is connected, and the other end of the isolation module is connected to the signal generation module through the voltage divider module;
  • the insulation resistance detection method includes: before the high voltage is applied to the whole vehicle, the control signal generation module generates a signal; closes the main vehicle Any one of the switch modules; samples the first end of the voltage divider module to obtain the first signal; sample the second end of the voltage divider module to obtain the second signal; according to the first signal and the second signal, Determine the first insulation resistance value, the first insulation resistance value is the parallel value of the second insulation resistance value and the third insulation resistance value, where the second insulation resistance value is the insulation of the high voltage line inside the main switch module of the vehicle to the reference potential terminal The third insulation resistance value is the insulation resistance value of the high voltage line outside the main switch module of the vehicle to the reference potential terminal.
  • the embodiment of the present application also provides an insulation resistance detection device, which is applied to an insulation detection circuit.
  • the insulation detection circuit includes an isolation module, a voltage divider module, and a signal generation module. One end of the isolation module is connected to the positive pole of the battery pack of the vehicle.
  • the insulation resistance detection device includes: a first control module, a second control module, a first sampling module, a second sampling module, and a first determining module;
  • the first control module is used to control the signal generation module to generate a signal before applying high voltage to the vehicle;
  • the second control module is used to close any one of the main switch modules of the vehicle;
  • the first sampling module is used in the second After the control module closes any one of the main switch modules of the vehicle, it samples the first end of the voltage divider module to obtain the first signal;
  • the second sampling module is used to close the main switch of the vehicle in the second control module After any switch module in the module, the second end of the voltage divider module is sampled to obtain the second signal;
  • the first determination module is used to determine the first insulation resistance value and the first insulation resistance value according to the first signal and the second signal.
  • the resistance value is the parallel value of the second insulation resistance value and the third insulation resistance value, where the second insulation resistance value is the insulation resistance value of the high voltage line inside the main switch module of the vehicle to the reference potential end, and the third insulation resistance value is the integer The insulation resistance value of the high voltage line outside the main switch module of the vehicle to the reference potential terminal.
  • An embodiment of the present application provides an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by at least one processor, and the instructions are The processor executes, so that at least one processor can execute the insulation resistance detection method mentioned in the foregoing embodiment.
  • the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the insulation resistance detection method mentioned in the above-mentioned embodiment is implemented.
  • the signals at both ends of the voltage divider module are sampled, and the inside of the main switch module is determined according to the sampled signal.
  • the parallel value of the insulation resistance of the high voltage line to the reference potential end and the insulation resistance of the high voltage line outside the main switch module to the reference potential end makes it possible to complete the detection of the parallel value of the insulation resistance of the main switch module before applying the high voltage.
  • the insulation resistance test is completed before the high voltage is applied, which improves the safety performance of the vehicle.
  • the insulation resistance detection method further includes: determining a second insulation resistance; after determining the first insulation resistance according to the first signal and the second signal, The insulation resistance detection method further includes: determining the third insulation according to the first insulation resistance, the second insulation resistance, and the constraint relationship among the first insulation resistance, the second insulation resistance, and the third insulation resistance. Resistance.
  • the detection of the insulation resistance value of the reference potential end of the high voltage line outside the main switch module is completed before the high voltage is applied to the whole vehicle, which further improves the safety performance of the whole vehicle.
  • the insulation resistance value After determining the third insulation resistance value according to the first insulation resistance value, the second insulation resistance value, and the constraint relationship among the first insulation resistance value, the second insulation resistance value and the third insulation resistance value, the insulation resistance value The detection method also includes: judging whether the third insulation resistance value is abnormal; if it is determined that the third insulation resistance value is abnormal, perform the following operations for each electrical equipment of the entire vehicle: control the switch of the electrical equipment to close; determine the electrical equipment The third insulation resistance value after the switch is closed is judged whether the third insulation resistance value after the switch of the electrical equipment is closed is abnormal; if it is determined that it is, it is determined that the branch where the electrical equipment is located is faulty. In this implementation, the fault point where the insulation fault occurs can be found, and the intelligence of the insulation resistance detection device is improved.
  • the detection method of the insulation resistance value further includes: if it is determined that the third insulation resistance value is abnormal, reporting an insulation fault outside the main switch module.
  • the insulation fault can be reported in time, avoiding the high voltage on the entire vehicle in the case of insulation fault.
  • Determining the second insulation resistance value specifically includes: determining that the main switch module of the vehicle is in the off state; sampling the first end of the voltage divider module to obtain the third signal; sampling the second end of the voltage divider module to obtain The fourth signal; according to the third signal and the fourth signal, determine the second insulation resistance.
  • the insulation resistance detection method further includes: if the second insulation resistance value is determined to be abnormal, reporting an insulation fault inside the main switch module.
  • the insulation resistance detection method further includes: determining that the second insulation resistance is normal.
  • the insulation resistance detection method also includes: applying low voltage to the vehicle.
  • the signal generated by the signal generation module is a sine wave AC signal; according to the third signal and the fourth signal, the second insulation resistance value is determined, which specifically includes: according to the third signal and the fourth signal, determine the sine wave AC at the second end of the voltage divider module The first phase shift of the signal relative to the sine wave AC signal at the first end of the voltage divider module; according to formula a, calculate the second insulation resistance; where formula a is: In formula a, Rnp1 represents the second insulation resistance value, U 1 represents the amplitude of the third signal, ⁇ 1 represents the first phase shift, u 1 represents the amplitude of the fourth signal, R 1 represents the resistance value of the voltage divider module, and w represents The angular frequency of the sine wave AC signal, C 1 represents the capacitance value of the isolation module.
  • the signal generated by the signal generating module is a sine wave AC signal; according to the first signal and the second signal, determining the first insulation resistance value includes: determining the sine wave AC at the second end of the voltage divider module according to the first signal and the second signal The second phase shift of the signal relative to the sine wave AC signal at the first end of the voltage divider module; according to formula b, calculate the second insulation resistance; where formula b is: In formula b, Rnp represents the first insulation resistance value, U_2 represents the amplitude of the first signal, ⁇ _2 represents the second phase shift, u_2 represents the amplitude of the second signal, R_1 represents the resistance value of the voltage divider module, and w represents the sine wave AC signal The corner frequency, C_1 represents the capacitance value of the isolation module.
  • Rnp2 represents the third insulation resistance value
  • Rnp represents the first insulation resistance value
  • Rnp1 represents the second insulation resistance value
  • FIG. 1 is a flowchart of a method for detecting insulation resistance according to a first embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of the circuit of the entire vehicle according to the first embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an equivalent circuit of the circuit of the entire vehicle in FIG. 2;
  • FIG. 4 is a schematic structural diagram of an equivalent circuit in which any one of the main switch modules in the main switch module in FIG. 3 is in a closed state;
  • FIG. 5 is a flowchart of a method for detecting insulation resistance according to a second embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of an equivalent circuit when the main switch modules in Fig. 3 are all in an off state;
  • FIG. 7 is a flowchart of a method for detecting insulation resistance according to a third embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an insulation resistance detection device according to a fourth embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of the insulation resistance detection device of the fifth embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device according to a sixth embodiment of the present application.
  • the first embodiment of the present application relates to a method for detecting insulation resistance, which is applied to an insulation detection circuit.
  • the insulation detection circuit includes an isolation module, a voltage divider module, and a signal generation module. One end of the isolation module is connected to the positive pole of the battery pack of the vehicle. Connection, the other end of the isolation module is connected to the signal generation module through the voltage divider module.
  • the flow chart of the insulation resistance detection method is shown in Figure 1.
  • the insulation resistance detection device performs the following steps before applying high voltage to the vehicle:
  • Step 101 Control the signal generating module to generate a signal.
  • the signal generating module may be a signal generator using Direct Digital Synthesis (DDS) technology.
  • DDS Direct Digital Synthesis
  • the DDS signal generator In the process of insulation resistance detection by the AC injection method, the DDS signal generator generates a low-frequency AC signal.
  • the parallel value of the insulation resistance of the high-voltage line inside the main switch to the reference potential end and the insulation resistance of the high-voltage line outside the main switch module to the reference potential end can be determined.
  • reference potential terminal may be the body of the entire vehicle, but is not limited to the body of the entire vehicle.
  • Step 102 Close any one of the main switch modules of the vehicle.
  • the main switch module of the vehicle includes a main positive switch module, a main negative switch module and a pre-charge switch module.
  • the isolation module of the insulation detection circuit is a capacitor
  • the voltage divider module is a resistor
  • the signal generation module is a DSS signal generator.
  • the insulation resistance detection device samples the voltage at the first end of the voltage divider module through the first sampling module, and samples the voltage at the second end of the voltage divider module through the second sampling module.
  • the first sampling module passes through the first isolation unit. Connected to the first end of the voltage dividing module, and the second sampling module is connected to the second end of the voltage dividing module through the second isolation unit.
  • Figure 2 the schematic diagram of the circuit of the whole vehicle is shown in Figure 2.
  • the circuit of the power supply loop includes: battery pack (V), main positive switch module (S1), main negative switch module (S2), precharge switch module (S3) and load module;
  • the load module includes vehicle motor, air conditioner, direct current converter (DCDC) and other electrical equipment.
  • R1 represents the voltage divider module
  • C1 represents the isolation module
  • DSS represents the signal generation module
  • D1 represents the first sampling module
  • D2 represents the second sampling module
  • G1 represents the first isolation unit
  • G2 represents the second isolation unit
  • An isolation unit is used to isolate the signal interference of the first sampling module to the first end of the voltage divider module
  • the second isolation unit is used to isolate the signal interference of the second sampling module to the second end of the voltage divider module.
  • Cp1 and Cn1 represent the Y capacitance of the battery pack
  • Rp1 and Rn1 represent the insulation resistance of the battery pack
  • Rpre represents the precharge resistance
  • S_0 to S_x are the switch modules of each electrical device
  • Cx0 to Cxx are the electrical device
  • the equivalent X capacitance of the high-voltage DC input front end, Rn20 to Rn2x and Rp20 to Rp2x are the equivalent insulation resistance values of the high-voltage DC input front end of each electrical equipment, Cn20 to Cn2x and Cp20 to Cp2x are the high voltage of each electrical equipment
  • Insulation detection circuit for the circuit shown in Figure 2, because the internal resistance of the battery pack is very small relative to the insulation resistance of the vehicle, it can be considered that the branch where the battery pack is located is in a short-circuit state, and the inside of the main switch module can be
  • Rnp1 represents the insulation resistance of the high-voltage line inside the main switch module to the reference potential end
  • Cnp1 represents the Y capacitance of the high-voltage line inside the main switch module to the reference potential end.
  • the resistance of the precharge resistor is very small relative to the insulation resistance of the vehicle, it can also be regarded as a short circuit.
  • Cx0 to Cxx are the X capacitors connected to the high-voltage positive and high-voltage negative of the vehicle, their capacitance is very large, and when the input is a low-frequency AC signal, it can be considered as a short circuit.
  • FIG 4 Analyzing Figure 3, it can be seen that after any one of the main switch modules of the closed vehicle is closed, the equivalent circuit diagram is shown in Figure 4.
  • Rnp represents the first insulation resistance. It can be seen from Figure 4 that when any one of the switch modules of S1, S2 and S3 is closed, the value of Rnp can be detected by the AC injection method, that is, the insulation resistance of the high voltage line inside the main switch module to the reference potential terminal can be realized Detection of the parallel value of the insulation resistance value of the high voltage line outside the main switch module to the reference potential terminal.
  • the main switch module is a relay, that is, the main positive switch module is the main positive relay, the main negative switch module is the main negative relay, and the precharge switch module is the precharge relay.
  • FIG. 2 is only an example.
  • the isolation module, the voltage divider module, the first isolation unit, and the second isolation unit can use other types of circuits with the same function.
  • the embodiment does not limit the specific circuits of the isolation module, the voltage dividing module, the first isolation unit, and the second isolation unit.
  • Step 103 Sampling the first terminal of the voltage dividing module to obtain a first signal; sampling the second terminal of the voltage dividing module to obtain a second signal.
  • Step 104 Determine a first insulation resistance value according to the first signal and the second signal.
  • the first insulation resistance value is the parallel value of the second insulation resistance value and the third insulation resistance value, where the second insulation resistance value is the insulation resistance value of the high voltage line inside the main switch module of the vehicle to the reference potential terminal,
  • the third insulation resistance value is the insulation resistance value of the high voltage line outside the main switch module of the vehicle to the reference potential terminal.
  • the signal generated by the signal generation module is a sine wave AC signal.
  • the insulation resistance detection device determines the first insulation resistance value by determining the sine wave AC signal at the second end of the voltage divider module relative to the sine wave AC signal at the first end of the voltage divider module according to the first signal and the second signal The second phase shift; according to formula b, calculate the first insulation resistance.
  • Rnp represents the first insulation resistance value
  • U 2 represents the amplitude of the first signal
  • ⁇ 2 represents the second phase shift
  • u 2 represents the amplitude of the second signal
  • R 1 represents the resistance value of the voltage divider module
  • w represents The angular frequency of the sine wave AC signal
  • C 1 represents the capacitance value of the isolation module.
  • the method for detecting insulation resistance performs a test on both ends of the voltage divider module before the high voltage is applied to the vehicle and any one of the main switch modules is in the closed state.
  • the signal is sampled.
  • the parallel value of the insulation resistance of the high-voltage line inside the main switch module to the reference potential terminal and the insulation resistance of the high-voltage line outside the main switch module to the reference potential terminal is determined, so that the alignment can be completed before the high voltage is applied.
  • Detection of the parallel value of the insulation resistance of the main switch module is completed before the high voltage is applied, which improves the safety performance of the vehicle.
  • the second embodiment of the present application relates to a method for detecting insulation resistance.
  • This embodiment is a further improvement of the first embodiment.
  • the specific improvement is: after the first insulation resistance is determined, the first insulation resistance Value and the second insulation resistance value to determine the third insulation resistance value.
  • steps 201 to 206 are included, where step 201, step 203 to step 205 are approximately the same as steps 101 to 104 in the first embodiment, respectively. I won't repeat it here. The differences are mainly introduced below:
  • Step 201 Control the signal generating module to generate a signal.
  • Step 202 Determine the second insulation resistance value.
  • the insulation resistance value detection device obtains the second insulation resistance value so as to further determine the third insulation resistance value.
  • the method for determining the second insulation resistance value is: the insulation resistance value detection device determines that the main switch module of the vehicle is in the off state; sampling the first end of the voltage divider module to obtain the third signal; The second end of the voltage divider module is sampled to obtain the fourth signal; the second insulation resistance value is determined according to the third signal and the fourth signal.
  • the signal generated by the signal generation module is a sine wave AC signal.
  • the process of the insulation resistance detection device is: the insulation resistance detection device determines the sine wave AC signal at the second end of the voltage divider module relative to the sine wave AC signal at the first end of the voltage divider module according to the third signal and the fourth signal The first phase shift; according to formula a, calculate the second insulation resistance.
  • Rnp1 represents the second insulation resistance value
  • U 1 represents the amplitude of the third signal
  • ⁇ 1 represents the first phase shift
  • u 1 represents the amplitude of the fourth signal
  • R 1 represents the resistance value of the voltage divider module
  • w represents The angular frequency of the sine wave AC signal
  • C 1 represents the capacitance value of the isolation module.
  • the signal at the first end of the voltage divider module that is, the sine wave voltage signal
  • U U 1 *sin(wt)+M
  • U 1 is The amplitude of the sine wave signal
  • w is the angular frequency of the sine wave
  • M is the bias voltage of the sine wave signal.
  • the signal at the second end of the voltage divider module is u.
  • the phasor method can be expressed as:
  • the insulation resistance value Rnp1 of the high-voltage line inside the main switch module to the reference potential terminal can be calculated as:
  • the second insulation resistance value can be determined by sampling the signals of the first end of the voltage dividing module and the second end of the voltage dividing module.
  • the insulation resistance detection device determines whether the second insulation resistance value is abnormal, and if it is determined to be the case, it reports the insulation fault inside the main switch module.
  • the method of reporting the insulation fault inside the main switch module can be directly alarmed by the insulation resistance detection device, or the insulation resistance detection device can transmit the information indicating the insulation failure of the high voltage line inside the main switch module to the reference potential end to The upper computer, the upper computer alarms.
  • the method for the insulation resistance detection device to determine whether the second insulation resistance value is abnormal may be: judging whether the second insulation resistance value is less than the first threshold value, and if it is determined that it is, it is determined that the second insulation resistance value is abnormal.
  • the first threshold is set by those skilled in the art as required.
  • Step 203 Close any one of the main switch modules of the vehicle.
  • Step 204 Sampling the first end of the voltage divider module to obtain the first signal; sample the second end of the voltage divider module to obtain the second signal.
  • Step 205 Determine a first insulation resistance value according to the first signal and the second signal.
  • Step 206 Determine a third insulation resistance value according to the first insulation resistance value, the second insulation resistance value, and the constraint relationship among the first insulation resistance value, the second insulation resistance value and the third insulation resistance value.
  • the constraint relationship between the first insulation resistance, the second insulation resistance and the third insulation resistance may be Among them, Rnp2 represents the third insulation resistance value, Rnp represents the first insulation resistance value, and Rnp1 represents the second insulation resistance value.
  • Rnp2 represents the third insulation resistance value
  • Rnp1 represents the second insulation resistance value.
  • the insulation resistance detection device determines whether the third insulation resistance value is abnormal; if it is determined that the third insulation resistance value is abnormal, perform a separate operation for the electrical equipment of each vehicle The following operations: control the closing of the switch of the electrical equipment; determine the third insulation resistance value after the switch of the electrical equipment is closed, and determine whether the third insulation resistance value of the electrical equipment is abnormal after the switch is closed; The branch where the device is located is faulty.
  • the electrical equipment of the vehicle includes: the vehicle motor, air conditioner and DCDC.
  • the insulation resistance detection device first closes the switch of the vehicle motor, and disconnects the switch of the air conditioner, DCDC and For other electrical equipment, determine the insulation resistance value of the high voltage line outside the main switch module to the reference potential terminal when connected to the vehicle motor, and determine whether the insulation resistance value of the high voltage line outside the main switch module to the reference potential terminal when connected to the vehicle motor is abnormal. If yes, make sure that the branch circuit where the whole vehicle motor is located has an insulation failure, otherwise, it means that the branch circuit where the whole vehicle motor is located is normal.
  • the insulation resistance detection device can directly report the insulation fault of a branch circuit where a certain electrical equipment is located, and stop other power users.
  • Equipment testing can also determine the insulation failure of a branch circuit where a certain electrical equipment is located, and then continue to detect other electrical equipment to avoid failure to report all fault points in the case of multiple insulation failures.
  • the insulation resistance detection device after determining that the third insulation resistance value is abnormal, the insulation resistance detection device reports an insulation fault outside the main switch module. Further, the insulation resistance detection device reports the branch where the electrical equipment that has failed.
  • the insulation resistance detection method provided by this embodiment determines the outer side of the main switching module according to the parallel value of the insulation resistance of the main switching module and the insulation resistance of the high-voltage line inside the main switching module to the reference potential end
  • the insulation resistance of the high-voltage line to the reference potential end realizes the detection of the insulation resistance of the high-voltage line outside the main switch module to the reference potential end.
  • the third embodiment of the present application relates to a method for detecting insulation resistance.
  • This embodiment is a further refinement of the second embodiment. It specifically explains that before detecting the first insulation resistance and the second insulation resistance, Some related steps were added separately.
  • steps 301 to 317 are included.
  • step 302, step 304, step 305, and step 306 are the same as those in the second embodiment regarding determining the second insulation resistance.
  • the process is roughly the same, and step 309, step 311, step 312, and step 313 are respectively roughly the same as step 101 to step 104 in the first embodiment, and will not be repeated here.
  • the differences are mainly introduced below:
  • Step 301 Power on the whole vehicle with low voltage.
  • Step 302 Control the signal generating module to generate a signal.
  • the insulation resistance detection device controls the signal generation module to generate a sine wave AC signal with a preset frequency.
  • Step 303 Determine whether the signal generating module generates a sine wave AC signal with a preset frequency.
  • step 304 is executed, otherwise, step 302 is returned.
  • Step 304 Determine that the main switch module of the entire vehicle is in an off state.
  • Step 305 Sampling the first terminal of the voltage dividing module to obtain a third signal; sampling the second terminal of the voltage dividing module to obtain a fourth signal.
  • Step 306 Determine a second insulation resistance value according to the third signal and the fourth signal.
  • Step 307 Determine whether the second insulation resistance value is abnormal.
  • step 308 is executed; otherwise, step 309 is executed.
  • Step 308 Report the insulation fault inside the main switch module. After that, the process ends.
  • the insulation fault inside the main switch module means that the insulation resistance of the high voltage line inside the main switch module to the reference potential terminal does not meet the requirements.
  • the method for the detection device of the insulation resistance value to determine the abnormal second insulation resistance value and the method for reporting the internal insulation fault of the main switch module are respectively the same as the method for determining the second insulation resistance abnormality and the method for reporting the internal insulation fault of the main switch module in the first embodiment The method is roughly the same, so I won’t repeat it here.
  • Step 309 Control the signal generating module to generate a signal.
  • Step 310 Determine whether the signal generating module generates a sine wave AC signal with a preset frequency.
  • step 311 is executed, otherwise, step 309 is returned.
  • Step 311 Close any one of the main switch modules of the vehicle.
  • Step 312 Sampling the first terminal of the voltage dividing module to obtain a first signal; sampling the second terminal of the voltage dividing module to obtain a second signal.
  • Step 313 Determine the first insulation resistance value according to the first signal and the second signal.
  • the first insulation resistance value is a parallel value of the second insulation resistance value and the third insulation resistance value.
  • Step 314 Determine the third insulation resistance value according to the second insulation resistance value, the first insulation resistance value, and the constraint relationship among the second insulation resistance value, the first insulation resistance value and the third insulation resistance value.
  • the method for determining the third insulation resistance by the insulation resistance detection device is substantially the same as the method for determining the third insulation resistance in the second embodiment, and will not be repeated here.
  • Step 315 Determine whether the third insulation resistance value is abnormal.
  • step 316 is executed; otherwise, step 317 is executed.
  • Step 316 Report the outer insulation fault of the main switch module. After that, the process ends.
  • the insulation fault on the outside of the main switch module means that the insulation resistance of the high voltage line outside the main switch module to the reference potential terminal does not meet the requirements.
  • the following operations are performed for each electrical equipment of the entire vehicle: control the switch of the electrical equipment to close; determine the switch of the electrical equipment After closing the third insulation resistance value, determine whether the third insulation resistance value after the switch of the electrical equipment is closed is abnormal; if it is determined that it is, determine that the branch where the electrical equipment is located is faulty, and report the determined fault point.
  • Step 317 Report that the insulation is normal.
  • the insulation resistance detection method mentioned in this embodiment can sample the signals at both ends of the voltage divider module before the high voltage is applied to the whole vehicle and the main switch module is disconnected.
  • the sampled signal determines the insulation resistance value of the high voltage line inside the main switch module to the reference potential end, so that the insulation resistance value of the high voltage line inside the main switch module to the reference potential end can be detected before the high voltage is applied.
  • the signals at both ends of the voltage divider module are sampled, and the reference potential of the high voltage line inside the main switch module is determined according to the sampled signal.
  • the parallel value of the insulation resistance value of the main switch module and the insulation resistance value of the reference potential end of the high voltage line outside the main switch module makes it possible to complete the detection of the parallel value of the insulation resistance value of the main switch module before the high voltage is applied.
  • the insulation resistance test is completed before the high voltage is applied, which improves the safety performance of the vehicle.
  • the fourth embodiment of the present application relates to an insulation resistance detection device, which is applied to an insulation detection circuit.
  • the insulation detection circuit includes an isolation module, a voltage divider module, and a signal generation module. One end of the isolation module is connected to the positive pole of the battery pack of the vehicle. Connection, the other end of the isolation module is connected to the signal generation module through the voltage divider module.
  • the insulation resistance detection device includes: a first control module 401, a second control module 402, a first sampling module 403, a second sampling module 404 and a first determination module 405.
  • the first control module 401 is used to control the signal generation module to generate a signal before applying high voltage to the entire vehicle.
  • the second control module 402 is used to close any one of the main switch modules of the vehicle;
  • the first sampling module 403 is used to sample the first end of the voltage divider module to obtain the first signal;
  • the second sampling module 404 uses To sample the second end of the voltage divider module to obtain the second signal;
  • the first determining module 405 is configured to determine the first insulation resistance value according to the first signal and the second signal, and the first insulation resistance value is the second insulation resistance
  • this embodiment is a system embodiment corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the related technical details mentioned in this embodiment can also be applied to the first embodiment.
  • the fifth embodiment of the present application relates to an insulation resistance detection device.
  • This embodiment is a further improvement of the fourth embodiment.
  • the specific improvements are: a second determination module 406, a third determination module 407 and The fourth determining module 408.
  • the functions of the first control module 401, the second control module 402, and the first determination module 405 are substantially the same in the fourth embodiment, and will not be repeated here.
  • the following mainly introduces other modules Function.
  • the second determining module 406 is used to determine that the main switch module of the entire vehicle is in the off state; the first sampling module 403 is used to determine the voltage divider module after the second determining module 406 determines that the main switch module of the entire vehicle is off The first terminal performs sampling to obtain the third signal; the second sampling module 404 is used to sample the second terminal of the voltage divider module after the second determining module 406 determines that the main switch module of the vehicle is in the off state, to obtain the first Four signals; the third determining module 407 is used to determine the second insulation resistance value according to the third signal and the fourth signal, the second insulation resistance value is the insulation resistance value of the high voltage line inside the main switch module of the vehicle to the reference potential terminal; The four determination module is used to determine the third insulation resistance value according to the first insulation resistance value, the second insulation resistance value, and the constraint relationship among the first insulation resistance value, the second insulation resistance value and the third insulation resistance value.
  • this embodiment is a system embodiment corresponding to the second embodiment, and this embodiment can be implemented in cooperation with the second embodiment.
  • the related technical details mentioned in the second embodiment are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the related technical details mentioned in this embodiment can also be applied to the second embodiment.
  • modules involved in the fourth and fifth embodiments are logical modules.
  • a logical unit can be a physical unit or a part of a physical unit. It can also be implemented in a combination of multiple physical units.
  • the fourth and fifth embodiments do not introduce units that are not closely related to solving the technical problems proposed by the present application, but this does not indicate that the fourth and fifth embodiments There are no other units in the fifth embodiment.
  • the sixth embodiment of the present application relates to an electronic device. As shown in FIG. 10, it includes: at least one processor 501; and a memory 502 communicatively connected with the at least one processor 501; wherein the memory 502 stores at least An instruction executed by one processor 501 is executed by at least one processor 501, so that at least one processor 501 can execute the insulation resistance detection method mentioned in the foregoing embodiment.
  • the electronic device includes: one or more processors 501 and a memory 502.
  • One processor 501 is taken as an example in FIG. 10.
  • the processor 501 and the memory 502 may be connected by a bus or in other ways. In FIG. 10, the connection by a bus is taken as an example.
  • the memory 502 can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules.
  • the processor 501 executes various functional applications and data processing of the device by running non-volatile software programs, instructions, and modules stored in the memory 502, that is, realizing the foregoing insulation resistance detection method.
  • the memory 502 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store a list of options and the like.
  • the memory 502 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 502 may optionally include a memory remotely provided with respect to the processor 501, and these remote memories may be connected to external devices via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • One or more modules are stored in the memory 502, and when executed by one or more processors 501, the insulation resistance detection method in any of the foregoing method embodiments is executed.
  • the seventh embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the above method embodiment is realized.
  • the program is stored in a storage medium and includes several instructions to enable a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请部分实施例涉及集成电路领域,公开了一种绝缘阻值的检测方法、装置、电子设备及存储介质。本申请的部分实施例中,绝缘阻值的检测方法包括:在给整车上高压之前,控制信号发生模块产生信号(101);闭合整车的主开关模块中的任意一个开关模块(102);对分压模块的第一端进行采样,得到第一信号;对分压模块的第二端进行采样,得到第二信号(103);根据第一信号和第二信号,确定第一绝缘阻值(104),能够在整车上高压之前,完成整车***的绝缘阻值检测。

Description

一种绝缘阻值的检测方法、装置、电子设备及存储介质
交叉引用
本申请引用于2019年3月1日递交的名称为“一种绝缘阻值的检测方法、装置、电子设备及存储介质”的第201910156356.7号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及集成电路领域,特别涉及一种绝缘阻值的检测方法、装置、电子设备及存储介质。
背景技术
随着电动汽车的发展,电动汽车替代燃油汽车已成为汽车业发展的趋势。电池包的续行里程、使用寿命及使用安全等对电动汽车的使用显得尤为重要。电池包作为电动汽车的关键部件之一,其高压电的安全性必须放在电池***的首要考虑对象之一。因此,对电动汽车的绝缘性能的检测是设计中必不可少的一部分。
然而,发明人发现现有技术中至少存在如下问题:现有的绝缘检测模块大多使用国标法进行绝缘阻值检测。国标法检测绝缘阻值的原理是通过检测高压正极和高压负极对参考电位端的电压,将检测到的电压值带入公式,计算出绝缘阻值。使用国标法检测整车***的绝缘阻值的时候,需要在整车全部上高压后,才可以检测出整车***绝缘阻值。在整车上高压前,无法检测出整车系 统的绝缘阻值。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
申请内容
本申请实施例的目的在于提供一种绝缘阻值的检测方法、装置、电子设备及存储介质,使得能够在上高压之前,完成整车***的绝缘阻值检测。
为解决上述技术问题,本申请的实施例提供了一种绝缘阻值的检测方法,应用于绝缘检测电路,绝缘检测电路包括隔离模块、分压模块和信号发生模块,隔离模块的一端与整车的电池组的正极连接,隔离模块的另一端通过分压模块与信号发生模块连接;绝缘阻值的检测方法包括:在给整车上高压之前,控制信号发生模块产生信号;闭合整车的主开关模块中的任意一个开关模块;对分压模块的第一端进行采样,得到第一信号;对分压模块的第二端进行采样,得到第二信号;根据第一信号和第二信号,确定第一绝缘阻值,第一绝缘阻值为第二绝缘阻值和第三绝缘阻值的并联值,其中,第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值,第三绝缘阻值为整车的主开关模块外侧高压线路对参考电位端的绝缘阻值。
本申请的实施例还提供了一种绝缘阻值的检测装置,应用于绝缘检测电路,绝缘检测电路包括隔离模块、分压模块和信号发生模块,隔离模块的一端与整车的电池组的正极连接,隔离模块的另一端通过分压模块与信号发生模块连接;绝缘阻值的检测装置包括:第一控制模块、第二控制模块、第一采样模 块、第二采样模块和第一确定模块;第一控制模块用于在给整车上高压之前,控制信号发生模块产生信号;第二控制模块用于闭合整车的主开关模块中的任意一个开关模块;第一采样模块用于在第二控制模块闭合整车的主开关模块中的任意一个开关模块后,对分压模块的第一端进行采样,得到第一信号;第二采样模块用于在第二控制模块闭合整车的主开关模块中的任意一个开关模块后,对分压模块的第二端进行采样,得到第二信号;第一确定模块用于根据第一信号和第二信号,确定第一绝缘阻值,第一绝缘阻值为第二绝缘阻值和第三绝缘阻值的并联值,其中,第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值,第三绝缘阻值为整车的主开关模块外侧高压线路对参考电位端的绝缘阻值。
本申请的实施例提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述实施例提及的绝缘阻值的检测方法。
本申请的实施例提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述实施例提及的绝缘阻值的检测方法。
本申请实施例,在整车上高压之前,且主开关模块中的任意一个开关模块处于闭合状态的情况下,对分压模块两端的信号进行采样,根据采样得到的信号,确定主开关模块内侧高压线路对参考电位端的绝缘阻值和主开关模块外侧高压线路对参考电位端的绝缘阻值的并联值,使得能够在上高压之前完成对主开关模块的绝缘阻值的并联值的检测。在上高压之前完成对绝缘阻值的检测,提高了整车的安全性能。
在闭合整车的主开关模块中的任意一个开关模块之前,绝缘阻值的检测方法还包括:确定第二绝缘阻值;在根据第一信号和第二信号,确定第一绝缘阻值之后,绝缘阻值的检测方法还包括:根据第一绝缘阻值、第二绝缘阻值,以及第一绝缘阻值、第二绝缘阻值和第三绝缘阻值之间的约束关系,确定第三绝缘阻值。该实现中,实现了在给整车上高压之前,完成对主开关模块外侧高压线路对参考电位端的绝缘阻值的检测,进一步提高了整车的安全性能。
在根据第一绝缘阻值、第二绝缘阻值,以及第一绝缘阻值、第二绝缘阻值和第三绝缘阻值之间的约束关系,确定第三绝缘阻值之后,绝缘阻值的检测方法还包括:判断第三绝缘阻值是否异常;若确定第三绝缘阻值异常,针对每个整车的用电设备,分别进行以下操作:控制用电设备的开关闭合;确定用电设备的开关闭合后的第三绝缘阻值,判断用电设备的开关闭合后的第三绝缘阻值是否异常;若确定是,确定用电设备所在支路出现故障。该实现中,能够发现发生绝缘故障的故障点,提高了绝缘阻值的检测装置的智能性。
在确定第三绝缘阻值之后,绝缘阻值的检测方法还包括:若确定第三绝缘阻值异常,上报主开关模块外侧绝缘故障。该实现中,能够及时上报绝缘故障,避免在绝缘故障的情况下给整车上高压的情况。
确定第二绝缘阻值,具体包括:确定整车的主开关模块处于断开状态;对分压模块的第一端进行采样,得到第三信号;对分压模块的第二端进行采样,得到第四信号;根据第三信号和第四信号,确定第二绝缘阻值。
在根据第三信号和第四信号,确定第二绝缘阻值之后,绝缘阻值的检测方法还包括:若确定第二绝缘阻值异常,上报主开关模块内侧绝缘故障。
在闭合整车的主开关模块中的任意一个开关模块之前,绝缘阻值的检测 方法还包括:确定第二绝缘阻值正常。
在控制信号发生模块产生信号之前,绝缘阻值的检测方法还包括:给整车上低压电。
信号发生模块产生的信号为正弦波交流信号;根据第三信号和第四信号,确定第二绝缘阻值,具体包括:根据第三信号和第四信号,确定分压模块第二端的正弦波交流信号相对于分压模块的第一端的正弦波交流信号的第一相移;按公式a,计算第二绝缘阻值;其中,公式a为:
Figure PCTCN2020076577-appb-000001
Figure PCTCN2020076577-appb-000002
公式a中,Rnp1表示第二绝缘阻值,U 1表示第三信号的幅度,θ 1表示第一相移,u 1表示第四信号的幅度,R 1表示分压模块的电阻值,w表示正弦波交流信号的角频率,C 1表示隔离模块的电容值。
信号发生模块产生的信号为正弦波交流信号;根据第一信号和第二信号,确定第一绝缘阻值,具体包括:根据第一信号和第二信号,确定分压模块第二端的正弦波交流信号相对于分压模块的第一端的正弦波交流信号的第二相移;按公式b,计算第二绝缘阻值;其中,公式b为:
Figure PCTCN2020076577-appb-000003
Figure PCTCN2020076577-appb-000004
公式b中,Rnp表示第一绝缘阻值,U_2表示第一信号的幅度,θ_2表示第二相移,u_2表示第二信号的幅度,R_1表示分压模块的电阻值,w表示正弦波交流信号的角频率,C_1表示隔离模块的电容值。
约束关系为:
Figure PCTCN2020076577-appb-000005
其中,Rnp2表示第三绝缘阻值,Rnp表示第一绝缘阻值,Rnp1表示第二绝缘阻值。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请的第一实施例的绝缘阻值的检测方法的流程图;
图2是本申请的第一实施例的整车的电路的结构示意图;
图3是图2中的整车的电路的等效电路的结构示意图;
图4是图3中主开关模块中任意一个开关模块处于闭合状态的等效电路的结构示意图;
图5是本申请的第二实施例的绝缘阻值的检测方法的流程图;
图6是图3中主开关模块均处于断开状态时的等效电路的结构示意图;
图7是本申请的第三实施例的绝缘阻值的检测方法的流程图;
图8是本申请的第四实施例的绝缘阻值的检测装置的结构示意图;
图9是本申请的第五实施例的绝缘阻值的检测装置的结构示意图;
图10是本申请的第六实施例的电子设备的结构示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以 实现本申请所要求保护的技术方案。
本申请的第一实施例涉及一种绝缘阻值的检测方法,应用于绝缘检测电路,绝缘检测电路包括隔离模块、分压模块和信号发生模块,隔离模块的一端与整车的电池组的正极连接,隔离模块的另一端通过分压模块与信号发生模块连接。绝缘阻值的检测方法的流程图如图1所示,绝缘阻值的检测装置在给整车上高压之前,执行以下步骤:
步骤101:控制信号发生模块产生信号。
具体地说,信号发生模块可以是采用直接数字频率合成(Direct Digital Synthesis,DDS)技术的信号发生器。在通过交流注入法进行绝缘阻值检测的过程中,DDS信号发生器会产生低频交流信号。通过分析电路对低频信号的影响,能够确定主开关内侧高压线路对参考电位端的绝缘阻值和主开关模块外侧高压线路对参考电位端的绝缘阻值的并联值。
需要说明的是,本领域技术人员可以理解,参考电位端可以是整车的车体,但不限定于整车的车体。
步骤102:闭合整车的主开关模块中的任意一个开关模块。
具体地说,整车的主开关模块包括主正开关模块、主负开关模块和预充开关模块。
以下结合实施例,对本实施例的绝缘检测的原理进行说明。
在一个例子中,绝缘检测电路的隔离模块为电容,分压模块为电阻,信号发生模块为DSS信号发生器。绝缘阻值的检测装置通过第一采样模块对分压模块的第一端的电压进行采样,通过第二采样模块对分压模块的第二端的电压进行采样,第一采样模块通过第一隔离单元与分压模块的第一端连接,第二采 样模块通过第二隔离单元与分压模块的第二端连接。该情况下,整车的电路的示意图如图2所示,其中,供电回路的电路包括:电池组(V)、主正开关模块(S1)、主负开关模块(S2)、预充开关模块(S3)和负载模块;其中,负载模块包括整车电机、空调、直流变换器(DCDC)和其他用电设备。图2中,R1表示分压模块,C1表示隔离模块,DSS表示信号发生模块,D1表示第一采样模块,D2表示第二采样模块,G1表示第一隔离单元,G2表示第二隔离单元,第一隔离单元用于隔离第一采样模块对分压模块的第一端的信号干扰,第二隔离单元用于隔离第二采样模块对分压模块的第二端的信号干扰。Cp1和Cn1表示电池组的Y电容,Rp1和Rn1表示电池组的绝缘阻值,Rpre表示预充电阻,S_0至S_x分别为各个用电设备的开关模块;Cx0至Cxx为每个用电设备的高压直流输入前端等效的X电容,Rn20至Rn2x和Rp20至Rp2x为每个用电设备的高压直流输入前端等效的绝缘阻值,Cn20至Cn2x和Cp20至Cp2x为每个用电设备的高压直流输入前端等效的Y电容。绝缘检测电路,针对图2所示电路,由于电池组的内阻相对于整车的绝缘阻值来说,是非常小的,可以认为电池组所在支路是短路状态,可以将主开关模块内侧高压线路对参考电位端的绝缘阻值等效为Rnp1=Rn1//Rp1,将主开关模块内侧高压线路对参考电位端的Y电容等效为Cnp1=Cn1//Cp1。其中,Rnp1表示主开关模块内侧高压线路对参考电位端的绝缘阻值,Cnp1表示主开关模块内侧高压线路对参考电位端的Y电容。对于预充回路,由于预充电阻的阻值相对于整车的绝缘阻值来说,也是非常小的,也可以看作短路。由于Cx0至Cxx为整车的接在高压正和高压负的X电容,其容值非常大,当输入的是低频交流信号时,可以认为是短路。所以,可以将主开关模块外侧高压线路对参考电位端的绝缘阻值等效为: Rnp2=(Rn20//Rp20)//(Rn21//Rp21)//(Rn22//Rp22)//(Rn2x//Rp2x),其中,“//”用于表示两个元件并联,如,Rn20//Rp20表示Rn20和Rp20并联,计算过程中,
Figure PCTCN2020076577-appb-000006
主开关模块外侧高压线路对参考电位端的Y电容的电容值可以等效为:Cnp2=(Cn20//Cp20)//(Cn21//Cp21)//(Cn22//Cp22)//(Cn2x//Cp2x),其中,Rnp2表示主开关模块外侧高压线路对参考电位端的绝缘阻值,Cnp2表示主开关模块外侧高压线路对参考电位端的Y电容的电容值。由上述内容可知,可以将图2所示的电路可以等效为图3所示的电路。分析图3可知,闭合整车的主开关模块中的任意一个开关模块闭合后,等效电路图如图4所示。图4中,Rnp表示第一绝缘阻值。通过图4可知,在S1、S2和S3中的任意一个开关模块闭合的情况下,通过交流注入法,可以检测出Rnp的值,即可以实现对主开关模块内侧高压线路对参考电位端的绝缘阻值和主开关模块外侧高压线路对参考电位端的绝缘阻值的并联值的检测。
在一个例子中,主开关模块为继电器,即主正开关模块为主正继电器,主负开关模块为主负继电器,预充开关模块为预充继电器。
需要说明的是,本领域技术人员可以理解,图2仅为示例,实际应用中,隔离模块、分压模块、第一隔离单元和第二隔离单元可以采用其他类型的具有相同功能的电路,本实施例不限制隔离模块、分压模块、第一隔离单元和第二隔离单元的具体电路。
步骤103:对分压模块的第一端进行采样,得到第一信号;对分压模块的第二端进行采样,得到第二信号。
步骤104:根据第一信号和第二信号,确定第一绝缘阻值。
具体地说,第一绝缘阻值为第二绝缘阻值和第三绝缘阻值的并联值,其 中,第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值,第三绝缘阻值为整车的主开关模块外侧高压线路对参考电位端的绝缘阻值。
在一个例子中,信号发生模块产生的信号为正弦波交流信号。绝缘阻值的检测装置确定第一绝缘阻值的过程为:根据第一信号和第二信号,确定分压模块第二端的正弦波交流信号相对于分压模块的第一端的正弦波交流信号的第二相移;按公式b,计算第一绝缘阻值。
Figure PCTCN2020076577-appb-000007
Figure PCTCN2020076577-appb-000008
公式b中,Rnp表示第一绝缘阻值,U 2表示第一信号的幅度,θ 2表示第二相移,u 2表示第二信号的幅度,R 1表示分压模块的电阻值,w表示正弦波交流信号的角频率,C 1表示隔离模块的电容值。
值得一提的是,在上高压之前,完成对第一绝缘阻值的检测,进一步地提高了整车的安全性。
需要说明的是,以上仅为举例说明,并不对本申请的技术方案构成限定。与现有技术相比,本实施例中提供的绝缘阻值的检测方法,在整车上高压之前,且主开关模块中的任意一个开关模块处于闭合状态的情况下,对分压模块两端的信号进行采样,根据采样得到的信号,确定主开关模块内侧高压线路对参考电位端的绝缘阻值和主开关模块外侧高压线路对参考电位端的绝缘阻值的并联值,使得能够在上高压之前完成对主开关模块的绝缘阻值的并联值的检测。在上高压之前完成对绝缘阻值的检测,提高了整车的安全性能。
本申请的第二实施例涉及一种绝缘阻值的检测方法,本实施例是对第一实施例的进一步改进,具体改进之处为:在确定第一绝缘阻值之后,根据第一绝缘阻值和第二绝缘阻值,确定第三绝缘阻值。
具体的说,如图5所示,在本实施例中,包含步骤201至步骤206,其中,步骤201、步骤203至步骤205分别与第一实施例中的步骤101至步骤104大致相同,此处不再赘述。下面主要介绍不同之处:
步骤201:控制信号发生模块产生信号。
步骤202:确定第二绝缘阻值。
具体地说,绝缘阻值的检测装置获取第二绝缘阻值,以便进一步确定第三绝缘阻值。
在一个例子中,确定第二绝缘阻值的方法为:绝缘阻值的检测装置确定整车的主开关模块处于断开状态;对分压模块的第一端进行采样,得到第三信号;对分压模块的第二端进行采样,得到第四信号;根据第三信号和第四信号,确定第二绝缘阻值。
具体地说,当不闭合S1、S2和S3中的任意一个开关模块时,其等效电路如附图6。分析图6可知,在不闭合S1、S2和S3中的任意一个开关模块的情况下,通过交流注入法,可以检测出Rnp1的值,即可以实现对主开关模块内侧高压线路对参考电位端的绝缘阻值测量。
在一个例子中,信号发生模块产生的信号为正弦波交流信号。绝缘阻值的检测装置的过程为:绝缘阻值的检测装置根据第三信号和第四信号,确定分压模块第二端的正弦波交流信号相对于分压模块的第一端的正弦波交流信号的第一相移;按公式a,计算第二绝缘阻值。
Figure PCTCN2020076577-appb-000009
Figure PCTCN2020076577-appb-000010
公式a中,Rnp1表示第二绝缘阻值,U 1表示第三信号的幅度,θ 1表示第一相移,u 1表示第四信号的幅度,R 1表示分压模块的电阻值,w表示正弦波交 流信号的角频率,C 1表示隔离模块的电容值。
下面结合图6,对计算主开关模块内侧高压线路对参考电位端的绝缘阻值的公式(公式a)的推导过程进行举例说明。
假设,DDS信号发生器产生的信号为正弦波交流信号,可设分压模块的第一端的信号,即正弦波电压信号为:U=U 1*sin(wt)+M,其中U 1为正弦波信号的幅度,w为正弦波的角频率,M为正弦波信号的偏置电压。其中,w的计算方式为w=2πf,其中,f为DDS信号发生器产生的正弦波交流信号的频率。设分压模块的第二端的信号为u,根据电路拓扑分析可得,U与u是同频率的正弦波信号,假设U相对u的相移为θ 1,u的幅值为u 1,则u=u 1*sin(wt+θ 1)+M。
假设Cnp1和Rnp1的等效阻抗为Z1,基于基尔霍夫定律,可得Cnp1和Rnp1的等效阻抗为
Figure PCTCN2020076577-appb-000011
将其用相量形式可表示为:
Figure PCTCN2020076577-appb-000012
假设Z 2为Rnp1、Cnp1和C1的等效阻抗,基于基尔霍夫定律,u 1和U 1的关系为:
Figure PCTCN2020076577-appb-000013
基于基尔霍夫定律,Rnp1和Cnp1的等效阻抗Z 1为:
Figure PCTCN2020076577-appb-000014
假设,u 1和U 1的相移为θ 1,则用相量法可表示为:
u=u 1*cos(θ 1)+u 1*sin(θ 1)+j公式g;
将公式g带入公式e和公式f,化简可得:
Figure PCTCN2020076577-appb-000015
由实部等于实部建立等式:
Figure PCTCN2020076577-appb-000016
由虚部等于虚部建立等式:
Figure PCTCN2020076577-appb-000017
联立公式i和公式j,可求出主开关模块内侧高压线路对参考电位端的绝缘阻值Rnp1的表达式为:
Figure PCTCN2020076577-appb-000018
通过上述内容可知,通过对分压模块的第一端和分压模块的第二端的信号进行采样,即可确定第二绝缘阻值。
需要说明的是,公式b的推导过程与公式a的推导过程大致相同,本文并未详述,本领域技术人员可以根据公式a的推导过程,推导公式b。
在一个例子中,在确定第二绝缘阻值后,绝缘阻值的检测装置判断第二绝缘阻值是否异常,若确定是,上报主开关模块内侧绝缘故障。其中,上报主开关模块内侧绝缘故障的方式可以是由绝缘阻值的检测装置直接报警,也可以由绝缘阻值的检测装置将指示主开关模块内侧高压线路对参考电位端绝缘故障的信息传输至上位机,由上位机报警。
在一个例子中,绝缘阻值的检测装置判断第二绝缘阻值是否异常的方法可以是:判断第二绝缘阻值是否小于第一阈值,若确定是,则确定第二绝缘阻值异常。其中,第一阈值由本领域技术人员根据需要设置。
步骤203:闭合整车的主开关模块中的任意一个开关模块。
步骤204:对分压模块的第一端进行采样,得到第一信号;对分压模块的 第二端进行采样,得到第二信号。
步骤205:根据第一信号和所述第二信号,确定第一绝缘阻值。
步骤206:根据第一绝缘阻值、第二绝缘阻值,以及第一绝缘阻值、第二绝缘阻值和第三绝缘阻值之间的约束关系,确定第三绝缘阻值。
在一个例子中,第一绝缘阻值、第二绝缘阻值和第三绝缘阻值之间的约束关系可以是
Figure PCTCN2020076577-appb-000019
其中,Rnp2表示第三绝缘阻值,Rnp表示第一绝缘阻值,Rnp1表示第二绝缘阻值。当闭合任意主开关模块后,整车的电路等效图如图4所示,由图4可知,Rnp=Rnp1//Rnp2,变形可得:
Figure PCTCN2020076577-appb-000020
在一个例子中,在确定第三绝缘阻值后,绝缘阻值的检测装置判断第三绝缘阻值是否异常;若确定第三绝缘阻值异常,针对每个整车的用电设备,分别进行以下操作:控制用电设备的开关闭合;确定用电设备的开关闭合后的第三绝缘阻值,判断用电设备的开关闭合后的第三绝缘阻值是否异常;若确定是,确定用电设备所在支路出现故障。
例如,整车的电路图如图2所示,整车的用电设备包括:整车电机、空调和DCDC,绝缘阻值的检测装置先闭合整车电机的开关,断开空调、DCDC的开关和其他用电设备,确定连接整车电机时的主开关模块外侧高压线路对参考电位端的绝缘阻值,判断连接整车电机时的主开关模块外侧高压线路对参考电位端的绝缘阻值是否异常,若确定是,确定整车电机所在支路发生绝缘故障,否则,说明整车电机所在支路绝缘正常。断开整车电机的开关,闭合空调的开关,确定连接空调时的主开关模块外侧高压线路对参考电位端的绝缘阻值,判断连接空调时的主开关模块外侧高压线路对参考电位端的绝缘阻值是否异常,若确定是,确定空调所在支路发生绝缘故障,否则,说明空调所在支路绝缘正 常。断开空调的开关,闭合DCDC的开关,确定连接DCDC时的主开关模块外侧高压线路对参考电位端的绝缘阻值,判断连接DCDC时的主开关模块外侧高压线路对参考电位端的绝缘阻值是否异常,若确定是,确定DCDC所在支路发生绝缘故障,否则,说明DCDC所在支路绝缘正常……依次类推,对整车的其他用电设备进行检测,最终即可确定该电路中发生绝缘故障的支路。
需要说明的是,本领域技术人员可以理解,实际应用中,绝缘阻值的检测装置可以在确定某个用电设备所在支路绝缘故障之后,直接上报该支路绝缘故障,停止对其他用电设备的检测,也可以确定某个用电设备所在支路绝缘故障之后,继续对其他的用电设备进行检测,避免在多处绝缘故障的情况下,未能上报所有故障点的问题。
值得一提的是,在闭合一个用电设备的开关后,对绝缘阻值进行检测,使得能够锁定发生绝缘故障的故障点。
在一个例子中,绝缘阻值的检测装置在确定第三绝缘阻值异常之后,上报主开关模块外侧绝缘故障。进一步地,绝缘阻值的检测装置上报发生故障的用电设备所在的支路。
与现有技术相比,本实施例提供的绝缘阻值的检测方法,根据主开关模块的绝缘阻值的并联值和主开关模块内侧高压线路对参考电位端的绝缘阻值,确定主开关模块外侧高压线路对参考电位端的绝缘阻值,实现了对主开关模块外侧高压线路对参考电位端的绝缘阻值的检测。
本申请的第三实施例涉及一种绝缘阻值的检测方法,本实施例是对第二实施例的进一步细化,具体说明了:在检测第一绝缘阻值和第二绝缘阻值之前,分别增加了一些相关步骤。
具体的说,如图7所示,在本实施例中,包含步骤301至步骤317,其中,步骤302、步骤304、步骤305和步骤306与第二实施例中关于确定第二绝缘阻值的过程大致相同,步骤309、步骤311、步骤312和步骤313分别与第一实施例中的步骤101至步骤104大致相同,此处不再赘述。下面主要介绍不同之处:
步骤301:给整车上低压电。
具体地说,为确保绝缘检测电路中的需要用电的模块能够正常工作,需要为整车上低压电。
在给整车上低压电之后,给整车上高压电之前,执行后续步骤。
步骤302:控制信号发生模块产生信号。
具体地说,绝缘阻值的检测装置控制信号发生模块产生频率为预设值的正弦波交流信号。
步骤303:判断信号发生模块是否产生频率为预设值的正弦波交流信号。
具体地说,由于需要通过交流注入法检测绝缘阻值,为保证计算的准确度,需要确定信号发生模块产生的频率是否为预设值。在确定信号发生模块产生频率为预设值的正弦波交流信号之后,执行步骤304,否则返回步骤302。
步骤304:确定整车的主开关模块处于断开状态。
步骤305:对分压模块的第一端进行采样,得到第三信号;对分压模块的第二端进行采样,得到第四信号。
步骤306:根据第三信号和第四信号,确定第二绝缘阻值。
步骤307:判断第二绝缘阻值是否异常。
具体地说,绝缘阻值的检测装置在确定第二绝缘阻值异常时,执行步骤308,否则执行步骤309。
步骤308:上报主开关模块内侧绝缘故障。之后结束流程。
具体地说,主开关模块内侧绝缘故障是指主开关模块内侧高压线路对参考电位端的绝缘阻值不符合要求。绝缘阻值的检测装置确定第二绝缘阻值异常的方法和上报主开关模块内侧绝缘故障的方法分别与第一实施例中的确定第二绝缘阻值异常的方法和上报主开关模块内侧绝缘故障的方法大致相同,此处不再赘述。
步骤309:控制信号发生模块产生信号。
步骤310:判断信号发生模块是否产生频率为预设值的正弦波交流信号。
具体地说,在确定信号发生模块产生频率为预设值的正弦波交流信号之后,执行步骤311,否则返回步骤309。
步骤311:闭合整车的主开关模块中的任意一个开关模块。
步骤312:对分压模块的第一端进行采样,得到第一信号;对分压模块的第二端进行采样,得到第二信号。
步骤313:根据第一信号和第二信号,确定第一绝缘阻值。其中,第一绝缘阻值为第二绝缘阻值和第三绝缘阻值的并联值。
步骤314:根据第二绝缘阻值、第一绝缘阻值,以及第二绝缘阻值、第一绝缘阻值和第三绝缘阻值之间的约束关系,确定第三绝缘阻值。
具体地说,绝缘阻值的检测装置确定第三绝缘阻值的方法与第二实施例中确定第三绝缘阻值的方法大致相同,此处不再赘述。
步骤315:判断第三绝缘阻值是否异常。
具体地说,若确定第三绝缘阻值异常,执行步骤316,否则,执行步骤317。
步骤316:上报主开关模块外侧绝缘故障。之后结束流程。
具体地说,主开关模块外侧绝缘故障是指主开关模块外侧高压线路对参考电位端的绝缘阻值不符合要求。在一个例子中,绝缘阻值的检测装置在确定主开关模块外侧绝缘故障后,针对每个整车的用电设备,分别进行以下操作:控制用电设备的开关闭合;确定用电设备的开关闭合后的第三绝缘阻值,判断用电设备的开关闭合后的第三绝缘阻值是否异常;若确定是,确定用电设备所在支路出现故障,并上报确定的故障点。
步骤317:上报绝缘正常。
需要说明的是,以上仅为举例说明,并不对本申请的技术方案构成限定。
与现有技术相比,本实施例提及的绝缘阻值的检测方法,能够在整车上高压之前,且主开关模块均断开的情况下,对分压模块两端的信号进行采样,根据采样得到的信号,确定主开关模块内侧高压线路对参考电位端的绝缘阻值,使得能够在上高压之前完成对主开关模块内侧高压线路对参考电位端的绝缘阻值的检测。在整车上高压之前,且主开关模块中的任意一个开关模块处于闭合状态的情况下,对分压模块两端的信号进行采样,根据采样得到的信号,确定主开关模块内侧高压线路对参考电位端的绝缘阻值和主开关模块外侧高压线路对参考电位端的绝缘阻值的并联值,使得能够在上高压之前完成对主开关模块的绝缘阻值的并联值的检测。在上高压之前完成对绝缘阻值的检测,提高了整车的安全性能。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入 无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的第四实施例涉及一种绝缘阻值的检测装置,应用于绝缘检测电路,绝缘检测电路包括隔离模块、分压模块和信号发生模块,隔离模块的一端与整车的电池组的正极连接,隔离模块的另一端通过分压模块与信号发生模块连接。如图8所示,绝缘阻值的检测装置包括:第一控制模块401、第二控制模块402、第一采样模块403、第二采样模块404和第一确定模块405。
具体地说,第一控制模块401用于在给整车上高压之前,控制信号发生模块产生信号。第二控制模块402用于闭合整车的主开关模块中的任意一个开关模块;第一采样模块403用于对分压模块的第一端进行采样,得到第一信号;第二采样模块404用于对分压模块的第二端进行采样,得到第二信号;第一确定模块405用于根据第一信号和第二信号,确定第一绝缘阻值,第一绝缘阻值为第二绝缘阻值和第三绝缘阻值的并联值,其中,第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值,第三绝缘阻值为整车的主开关模块外侧高压线路对参考电位端的绝缘阻值。
不难发现,本实施例为与第一实施例相对应的***实施例,本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
本申请的第五实施例涉及一种绝缘阻值的检测装置,本实施例是对第四实施例的进一步改进,具体改进之处为:增加了第二确定模块406、第三确定模块407和第四确定模块408。
具体地说,如图9所示,其中,第一控制模块401、第二控制模块402 和第一确定模块405的作用于第四实施例大致相同,此处不再赘述,下面主要介绍其他模块的功能。
第二确定模块406用于确定整车的主开关模块处于断开状态;第一采样模块403用于在第二确定模块406确定整车的主开关模块处于断开状态后,对分压模块的第一端进行采样,得到第三信号;第二采样模块404用于在第二确定模块406确定整车的主开关模块处于断开状态后,对分压模块的第二端进行采样,得到第四信号;第三确定模块407用于根据第三信号和第四信号,确定第二绝缘阻值,第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值;第四确定模块用于根据第一绝缘阻值、第二绝缘阻值,以及第一绝缘阻值、第二绝缘阻值和第三绝缘阻值之间的约束关系,确定第三绝缘阻值。
不难发现,本实施例为与第二实施例相对应的***实施例,本实施例可与第二实施例互相配合实施。第二实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第二实施例中。
值得一提的是,第四实施例和第五实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,第四实施例和第五实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明第四实施例和第五实施例中不存在其它的单元。
本申请的第六实施例涉及一种电子设备,如图10所示,包括:至少一个处理器501;以及,与至少一个处理器501通信连接的存储器502;其中,存 储器502存储有可被至少一个处理器501执行的指令,指令被至少一个处理器501执行,以使至少一个处理器501能够执行上述实施例提及的绝缘阻值的检测方法。
该电子设备包括:一个或多个处理器501以及存储器502,图10中以一个处理器501为例。处理器501、存储器502可以通过总线或者其他方式连接,图10中以通过总线连接为例。存储器502作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。处理器501通过运行存储在存储器502中的非易失性软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述绝缘阻值的检测方法。
存储器502可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储选项列表等。此外,存储器502可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器502可选包括相对于处理器501远程设置的存储器,这些远程存储器可以通过网络连接至外接设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器502中,当被一个或者多个处理器501执行时,执行上述任意方法实施例中的绝缘阻值的检测方法。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请的第七实施例涉及一种计算机可读存储介质,存储有计算机程 序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (14)

  1. 一种绝缘阻值的检测方法,其中,应用于绝缘检测电路,所述绝缘检测电路包括隔离模块、分压模块和信号发生模块,所述隔离模块的一端与整车的电池组的正极连接,所述隔离模块的另一端通过所述分压模块与所述信号发生模块连接;所述绝缘阻值的检测方法包括:
    在给整车上高压之前,控制所述信号发生模块产生信号;
    闭合所述整车的主开关模块中的任意一个开关模块;
    对所述分压模块的第一端进行采样,得到第一信号;对所述分压模块的第二端进行采样,得到第二信号;
    根据所述第一信号和所述第二信号,确定第一绝缘阻值,所述第一绝缘阻值为所述第二绝缘阻值和第三绝缘阻值的并联值,其中,所述第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值,所述第三绝缘阻值为整车的主开关模块外侧高压线路对参考电位端的绝缘阻值。
  2. 根据权利要求1所述的绝缘阻值的检测方法,其中,在所述闭合所述整车的主开关模块中的任意一个开关模块之前,所述绝缘阻值的检测方法还包括:
    确定所述第二绝缘阻值;
    在所述根据所述第一信号和所述第二信号,确定所述第一绝缘阻值之后,所述绝缘阻值的检测方法还包括:
    根据所述第一绝缘阻值、所述第二绝缘阻值,以及所述第一绝缘阻值、所述第二绝缘阻值和所述第三绝缘阻值之间的约束关系,确定所述第三绝缘阻值。
  3. 根据权利要求2所述的绝缘阻值的检测方法,其中,在所述根据所述第一绝缘阻值、所述第二绝缘阻值,以及所述第一绝缘阻值、所述第二绝缘阻值 和所述第三绝缘阻值之间的约束关系,确定所述第三绝缘阻值之后,所述绝缘阻值的检测方法还包括:
    判断所述第三绝缘阻值是否异常;
    若确定所述第三绝缘阻值异常,针对每个整车的用电设备,分别进行以下操作:控制所述用电设备的开关闭合;确定所述用电设备的开关闭合后的第三绝缘阻值,判断所述用电设备的开关闭合后的第三绝缘阻值是否异常;若确定是,确定所述用电设备所在支路出现故障。
  4. 根据权利要求2或3所述的绝缘阻值的检测方法,其中,在所述确定所述第三绝缘阻值之后,所述绝缘阻值的检测方法还包括:
    若确定所述第三绝缘阻值异常,上报所述主开关模块外侧绝缘故障。
  5. 根据权利要求2所述的绝缘阻值的检测方法,其中,所述确定所述第二绝缘阻值,具体包括:
    确定所述整车的主开关模块处于断开状态;
    对所述分压模块的第一端进行采样,得到第三信号;对所述分压模块的第二端进行采样,得到第四信号;
    根据所述第三信号和所述第四信号,确定所述第二绝缘阻值。
  6. 根据权利要求5所述的绝缘阻值的检测方法,其中,在所述根据所述第三信号和所述第四信号,确定所述第二绝缘阻值之后,所述绝缘阻值的检测方法还包括:
    若确定所述第二绝缘阻值异常,上报所述主开关模块内侧绝缘故障。
  7. 根据权利要求1所述的绝缘阻值的检测方法,其中,在所述闭合所述整车的主开关模块中的任意一个开关模块之前,所述绝缘阻值的检测方法还包括:
    确定所述第二绝缘阻值正常。
  8. 根据权利要求1所述的绝缘阻值的检测方法,其中,在所述控制所述信号发生模块产生信号之前,所述绝缘阻值的检测方法还包括:
    给整车上低压电。
  9. 根据权利要求5所述的绝缘阻值的检测方法,其中,所述信号发生模块产生的信号为正弦波交流信号;
    所述根据所述第三信号和所述第四信号,确定所述第二绝缘阻值,具体包括:
    根据所述第三信号和所述第四信号,确定所述分压模块第二端的正弦波交流信号相对于所述分压模块的第一端的正弦波交流信号的第一相移;
    按公式a,计算所述第二绝缘阻值;其中,公式a为:
    Figure PCTCN2020076577-appb-100001
    公式a中,Rnp1表示所述第二绝缘阻值,U 1表示所述第三信号的幅度,θ 1表示所述第一相移,u 1表示所述第四信号的幅度,R 1表示所述分压模块的电阻值,w表示所述正弦波交流信号的角频率,C 1表示隔离模块的电容值。
  10. 根据权利要求1所述的绝缘阻值的检测方法,其中,所述信号发生模块产生的信号为正弦波交流信号;
    所述根据所述第一信号和所述第二信号,确定所述第一绝缘阻值,具体包括:
    根据所述第一信号和所述第二信号,确定所述分压模块第二端的正弦波交流信号相对于所述分压模块的第一端的正弦波交流信号的第二相移;
    按公式b,计算所述第二绝缘阻值;其中,公式b为:
    Figure PCTCN2020076577-appb-100002
    公式b中,Rnp表示所述第一绝缘阻值,U 2表示所述第一信号的幅度,θ 2表示所述第二相移,u 2表示所述第二信号的幅度,R 1表示所述分压模块的电阻值,w表示所述正弦波交流信号的角频率,C 1表示隔离模块的电容值。
  11. 根据权利要求2所述的绝缘阻值的检测方法,其中,所述约束关系为:
    Figure PCTCN2020076577-appb-100003
    其中,Rnp2表示所述第三绝缘阻值,Rnp表示所述第一绝缘阻值,Rnp1表示所述第二绝缘阻值。
  12. 一种绝缘阻值的检测装置,其中,应用于绝缘检测电路,所述绝缘检测电路包括隔离模块、分压模块和信号发生模块,所述隔离模块的一端与整车的电池组的正极连接,所述隔离模块的另一端通过所述分压模块与所述信号发生模块连接;所述绝缘阻值的检测装置包括:第一控制模块、第二控制模块、第一采样模块、第二采样模块和第一确定模块;
    所述第一控制模块用于在给整车上高压之前,控制所述信号发生模块产生信号;
    所述第二控制模块用于闭合所述整车的主开关模块中的任意一个开关模块;
    所述第一采样模块用于在所述第二控制模块闭合所述整车的主开关模块中的任意一个开关模块后,对所述分压模块的第一端进行采样,得到第一信号;
    所述第二采样模块用于在所述第二控制模块闭合所述整车的主开关模块中的任意一个开关模块后,对所述分压模块的第二端进行采样,得到第二信号;
    所述第一确定模块用于根据所述第一信号和所述第二信号,确定第一绝缘阻值,所述第一绝缘阻值为所述第二绝缘阻值和第三绝缘阻值的并联值,其中, 所述第二绝缘阻值为整车的主开关模块内侧高压线路对参考电位端的绝缘阻值,所述第三绝缘阻值为整车的主开关模块外侧高压线路对参考电位端的绝缘阻值。
  13. 一种电子设备,其中,包括:至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至11中任一项所述的绝缘阻值的检测方法。
  14. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的绝缘阻值的检测方法。
PCT/CN2020/076577 2019-03-01 2020-02-25 一种绝缘阻值的检测方法、装置、电子设备及存储介质 WO2020177575A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910156356.7 2019-03-01
CN201910156356.7A CN110967558A (zh) 2019-03-01 2019-03-01 一种绝缘阻值的检测方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020177575A1 true WO2020177575A1 (zh) 2020-09-10

Family

ID=70028494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076577 WO2020177575A1 (zh) 2019-03-01 2020-02-25 一种绝缘阻值的检测方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN110967558A (zh)
WO (1) WO2020177575A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474453A (zh) * 2020-05-15 2020-07-31 中国第一汽车股份有限公司 绝缘检测电路、部件绝缘故障的检测方法及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076497A (zh) * 2012-12-18 2013-05-01 江苏常隆客车有限公司 一种基于低频脉冲信号注入的绝缘检测方法
US20140084934A1 (en) * 2012-09-26 2014-03-27 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis
KR101575271B1 (ko) * 2014-11-25 2015-12-07 현대오트론 주식회사 논리 연산을 이용한 절연 저항 측정 장치 및 그 방법
CN105277787A (zh) * 2015-09-30 2016-01-27 上海凌翼动力科技有限公司 电动汽车绝缘电阻故障预测方法及***
CN107479002A (zh) * 2017-08-29 2017-12-15 宁德时代新能源科技股份有限公司 继电器诊断电路及方法、电池管理***
CN107490750A (zh) * 2016-10-21 2017-12-19 宝沃汽车(中国)有限公司 电动车辆及其绝缘检测方法、装置和***
CN108333492A (zh) * 2018-02-01 2018-07-27 宁德时代新能源科技股份有限公司 绝缘检测电路及方法、电池管理***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324645B (zh) * 2008-07-08 2010-06-02 奇瑞汽车股份有限公司 混合动力车高压能量管理***绝缘电阻测算方法及装置
CN106501611B (zh) * 2016-10-28 2019-11-29 深圳市航盛电子股份有限公司 绝缘电阻检测方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084934A1 (en) * 2012-09-26 2014-03-27 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis
CN103076497A (zh) * 2012-12-18 2013-05-01 江苏常隆客车有限公司 一种基于低频脉冲信号注入的绝缘检测方法
KR101575271B1 (ko) * 2014-11-25 2015-12-07 현대오트론 주식회사 논리 연산을 이용한 절연 저항 측정 장치 및 그 방법
CN105277787A (zh) * 2015-09-30 2016-01-27 上海凌翼动力科技有限公司 电动汽车绝缘电阻故障预测方法及***
CN107490750A (zh) * 2016-10-21 2017-12-19 宝沃汽车(中国)有限公司 电动车辆及其绝缘检测方法、装置和***
CN107479002A (zh) * 2017-08-29 2017-12-15 宁德时代新能源科技股份有限公司 继电器诊断电路及方法、电池管理***
CN108333492A (zh) * 2018-02-01 2018-07-27 宁德时代新能源科技股份有限公司 绝缘检测电路及方法、电池管理***

Also Published As

Publication number Publication date
CN110967558A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
US11243259B2 (en) Insulation resistance detection circuit, detection method, and detection apparatus
CN111060791A (zh) 绝缘故障检测方法、装置、电动汽车、终端设备及介质
Cui et al. State‐of‐charge estimation of power lithium‐ion batteries based on an embedded micro control unit using a square root cubature Kalman filter at various ambient temperatures
CN107643447A (zh) 一种车辆绝缘检测电路及方法
EP3913388B1 (en) Detection method for insulation testing circuit, and battery management system
KR101658522B1 (ko) 차량의 차대에 배치된 전지팩의 절연저항을 측정하기 위한 방법 및 시스템
CN206710509U (zh) 一种直流***绝缘电阻监测电路及***
US11271258B2 (en) Battery pack
US11228063B2 (en) Battery pack for diagnosing fault of charging contactor
WO2018171259A1 (zh) 一种检测电路、方法和装置
US20210116486A1 (en) Method and device for obtaining internal side, external side insulation resistances of relay, and battery management system
US9037424B2 (en) Systems and methods for detecting ultracapacitor cell short circuits
CN103728533A (zh) 一种大功率非接触充电***主电路故障检测装置
Naseri et al. Real‐time open‐switch fault diagnosis in automotive permanent magnet synchronous motor drives based on Kalman filter
Li et al. Open‐circuit fault diagnosis for a fault‐tolerant three‐level neutral‐point‐clamped STATCOM
WO2020177639A1 (zh) 绝缘检测电路及检测方法、电池管理***
WO2020177575A1 (zh) 一种绝缘阻值的检测方法、装置、电子设备及存储介质
US11204386B2 (en) Relay diagnosis circuit
WO2014034153A1 (ja) 漏電検出回路、電池用回路基板、及び電池電源装置
CN109738778A (zh) 逆变器开路诊断方法、装置、终端设备及计算机可读介质
CN112448458B (zh) 故障处理方法、***及其存储介质
CN110108939B (zh) 基于交流注入法的交流电机绝缘阻抗获取方法及装置
Breznik et al. Detection of open circuit fault in battery power supply feeding permanent magnet synchronous motor
CN110275068A (zh) 一种电容器容值检测方法及设备
JP7055470B2 (ja) 電池管理装置、方法及びチップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766378

Country of ref document: EP

Kind code of ref document: A1