WO2020175450A1 - Method and device for purifying carbon nanotubes - Google Patents

Method and device for purifying carbon nanotubes Download PDF

Info

Publication number
WO2020175450A1
WO2020175450A1 PCT/JP2020/007390 JP2020007390W WO2020175450A1 WO 2020175450 A1 WO2020175450 A1 WO 2020175450A1 JP 2020007390 W JP2020007390 W JP 2020007390W WO 2020175450 A1 WO2020175450 A1 WO 2020175450A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbon nanotubes
purifying
etching
purification
Prior art date
Application number
PCT/JP2020/007390
Other languages
French (fr)
Japanese (ja)
Inventor
野田 優
田中 秀明
慧 大橋
利男 大沢
Original Assignee
学校法人早稲田大学
株式会社名城ナノカーボン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 株式会社名城ナノカーボン filed Critical 学校法人早稲田大学
Publication of WO2020175450A1 publication Critical patent/WO2020175450A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification

Definitions

  • the present invention relates to a method and apparatus for purifying carbon nanotubes.
  • Force-bon nanotubes (hereinafter, also referred to as "1 ⁇ 1”) have a unique one-dimensional nanostructure and excellent thermal, electrical, and mechanical properties that allow them to function as battery electrodes, capacitors, and Various applications are expected, such as high strength materials by mixing with transistors and polymers.
  • the solid carbon After the solid carbon is sublimated, it is cooled to synthesize ⁇ ! ⁇ 1, and the physical vapor deposition ( ⁇ ) method and the chemical vapor deposition ( ⁇ 3 0) method to pyrolyze hydrocarbons to synthesize 0
  • metal nanoparticles are used as a catalyst in both methods.
  • the catalyst metal used in the synthesis is mixed in the Ding product as an impurity in the range of several to several tens of percent. If the catalytic metal remains contained, the physical properties of the nanomaterial will deteriorate and the weight will increase. Therefore, it is important to remove the catalytic metal by refining.
  • bromine which is a liquid at room temperature and normal pressure (25 ° C, 1 atm)
  • 2020/175 450 2 2020/175 450 2
  • Patent Document 1 International Publication No. 0 2 0 0 8/1 2 6 5 3 4
  • Patent Document 2 International Publication No. 020 1 7/1 4 6 2 1 8 Publication
  • the present invention has been made in view of such circumstances, and the vapor pressure of the etching agent is as low as less than 10 0 3 at room temperature of 25 ° ⁇ , and even if the etching agent leaks, the Another object of the present invention is to provide a method and apparatus for purifying carbon nanotubes that can significantly reduce the risk of accidents by settling as solid powder.
  • the present invention provides a method for purifying force-carbon nanotubes, which comprises heating a catalyst metal-containing force-carbon nanotube synthesized using a catalyst metal and a metal halide, Touch the metal halide vapor ⁇ 2020/175 450 3 (:171? 2020/007390
  • a method including an etching step of removing the catalytic metal by contacting with a carbon-containing metal-bonded carbon nanotube is provided.
  • the halide may be solid at room temperature and pressure.
  • the refining method according to the present invention may further include a vacuum heating step of heating the power-bonano tube purified by the etching step in a vacuum state.
  • the metal halide is Just ⁇
  • the metal halide may be selected from the group consisting of fluoride, chloride, bromide or iodide, and a mixture thereof.
  • the catalytic metal-containing carbon nanotube may be synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition ( ⁇ 30) method.
  • the present invention provides a reactor, a force-carbon nanotube supplying means for supplying a catalyst metal-containing force-carbon nanotube synthesized by using a catalyst metal into the reactor, a metal halide, and the reactor.
  • An etching agent supply means for supplying the inside of the catalyst metal, a catalyst nanotube-containing force, and a heating means for heating the metal halide, and the catalyst metal-containing force heated in the reactor.
  • the refining apparatus comprises a vacuum heating means for heating the catalytic metal-containing catalyst heated and the vapor of the metal halide brought into contact with each other to heat the purified carbon nanotube in a vacuum state. There may be more preparations. Effect of the invention
  • the present invention provides an etching agent having a vapor pressure of less than 10 3 at 25°. ⁇ 2020/175 450 4 boxes (: 171-1?2020/007390
  • FIG. 1 A schematic view showing a state in which the catalytic metal is covered with a carbon shell in the catalytic metal-containing carbon nanotube that is a purification treatment target by the method and apparatus for purifying a carbon nanotube of the present invention. Is.
  • Fig. 2 is a schematic view showing how the catalytic metal is removed by an etching agent in the heated catalytic metal-containing carbon nanotube.
  • FIG. 3 Having a hollow carbon shell from which the catalytic metal has been removed, which is obtained after the purification treatment by the method for purifying carbon nanotubes of the present invention and the purification apparatus. It is a schematic diagram which shows the appearance of Ding.
  • FIG. 4 is a schematic view showing a preferred embodiment of an apparatus for performing a purification process by an etching process in the method for purifying carbon nanotubes and the purifying apparatus of the present invention.
  • FIG. 5 is a schematic view showing a preferred embodiment of an apparatus for carrying out a purification treatment by a vacuum heating step in a method and apparatus for purifying carbon nanotubes of the present invention.
  • FIG. 6 is a graph and a table showing the processing conditions in the etching process in the method and apparatus for purifying carbon nanotubes according to the present invention.
  • FIG. 7 In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 1, the change in the content of 6 in ⁇ 1 ⁇ 1 before and after the refining process by the etching process is shown. It is a graph.
  • Fig. 8 is a graph showing the results of laser microscopic Raman spectroscopic analysis before carrying out a purification process by an etching step in Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention. 20/175450 5 ⁇ (: 171? 2020 /007390
  • FIG. 9 is a graph showing the results of laser microscopic Raman spectroscopic analysis after carrying out a purification process by an etching step in Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention.
  • FIG. 10 In the method and apparatus for purifying carbon nanotubes according to the present invention, a graph obtained by enlarging the horizontal axis of the results of laser microscopic Raman spectroscopic analysis before performing the refining process by the etching step in Example 1. is there.
  • FIG. 11 A graph obtained by enlarging the horizontal axis of the result of the laser microscopic Raman spectroscopic analysis after the purification process by the etching step in the method and the apparatus for purifying carbon nanotubes of the present invention with respect to Example 1. Is.
  • FIG. 12 In the method and apparatus for purifying carbon nanotubes according to the present invention, regarding Example 1, thermogravimetric analysis was performed on 0 1 ⁇ 1 before purification by etching process and ⁇ ! ⁇ after purification. It is a graph showing the results of the analysis and the weight loss rate.
  • FIG. 13 is a graph and a table showing the treatment conditions of the vacuum heating step regarding Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention.
  • FIG. 14 In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 1, before and after purification treatment by a vacuum heating step. It is a graph showing the change in the content rate of (3 I in Ding.
  • FIG. 15 A graph showing the change in the content of 6 in 0/11 before and after the purification treatment by the vacuum heating step in Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention Is.
  • FIG. 16 As for Example 1, a photograph of a transmission electron microscope (Cho! ⁇ /1) was used to purify the carbon nanotubes of the present invention before the purification treatment with the purification apparatus was performed. This is a picture of Tingmi IV!
  • FIG. 17 In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 1, a refining process by an etching process and a vacuum heating step, which was photographed by a transmission electron microscope (Chomi 1 ⁇ /1), It is a picture of 1 ⁇ 1 Ding IV! ⁇ 2020/175 450 6 boxes (: 171-1? 2020 /007390
  • thermogravimetric analysis was performed on 0 1 ⁇ 1 before the refining process by the etching process and 0! ⁇ 1 after the refining process. It is a graph showing the results of the analysis and the weight loss rate.
  • FIG. 20 In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 2, the purifying process by the etching process and the vacuum heating step, which was photographed by a transmission electron microscope (Chomi 1 ⁇ /1), was performed. It is a picture of 1 ⁇ 1 Ding IV!
  • thermogravimetric weights of 0 1 ⁇ 1 before the purification treatment by the etching process and 0! ⁇ 1 after the purification treatment It is a graph showing the results of the analysis and the weight loss rate.
  • FIG. 22 Regarding Example 3, ⁇ 1 ⁇ 1 pens before the purification method and the purification apparatus for the force-carbon nanotubes of the present invention taken by a transmission electron microscope (Chome IV! IV! This is a picture.
  • the catalytic metal-containing carbon nanotube is 0 ! ⁇ 1 before the purification treatment by the refining method of the present invention, for example, in the case of synthesis of 0 ! ⁇ 1.
  • the catalyst metal derived from the raw material used in 1) is included as an impurity. As shown in Fig. 1, most of the catalytic metal 2 exists in the state of being covered with the carbon shell 3.
  • the catalytic metal-containing carbon nanotube 1 is a particle in which the catalytic metal 2 remains in the carbon shell 3 at the end 6 without being removed, and the catalytic metal 2 is covered with the carbon shell 3. Therefore, the particles 7 adhering to 1 ⁇ 1 and the catalyst metal 2 are particles covered with carbon shells 3. Includes particles 8 that are located away from.
  • the carbon shell 3 may be a single layer or multiple layers. ⁇ Some 1 ⁇ 1 5 exist independently, while others exist with multiple 0 ⁇ 1 5 intertwined or in a bundle.
  • the catalytic metal-containing carbon nanotubes 1 can be used as impurities in addition to the catalytic metal 2 covered with the carbon shell 3, for example, the catalytic metal 2 not covered with the carbon shell 3 and 0 1 ⁇ 1. It may also include undecomposed carbon sources, as well as undecomposed catalyst sources at the time of synthesis.
  • the method for purifying carbon nanotubes according to the present embodiment has an etching step (see FIGS. 1 to 3) for removing the catalyst metal 2 from the catalyst metal-containing carbon nanotube 1.
  • the etching process first, the catalytic metal-containing carbon nanotube 1 synthesized by using the catalytic metal 2 and the metal halide as an etching agent having a vapor pressure of less than 100 3 at 25 ° Heat 15 (see Figure 4).
  • the vapor pressure of the metal halogenide as an etching agent at 25°C is preferably less than 10 3 and more preferably less than 13 3.
  • the vapor of the metal halide 15 is brought into contact with the catalytic metal-containing carbon nanotube 1.
  • An etching product is generated by the chemical reaction described later, and the catalytic metal 2 is removed.
  • Purification treatment temperature is, for example, when using iron chloride (6 (3 I 3) as an etching agent, it is preferably 6 0 0 ° ⁇ As,
  • purification treatment temperature is 6 0 0 ° ⁇ As, reaction proceeds between the etching agent and the catalyst metals, as long as 1 0 0 0 ° ⁇ As, the reaction proceeds more.
  • the method for purifying force-carbon nanotubes according to the present embodiment is a vacuum heating step in which after the etching process, the force-carbon nanotubes 110 (see Fig. 5) purified by the etching process are heated in a vacuum state. Can be further included.
  • the content ratio of halogen elements and catalytic metal elements remaining in 0 to 1/10 after the refining process by the etching process can be further reduced.
  • FIG. 1 is a conceptual diagram showing the state of the catalytic metal-containing carbon nanotube 1 in which the catalytic metal 2 is covered with the carbon shell 3.
  • the catalytic metal-containing carbon nanotube 1 is heated and its temperature rises, the catalytic metal atoms, carbon atoms, and etching molecules become active, and the atoms and molecules diffuse through the carbon shell 3 that covers the particles of catalytic metal 2. become able to.
  • the catalyst metal 2 when the catalyst metal 2 is 6 , use chloride 15 (60 ⁇ 3 ) of 6 which has a vapor pressure of less than 10 0 3 at 25 ° ⁇ and is solid at room temperature and normal pressure as an etching agent. Then, 6 of catalytic metal 2 reacts with 60 3 of etching agent 15 to generate 60 2 of etching product (Fig. 2). Since the vapor pressure of 60 ⁇ 2 is high in a high-temperature field, it moves away from the catalyst metal-containing force-bon nanotube 1 as vapor, and as a result, 6 of the catalyst metal 2 in the catalyst metal-containing force-bon nanotube 1 is removed.
  • chloride 15 60 ⁇ 3
  • 6 of catalytic metal 2 reacts with 60 3 of etching agent 15 to generate 60 2 of etching product (Fig. 2). Since the vapor pressure of 60 ⁇ 2 is high in a high-temperature field, it moves away from the catalyst metal-containing force-bon nanotube 1 as vapor, and as a result, 6
  • Examples of the catalyst metal 2 include 6 , ⁇ , 1 ⁇ ! I, ⁇ , ⁇ ”, 1 ⁇ /1 ⁇ , ⁇ , ⁇ ri, 89, 8ri, and alloys of these.
  • the metal of the metal halide 15 may be the same as or different from the catalyst metal 2 to be removed, and is not particularly limited, but for example, 6, metal, I, ⁇ ⁇ , 06, 3 n and Minoru.
  • the metal halide 15 as an etching agent is a metal halide having a plurality of valences, and the vapor pressure at 25° may be less than 1003.
  • metal halide 15 as an etching agent may When it is solid at normal temperature and pressure, and has a high vapor pressure in a heated state (for example, 1 00 3 on than at 600 ° ⁇ As) is preferred.
  • the metal halide 15 as an etching agent is a fluoride, chloride, bromide or iodide having a vapor pressure of less than 1003 at 25 ° ⁇ , and a mixture thereof, and specifically, for example, 6 ⁇ 1 3 Ya
  • halides have lower valences by reacting with the catalyst metal 2.
  • the catalytic metal 2 is etched as a halide, and the metal halide as an etching product after etching also has a low vapor pressure of less than 100 to 3 at 25 ° , especially at room temperature. It can be selected solid metal halide or al in pressure, in which case, low vapor pressure at ordinary temperature (e.g., 1 3 below), and, 1 high vapor pressure in a heated state (for example, 600 ° ⁇ As 00 3 Above) is preferable.
  • the catalytic metal-containing carbon nanotube 1 can be synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition ( ⁇ 30) method, but is not particularly limited to these production methods. Absent.
  • FIG. 4 shows a preferred embodiment of the apparatus for purifying carbon nanotubes 10 according to the present invention. ⁇ 2020/175 450 10 boxes (: 171-1? 2020 /007390
  • FIG. 4 is a schematic diagram showing a simple purification device as an example of a device having a function of removing the catalyst metal 2 from the catalyst metal-containing force carbon nanotube 1 by the method for purifying the force carbon nanotube of the present embodiment.
  • the apparatus 10 for purifying carbon nanotubes of the present invention heats the catalyst metal-containing carbon nanotubes 1 and the metal halide 15, and vapors of the halides 15 are used as catalyst metal-containing carbon nanotubes 1.
  • the structure is not limited to that shown in FIG.
  • a force-bon nanotube supplying means 13 for supplying the catalyst metal-containing force-bon nanotube 1 synthesized by using the catalyst metal 2, which is an object of purification treatment.
  • An etching agent supply means 16 for supplying a metal halogenide 15 as an etching agent is further installed in the reactor 11.
  • the force-carbon nanotube supply means 13 may supply the catalyst-metal-containing force-carbon nanotube 1 in the reactor 11 as shown in FIG.
  • the catalytic metal-containing carbon nanotube 1 may be supplied into the vessel 11.
  • the etching agent supply means 16 may supply the metal halide 15 in the reactor 11 as shown in FIG. 4, or the metal halide 15 may be supplied from the outside of the reactor 11 into the reactor 11. May be configured to supply halide 15
  • heat resistant wool 18 may be arranged between the force-carbon nanotube supply means 13 and the etching agent supply means 1 and the opening 19.
  • the flow of the vapor is rectified to suppress thermal convection. Due to this rectification, the flow of gas in the reactor 11 is restricted, and the vapor of the metal halide 15 is efficiently contacted with the catalytic metal-containing force-bonano tube 1 to improve the efficiency of the purification of ⁇ be able to.
  • the heating means 20 heats the catalytic metal-containing carbon nanotube 1 and the metal halogenide 15.
  • the heating means 20 is not particularly limited in its method and configuration as long as it can heat the catalytic metal-containing carbon nanotube 1 and the metal halide 15. ⁇ 2020/175 450 1 1 ⁇ (:171? 2020/007390
  • the metal halide 15 as an etching agent has a vapor pressure of 1 at 25°
  • the etching product produced by contacting the heated catalytic metal-containing carbon nanotubes 1 and the vapor of the metal halogenide 15 in the reactor 11 also has a vapor pressure at 25 ° ⁇ . If it is as low as less than 103, even if the etching product leaks from inside the reactor 11 during the refining process, it can also be precipitated as droplets or solid powder.
  • the etching agent is a solid at room temperature and atmospheric pressure, even if the etching agent leaks from the reactor 11 during the refining process, it can be precipitated as a solid powder.
  • the etching product is solid at room temperature and normal pressure, even if the etching product leaks from the reactor 11 during the refining process, it can also be precipitated as a solid powder. Therefore, according to the purification method and purification apparatus of the force over carbon nanotubes of the present embodiment, since the risk of human sucks leakage gas composed without purification method using the conventional ⁇ 3 I 2 gas and Snake "2 Gas Compared to the above, the damage and the risk of accidents due to leakage can be significantly reduced.
  • the apparatus as the vacuum heating means 100 shown in Fig. 5 was prepared by bringing heated catalytic metal-containing carbon nanotubes 1 and vapors of metal halides 15 into contact with each other. Are heated in a reactor 1 11 under vacuum.
  • ⁇ 1 ⁇ 1 pcs supply means 1 13 supplies ⁇ 1 ⁇ 1 pcs 1 10
  • the inside of the quartz glass tube 1 12 can be evacuated by connecting the opening 1 19 of the reactor 1 1 1 to a vacuum pump (not shown) as a vacuuming means and operating the vacuum pump. it can.
  • the vacuum heating means 100 is configured by including the heating means 120 for heating the 0 1 1 1 110 inside the reactor 1 11. By heating 0 1 ⁇ 1 1 110 in a vacuum state by the vacuum heating means 100, the content of halogen elements and catalytic metal elements remaining in 0 1 ⁇ 1 110 can be further reduced. ..
  • the composition is analyzed using an energy dispersive X-ray analysis (day 0 X) device attached to a scanning electron microscope (3M IV!). ⁇ 2020/175 450 12 boxes (:171? 2020/007390
  • the crystallinity of CNT can be analyzed by, for example, laser microscopic Raman spectroscopic analysis.
  • the peak appearing around 1590 cm is called G-band and is derived from the in-plane stretching vibration of a carbon atom having a 6-membered ring structure.
  • the peak around 1350 cm- 1 is called the D-band, and it tends to appear when there is a defect in the 6-membered ring structure.
  • the relative crystallinity of CNTs can be evaluated by the peak intensity ratio I G /I D (G/D ratio) of G-band to D-band. It can be said that CNTs with higher G/D ratio have higher crystallinity.
  • the peak appearing near 200 cm- 1 is unique to single-walled CNT called RBM (Radial Breathing Mode) and is a mode that vibrates in the diameter direction of the tube.
  • the C N T 110 after purification by the etching step of the present embodiment has a greatly reduced metal content of the catalyst metal 2 in C N T as compared with the catalyst metal-containing carbon nanotube 1 before purification. Moreover, by refining so as to remove the catalytic metal 2 while leaving the carbon shell 3, the surface area of the carbon shell 3 can be effectively utilized in addition to the surface area of CNT, and the performance is improved in the application device using the surface area.
  • Has the effect of Applications that utilize surface area include electric double layer capacitors, various gas and ion adsorbents, gas and biosensor materials, etc. For example, in the case of electric double layer capacitors, the capacity can be increased.
  • the vapor pressure of the etching agent is less than 100 Pa at 25°C, and even if the etching agent leaks, it precipitates as droplets or solid powder. , The risk of accident can be reduced significantly. Further, since the catalytic metal 2 is removed while the carbon shell 3 is left without being destroyed, the damage of C N T can be reduced. Furthermore, since there is no wet process for wetting C N T with a liquid, C N T does not become densified, and C N T can be kept in a low density and easily dispersed state.
  • a horizontal tube composed of a quartz glass tube 12 as shown in FIG. 4 was used.
  • a 0-shaped container 14 which is a ceramic boat-shaped container made of silica and alumina was used.
  • I 3 was used. It was placed directly on a quartz plate 17 as an etching agent supply means 16 provided in a quartz glass tube 12.
  • the Ding container 14 was also placed on the quartz plate 17.
  • an electric furnace 21 was used around the quartz glass tube 12, and the inside of the quartz glass tube 12 was heated to control the temperature of the catalytic metal-containing carbon nanotube 1 and the metal halogenide 15. Raised.
  • a quartz glass tube with the same structure as that of the refining apparatus 10 of 0 units in Fig. 4 was supplied with 1 unit of 1 unit.
  • a means 1 13 a 1 ⁇ 1 container 1 14 and a quartz plate 1 17 were used.
  • the opening 1 19 of the quartz glass tube 1 12 was connected to a vacuum pump (not shown) as a vacuuming means.
  • an electric furnace 121 as a heating means 120 was arranged on the outer circumference of the quartz glass tube 12.
  • Example 800 manufactured by Hitachi High-Technologies Corp.
  • Example 1 and 2 ⁇ 1 ⁇ 1 was sandwiched between two copper plates and pressure was applied from above and below to adhere them to the copper plates, then one copper plate was removed and the other copper plate was removed. On a copper plate The measurement was performed with the tab attached.
  • Example 3 0 1 ⁇ 1 piece was sandwiched with a gage mesh and pressed, and the gap was measured from the gage mesh.
  • the accelerating voltage was 20 1 ⁇ /, and the magnification was 300 times (Examples 1 and 2) to 500 times (Example 3), and 3 3 1//1-normal analysis was performed to evaluate the elemental composition of each element. After observing at a predetermined point, the observation point was also measured at a point about 1.5 to 2! ⁇ apart, and this was repeated to obtain 15 points in Example 1 and 5 points in Examples 2 and 3. The measurements were taken in place.
  • a laser microscopic Raman spectroscopic analysis was performed using a laser sample Raman spectrometer (model number: ! [3 ⁇ 4_800, manufactured by Horiba, Ltd.) with 1 ⁇ 1 powder sample and a laser wavelength of 488. Place the Ding on a silicon substrate and drop a few drops of ethanol on it. After that, ethanol was dried on the hot plate, and 0 1 ⁇ 1 c was adhered to the silicon substrate.
  • In 1:1 laser Raman spectroscopic analysis, there may be variations depending on the measurement location of 1:1.Therefore, measure 10 points and measure the ratio and at each point. It was ⁇ The ratio was evaluated by taking the total arithmetic mean of the values of 1 at the 10 points.
  • Minhachi 1_ 1_ (registered trademark) single-walled carbon nanotubes (03 03 Hachijosha Co., Ltd.) was used as a sample to perform a purification process such as an etching process.
  • the force cylinder has a diameter of 1.6 ⁇ 0.4.
  • 5 1 ⁇ 0 1 ⁇ 1 containers are placed in a 0 1 ⁇ 1 container and 100
  • FIG. 7 is a graph showing the results of measuring the content rate of 6 among these measurement results.
  • the content of 6 in the 1 ⁇ 1 after the refining process by the etching process is 3.31 «, which is 13.13 before the refining process by the etching process.
  • Fig. 8 is a graph showing the result of laser microscopic Raman spectroscopic analysis before the purification treatment by the above etching process.
  • Figure 9 shows the vacuum heating process described above. ⁇ 2020/175 450 16 boxes (: 171-1? 2020/007390
  • FIG. 10 shows a graph of 200 in the graph of FIG. It is an enlarged view of the vicinity. From the graph, [ ⁇ 11/1 was confirmed at all 10 points, and it can be seen that Ding II Michihachi 1_ 1_ (registered trademark) is a single layer ⁇ 1 ⁇ 1 Ding. In addition, 811/1 of J [JBALL (registered trademark) appears in a wide wave number range, and it can be seen that the distribution of the diameter of 0 1 ⁇ 1 of T [JBALL (registered trademark) is large.
  • Figure 1 1 is in the graph of FIG. 9, 200 - 1 is an enlarged view of the vicinity.
  • Fig. 12 shows the thermogravimetric amount of 0 1 ⁇ 1 before the purification process by the etching process (broken line) and after the purification process by the etching process (solid line).
  • Analysis Shows the results. Before the purification process by the etching process, the weight loss rate of 0-chome was 83.75% and the amount of residue was 16.25%. After the purification process by the etching process, the weight loss rate of 0 pieces was 96.84% and the amount of residue was 3.16%. From the results of thermogravimetric analysis (c), it can be seen that the amount of catalyst residue in the clove, which causes residues due to the etching process, was reduced to 1/5 or less.
  • the inside of the quartz glass tube was evacuated to a vacuum, and the gas inside the quartz glass tube was discharged twice for 8 minutes, and the oxygen inside the quartz glass tube was discharged. Then, the temperature was raised to 1000 ° ⁇ over 15 minutes.After the temperature was raised, the inside of the quartz glass tube was kept at 1000 ° ⁇ for 60 minutes in a vacuum state. "The gas was replaced twice for 10 minutes twice.
  • Table 2 shows the number of samples before the purification treatment by the above vacuum heating step and after the purification treatment by the above vacuum heating step.
  • Fig. 14 shows the measurement results of the content ratios of (3, ⁇ , 0 ⁇ , and 6 in Ding.
  • Fig. 14 is a graph showing the measurement results of the content ratio of ⁇ I among these measurement results.
  • [Fig. 6] is a graph showing the measurement results of the content rate of 6.
  • the content of ⁇ I after the refining by the vacuum heating process remaining in Ding is 0.6. This is a 73% decrease from 2.2 ! « before the purification treatment by the vacuum heating process. ⁇ !
  • the content of 6 remaining in the 1-chome after the refining process by the vacuum heating process is 1.8.
  • Fig. 16 is a photograph of a 1 ⁇ 1 Tingmi 1 ⁇ /1 image taken by a transmission electron microscope (Choing IV! before the above purification treatment. As shown by the arrow, it can be confirmed that the particles of the catalytic metal remain in the carbon shell.
  • Fig. 17 is a photograph of the Tingmi IV! image of 1:1 after the purification process by the above etching process and vacuum heating process. As shown by the arrow, a hollow carbon shell with the catalyst metal in the carbon shell removed can be confirmed.
  • the catalytic metal can be removed from the 0-chome of 1_11_ 1_ (registered trademark) by the refining process with ⁇ 11_ 1_ 1_ (registered trademark), and the crystallinity can be improved without damaging the ⁇ 1 ⁇ 1-chome, such as the enlargement of the diameter or the formation of multiple layers. It was confirmed that it could be increased. Furthermore, it was confirmed that the purification treatment by the vacuum heating step can further remove the catalytic metal and reduce the 0 I content.
  • the single-layer carbon nanotubes synthesized by the arc discharge method were used as a sample for the purification process of the etching process.
  • the force-carbon nanotube has a diameter of 1-2.
  • 119 ⁇ 1 ⁇ 1 chome and 100 1119 ⁇ ⁇ ⁇ 3 were used, using the same purification equipment as in Example 1, under the same purification treatment conditions as in Example 1. Purification processing was performed.
  • Table 3 shows 0 pieces before performing the refining treatment by the above etching process, and ⁇ , ⁇ , ⁇ , 3, in 1 of 1 after the refining treatment by the above etching process.
  • The measurement results of the content rates of ⁇ , 6 and 1 ⁇ 1 ⁇ are shown.
  • The content rate of 1 ⁇ 1 ⁇ after the refining process by the etching process remaining in 1 ⁇ 1 cot is 6.9.
  • etching process 38 Before the purification process by the etching process 38.
  • Fig. 18 shows the thermogravimetric analysis of 0 1 ⁇ 1 before the purification process by the etching process (broken line) and after the purification process by the etching process (solid line).
  • Table Shows the result.
  • the weight loss rate of 0-chome before purification by etching process was 34.86% and the amount of residue was 65.14%.
  • the weight loss rate of 0 1 ⁇ 1 after the purification process by etching process was 75.59% and the amount of residue was 24.41%. From the results of thermogravimetric analysis, it can be seen that the amount of catalyst residue in the knives that causes residues due to the etching process has been reduced to about 1/3. ⁇ 2020/175 450 19 ⁇ (: 171-1? 2020/007390
  • the purification treatment by the vacuum heating process was performed using the 0 1 ⁇ 1 unit.
  • the purification treatment was carried out under the same purification treatment conditions as in Example 1.
  • Fig. 19 is a photograph of a 1 ⁇ 1 Tingmi 1 ⁇ /1 image taken by a transmission electron microscope (Choing IV! before the above purification treatment. As shown by the arrow, it can be confirmed that the particles of the catalytic metal remain in the carbon shell.
  • Fig. 20 is a photograph of the Tingmi IV! image of ⁇ 1 ⁇ 1 after the above etching process and the refining process by the vacuum heating process. As shown by the arrow, a hollow carbon shell with the catalyst metal in the carbon shell removed can be confirmed.
  • the catalytic metal is removed from the 0 1 ⁇ 1 chome synthesized by the arc discharge method by the refining process by the etching process using 60 3 as the etching agent and the refining process by the vacuum heating process. It was confirmed that it was possible.
  • Example 1 Using the multi-layer carbon nanotubes synthesized by the V mouth method as a sample, a purification process of etching grade was performed.
  • the carbon nanotubes have a diameter of 10 to 30 and an average diameter of about 20.
  • 5 Using 1 ⁇ 1 and 100 11 ⁇ 60 I 3 , the same purification apparatus as in Example 1 was used to perform the purification treatment under the same purification treatment conditions as in Example 1.
  • Fig. 21 shows the thermogravimetric components of 0 1 ⁇ 1 before the refining process by the above etching process (broken line) and after performing the refining process by the etching process (solid line).
  • Analysis Shows the results. Before the purification process by etching process, the weight loss rate of 0 units was 89.01% and the amount of residue was 10.99%. After carrying out the refining process by the etching process, the weight reduction rate of 0 pieces was 96.12% and the amount of residue was 3.88%. From the results of thermal gravimetric analysis (c), it can be seen that the amount of catalyst residue in 0 crate, which causes the residue due to the etching process, was reduced to less than 1/2.
  • the purification treatment by the vacuum heating process was performed using the 0 1 ⁇ 1 unit.
  • the purification treatment was carried out under the same purification treatment conditions as in Example 1.
  • Fig. 22 is a photograph of a 1 ⁇ 1 Tingmi 1 ⁇ /1 image taken with a transmission electron microscope (Ding! ⁇ /1) before the above purification treatment. As shown by the arrow, it can be confirmed that the particles of the catalytic metal remain in the carbon shell.
  • Figure 23 is a photograph of the ⁇ 1 ⁇ 1 chome IV! image after the above-mentioned etching process and the refining process by the vacuum heating process. As shown by the arrow, a hollow carbon shell with the catalyst metal in the carbon shell removed can be confirmed.
  • the catalytic metal was removed from the 0 1 ⁇ 1 unit synthesized by the method ⁇ by the refining process by the etching process using 60 3 as the etching agent and the refining process by the vacuum heating process. It was confirmed that it can be done.
  • the heating means 20 may be ⁇ 2020/175 450 21 2020/007390
  • a heating means (not shown) for heating the Bonn nanotube 1 and a heating means (not shown) for heating the metal halide 15 may be separately provided.
  • Catalytic metal is a particle covered with carbon shell and exists away from ⁇

Abstract

Provided are a method and a device for purifying carbon nanotubes, wherein the vapor pressure of an etching agent at 25°C is lower than 100 Pa so that the leaked etching agent, if any, is precipitated in the form of liquid droplets or a powder and thus the risk of accidents can be largely reduced. The method for purifying carbon nanotubes comprises heating catalytic metal-containing carbon nanotubes 1, which are synthesized by using a catalytic metal 2, and a metal halide 15 and thus bringing the vapor of the metal halide 15 into contact with the catalytic metal-containing carbon nanotubes 1 to thereby remove the catalytic metal 2.

Description

〇 2020/175450 1 卩(:171? 2020 /007390 明 細 書 〇 2020/175450 1 卩 (:171? 2020/007390 Clarification
発明の名称 : 力ーボンナノチューブの精製方法および精製装置 技術分野 Title of Invention: Method and apparatus for purifying carbon nanotubes Technical Field
[0001 ] 本発明は力ーボンナノチューブの精製方法および精製装置に関する。 The present invention relates to a method and apparatus for purifying carbon nanotubes.
背景技術 Background technology
[0002] 力ーボンナノチューブ (以下、 〇1\1丁ともいう) は、 特異な 1次元ナノ構 造と、 優れた熱的、 電気的および機械的性質とにより、 電池の電極やキャパ シタ、 トランジスタ、 および、 ポリマー等との混合による高強度材料など、 各種応用が期待されている。 固体炭素を昇華した後、 冷却して〇!\1丁を合成 する物理蒸着 ( 〇) 法と、 炭化水素等を熱分解して 0 丁を合成する化 学気相成長 (<3 0) 法とが知られるが、 何れの方法でも金属ナノ粒子を触 媒に用いる。 通常、 合成した
Figure imgf000003_0001
丁の生成物には、 合成に用いた触媒金属が 、 不純物として数〜数十 1 %混入している。 触媒金属が含まれたままであ ると、 ナノ材料としての物性の低下や重量の増加が起こるため、 精製処理等 による触媒金属の除去が重要となる。
[0002] Force-bon nanotubes (hereinafter, also referred to as "1\1") have a unique one-dimensional nanostructure and excellent thermal, electrical, and mechanical properties that allow them to function as battery electrodes, capacitors, and Various applications are expected, such as high strength materials by mixing with transistors and polymers. After the solid carbon is sublimated, it is cooled to synthesize 〇!\1, and the physical vapor deposition (〇) method and the chemical vapor deposition (<3 0) method to pyrolyze hydrocarbons to synthesize 0 However, metal nanoparticles are used as a catalyst in both methods. Usually synthesized
Figure imgf000003_0001
The catalyst metal used in the synthesis is mixed in the Ding product as an impurity in the range of several to several tens of percent. If the catalytic metal remains contained, the physical properties of the nanomaterial will deteriorate and the weight will increase. Therefore, it is important to remove the catalytic metal by refining.
[0003] 不純物としての触媒金属の多くはグラファイ トカーボンや非晶質炭素等の 炭素殻に覆われた状態で混入しているため、 従来、 炭素殻を酸化してその全 部または一部を除去する工程と金属を酸で溶解する酸溶解工程とを繰り返す 精製方法が一般的である。 しかし、 これらの工程を繰り返す過程で、 〇1\1丁 が損傷することに加え、 酸による処理の際に溶液に浸すため、 精製後の乾燥 時に溶液の表面張力により〇 1\1丁が緻密に凝集し、 再分散が困難になるなど 、 多くの課題を抱えている。 [0003] Since most of catalytic metals as impurities are mixed in a state of being covered with a carbon shell such as graphite carbon or amorphous carbon, conventionally, the carbon shell is oxidized to remove all or a part thereof. A refining method is generally performed in which the step of applying and the step of dissolving the metal with an acid are repeated. However, in the process of repeating these steps, in addition to the damage of 1 part, since it is soaked in the solution during the treatment with acid, the surface tension of the solution during the drying after purification causes the 1 part to be dense. There are many problems, such as aggregation of the particles and difficulty in redispersion.
[0004] 近年、 触媒金属を含有する触媒金属含有力ーボンナノチューブを乾燥状態 のまま加熱し、 塩素ガス (〇 I 2ガス) と接触させることで、 触媒金属を金属 塩化物として除去する〇1\1丁の精製方法が提案されている (例えば特許文献 [0004] In recent years, catalytic metal-containing catalyst-containing carbon nanotubes are heated in a dry state and brought into contact with chlorine gas (〇 I 2 gas) to remove the catalytic metal as metal chlorides ○ 1 Purification method of \1 is proposed (for example, patent document
[0005] さらに、 本発明者らは、 常温常圧 (2 5 °〇、 1気圧) で液体である臭素 ( 〇 2020/175450 2 卩(:171? 2020 /007390 [0005] Furthermore, the present inventors have found that bromine (which is a liquid at room temperature and normal pressure (25 ° C, 1 atm)) 〇 2020/175 450 2 (:171? 2020/007390
巳 「2) を用いた 0 丁の精製方法を開発した (例えば特許文献 2) 。 当該方 法は、 触媒金属を含有する触媒金属含有力ーボンナノチューブを乾燥状態の まま加熱し、 巳 「2ガスと接触させることで、 触媒金属を金属臭化物として除 去する精製方法である。 We developed a 0 chome purification method using only "2) (for example, Patent Document 2). The how is the catalyst metal-containing force over carbon nanotubes containing the catalyst metal by heating remains in the dry state, snake" 2 This is a purification method in which the catalytic metal is removed as a metal bromide by bringing it into contact with gas.
先行技術文献 Prior art documents
特許文献 Patent literature
[0006] 特許文献 1 :国際公開第 0 2 0 0 8 / 1 2 6 5 3 4号公報 [0006] Patent Document 1: International Publication No. 0 2 0 0 8/1 2 6 5 3 4
特許文献 2 :国際公開第 〇 2 0 1 7 / 1 4 6 2 1 8号公報 Patent Document 2: International Publication No. 020 1 7/1 4 6 2 1 8 Publication
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0007] 特許文献 1 に開示される〇 丨 2ガスによる〇1\1丁の精製方法では、 〇 丨 2ガ スの毒性が高いため、 設備が煩雑になりコストが増大したり、 0 丨 2ガスが漏 洩した場合には重大な事故につながる虞があるなど、 特に設備および運用の 安全面から、 量産設備の実用化には課題があった。 [0007] In Rei_1 \ 1 chome purification process according 〇丨2 gas disclosed in Patent Document 1, 〇丨2 for gas toxicity is high, or increasing the cost equipment becomes complicated, 0丨2 There was a problem in putting mass production equipment to practical use, especially from the viewpoint of safety of equipment and operation, such as the possibility of a serious accident if gas leaks.
[0008] 特許文献 2に開示される巳 「2ガスによる〇1\1丁の精製方法では、 巳 「2は 常温常圧で液体であるため、 常温常圧で気体である〇 I 2に比べて漏洩時の対 応がしやすいが、 巳 「2は常温 2 5 °〇でも 3〇.
Figure imgf000004_0001
と蒸気圧が高く、 漏 洩時に蒸気が拡散される虞があり、 より安全な精製方法が望まれていた。
[0008] In Rei_1 \ 1 chome purification process according Snake "2 gas disclosed in Patent Document 2, since Snake" 2 is a liquid at normal temperature and pressure, compared with 〇 I 2 is gaseous at normal temperature and pressure Therefore, it is easy to respond to a leak, but `` 2 is room temperature 25 ° ° 30 ° .
Figure imgf000004_0001
Since the vapor pressure is high and there is a risk that the vapor will diffuse when there is a leak, a safer purification method has been desired.
[0009] 本発明は、 このような事情に鑑みてなされたものであり、 エッチング剤の 蒸気圧が常温 2 5 °〇で 1 0 0 3未満と低く、 万ーエッチング剤が漏洩して も液滴または固体粉末として沈降させることにより、 事故のリスクを大幅に 低減できる力ーボンナノチューブの精製方法および精製装置を提供すること を課題とする。 The present invention has been made in view of such circumstances, and the vapor pressure of the etching agent is as low as less than 10 0 3 at room temperature of 25 ° 〇, and even if the etching agent leaks, the Another object of the present invention is to provide a method and apparatus for purifying carbon nanotubes that can significantly reduce the risk of accidents by settling as solid powder.
課題を解決するための手段 Means for solving the problem
[0010] 本発明はかかる課題を解決するため、 力ーボンナノチューブの精製方法で あって、 触媒金属を用いて合成された触媒金属含有力ーボンナノチューブ、 および、 金属ハロゲン化物を加熱し、 前記金属ハロゲン化物の蒸気を前記触 〇 2020/175450 3 卩(:171? 2020 /007390 In order to solve the above problems, the present invention provides a method for purifying force-carbon nanotubes, which comprises heating a catalyst metal-containing force-carbon nanotube synthesized using a catalyst metal and a metal halide, Touch the metal halide vapor 〇 2020/175 450 3 (:171? 2020/007390
媒金属含有力ーボンナノチューブと接触させて、 前記触媒金属を除去するエ ッチングエ程を含む方法を提供する。 A method including an etching step of removing the catalytic metal by contacting with a carbon-containing metal-bonded carbon nanotube is provided.
[001 1 ] 本発明に係る精製方法は、 前記ハロゲン化物の蒸気圧が 2 5 °〇で 1 0 0 [001 1] In the refining method according to the present invention, when the vapor pressure of the halide is 25 °
3未満である場合がある。 May be less than 3.
[0012] 本発明に係る精製方法は、 前記ハロゲン化物が常温常圧で固体である場合 がある。 In the refining method according to the present invention, the halide may be solid at room temperature and pressure.
[0013] 本発明に係る精製方法は、 前記エッチングエ程により精製した力ーボンナ ノチューブを真空状態で加熱する真空加熱工程をさらに含む場合がある。 [0013] The refining method according to the present invention may further include a vacuum heating step of heating the power-bonano tube purified by the etching step in a vacuum state.
[0014] 本発明に係る精製方法は、 前記金属ハロゲン化物が、
Figure imgf000005_0001
丁 し 〇リ、
[0014] In the purification method according to the present invention, the metal halide is
Figure imgf000005_0001
Just ○
I I ^ \ , 0 6 , 3 nおよび巳 丨のうち 1つ以上を含む場合がある。 May contain one or more of I I ^ \, 0 6 ,3 n and Minori.
[0015] 本発明に係る精製方法は、 前記金属ハロゲン化物が、 フッ化物、 塩化物、 臭化物またはヨウ化物、 および、 これらの混合物からなる群から選択される 場合がある。 In the refining method according to the present invention, the metal halide may be selected from the group consisting of fluoride, chloride, bromide or iodide, and a mixture thereof.
[0016] 本発明に係る精製方法は、 前記触媒金属含有力ーボンナノチューブが、 火 炎合成法、 アーク放電法または化学気相成長 (<3 0) 法により合成される 場合がある。 [0016] In the purification method according to the present invention, the catalytic metal-containing carbon nanotube may be synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition (<30) method.
[0017] 本発明は、 反応器と、 触媒金属を用いて合成された触媒金属含有力ーボン ナノチューブを、 前記反応器内に供給する力ーボンナノチューブ供給手段と 、 金属ハロゲン化物を、 前記反応器内に供給するエッチング剤供給手段と、 前記触媒金属含有力ーボンナノチューブ、 および、 前記金属ハロゲン化物を 加熱する加熱手段と、 を備え、 前記反応器内で、 加熱された前記触媒金属含 有力ーボンナノチューブおよび前記金属ハロゲン化物の蒸気を接触させて、 前記触媒金属を除去する力ーボンナノチューブの精製装置を提供する。 The present invention provides a reactor, a force-carbon nanotube supplying means for supplying a catalyst metal-containing force-carbon nanotube synthesized by using a catalyst metal into the reactor, a metal halide, and the reactor. An etching agent supply means for supplying the inside of the catalyst metal, a catalyst nanotube-containing force, and a heating means for heating the metal halide, and the catalyst metal-containing force heated in the reactor. Provided is a device for purifying a carbon nanotube by contacting steam of the carbon nanotube and the metal halide to remove the catalytic metal.
[0018] 本発明に係る精製装置は、 加熱された前記触媒金属含有力ーボンナノチュ —ブおよび前記金属ハロゲン化物の蒸気を接触させて精製された力ーボンナ ノチューブを真空状態で加熱する真空加熱手段をさらに備える場合がある。 発明の効果 [0018] The refining apparatus according to the present invention comprises a vacuum heating means for heating the catalytic metal-containing catalyst heated and the vapor of the metal halide brought into contact with each other to heat the purified carbon nanotube in a vacuum state. There may be more preparations. Effect of the invention
[0019] 本発明は、 2 5 °〇において蒸気圧が1 0 0 3未満であるエッチング剤を 〇 2020/175450 4 卩(:171? 2020 /007390 The present invention provides an etching agent having a vapor pressure of less than 10 3 at 25°. 〇 2020/175 450 4 boxes (: 171-1?2020/007390
用い、 加熱状態でその蒸気を触媒金属含有力ーボンナノチューブと接触させ ることにより、 万ーエッチング剤が漏洩しても、 それを液滴または固体粉末 として沈降させることで事故のリスクを大幅に低減でき、 且つ、 触媒金属の 除去率が高く、 結晶性に優れた良質な力ーボンナノチューブが得られる力一 ボンナノチューブの精製方法および精製装置を提供することができる。 By contacting the vapor with catalytic metal-containing carbon nanotubes in a heated state, even if the etching agent leaks, it will be settled as droplets or solid powder, greatly reducing the risk of accident. It is possible to provide a method and a device for purifying carbon nanotubes which are capable of obtaining high-quality carbon nanotubes having a high catalytic metal removal rate and excellent crystallinity.
図面の簡単な説明 Brief description of the drawings
[0020] [図 1]本発明の力ーボンナノチューブの精製方法および精製装置による精製処 理対象である触媒金属含有力ーボンナノチューブにおいて、 触媒金属が炭素 殼に覆われた様子を示す模式図である。 [0020] [Fig. 1] A schematic view showing a state in which the catalytic metal is covered with a carbon shell in the catalytic metal-containing carbon nanotube that is a purification treatment target by the method and apparatus for purifying a carbon nanotube of the present invention. Is.
[図 2]加熱された触媒金属含有力ーボンナノチューブにおいて、 エッチング剤 により触媒金属が除去される様子を示す模式図である。 [Fig. 2] Fig. 2 is a schematic view showing how the catalytic metal is removed by an etching agent in the heated catalytic metal-containing carbon nanotube.
[図 3]本発明の力ーボンナノチューブの精製方法および精製装置による精製処 理後に得られる、 触媒金属が除去された中空の炭素殻を有する
Figure imgf000006_0001
丁の様子 を示す模式図である。
[FIG. 3] Having a hollow carbon shell from which the catalytic metal has been removed, which is obtained after the purification treatment by the method for purifying carbon nanotubes of the present invention and the purification apparatus.
Figure imgf000006_0001
It is a schematic diagram which shows the appearance of Ding.
[図 4]本発明の力ーボンナノチューブの精製方法および精製装置において、 エ ッチングエ程による精製処理を行うための装置の好適な一実施形態を示す概 略図である。 FIG. 4 is a schematic view showing a preferred embodiment of an apparatus for performing a purification process by an etching process in the method for purifying carbon nanotubes and the purifying apparatus of the present invention.
[図 5]本発明の力ーボンナノチューブの精製方法および精製装置において、 真 空加熱工程による精製処理を行うための装置の好適な一実施形態を示す概略 図である。 [Fig. 5] Fig. 5 is a schematic view showing a preferred embodiment of an apparatus for carrying out a purification treatment by a vacuum heating step in a method and apparatus for purifying carbon nanotubes of the present invention.
[図 6]本発明の力ーボンナノチューブの精製方法および精製装置において、 エ ッチングエ程の処理条件を示すグラフおよび表である。 FIG. 6 is a graph and a table showing the processing conditions in the etching process in the method and apparatus for purifying carbon nanotubes according to the present invention.
[図 7]本発明の力ーボンナノチューブの精製方法および精製装置において、 実 施例 1 に関し、 エッチングエ程による精製処理の前後の〇 1\1丁中の 6の含 有率の変化を示すグラフである。 [FIG. 7] In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 1, the change in the content of 6 in ◯1\1 before and after the refining process by the etching process is shown. It is a graph.
[図 8]本発明の力ーボンナノチューブの精製方法および精製装置において、 実 施例 1 に関し、 エッチングエ程による精製処理を行う前のレーザー顕微ラマ ン分光分析の結果を示すグラフである。 20/175450 5 卩(:171? 2020 /007390 [Fig. 8] Fig. 8 is a graph showing the results of laser microscopic Raman spectroscopic analysis before carrying out a purification process by an etching step in Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention. 20/175450 5 卩 (: 171? 2020 /007390
[図 9]本発明の力ーボンナノチューブの精製方法および精製装置において、 実 施例 1 に関し、 エッチングエ程による精製処理を行った後のレーザー顕微ラ マン分光分析の結果を示すグラフである。 FIG. 9 is a graph showing the results of laser microscopic Raman spectroscopic analysis after carrying out a purification process by an etching step in Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention.
[図 10]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 エッチングエ程による精製処理を行う前のレーザー顕微ラ マン分光分析の結果の横軸を拡大したグラフである。 [FIG. 10] In the method and apparatus for purifying carbon nanotubes according to the present invention, a graph obtained by enlarging the horizontal axis of the results of laser microscopic Raman spectroscopic analysis before performing the refining process by the etching step in Example 1. is there.
[図 1 1]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 エッチングエ程による精製処理を行った後のレーザー顕微 ラマン分光分析の結果の横軸を拡大したグラフである。 [FIG. 11] A graph obtained by enlarging the horizontal axis of the result of the laser microscopic Raman spectroscopic analysis after the purification process by the etching step in the method and the apparatus for purifying carbon nanotubes of the present invention with respect to Example 1. Is.
[図 12]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 エッチングエ程による精製処理前の 0 1\1丁および精製処理 後の〇!\]丁に対する熱重量分析 (丁〇) の結果を示すグラフおよび重量減少 率である。 [FIG. 12] In the method and apparatus for purifying carbon nanotubes according to the present invention, regarding Example 1, thermogravimetric analysis was performed on 0 1\1 before purification by etching process and ◯!\ after purification. It is a graph showing the results of the analysis and the weight loss rate.
[図 13]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 真空加熱工程の処理条件を示すグラフおよび表である。 FIG. 13 is a graph and a table showing the treatment conditions of the vacuum heating step regarding Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention.
[図 14]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 真空加熱工程による精製処理の前後の
Figure imgf000007_0001
丁中の(3 Iの含 有率の変化を示すグラフである。
[FIG. 14] In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 1, before and after purification treatment by a vacuum heating step.
Figure imgf000007_0001
It is a graph showing the change in the content rate of (3 I in Ding.
[図 15]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 真空加熱工程による精製処理の前後の〇1\1丁中の 6の含 有率の変化を示すグラフである。 [FIG. 15] A graph showing the change in the content of 6 in 0/11 before and after the purification treatment by the vacuum heating step in Example 1 in the method and apparatus for purifying carbon nanotubes of the present invention Is.
[図 16]実施例 1 に関し、 透過電子顕微鏡 (丁巳!\/1) により撮影した、 本発明 の力ーボンナノチューブの精製方法および精製装置による精製処理を行う前 の〇 1\1丁の丁巳 IV!画像写真である。 [Fig. 16] As for Example 1, a photograph of a transmission electron microscope (Cho!\/1) was used to purify the carbon nanotubes of the present invention before the purification treatment with the purification apparatus was performed. This is a picture of Tingmi IV!
[図 17]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 1 に関し、 透過電子顕微鏡 (丁巳1\/1) により撮影した、 エッチンエ程 および真空加熱工程による精製処理を行った後の◦ 1\1丁の丁巳 IV!画像写真で ある。 〇 2020/175450 6 卩(:171? 2020 /007390 [FIG. 17] In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 1, a refining process by an etching process and a vacuum heating step, which was photographed by a transmission electron microscope (Chomi 1\/1), It is a picture of 1 \ 1 Ding IV! 〇 2020/175 450 6 boxes (: 171-1? 2020 /007390
[図 18]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 2に関し、 エッチングエ程による精製処理前の 0 1\1丁および精製処理 後の〇!\1丁に対する熱重量分析 (丁〇) の結果を示すグラフおよび重量減少 率である。 [Fig. 18] In the method and apparatus for purifying carbon nanotubes of the present invention, regarding Example 2, thermogravimetric analysis was performed on 0 1 \1 before the refining process by the etching process and 0! \1 after the refining process. It is a graph showing the results of the analysis and the weight loss rate.
[図 19]実施例 2に関し、 透過電子顕微鏡 (丁巳!\/1) により撮影した、 本発明 の力ーボンナノチューブの精製方法および精製装置による精製処理を行う前 の〇 1\1丁の丁巳 IV!画像写真である。 [Fig. 19] Regarding Example 2, one of 1 x 1 \ 1 before the purification method and the purification apparatus of the force-carbon nanotube of the present invention taken by a transmission electron microscope (Chomi!\/1) was taken. This is a picture of Tingmi IV!
[図 20]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 2に関し、 透過電子顕微鏡 (丁巳1\/1) により撮影した、 エッチンエ程 および真空加熱工程による精製処理を行った後の◦ 1\1丁の丁巳 IV!画像写真で ある。 [FIG. 20] In the method and apparatus for purifying carbon nanotubes according to the present invention, with respect to Example 2, the purifying process by the etching process and the vacuum heating step, which was photographed by a transmission electron microscope (Chomi 1\/1), was performed. It is a picture of 1 \ 1 Ding IV!
[図 21]本発明の力ーボンナノチューブの精製方法および精製装置において、 実施例 3に関し、 エッチングエ程による精製処理前の 0 1\1丁および精製処理 後の〇!\1丁に対する熱重量分析 (丁〇) の結果を示すグラフおよび重量減少 率である。 [FIG. 21] In the method and apparatus for purifying carbon nanotubes of the present invention, regarding Example 3, thermogravimetric weights of 0 1 \1 before the purification treatment by the etching process and 0! \1 after the purification treatment It is a graph showing the results of the analysis and the weight loss rate.
[図 22]実施例 3に関し、 透過電子顕微鏡 (丁巳 IV!) により撮影した、 本発明 の力ーボンナノチューブの精製方法および精製装置による精製処理を行う前 の〇 1\1丁の丁巳 IV!画像写真である。 [FIG. 22] Regarding Example 3, ◯1\1 pens before the purification method and the purification apparatus for the force-carbon nanotubes of the present invention taken by a transmission electron microscope (Chome IV!) IV! This is a picture.
[図 23]発明の力ーボンナノチューブの精製方法および精製装置において、 実 施例 3に関し、 透過電子顕微鏡 (丁巳1\/1) により撮影した、 エッチンエ程お よび真空加熱工程による精製処理を行った後の 0 1\1丁の丁巳 IV!画像写真であ る。 [Fig. 23] In the method and apparatus for purifying carbon nanotubes of the present invention, the purification process by the etching process and the vacuum heating process, which was photographed by a transmission electron microscope (Chomi 1\/1) in Example 3, was performed. It is a picture of 0 1 \ 1 Ding Tami IV!
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、 本発明の力ーボンナノチューブ (以下、 〇1\1丁ともいう) の精製方 法および精製装置の好ましい実施形態について、 図面および実施例に基づい て説明する。 [0021] Hereinafter, preferred embodiments of a method for purifying force-bone nanotubes (hereinafter, also referred to as "1\1") and a purifying apparatus of the present invention will be described with reference to the drawings and examples.
[0022] 本実施形態において、 触媒金属含有力ーボンナノチューブは、 本発明の精 製方法による精製処理を行う前の 0 !\1丁であって、 例えば 0 !\1丁の合成の際 〇 2020/175450 7 卩(:171? 2020 /007390 [0022] In the present embodiment, the catalytic metal-containing carbon nanotube is 0 !\1 before the purification treatment by the refining method of the present invention, for example, in the case of synthesis of 0 !\1. 〇 2020/175 450 7 卩 (:171? 2020 /007390
に使用された原料に由来する触媒金属を不純物として含む。 図 1 に示すよう に、 触媒金属 2は、 そのほとんどが炭素殻 3に覆われた状態で存在する。 触 媒金属含有力ーボンナノチューブ 1は、 末端 6の炭素殻 3内に触媒金属 2が 除去されずに残存した 0 1\1丁 5、 触媒金属 2が炭素殻 3に覆われた粒子であ って〇 1\1丁 5に付着した粒子 7、 および、 触媒金属 2が炭素殻 3に覆われた 粒子であって
Figure imgf000009_0001
ら離れて存在する粒子 8を含む。 炭素殻 3は、 単層 であってもよいし、 複層であってもよい。 〇1\1丁 5は、 独立で存在するもの もあれば、 複数の 0 1\1丁 5が絡み合ったり、 あるいは束状になったりして存 在するものもある。 また、 触媒金属含有力ーボンナノチューブ 1は、 不純物 として、 炭素殻 3に覆われた触媒金属 2の他、 例えば炭素殻 3に覆われてい ない触媒金属 2や、 0 1\1丁の合成時に未分解であった炭素源、 同じく 0 1\1丁 の合成時に未分解であった触媒源等を含む場合もある。
The catalyst metal derived from the raw material used in 1) is included as an impurity. As shown in Fig. 1, most of the catalytic metal 2 exists in the state of being covered with the carbon shell 3. The catalytic metal-containing carbon nanotube 1 is a particle in which the catalytic metal 2 remains in the carbon shell 3 at the end 6 without being removed, and the catalytic metal 2 is covered with the carbon shell 3. Therefore, the particles 7 adhering to 1\1 and the catalyst metal 2 are particles covered with carbon shells 3.
Figure imgf000009_0001
Includes particles 8 that are located away from. The carbon shell 3 may be a single layer or multiple layers. 〇 Some 1\1 5 exist independently, while others exist with multiple 0\1 5 intertwined or in a bundle. In addition, the catalytic metal-containing carbon nanotubes 1 can be used as impurities in addition to the catalytic metal 2 covered with the carbon shell 3, for example, the catalytic metal 2 not covered with the carbon shell 3 and 0 1 \1. It may also include undecomposed carbon sources, as well as undecomposed catalyst sources at the time of synthesis.
[0023] 本実施形態に係る力ーボンナノチューブの精製方法は、 触媒金属含有力一 ボンナノチューブ 1から触媒金属 2を除去するエッチングエ程 (図 1〜図 3 を参照) を有する。 エッチングエ程では、 まず、 触媒金属 2を用いて合成さ れた触媒金属含有力ーボンナノチューブ 1、 および、 2 5 °〇において蒸気圧 が 1 0 0 3未満であるエッチング剤としての金属ハロゲン化物 15 (図 4を 参照) を加熱する。 安全性の観点からは、 エッチング剤としての金属ハロゲ ン化物の 2 5 °〇での蒸気圧が 1 0 3未満であることが好ましく、 1 3未 満であることがさらに好ましい。 触媒金属含有力ーボンナノチューブ 1が加 熱された状態で、 金属ハロゲン化物 15の蒸気を触媒金属含有力ーボンナノチ ューブ 1 と接触させる。 後述する化学反応により、 エッチング生成物が生成 され、 触媒金属 2が除去される。 The method for purifying carbon nanotubes according to the present embodiment has an etching step (see FIGS. 1 to 3) for removing the catalyst metal 2 from the catalyst metal-containing carbon nanotube 1. In the etching process, first, the catalytic metal-containing carbon nanotube 1 synthesized by using the catalytic metal 2 and the metal halide as an etching agent having a vapor pressure of less than 100 3 at 25 ° Heat 15 (see Figure 4). From the viewpoint of safety, the vapor pressure of the metal halogenide as an etching agent at 25°C is preferably less than 10 3 and more preferably less than 13 3. With the catalytic metal-containing carbon nanotube 1 heated, the vapor of the metal halide 15 is brought into contact with the catalytic metal-containing carbon nanotube 1. An etching product is generated by the chemical reaction described later, and the catalytic metal 2 is removed.
[0024] 触媒金属含有力ーボンナノチューブ 1、 および、 2 5 °〇において蒸気圧が [0024] The catalytic metal-containing force-carbon nanotubes 1 and 25
1 〇〇 3未満である金属ハロゲン化物 15を加熱する精製処理温度は、 温度 が高いほど精製が進行する。 精製処理温度は、 例えば、 塩化鉄 ( 6(3 I 3) をエッチング剤として使用するとき、 6 0 0 °〇以上であることが好ましく、The higher the temperature of the refining treatment for heating the metal halide 15 having a temperature of less than 103, the more the refining proceeds. Purification treatment temperature is, for example, when using iron chloride (6 (3 I 3) as an etching agent, it is preferably 6 0 0 ° ● As,
8 0 0 °0以上であることがより好ましく、 1 0 0 0 °0以上であることがさら 〇 2020/175450 8 卩(:171? 2020 /007390 It is more preferable that it is at least 800 °0, and it is even more preferable that it is at least 100 °0. 〇 2020/175 450 8 boxes (: 171-1? 2020 /007390
に好ましい。 精製処理温度が 6 0 0 °〇以上であれば、 エッチング剤と触媒金 属との反応が進み、 1 0 0 0 °〇以上であれば、 当該反応がより進行する。 Is preferred. If purification treatment temperature is 6 0 0 ° ● As, reaction proceeds between the etching agent and the catalyst metals, as long as 1 0 0 0 ° ● As, the reaction proceeds more.
[0025] 本実施形態に係る力ーボンナノチューブの精製方法は、 エッチングエ程後 に、 エッチングエ程により精製した力ーボンナノチューブ 1 10 (図 5を参照) を真空状態で加熱する真空加熱工程をさらに含むことができる。 真空加熱エ 程による精製処理を行うことにより、 エッチングエ程による精製処理後の〇 1\1丁 1 10に残留するハロゲン元素および触媒金属元素の含有率をさらに低減す ることができる。 [0025] The method for purifying force-carbon nanotubes according to the present embodiment is a vacuum heating step in which after the etching process, the force-carbon nanotubes 110 (see Fig. 5) purified by the etching process are heated in a vacuum state. Can be further included. By performing the refining process by the vacuum heating process, the content ratio of halogen elements and catalytic metal elements remaining in 0 to 1/10 after the refining process by the etching process can be further reduced.
[0026] 本実施形態のエッチングエ程により触媒金属 2がエッチングされる原理を 図 1〜図 3を参照して説明する。 図 1は、 触媒金属 2が炭素殻 3に覆われた 触媒金属含有力ーボンナノチューブ 1の様子を示す概念図である。 触媒金属 含有力ーボンナノチューブ 1が加熱されて温度が上昇すると、 触媒金属原子 、 炭素原子、 およびエッチング分子の運動が盛んになり、 触媒金属 2の粒子 を覆う炭素殻 3を通して原子および分子が拡散できるようになる。 例えば触 媒金属 2が 6の場合、 2 5 °〇において蒸気圧が 1 0 0 3未満であり常温 常圧で固体である例えば 6の塩化物 15 ( 6〇 丨 3) をエッチング剤として 用いることで、 触媒金属 2の 6とエッチング剤 15の 6〇 丨 3が反応して、 エッチング生成物の 6〇 丨 2が生成される (図 2) 。 6〇 丨 2は高温場で は蒸気圧が高いため、 蒸気として触媒金属含有力ーボンナノチューブ 1から 離れていく結果、 触媒金属含有力ーボンナノチューブ 1中の触媒金属 2の 6が除去され、 中空構造の炭素殻 3を有する〇!\1丁25、 中空構造の炭素殻 3 を有する粒子であって〇 1\1丁25に付着した粒子 27、 および、 中空構造の炭素 殻 3を有する粒子であって 0 丁 25から離れて存在する粒子 28を含む、 〇 丁 4が形成される (図 3) 。 この場合、 触媒金属 2である 6と、 エッチン グ剤である 6の塩化物 15 ( 6〇 I 3) の反応式は下記式 (1) で表される 。 エッチング生成物である 6〇 丨 2は、 2 5 °〇で無視できるほど蒸気圧が小 さく、 また常温常圧で固体である。 The principle of etching the catalytic metal 2 by the etching step of the present embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a conceptual diagram showing the state of the catalytic metal-containing carbon nanotube 1 in which the catalytic metal 2 is covered with the carbon shell 3. When the catalytic metal-containing carbon nanotube 1 is heated and its temperature rises, the catalytic metal atoms, carbon atoms, and etching molecules become active, and the atoms and molecules diffuse through the carbon shell 3 that covers the particles of catalytic metal 2. become able to. For example, when the catalyst metal 2 is 6 , use chloride 15 (60 丨3 ) of 6 which has a vapor pressure of less than 10 0 3 at 25 ° 〇 and is solid at room temperature and normal pressure as an etching agent. Then, 6 of catalytic metal 2 reacts with 60 3 of etching agent 15 to generate 60 2 of etching product (Fig. 2). Since the vapor pressure of 60 丨2 is high in a high-temperature field, it moves away from the catalyst metal-containing force-bon nanotube 1 as vapor, and as a result, 6 of the catalyst metal 2 in the catalyst metal-containing force-bon nanotube 1 is removed. \1 25 with hollow carbon shell 3, particles with hollow carbon shell 3 and particles attached to 1 \ 25 25, and particles with hollow carbon shell 3 And 0 4 is formed, including particles 28 that are present away from 0 25 (Figure 3). In this case, the reaction formula of the catalyst metal 2, 6 and the chloride 15 ( 60 I 3 ) of 6 , which is the etching agent, is represented by the following formula (1). Etching product 60 2 has a vapor pressure that is negligible at 25° and is solid at room temperature and pressure.
[0027] \¥02020/175450 9 2020/007390 [0027] \\02020/175 450 9 2020/007390
[化 1] 6(5) + 2 6〇13(9) ® 3 6〇12(9)· · ·( 1 ) [Chemical formula 1] 6(5) + 2 6 ○ 1 3 (9) ® 3 6 ○ 1 2 (9) ··· (1)
[0028] 触媒金属 2としては、 例えば、 6、 〇〇、 1\! I、 丫、 〇 「、 1\/1〇、 匕 、 〇リ、 八 9、 八リ、 および、 これらの合金が挙げられる。 [0028] Examples of the catalyst metal 2 include 6 , 〇〇, 1\! I, 丫, 〇“, 1\/1〇, 匕, 〇ri, 89, 8ri, and alloys of these. To be
[0029] 金属ハロゲン化物 15の金属は、 除去対象である触媒金属 2と同種であって も異なるものであってもよく、 特に限定されないが、 例えば、 6、 丁 し 〇リ、 I 、 ^ \ , 06, 3 nおよび巳 丨が挙げられる。 [0029] The metal of the metal halide 15 may be the same as or different from the catalyst metal 2 to be removed, and is not particularly limited, but for example, 6, metal, I, ^ \ , 06, 3 n and Minoru.
[0030] エッチング剤としての金属ハロゲン化物 15は、 複数の価数をとる金属のハ ロゲン化物であり、 25 °〇において蒸気圧が 1 00 3未満であればよい。 エッチング剤としての金属ハロゲン化物 15は特に、 常温常圧で固体であると よく、 且つ、 加熱状態で蒸気圧が高い (例えば 600°〇以上で 1 00 3以 上) ことが好ましい。 エッチング剤としての金属ハロゲン化物 15は、 25°〇 において蒸気圧が 1 00 3未満であるフッ化物、 塩化物、 臭化物またはヨ ウ化物、 および、 これらの混合物であり、 具体的には、 例えば、 6〇 1 3
Figure imgf000011_0001
The metal halide 15 as an etching agent is a metal halide having a plurality of valences, and the vapor pressure at 25° may be less than 1003. In particular metal halide 15 as an etching agent may When it is solid at normal temperature and pressure, and has a high vapor pressure in a heated state (for example, 1 00 3 on than at 600 ° ● As) is preferred. The metal halide 15 as an etching agent is a fluoride, chloride, bromide or iodide having a vapor pressure of less than 1003 at 25 ° 〇, and a mixture thereof, and specifically, for example, 6 〇 1 3 Ya
Figure imgf000011_0001
3 门 巳 「 4、 巳 1 5、 巳 1 〇 1 3、 巳 1 巳 「 3および巳 1 I 3が挙げられる。 こ れらのハロゲン化物は、 触媒金属 2と反応してより価数の低いハロゲン化物 に変わり、 触媒金属 2はハロゲン化物としてエッチングされる。 また、 エッ チング後のエッチング生成物としての金属ハロゲン化物も、 25°〇において 蒸気圧が 1 00 ? 3未満と低く、 特に常温常圧で固体の金属ハロゲン化物か ら選択することができ、 その場合、 常温で蒸気圧が低く (例えば 1 3以下 ) 、 且つ、 加熱状態で蒸気圧が高い (例えば 600°〇以上で 1 00 3以上 ) ことが好ましい。 3 门巳「 4 , 巳15 、 巳1 〇1 3 、 跳 1 跳「 3 and 虳 1 I 3 are mentioned. These halides have lower valences by reacting with the catalyst metal 2. Instead of halide, the catalytic metal 2 is etched as a halide, and the metal halide as an etching product after etching also has a low vapor pressure of less than 100 to 3 at 25 ° , especially at room temperature. It can be selected solid metal halide or al in pressure, in which case, low vapor pressure at ordinary temperature (e.g., 1 3 below), and, 1 high vapor pressure in a heated state (for example, 600 ° ● As 00 3 Above) is preferable.
[0031] 触媒金属含有力ーボンナノチューブ 1は、 火炎合成法、 アーク放電法また は化学気相成長 (<3 0) 法により合成することができるが、 特にこれらの 製法に限定されるものではない。 [0031] The catalytic metal-containing carbon nanotube 1 can be synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition (<30) method, but is not particularly limited to these production methods. Absent.
[0032] 図 4に、 本発明に係る力ーボンナノチューブの精製装置 10の好適な一実施 〇 2020/175450 10 卩(:171? 2020 /007390 [0032] Fig. 4 shows a preferred embodiment of the apparatus for purifying carbon nanotubes 10 according to the present invention. 〇 2020/175 450 10 boxes (: 171-1? 2020 /007390
形態を示す。 図 4は、 本実施形態の力ーボンナノチューブの精製方法により 触媒金属含有力ーボンナノチューブ 1から触媒金属 2を除去する機能を有す る装置の一例として、 簡易的な精製装置を示す概略図である。 尚、 本発明の 力ーボンナノチューブの精製装置 10は、 触媒金属含有力ーボンナノチューブ 1、 および、 金属ハロゲン化物 15を加熱し、 当該ハロゲン化物 15の蒸気を触 媒金属含有力ーボンナノチューブ 1 と接触させることができれば、 図 4の構 成に限定されるものではない。 The morphology is shown. FIG. 4 is a schematic diagram showing a simple purification device as an example of a device having a function of removing the catalyst metal 2 from the catalyst metal-containing force carbon nanotube 1 by the method for purifying the force carbon nanotube of the present embodiment. Is. The apparatus 10 for purifying carbon nanotubes of the present invention heats the catalyst metal-containing carbon nanotubes 1 and the metal halide 15, and vapors of the halides 15 are used as catalyst metal-containing carbon nanotubes 1. The structure is not limited to that shown in FIG.
[0033] 反応器 1 1内には、 精製処理の対象である、 触媒金属 2を用いて合成された 触媒金属含有力ーボンナノチューブ 1 を供給する力ーボンナノチューブ供給 手段 13が設置される。 反応器 1 1内にはさらに、 エッチング剤としての金属ハ ロゲン化物 15を供給するエッチング剤供給手段 16が設置される。 In the reactor 11, there is installed a force-bon nanotube supplying means 13 for supplying the catalyst metal-containing force-bon nanotube 1 synthesized by using the catalyst metal 2, which is an object of purification treatment. An etching agent supply means 16 for supplying a metal halogenide 15 as an etching agent is further installed in the reactor 11.
[0034] 力ーボンナノチューブ供給手段 13は、 図 4のように反応器 1 1内で触媒金属 含有力ーボンナノチューブ 1 を供給するものであってもよいし、 反応器 1 1の 外部から反応器 1 1内に触媒金属含有力ーボンナノチューブ 1 を供給するよう に構成してもよい。 同様に、 エッチング剤供給手段 16は、 図 4のように反応 器 1 1内で金属ハロゲン化物 15を供給するものであってもよいし、 反応器 1 1の 外部から反応器 1 1内に金属ハロゲン化物 15を供給するように構成してもよい The force-carbon nanotube supply means 13 may supply the catalyst-metal-containing force-carbon nanotube 1 in the reactor 11 as shown in FIG. The catalytic metal-containing carbon nanotube 1 may be supplied into the vessel 11. Similarly, the etching agent supply means 16 may supply the metal halide 15 in the reactor 11 as shown in FIG. 4, or the metal halide 15 may be supplied from the outside of the reactor 11 into the reactor 11. May be configured to supply halide 15
[0035] 反応器 1 1内において、 力ーボンナノチューブ供給手段 13およびエッチング 剤供給手段 1と開口部 19との間に、 例えば耐熱性ウール 18を配置してもよい。 金属ハロゲン化物 15の蒸気が反応器 1 1の外に流出しないよう、 蒸気の流れを 整流して、 熱対流を抑制する。 この整流により、 反応器 1 1内での気体の流れ が制限され、 金属ハロゲン化物 15の蒸気を効率よく触媒金属含有力ーボンナ ノチューブ 1 に接触させ、 〇 1\1丁の精製の効率を高めることができる。 In the reactor 11, for example, heat resistant wool 18 may be arranged between the force-carbon nanotube supply means 13 and the etching agent supply means 1 and the opening 19. In order to prevent the vapor of the metal halide 15 from flowing out of the reactor 11, the flow of the vapor is rectified to suppress thermal convection. Due to this rectification, the flow of gas in the reactor 11 is restricted, and the vapor of the metal halide 15 is efficiently contacted with the catalytic metal-containing force-bonano tube 1 to improve the efficiency of the purification of 〇\ be able to.
[0036] 加熱手段 20は、 触媒金属含有力ーボンナノチューブ 1、 および、 金属ハロ ゲン化物 15を加熱する。 加熱手段 20は、 触媒金属含有力ーボンナノチューブ 1、 および、 金属ハロゲン化物 15を加熱することができれば、 その方法およ び構成は特に限定されない。 〇 2020/175450 1 1 卩(:171? 2020 /007390 The heating means 20 heats the catalytic metal-containing carbon nanotube 1 and the metal halogenide 15. The heating means 20 is not particularly limited in its method and configuration as long as it can heat the catalytic metal-containing carbon nanotube 1 and the metal halide 15. 〇 2020/175 450 1 1 卩(:171? 2020/007390
[0037] エッチング剤としての金属ハロゲン化物 15は、 2 5 °〇において蒸気圧が 1 [0037] The metal halide 15 as an etching agent has a vapor pressure of 1 at 25°
0 0 3未満であるため、 エッチング剤が万一精製処理中に反応器 1 1内から 漏洩したとしても、 液滴または固体粉末として沈降させることができる。 例 えばさらに、 加熱された触媒金属含有力ーボンナノチューブ 1および金属ハ ロゲン化物 15の蒸気を反応器 1 1内で接触させることにより生成されるエッチ ング生成物も 2 5 °〇における蒸気圧が 1 0 0 3未満と低ければ、 エッチン グ生成物が万一精製処理中に反応器 1 1内から漏洩したとしても、 それもまた 液滴または固体粉末として沈降させることができる。 さらに、 エッチング剤 が常温常圧で固体であれば、 エッチング剤が万一精製処理中に反応器 1 1内か ら漏洩したとしても、 固体粉末として沈降させることができる。 さらに加え て、 エッチング生成物も常温常圧で固体であれば、 エッチング生成物が万一 精製処理中に反応器 1 1内から漏洩したとしても、 それもまた固体粉末として 沈降させることができる。 したがって、 本実施形態の力ーボンナノチューブ の精製方法および精製装置によれば、 人が漏洩ガスを吸引するリスクがなく なるので、 従来の <3 I 2ガスや巳 「 2ガスを使用した精製方法に比べ、 漏洩に よる事故の被害及びそのリスクを格段に低減することができる。 Since it is less than 0 3, even if the etching agent leaks from the reactor 11 during the refining process, it can be precipitated as droplets or solid powder. Furthermore, for example, the etching product produced by contacting the heated catalytic metal-containing carbon nanotubes 1 and the vapor of the metal halogenide 15 in the reactor 11 also has a vapor pressure at 25 ° 〇. If it is as low as less than 103, even if the etching product leaks from inside the reactor 11 during the refining process, it can also be precipitated as droplets or solid powder. Furthermore, if the etching agent is a solid at room temperature and atmospheric pressure, even if the etching agent leaks from the reactor 11 during the refining process, it can be precipitated as a solid powder. In addition, if the etching product is solid at room temperature and normal pressure, even if the etching product leaks from the reactor 11 during the refining process, it can also be precipitated as a solid powder. Therefore, according to the purification method and purification apparatus of the force over carbon nanotubes of the present embodiment, since the risk of human sucks leakage gas composed without purification method using the conventional <3 I 2 gas and Snake "2 Gas Compared to the above, the damage and the risk of accidents due to leakage can be significantly reduced.
[0038] 図 5に示す真空加熱手段 100としての装置は、 加熱された触媒金属含有力一 ボンナノチューブ 1 と、 金属ハロゲン化物 15の蒸気とを接触させて精製され た〇1\1丁1 10を、 反応器 1 1 1内で、 真空状態で加熱する。 〇1\1丁供給手段 1 13は 〇 1\1丁 1 10を供給する。 反応器 1 1 1の開口部 1 19を真空引き手段としての真空ポ ンプ (図示せず) に接続し、 真空ポンプを動作させることにより、 石英ガラ ス管 1 12内を真空状態にすることができる。 さらに、 反応器 1 1 1内の〇1\1丁1 10 を加熱する加熱手段 120を備えることで、 真空加熱手段 100が構成される。 真 空加熱手段 100により真空状態で〇 1\1丁 1 10を加熱することで、 〇 1\1丁 1 10に残 留するハロゲン元素および触媒金属元素の含有率をさらに低減することがで きる。 [0038] The apparatus as the vacuum heating means 100 shown in Fig. 5 was prepared by bringing heated catalytic metal-containing carbon nanotubes 1 and vapors of metal halides 15 into contact with each other. Are heated in a reactor 1 11 under vacuum. ○ 1 \ 1 pcs supply means 1 13 supplies 〇 1 \ 1 pcs 1 10 The inside of the quartz glass tube 1 12 can be evacuated by connecting the opening 1 19 of the reactor 1 1 1 to a vacuum pump (not shown) as a vacuuming means and operating the vacuum pump. it can. Further, the vacuum heating means 100 is configured by including the heating means 120 for heating the 0 1 1 1 110 inside the reactor 1 11. By heating 0 1 \ 1 1 110 in a vacuum state by the vacuum heating means 100, the content of halogen elements and catalytic metal elements remaining in 0 1 \ 1 1 110 can be further reduced. ..
[0039] 0 丁中に残留する各元素の含有率は、 例えば走査型電子顕微鏡(3巳 IV!) に付属したエネルギー分散 X線分析(日 0 X)装置を使用して組成を分析する 〇 2020/175450 12 卩(:171? 2020 /007390 [0039] For the content rate of each element remaining in 0-chome, for example, the composition is analyzed using an energy dispersive X-ray analysis (day 0 X) device attached to a scanning electron microscope (3M IV!). 〇 2020/175 450 12 boxes (:171? 2020/007390
ことにより測定することができる。 It can be measured by
[0040] C N Tの結晶性は、 例えばレーザー顕微ラマン分光分析により分析するこ とができる。 レーザー顕微ラマン分光分析において、 1590 cm 付近に現れる ピークは、 G-bandと呼ばれ、 六員環構造を有する炭素原子の面内方向の伸縮 振動に由来するものである。 また、 1350 cm-1付近に現れるピークは、 D-band と呼ばれ、 六員環構造に欠陥があると現れやすくなる。 相対的な C N Tの結 晶性は、 D-bandに対する G-bandのピーク強度比 IG/ID (G/D比) によって評価す ることができる。 G/D比が高いほど結晶性の高い C N Tであるといえる。 200 cm-1付近に現れるピークは、 RBM (Rad i a l Breath i ng Mode) と呼ばれる単層 C N Tに特有のもので、 チューブの直径方向に振動するモードである。 [0040] The crystallinity of CNT can be analyzed by, for example, laser microscopic Raman spectroscopic analysis. In laser micro Raman spectroscopy, the peak appearing around 1590 cm is called G-band and is derived from the in-plane stretching vibration of a carbon atom having a 6-membered ring structure. The peak around 1350 cm- 1 is called the D-band, and it tends to appear when there is a defect in the 6-membered ring structure. The relative crystallinity of CNTs can be evaluated by the peak intensity ratio I G /I D (G/D ratio) of G-band to D-band. It can be said that CNTs with higher G/D ratio have higher crystallinity. The peak appearing near 200 cm- 1 is unique to single-walled CNT called RBM (Radial Breathing Mode) and is a mode that vibrates in the diameter direction of the tube.
[0041 ] 本実施形態のエッチングエ程による精製後の C N T 1 10は精製前の触媒金属 含有力ーボンナノチューブ 1 に比べると、 C N Tにおける触媒金属 2の金属 含有率が大幅に減少する。 しかも、 炭素殻 3を残したまま触媒金属 2を除去 するように精製することで、 C N Tの表面積に加え、 炭素殻 3の表面積も有 効利用でき、 表面積を利用する応用デバイスではその性能を向上させる効果 を有する。 表面積を利用する応用には、 電気二重層キャパシタや、 各種のガ スおよびイオン吸着剤、 ガスおよびバイオセンサー材料等があり、 例えば電 気二重層キャパシタの場合、 その容量を増やすことができる。 The C N T 110 after purification by the etching step of the present embodiment has a greatly reduced metal content of the catalyst metal 2 in C N T as compared with the catalyst metal-containing carbon nanotube 1 before purification. Moreover, by refining so as to remove the catalytic metal 2 while leaving the carbon shell 3, the surface area of the carbon shell 3 can be effectively utilized in addition to the surface area of CNT, and the performance is improved in the application device using the surface area. Has the effect of Applications that utilize surface area include electric double layer capacitors, various gas and ion adsorbents, gas and biosensor materials, etc. For example, in the case of electric double layer capacitors, the capacity can be increased.
[0042] 以上のように本発明は、 エッチング剤の蒸気圧が 2 5 °Cで 1 0 0 P a未満 であり、 万ーエッチング剤が漏洩しても、 それは液滴または固体粉末として 沈降するので、 事故のリスクを大幅に低減することができる。 また、 炭素殻 3を破壊せずに残したまま触媒金属 2を除去するので、 C N Tの損傷を減ら すことができる。 さらに、 C N Tを液体で濡らす湿式工程を有さないので、 C N Tが緻密化することがなく、 C N Tを低密度の分散容易な状態に保つこ とができる。 As described above, according to the present invention, the vapor pressure of the etching agent is less than 100 Pa at 25°C, and even if the etching agent leaks, it precipitates as droplets or solid powder. , The risk of accident can be reduced significantly. Further, since the catalytic metal 2 is removed while the carbon shell 3 is left without being destroyed, the damage of C N T can be reduced. Furthermore, since there is no wet process for wetting C N T with a liquid, C N T does not become densified, and C N T can be kept in a low density and easily dispersed state.
[0043] 本明細書において言及される全ての文献はその全体が引用により本明細書 に取り込まれる。 ここに記述される実施例は本発明の実施形態を例示するも のであり、 本発明の範囲を限定するものとして解釈されるべきではない。 \¥0 2020/175450 13 卩(:17 2020 /007390 [0043] All documents referred to in this specification are incorporated herein by reference in their entirety. The examples described herein are illustrative of embodiments of the invention and should not be construed as limiting the scope of the invention. \¥0 2020/175 450 13 (: 17 2020 /007390
実施例 Example
[0044] 実施例 1〜 3において、 合成方法の異なる 0 丁に対し、 本実施形態に係 る力ーボンナノチューブの精製方法および精製装置で、 精製処理を行った。 精製装置の詳細、 精製処理の条件、 および、 評価結果について以下に説明す る。 [0044] In Examples 1 to 3, the purification method and the purification apparatus for force-carbon nanotubes according to the present embodiment were used to perform purification treatment on 0 units with different synthesis methods. The details of the refining equipment, the conditions of the refining process, and the evaluation results are explained below.
[0045] 実施例において使用した力ーボンナノチューブの精製装置について、 図 4 および図 5を参照しながら説明する。 [0045] The refining device for carbon nanotubes used in the examples will be described with reference to Figs. 4 and 5.
[0046] 反応器 1 1として、 図 4に示すような石英ガラス管 12で構成される横置き管 を用いた。 力ーボンナノチューブ供給手段 13として、 シリカとアルミナで作 製されたセラミック製のボート形状の容器である〇 丁容器 14を用いた。 As the reactor 11, a horizontal tube composed of a quartz glass tube 12 as shown in FIG. 4 was used. As the carbon nanotube supplying means 13, a 0-shaped container 14 which is a ceramic boat-shaped container made of silica and alumina was used.
[0047] 蒸気圧が 2 5 °〇で 1 0 0 3未満である金属ハロゲン化物 15として 6[0047] 60 as a metal halide 15 having a vapor pressure of less than 10 0 3 at 25 ° 〇
I 3を用いた。
Figure imgf000015_0001
石英ガラス 管 12内に設けられたエッチング剤供給手段 16としての石英板 17の上に直接載 置した。
Figure imgf000015_0002
丁容器 14も石英板 17の上に載置した。 耐熱性ウール 18として、 アルミとシリカで作製されたセラミックウールを用いた。
I 3 was used.
Figure imgf000015_0001
It was placed directly on a quartz plate 17 as an etching agent supply means 16 provided in a quartz glass tube 12.
Figure imgf000015_0002
The Ding container 14 was also placed on the quartz plate 17. As the heat resistant wool 18, a ceramic wool made of aluminum and silica was used.
[0048] 加熱手段 20として、 石英ガラス管 12の外周に電気炉 21を用い、 石英ガラス 管 12内を加熱して、 触媒金属含有力ーボンナノチューブ 1、 および、 金属ハ ロゲン化物 15の温度を上昇させた。 As the heating means 20, an electric furnace 21 was used around the quartz glass tube 12, and the inside of the quartz glass tube 12 was heated to control the temperature of the catalytic metal-containing carbon nanotube 1 and the metal halogenide 15. Raised.
[0049] さらなる精製のための真空加熱手段 100としての装置では、 図 5に示すよう に、 図 4の 0 丁の精製装置 10と同様の構成の石英ガラス管 1 12、 〇1\1丁供給 手段 1 13としての〇1\1丁容器 1 14、 および、 石英板 1 17を用いた。 石英ガラス管 1 12の開口部 1 19を真空引き手段としての真空ポンプ (図示せず) に接続した 。 さらに、 石英ガラス管 12の外周に加熱手段 120としての電気炉 121を配置し た。 [0049] In the apparatus as the vacuum heating means 100 for further refining, as shown in Fig. 5, a quartz glass tube with the same structure as that of the refining apparatus 10 of 0 units in Fig. 4 was supplied with 1 unit of 1 unit. As a means 1 13, a 1\1 container 1 14 and a quartz plate 1 17 were used. The opening 1 19 of the quartz glass tube 1 12 was connected to a vacuum pump (not shown) as a vacuuming means. Further, an electric furnace 121 as a heating means 120 was arranged on the outer circumference of the quartz glass tube 12.
[0050] 以下の方法で 0 丁中の各元素の含有率の測定、 および、 レーザー顕微ラ マン分光分析を行い、 実施例 1〜 3において評価した。 [0050] The content of each element in the 0-hole was measured by the following method, and the laser microscopic Raman spectroscopic analysis was performed, and the evaluation was performed in Examples 1 to 3.
[0051 ] (含有率測定) [0051] (Measurement of content rate)
〇|\1丁中の各元素の含有率は、 走査型電子顕微鏡(3巳1\/1) (型番: 3 _ 4 〇 2020/175450 14 卩(:171? 2020 /007390 〇|The content of each element in \1 is determined by scanning electron microscope (3M 1\/1) (Model: 3 _ 4 〇 2020/175 450 14 卩 (:171? 2020 /007390
800、 日立ハイテクノロジーズ社製) ーエネルギー分散 X線分析(巳〇乂) 装置 (型番: 巳〇八乂 Ge n e s i s、 AMET E<社製) を用いて測定 した。 下地の影響を少なくするため、 実施例 1および 2では、 〇1\1丁を 2枚 の銅板に挟んで上下方向から圧力を加え、 銅板に付着させた後、 一方の銅板 を取り外し、 他方の銅板上に
Figure imgf000016_0001
丁が付着した状態で測定を行った。 実施例 3では、 〇1\1丁を丁 丨 メッシュで挟んだうえでプレスし、 丁 丨 メッシュの隙 間から測定した。 加速電圧 20 1^/、 倍率 300倍 (実施例 1および 2) 〜 500倍 ( 実施例 3) で 3巳1\/1—巳〇乂分析を行い、 各元素の元素組成を評価した。 観 察箇所は、 所定の点で観察した後、 1.5〜 2!^程度離れた箇所でも測定を行い 、 これを繰り返して実施例 1では 1 5点の、 実施例 2および 3では 5点の箇 所で測定を行った。
800, manufactured by Hitachi High-Technologies Corp.)-Energy dispersive X-ray analysis (Min. No.) device (model number: M. No. 8 Genesis, manufactured by AMET E<M). In order to reduce the effect of the base, in Examples 1 and 2, 〇1\1 was sandwiched between two copper plates and pressure was applied from above and below to adhere them to the copper plates, then one copper plate was removed and the other copper plate was removed. On a copper plate
Figure imgf000016_0001
The measurement was performed with the tab attached. In Example 3, 0 1 \ 1 piece was sandwiched with a gage mesh and pressed, and the gap was measured from the gage mesh. The accelerating voltage was 20 1^/, and the magnification was 300 times (Examples 1 and 2) to 500 times (Example 3), and 3 3 1//1-normal analysis was performed to evaluate the elemental composition of each element. After observing at a predetermined point, the observation point was also measured at a point about 1.5 to 2!^ apart, and this was repeated to obtain 15 points in Example 1 and 5 points in Examples 2 and 3. The measurements were taken in place.
[0052] (レーザー顕微ラマン分光分析) [0052] (Laser Microscopic Raman Spectroscopy)
レーザー顕微ラマン分光計 (型番: !! [¾_ 800、 堀場製作所社製) に〇 1\1丁粉末試料を設置し、 488 のレーザー波長を用いて、 レーザー顕微ラマ ン分光分析を行った。
Figure imgf000016_0002
丁をシリコン基板上に載置し、 その上に 2〜 3滴 のエタノールを滴下する。 その後、 ホッ トプレート上でエタノールを乾燥さ せ、 シリコン基板上に〇 1\1丁を密着させた。 〇 1\1丁のレーザー顕微ラマン分 光分析では〇 1\1丁の測定箇所によってばらつきが生じることがあるため、 1 〇点の箇所を測定し、 各箇所での〇 比および の測定を行った。 〇 比につ いては、 1 0点の箇所での 1 の値の総加平均をとって評価を行った。
A laser microscopic Raman spectroscopic analysis was performed using a laser sample Raman spectrometer (model number: !! [¾_800, manufactured by Horiba, Ltd.) with 1\1 powder sample and a laser wavelength of 488.
Figure imgf000016_0002
Place the Ding on a silicon substrate and drop a few drops of ethanol on it. After that, ethanol was dried on the hot plate, and 0 1 \ 1 c was adhered to the silicon substrate. 〇 In 1:1 laser Raman spectroscopic analysis, there may be variations depending on the measurement location of 1:1.Therefore, measure 10 points and measure the ratio and at each point. It was 〇 The ratio was evaluated by taking the total arithmetic mean of the values of 1 at the 10 points.
[0053] (熱重量分析) [0053] (Thermogravimetric analysis)
エッチングエ程前の〇 1\1丁粉末試料およびエッチングエ程後の〇 1\1丁粉末 試料について、 熱分析装置 (型番: 丁〇巳 2 1 0、 リガク製) を用いて熱重 量分析 (丁◦) を行い、 空気流通下、 昇温速度 5
Figure imgf000016_0003
で炭素の燃焼による 重量減少率を測定した。
Thermogravimetric analysis of 0 1\1 powder sample before etching process and 0 1\1 powder sample after etching process using a thermal analysis device (model number: Dixie 210, manufactured by Rigaku) (P.), and the heating rate is 5 under air flow.
Figure imgf000016_0003
The weight loss rate due to carbon combustion was measured at.
[0054] (実施例 1) 丁11巳 1_ 1_ (登録商標) 単層力ーボンナノチューブの精製処 理 (Example 1) Ding 11 _ 1_ 1_ (registered trademark) Purification treatment of single-walled carbon nanotubes
1. エッチング処理 〇 2020/175450 15 卩(:171? 2020 /007390 1. Etching process 〇 2020/175 450 15 卩(:171? 2020/007390
丁11巳八1_ 1_ (登録商標) 単層力ーボンナノチューブ (〇〇3 丨 八 丨社) を試料に用いてエッチングエ程の精製処理を行った。 当該力ーボンナノチュ —ブは、 直径 1 . 6± 0. 4 である。 本実施例ではまず、 5 1^の〇1\1丁を〇1\1丁 容器内に入れ、 当該〇1\1丁容器と 100
Figure imgf000017_0001
Ding 11 Minhachi 1_ 1_ (registered trademark) single-walled carbon nanotubes (03 03 Hachijosha Co., Ltd.) was used as a sample to perform a purification process such as an etching process. The force cylinder has a diameter of 1.6 ± 0.4. In this embodiment, first, 5 1^0 1\1 containers are placed in a 0 1\1 container and 100
Figure imgf000017_0001
。 図 6に示すように、 石英ガラス管内を真空に吸引後、 八 「ガスで 10分間置 換することにより、 石英ガラス管内の酸素を排出した。 次に、 電気炉により 石英ガラス管内を加熱して 200°〇まで昇温し、 減圧状態で 5分間保持して石英 ガラス管内の水のみを蒸発させ、 石英ガラス管内の水を除去した。 石英ガラ ス管内の水を除去することにより、 水と 6〇 丨 3との反応による ㊀の酸化 物の生成を防ぐことができる。 そして、 八 「ガスによる 10分間の置換を 2回 行い、 常圧 (760 !〇「「) の八 「を満たした状態で 15分かけて 1000°〇まで昇温 した。 昇温後、 常圧 (760 !〇「「) で石英ガラス管内を 1000°〇に保持し、 60分 間、 6〇 丨 3によるエッチング処理を行った。 その後、 常圧 (760 丁〇「「) で 15分かけて室温まで冷却し、 最後に真空に吸引後、 八 「ガスによる 10分間の 置換を 2回行った。 .. As shown in Fig. 6, after the quartz glass tube was evacuated to vacuum, oxygen was discharged from the quartz glass tube by replacing it with 8" gas for 10 minutes. Next, the quartz glass tube was heated by an electric furnace. The temperature in the quartz glass tube was increased by heating to 200°○ and holding for 5 minutes under reduced pressure to evaporate only the water in the quartz glass tube to remove the water in the quartz glass tube. ○ It is possible to prevent the formation of ㊀ oxidant due to the reaction with 丨3. Then, the gas is replaced with gas for 10 minutes twice, and the condition of "8" of atmospheric pressure (760!○"") is satisfied. in temperature was raised to 1000 ° 〇 over 15 minutes. After the heating, holding the quartz glass tube to 1000 ° 〇 at atmospheric pressure (760! 〇 ""), 60 minutes, the etching treatment by 6_Rei丨3 After that, it was cooled down to room temperature under atmospheric pressure (760 x "") for 15 minutes, finally vacuumed, and then replaced with "8" gas for 10 minutes twice.
[0055] 表 1 に、 上記エッチングエ程による精製処理を行う前の 0 1\1丁、 および、 上記エッチングエ程による精製処理を行った後の〇1\1丁中の〇、 〇、 〇 丨 お よび 6の含有率の測定結果を示す。 図 7は、 これらの測定結果中、 6の 含有率の測定結果を示すグラフである。 〇 1\1丁中に残留するエッチングエ程 による精製処理後の 6の含有率は 3. 3 1« であり、 エッチングエ程による精 製処理前の 13.
Figure imgf000017_0002
[0055] In Table 1, 0 1 \ 1 pcs before the refining treatment by the above etching process, and 〇, 〇, 〇 in 〇 1 \ 1 after performing the refining process by the above etching process The measurement results of the content rates of 丨 and 6 are shown below. FIG. 7 is a graph showing the results of measuring the content rate of 6 among these measurement results. 〇 The content of 6 in the 1\1 after the refining process by the etching process is 3.31«, which is 13.13 before the refining process by the etching process.
Figure imgf000017_0002
[0056] [表 1 ]
Figure imgf000017_0003
[0056] [Table 1]
Figure imgf000017_0003
エッチングエ程前 83.1 3.3 0.1 13.5 エッチングエ程後 93.0 1.6 2.2 3.3 Before etching process 83.1 3.3 0.1 13.5 After etching process 93.0 1.6 2.2 3.3
[0057] 図 8は、 上記のエッチングエ程による精製処理を行う前の、 レーザー顕微 ラマン分光分析の結果を示すグラフである。 図 9は、 上記の真空加熱工程に 〇 2020/175450 16 卩(:171? 2020 /007390 [0057] Fig. 8 is a graph showing the result of laser microscopic Raman spectroscopic analysis before the purification treatment by the above etching process. Figure 9 shows the vacuum heating process described above. 〇 2020/175 450 16 boxes (: 171-1? 2020/007390
よる精製処理を行った後の、 レーザー顕微ラマン分光分析の結果を示すグラ フである。 1 0点の箇所における〇 比である 1 の値の総加平均は、 精製処 理前が 25. 4、 精製処理後が 37. 0であり、 エッチングエ程による精製処理を行 った結果、 1 値が 46%上昇し、 〇1\1丁の結晶性は低下せず、 〇1\1丁は損傷さ れなかった。 It is a graph showing the result of laser Raman spectroscopic analysis after the purification treatment by The total arithmetic average of the values of 1 which is the ratio at 10 points was 25.4 before the refining process and 37.0 after the refining process.As a result of performing the refining process by the etching process, The value of 1 increased by 46%, the crystallinity of 0 1\1 did not decrease, and 0 1\1 was not damaged.
[0058] 図 1 0は、 図 8のグラフにおける、 200
Figure imgf000018_0001
近傍の拡大図である。 当該グラ フから、 1 0点の箇所すべてにおいて [^11/1が確認され、 丁 II巳八 1_ 1_ (登録商 標) が単層〇 1\1丁であることが分かる。 また、 J [J B A L L (登録商標) の 811/1は、 広い波数範囲に現れ、 T [J B A L L (登録商標) の 0 1\1丁の直径の分 布が大きいことが分かる。 図 1 1は、 図 9のグラフにおける、 200 -1近傍の 拡大図である。 〇1\1丁を 1 6 0 0 °〇以上の高温下で処理すると、 単層〇1\1丁 の直径が大きくなり、 最終的には多層〇 1\1丁に変化してしまう場合がある。 図 1 1のグラフから、
Figure imgf000018_0002
が確認され、 エッチン グエ程による精製処理後も、 〇 1\1丁が多層〇 1\1丁に変化していないことが分 かる。 また、 図 1 0の [^11/1と比較しても、 ピークの位置等にほとんど変化は見 られないことから、 エッチングエ程による精製処理後も、 〇1\1丁の直径はほ とんど変化していないことが分かる。
[0058] FIG. 10 shows a graph of 200 in the graph of FIG.
Figure imgf000018_0001
It is an enlarged view of the vicinity. From the graph, [^11/1 was confirmed at all 10 points, and it can be seen that Ding II Michihachi 1_ 1_ (registered trademark) is a single layer 〇 1\1 Ding. In addition, 811/1 of J [JBALL (registered trademark) appears in a wide wave number range, and it can be seen that the distribution of the diameter of 0 1\1 of T [JBALL (registered trademark) is large. Figure 1 1 is in the graph of FIG. 9, 200 - 1 is an enlarged view of the vicinity. When 〇1\1 pcs are processed at a high temperature of 1600° or higher, the diameter of the single layer 〇1\1 pcs may increase and eventually it may change to multi-layer 〇1\1 pcs. is there. From the graph in Figure 11,
Figure imgf000018_0002
It was confirmed that even after the refining process by the etching process, the ∘1\1 has not changed to a multi-layer ∙1\1. In addition, even when compared to [^11/1 in Fig. 10, there is almost no change in the position of peaks, etc. Therefore, even after the purification process by the etching process, the diameter of 0 1 \ 1 is almost You can see that it has not changed.
[0059] 図 1 2は、 上記のエッチングエ程による精製処理を行う前 (破線) 、 およ び、 エッチングエ程による精製処理を行った後 (実線) の〇1\1丁の熱重量分 析 (丁◦) 結果を示す。 エッチングエ程による精製処理を行う前の 0 丁の 重量減少率は 83. 75%、 残渣量は 16. 25%であった。 エッチングエ程による精製 処理を行った後の 0 丁の重量減少率は 96. 84%、 残渣量は 3. 16%であった。 熱 重量分析 (丁◦) の結果から、 エッチングエ程により残渣の原因となる〇 丁中の触媒残留量が 1 / 5以下に低減したことが分かる。 [0059] Fig. 12 shows the thermogravimetric amount of 0 1 \ 1 before the purification process by the etching process (broken line) and after the purification process by the etching process (solid line). Analysis (Table) Shows the results. Before the purification process by the etching process, the weight loss rate of 0-chome was 83.75% and the amount of residue was 16.25%. After the purification process by the etching process, the weight loss rate of 0 pieces was 96.84% and the amount of residue was 3.16%. From the results of thermogravimetric analysis (c), it can be seen that the amount of catalyst residue in the clove, which causes residues due to the etching process, was reduced to 1/5 or less.
[0060] 2 . エッチング処理後の精製処理 [0060] 2. Purification treatment after etching treatment
上記エッチングエ程による精製処理後の 0 1\1丁を用いて、 真空加熱工程に よる精製処理を行った。 まず、 エッチングエ程による精製処理を行った〇 丁を〇!\1丁容器内に入れ、 〇!\1丁容器を石英板の上に載置した。 図 1 3に示 〇 2020/175450 17 卩(:171? 2020 /007390 After the purification treatment by the above etching process, the purification treatment by the vacuum heating process was performed using the 0 1 \ 1 unit. First, we put the 〇-clove that had been purified by the etching process into a 〇!\1 crate container, and placed the 〇!\1 crate container on a quartz plate. Shown in Figure 13 〇 2020/175 450 17 卩(:171? 2020/007390
すように、 石英ガラス管内を真空に吸引後八 「ガスによる 10分間の置換を 2 回行い、 石英ガラス管内の酸素を排出した。 その後、 真空状態で電気炉によ り石英ガラス管内を加熱し、 15分かけて 1000°〇まで昇温した。 昇温後、 真空 状態で石英ガラス管内を 1000°〇に 60分間保持した。 その後、 真空状態で 15分 かけて室温まで冷却し、 最後に八 「ガスによる 10分間の置換を 2回行った。 As described above, the inside of the quartz glass tube was evacuated to a vacuum, and the gas inside the quartz glass tube was discharged twice for 8 minutes, and the oxygen inside the quartz glass tube was discharged. Then, the temperature was raised to 1000 ° 〇 over 15 minutes.After the temperature was raised, the inside of the quartz glass tube was kept at 1000 ° 〇 for 60 minutes in a vacuum state. "The gas was replaced twice for 10 minutes twice.
[0061 ] 表 2に、 上記真空加熱工程による精製処理を行う前の 0 丁、 および、 上 記真空加熱工程による精製処理を行った後の
Figure imgf000019_0001
丁中の(3、 〇、 0 丨 および 6の含有率の測定結果を示す。 図 1 4は、 これらの測定結果中、 〇 Iの含 有率の測定結果を示すグラフであり、 図 1 5は、 6の含有率の測定結果を 示すグラフである。
Figure imgf000019_0002
丁中に残留する真空加熱工程による精製処理後の〇 Iの含有率は 0. 6
Figure imgf000019_0003
であり、 真空加熱工程による精製処理前の 2. 2 !« に対 して 73%減少した。 〇!\1丁中に残留する真空加熱工程による精製処理後の 6 の含有率は 1 . 8
Figure imgf000019_0004
り、 真空加熱工程による精製処理前の 3. 3
Figure imgf000019_0005
し て 45%減少した。 エッチングエ程および真空加熱工程による精製処理を行った 最終的な結果として、 〇 !\1丁中に残留する当該精製処理後の 6の含有率は 、 エッチングエ程による精製処理前の 13.
Figure imgf000019_0006
[0061] Table 2 shows the number of samples before the purification treatment by the above vacuum heating step and after the purification treatment by the above vacuum heating step.
Figure imgf000019_0001
Fig. 14 shows the measurement results of the content ratios of (3, 〇, 0 丨, and 6 in Ding. Fig. 14 is a graph showing the measurement results of the content ratio of 〇I among these measurement results. [Fig. 6] is a graph showing the measurement results of the content rate of 6.
Figure imgf000019_0002
The content of 〇I after the refining by the vacuum heating process remaining in Ding is 0.6.
Figure imgf000019_0003
This is a 73% decrease from 2.2 !« before the purification treatment by the vacuum heating process. 〇! The content of 6 remaining in the 1-chome after the refining process by the vacuum heating process is 1.8.
Figure imgf000019_0004
3.3 before the refining process by the vacuum heating process
Figure imgf000019_0005
This is a 45% reduction. As a final result of the purification process by the etching process and the vacuum heating process, the content ratio of 6 remaining after the purification process in ◯ !\1 is 13 before the purification process by the etching process.
Figure imgf000019_0006
[0062] [表 2]
Figure imgf000019_0007
[0062] [Table 2]
Figure imgf000019_0007
真空加熱工程前 93.0 1.6 2.2 3.3 Before vacuum heating process 93.0 1.6 2.2 3.3
真空加熱工程後 96.3 1.3 0.6 1.8 After vacuum heating process 96.3 1.3 0.6 1.8
[0063] 図 1 6は、 透過電子顕微鏡 (丁巳 IV!) により撮影した、 上記精製処理を行 う前の〇1\1丁の丁巳1\/1画像写真である。 矢印で示すように、 炭素殻内に触媒 金属の粒子が残存していることが確認できる。 図 1 7は、 上記エッチンエ程 および真空加熱工程による精製処理を行った後の◦ 1\1丁の丁巳 IV!画像写真で ある。 矢印で示すように、 炭素殻内の触媒金属が除去された中空構造の炭素 殻が確認できる。 [0063] Fig. 16 is a photograph of a 1\1 Tingmi 1\/1 image taken by a transmission electron microscope (Choing IV!) before the above purification treatment. As shown by the arrow, it can be confirmed that the particles of the catalytic metal remain in the carbon shell. Fig. 17 is a photograph of the Tingmi IV! image of 1:1 after the purification process by the above etching process and vacuum heating process. As shown by the arrow, a hollow carbon shell with the catalyst metal in the carbon shell removed can be confirmed.
[0064] 3 . 実施例 1のまとめ [0064] 3. Summary of Example 1
以上のことから、 6〇 丨 3をエッチング剤として使用したエッチングエ程 〇 2020/175450 18 卩(:171? 2020 /007390 From the above, the etching process using 60 3 as an etching agent 〇 2020/175 450 18 卩(:171? 2020/007390
による精製処理により、 丁11巳 1_ 1_ (登録商標) の 0 丁中から触媒金属 を除去することができ、 〇 1\1丁に直径の拡大や多層化等のダメージを与える ことなく結晶性を高めることができることが確認された。 さらに、 真空加熱 工程による精製処理により、 触媒金属をさらに除去するとともに、 0 Iの含 有率も低減することができることが確認された。 The catalytic metal can be removed from the 0-chome of 1_11_ 1_ (registered trademark) by the refining process with ∙ 11_ 1_ 1_ (registered trademark), and the crystallinity can be improved without damaging the ∙ 1\ 1-chome, such as the enlargement of the diameter or the formation of multiple layers. It was confirmed that it could be increased. Furthermore, it was confirmed that the purification treatment by the vacuum heating step can further remove the catalytic metal and reduce the 0 I content.
[0065] (実施例 2) アーク放電法により合成した力ーボンナノチューブの精製処理 (Example 2) Purification of carbon nanotubes synthesized by arc discharge method
1 . エッチング処理 1 etching process
アーク放電法により合成した単層力ーボンナノチューブを試料に用いてェ ッチングエ程の精製処理を行った。 当該力ーボンナノチューブは、 直径 1〜 2 である。 本実施例では、 5 |119の〇1\1丁と、 100 1119の ㊀〇 丨 3とを使用し、 実施例 1 と同様の精製装置を用いて、 実施例 1 と同様の精製処理条件で精製 処理を行った。 The single-layer carbon nanotubes synthesized by the arc discharge method were used as a sample for the purification process of the etching process. The force-carbon nanotube has a diameter of 1-2. In this example, 5 | 119 〇 1 \ 1 chome and 100 1119 ㊀ 〇 丨3 were used, using the same purification equipment as in Example 1, under the same purification treatment conditions as in Example 1. Purification processing was performed.
[0066] 表 3に、 上記エッチングエ程による精製処理を行う前の 0 丁、 および、 上記エッチングエ程による精製処理を行った後の〇1\1丁中の〇、 〇、 丫、 3 、 〇 丨、 6および 1\1 丨の含有率の測定結果を示す。 〇1\1丁中に残留するェ ッチングエ程による精製処理後の 1\1 丨の含有率は 6. 9
Figure imgf000020_0001
り、 エッチング 工程による精製処理前の 38.
Figure imgf000020_0002
[0066] Table 3 shows 0 pieces before performing the refining treatment by the above etching process, and 〇, 〇, 丫, 3, in 1 of 1 after the refining treatment by the above etching process. 〇 The measurement results of the content rates of 丨, 6 and 1\1丨 are shown. 〇 The content rate of 1\1 丨 after the refining process by the etching process remaining in 1\1 cot is 6.9.
Figure imgf000020_0001
Before the purification process by the etching process 38.
Figure imgf000020_0002
[0067] [表 3]
Figure imgf000020_0003
[0067] [Table 3]
Figure imgf000020_0003
エッチングエ程前 50.0 2.8 4.6 3.5 0.1 0.6 38.5 エッチングエ程後 86.6 0.3 2.3 0.7 2.3 0.9 6.9 Before etching process 50.0 2.8 4.6 3.5 0.1 0.6 38.5 After etching process 86.6 0.3 2.3 0.7 2.3 0.9 6.9
[0068] 図 1 8は、 上記のエッチングエ程による精製処理を行う前 (破線) 、 およ び、 ェッチングエ程による精製処理を行った後 (実線) の〇1\1丁の熱重量分 析 (丁◦) 結果を示す。 ェッチングエ程による精製処理を行う前の 0 丁の 重量減少率は 34. 86%、 残渣量は 65. 14%であった。 ェッチングエ程による精製 処理を行った後の 0 1\1丁の重量減少率は 75. 59%、 残渣量は 24. 41 %であった。 熱重量分析 (丁◦) の結果から、 エッチングエ程により残渣の原因となる〇 丁中の触媒残留量が約 1 / 3に低減したことが分かる。 〇 2020/175450 19 卩(:171? 2020 /007390 [0068] Fig. 18 shows the thermogravimetric analysis of 0 1 \ 1 before the purification process by the etching process (broken line) and after the purification process by the etching process (solid line). (Table) Shows the result. The weight loss rate of 0-chome before purification by etching process was 34.86% and the amount of residue was 65.14%. The weight loss rate of 0 1\1 after the purification process by etching process was 75.59% and the amount of residue was 24.41%. From the results of thermogravimetric analysis, it can be seen that the amount of catalyst residue in the knives that causes residues due to the etching process has been reduced to about 1/3. 〇 2020/175 450 19 卩(: 171-1? 2020/007390
[0069] 2 . エッチング処理後の精製処理 [0069] 2. Purification treatment after etching treatment
上記エッチングエ程による精製処理後の 0 1\1丁を用いて、 真空加熱工程に よる精製処理を行った。 実施例 1 と同様の精製装置を用いて、 実施例 1 と同 様の精製処理条件で精製処理を行った。 After the purification treatment by the above etching process, the purification treatment by the vacuum heating process was performed using the 0 1 \ 1 unit. Using the same purification apparatus as in Example 1, the purification treatment was carried out under the same purification treatment conditions as in Example 1.
[0070] 図 1 9は、 透過電子顕微鏡 (丁巳 IV!) により撮影した、 上記精製処理を行 う前の〇1\1丁の丁巳1\/1画像写真である。 矢印で示すように、 炭素殻内に触媒 金属の粒子が残存していることが確認できる。 図 2 0は、 上記エッチンエ程 および真空加熱工程による精製処理を行った後の◦ 1\1丁の丁巳 IV!画像写真で ある。 矢印で示すように、 炭素殻内の触媒金属が除去された中空構造の炭素 殻が確認できる。 [0070] Fig. 19 is a photograph of a 1\1 Tingmi 1\/1 image taken by a transmission electron microscope (Choing IV!) before the above purification treatment. As shown by the arrow, it can be confirmed that the particles of the catalytic metal remain in the carbon shell. Fig. 20 is a photograph of the Tingmi IV! image of ◦ 1\1 after the above etching process and the refining process by the vacuum heating process. As shown by the arrow, a hollow carbon shell with the catalyst metal in the carbon shell removed can be confirmed.
[0071 ] 3 . 実施例 2のまとめ [0071] 3. Summary of Example 2
以上のことから、 6〇 丨 3をエッチング剤として使用したエッチングエ程 による精製処理、 および、 真空加熱工程による精製処理により、 アーク放電 法により合成した 0 1\1丁中から触媒金属を除去することができることが確認 された。 Based on the above, the catalytic metal is removed from the 0 1 \ 1 chome synthesized by the arc discharge method by the refining process by the etching process using 60 3 as the etching agent and the refining process by the vacuum heating process. It was confirmed that it was possible.
[0072] (実施例 3) 化学気相成長 (<3 0) 法により合成した力ーボンナノチュー ブの精製処理 (Example 3) Purification treatment of ribocarbon nanotube synthesized by chemical vapor deposition (<30) method
1 . エッチング処理 1 etching process
〇 V口法により合成した多層力ーボンナノチューブを試料に用いてエッチ ングエ程の精製処理を行った。 当該力ーボンナノチューブは、 直径 10〜 30 、 平均直径約 20 である。 本実施例では、 5
Figure imgf000021_0001
1\1丁と、 100 11^の 6〇 I 3とを使用し、 実施例 1 と同様の精製装置を用いて、 実施例 1 と同様の精製 処理条件で精製処理を行った。
〇 Using the multi-layer carbon nanotubes synthesized by the V mouth method as a sample, a purification process of etching grade was performed. The carbon nanotubes have a diameter of 10 to 30 and an average diameter of about 20. In this example, 5
Figure imgf000021_0001
Using 1\1 and 100 11^60 I 3 , the same purification apparatus as in Example 1 was used to perform the purification treatment under the same purification treatment conditions as in Example 1.
[0073] 表 4に、 上記エッチングエ程による精製処理を行う前の 0 1\1丁、 および、 上記エッチングエ程による精製処理を行った後の〇 1\1丁中の〇、 〇、
Figure imgf000021_0002
八 I、 〇 丨 および 6の含有率の測定結果を示す。 〇1\1丁中に残留するエッ チングエ程による精製処理後の 6の含有率は 0. 1
Figure imgf000021_0003
り、 エッチングエ 程による精製処理前の
Figure imgf000021_0004
〇 2020/175450 20 卩(:171? 2020 /007390
[0073] In Table 4, 0 1 \ 1 pcs before the purification process by the above etching process, and 〇, 〇 in 〇 1 \ 1 after the purification process by the above etching process,
Figure imgf000021_0002
The measurement results of the content rates of I, O and 6 are shown below. 〇1 The content rate of 6 after the refining process by the etching process remaining in 1 chome is 0.1
Figure imgf000021_0003
Before the purification process by the etching process.
Figure imgf000021_0004
〇 2020/175 450 20 units (:171? 2020 /007390
[0074] [表 4] [0074] [Table 4]
_ 〔 %) 0 _%) %)八_%) (II %) %) エッチングエ程前 87.3 2.4 1.9 1.1 0.0 7.2 エッチングエ程後 98.1 1.3 0.1 0.1 0.2 0.1 _ [%) 0 _%)%) Eight _%) (II%)%) Before etching process 87.3 2.4 1.9 1.1 0.0 7.2 After etching process 98.1 1.3 0.1 0.1 0.2 0.1
[0075] 図 2 1は、 上記のエッチングエ程による精製処理を行う前 (破線) 、 およ び、 エッチングエ程による精製処理を行った後 (実線) の〇1\1丁の熱重量分 析 (丁◦) 結果を示す。 エッチングエ程による精製処理を行う前の 0 丁の 重量減少率は 89. 01 %、 残渣量は 10. 99%である。 エッチングエ程による精製処 理を行った後の 0 丁の重量減少率は 96. 12%、 残渣量は 3. 88%であった。 熱重 量分析 (丁◦) の結果から、 エッチングエ程により残渣の原因となる 0 丁 中の触媒残留量が 1 / 2以下に低減したことが分かる。 [0075] Fig. 21 shows the thermogravimetric components of 0 1 \ 1 before the refining process by the above etching process (broken line) and after performing the refining process by the etching process (solid line). Analysis (Table) Shows the results. Before the purification process by etching process, the weight loss rate of 0 units was 89.01% and the amount of residue was 10.99%. After carrying out the refining process by the etching process, the weight reduction rate of 0 pieces was 96.12% and the amount of residue was 3.88%. From the results of thermal gravimetric analysis (c), it can be seen that the amount of catalyst residue in 0 crate, which causes the residue due to the etching process, was reduced to less than 1/2.
[0076] 2 . エッチング処理後の精製処理 [0076] 2. Purification treatment after etching treatment
上記エッチングエ程による精製処理後の 0 1\1丁を用いて、 真空加熱工程に よる精製処理を行った。 実施例 1 と同様の精製装置を用いて、 実施例 1 と同 様の精製処理条件で精製処理を行った。 After the purification treatment by the above etching process, the purification treatment by the vacuum heating process was performed using the 0 1 \ 1 unit. Using the same purification apparatus as in Example 1, the purification treatment was carried out under the same purification treatment conditions as in Example 1.
[0077] 図 2 2は、 透過電子顕微鏡 (丁巳!\/1) により撮影した、 上記精製処理を行 う前の〇1\1丁の丁巳1\/1画像写真である。 矢印で示すように、 炭素殻内に触媒 金属の粒子が残存していることが確認できる。 図 2 3は、 上記エッチンエ程 および真空加熱工程による精製処理を行った後の◦ 1\1丁の丁巳 IV!画像写真で ある。 矢印で示すように、 炭素殻内の触媒金属が除去された中空構造の炭素 殻が確認できる。 [0077] Fig. 22 is a photograph of a 1\1 Tingmi 1\/1 image taken with a transmission electron microscope (Ding!\/1) before the above purification treatment. As shown by the arrow, it can be confirmed that the particles of the catalytic metal remain in the carbon shell. Figure 23 is a photograph of the ∘1\1 chome IV! image after the above-mentioned etching process and the refining process by the vacuum heating process. As shown by the arrow, a hollow carbon shell with the catalyst metal in the carbon shell removed can be confirmed.
[0078] 3 . 実施例 3のまとめ [0078] 3. Summary of Example 3
以上のことから、 6〇 丨 3をエッチング剤として使用したエッチングエ程 による精製処理、 および、 真空加熱工程による精製処理により、 〇 〇法に より合成した 0 1\1丁中から触媒金属を除去することができることが確認され た。 Based on the above, the catalytic metal was removed from the 0 1 \ 1 unit synthesized by the method ○ by the refining process by the etching process using 60 3 as the etching agent and the refining process by the vacuum heating process. It was confirmed that it can be done.
[0079] 以上、 本発明を実施形態および実施例に基づいて説明したが、 本発明は種 々の変形実施をすることができる。 例えば、 加熱手段 20は、 触媒金属含有力 〇 2020/175450 21 2020 /007390 Although the present invention has been described based on the embodiments and examples, the present invention can be modified in various ways. For example, the heating means 20 may be 〇 2020/175 450 21 2020/007390
—ボンナノチューブ 1 を加熱する〇!\1丁加熱手段 (図示せず) と、 金属ハロ ゲン化物 15を加熱するハロゲン化物加熱手段 (図示せず) とを別個に備えて もよい。 —A heating means (not shown) for heating the Bonn nanotube 1 and a heating means (not shown) for heating the metal halide 15 may be separately provided.
符号の説明 Explanation of symbols
[0080] 1 触媒金属含有力ーボンナノチューブ [0080] 1 Catalyst Metal-Containing Carbon Nanotubes
2 触媒金属 2 catalytic metal
3 炭素殻 3 carbon shell
4 中空構造の炭素殻を有する 0 1\1丁 4 with a hollow carbon shell
5 〇 !\1丁 5 〇!\1
6 末珊 6 Sue
7 触媒金属が炭素殻に覆われた粒子であって〇 1\1丁に付着した粒子 7 Particles in which the catalytic metal is covered with a carbon shell and adheres to 0
8 触媒金属が炭素殻に覆われた粒子であって〇 1\1丁から離れて存在する 8 Catalytic metal is a particle covered with carbon shell and exists away from 〇\
10 力ーボンナノチューブの精製装置 10 Power Carbon Nanotube Purification Equipment
1 1 反応器 1 1 reactor
12 石英ガラス管 12 Quartz glass tube
13 力ーボンナノチューブ供給手段 13 Carbon nanotube supply means
14 〇1\1丁容器 14 〇 1 \ 1 crate container
1 5 金属ハロゲン化物 1 5 Metal halide
16 エッチング剤供給手段 16 Etching agent supply means
17 石英板 17 Quartz plate
18 耐熱性ウール 18 Heat resistant wool
20 加熱手段 20 Heating means
21 電気炉 21 electric furnace
25 中空構造の炭素殻を有する〇 1\1丁 25 with a hollow carbon shell
27 中空構造の炭素殻を有する粒子であって〇1\1丁に付着した粒子 27 Particles that have a hollow carbon shell and are attached to 〇\
28 中空構造の炭素殻を有する粒子であって〇 !\1丁から離れて存在する粒 子 0 22 卩(:171? 2020 /007390 28 Particles with a hollow carbon shell that are present away from 〇!\1 0 22 卩 (: 171? 2020 /007390
真空加熱装置 Vacuum heating device
石英ガラス管 Quartz glass tube
力ーボンナノチューブ供給手段 Force-bon nanotube supply means
〇1\1丁容器 〇 1\1 container
石英板 Quartz plate
加熱手段 Heating means
電気炉 Electric furnace

Claims

〇 2020/175450 23 卩(:171? 2020 /007390 請求の範囲 〇 2020/175 450 23 卩(: 171-1? 2020/007390 Claims
[請求項 1 ] 触媒金属を用いて合成された触媒金属含有力ーボンナノチューブ、 および、 金属ハロゲン化物を加熱し、 前記金属ハロゲン化物の蒸気を 前記触媒金属含有力ーボンナノチューブと接触させて、 前記触媒金属 を除去するエッチングエ程を含む、 力ーボンナノチューブの精製方法 [Claim 1] A catalyst metal-containing force-carbon nanotube synthesized by using a catalyst metal, and a metal halide are heated, and vapor of the metal halide is brought into contact with the catalyst metal-containing force-carbon nanotube, Method for purifying carbon nanotubes including etching step for removing the catalyst metal
[請求項 2] 前記金属ハロゲン化物の蒸気圧が 2 5 °〇で 1 0 0 3未満である請 求項 1 に記載の力ーボンナノチューブの精製方法。 [Claim 2] The method for purifying carbon nanotubes according to claim 1, wherein the vapor pressure of the metal halide is less than 10 3 at 25°.
[請求項 3] 前記ハロゲン化物が常温常圧で固体である請求項 1 または 2に記載 の力ーボンナノチューブの精製方法。 3. The method for purifying carbon nanotubes according to claim 1, wherein the halide is a solid at room temperature and atmospheric pressure.
[請求項 4] 前記エッチングエ程により精製した力ーボンナノチューブを真空状 態で加熱する真空加熱工程をさらに含む、 請求項 1 〜 3のいずれか 1 項に記載の力ーボンナノチューブの精製方法。 [Claim 4] The method for purifying carbon nanotubes according to any one of claims 1 to 3, further comprising a vacuum heating step of heating the carbon nanotubes purified by the etching step in a vacuum state. ..
[請求項 5] 前記金属ハロゲン化物が、 丁 丨、 〇リ、 2 、 3 I , 0 [Claim 5] The metal halide is selected from the group consisting of:
6 , 3 1^および巳 丨 のうち 1 つ以上を含む請求項 1 〜 4のいずれか 1 項に記載の力ーボンナノチューブの精製方法。 The method for purifying carbon nanotubes according to any one of claims 1 to 4, which comprises one or more of 6, 3 1^ and Minoru.
[請求項 6] 前記金属ハロゲン化物が、 フッ化物、 塩化物、 臭化物またはヨウ化 物、 および、 これらの混合物からなる群から選択される請求項 1 〜 5 のいずれか 1項に記載の力ーボンナノチューブの精製方法。 [Claim 6] The force according to any one of claims 1 to 5, wherein the metal halide is selected from the group consisting of fluoride, chloride, bromide or iodide, and a mixture thereof. Method for purifying Bonn nanotubes.
[請求項 7] 前記触媒金属含有力ーボンナノチューブが、 火炎合成法、 アーク放 電法または化学気相成長 (<3 0) 法により合成されたものである請 求項 1 〜 6のいずれか 1項に記載の力ーボンナノチューブの精製方法 [Claim 7] Any one of claims 1 to 6, wherein the catalytic metal-containing carbon nanotube is one synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition (<30) method. Method for purifying carbon nanotubes according to item 1
[請求項 8] 反応器と、 [Claim 8] A reactor,
触媒金属を用いて合成された触媒金属含有力ーボンナノチューブを 、 前記反応器内に供給する力ーボンナノチューブ供給手段と、 金属ハロゲン化物を、 前記反応器内に供給するエッチング剤供給手 段と、 〇 2020/175450 24 卩(:171? 2020 /007390 A catalyst-metal-containing carbon nanotube synthesized by using a catalyst metal; a carbon-carbon nanotube supply means for supplying the catalyst into the reactor; and an etching agent supply means for supplying a metal halide into the reactor. , 〇 2020/175 450 24 卩 (:171? 2020 /007390
前記触媒金属含有力ーボンナノチューブ、 および、 前記金属ハロゲ ン化物を加熱する加熱手段と、 を備え、 A catalyst metal-containing carbon nanotube, and heating means for heating the metal halogenide,
前記反応器内で、 加熱された前記触媒金属含有力ーボンナノチュー ブおよび前記金属/ヽロゲン化物の蒸気を接触させて、 前記触媒金属を 除去する、 力ーボンナノチューブの精製装置。 A device for purifying carbon nanotubes, which comprises heating heated catalytic metal-containing carbon nanotubes and the vapor of the metal/arogen compound in the reactor to remove the catalytic metal.
[請求項 9] 加熱された前記触媒金属含有力ーボンナノチューブおよび前記金属 ハロゲン化物の蒸気を接触させて精製された力ーボンナノチューブを 真空状態で加熱する真空加熱手段をさらに備える、 請求項 8に記載の 力ーボンナノチューブの精製装置。 9. The vacuum heating means for heating the purified carbon nanotubes in contact with the heated catalytic metal-containing carbon nanotubes and the vapor of the metal halide in a vacuum state is further provided. The apparatus for purifying carbon nanotubes according to 1.
PCT/JP2020/007390 2019-02-26 2020-02-25 Method and device for purifying carbon nanotubes WO2020175450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-032470 2019-02-26
JP2019032470A JP7278539B2 (en) 2019-02-26 2019-02-26 Carbon nanotube purification method and purification apparatus

Publications (1)

Publication Number Publication Date
WO2020175450A1 true WO2020175450A1 (en) 2020-09-03

Family

ID=72239275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007390 WO2020175450A1 (en) 2019-02-26 2020-02-25 Method and device for purifying carbon nanotubes

Country Status (2)

Country Link
JP (1) JP7278539B2 (en)
WO (1) WO2020175450A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181856B (en) * 2021-05-08 2022-04-29 东南大学 Device and method for synthesizing nano particles by simulating zero-microgravity flame with assistance of magnetic field

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063814A (en) * 2001-08-24 2003-03-05 Kokusai Kiban Zairyo Kenkyusho:Kk Method for modifying carbon nanotube, carbon nanotube and electron emission source
JP2005306681A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Method for removing catalyst metal
JP2006306636A (en) * 2005-04-26 2006-11-09 Mitsubishi Heavy Ind Ltd Method for refining nanocarbon material and nanocarbon material
WO2007063579A1 (en) * 2005-11-29 2007-06-07 Meijo University Method for production of carbon nanotube and method for purification of the same
WO2008126534A1 (en) * 2007-03-13 2008-10-23 Toyo Tanso Co., Ltd. Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source material, conductive assistant for electrode, catalyst supporting member and conductive film, each using the carbon material
JP2008266133A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing carbon nanotube
WO2017146218A1 (en) * 2016-02-26 2017-08-31 学校法人早稲田大学 Removal method and removal device for removing metal particles from carbon nanotube mixture containing metal particles, and composite of hollow carbon particles and carbon nanotubes obtained thereby

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063814A (en) * 2001-08-24 2003-03-05 Kokusai Kiban Zairyo Kenkyusho:Kk Method for modifying carbon nanotube, carbon nanotube and electron emission source
JP2005306681A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Method for removing catalyst metal
JP2006306636A (en) * 2005-04-26 2006-11-09 Mitsubishi Heavy Ind Ltd Method for refining nanocarbon material and nanocarbon material
WO2007063579A1 (en) * 2005-11-29 2007-06-07 Meijo University Method for production of carbon nanotube and method for purification of the same
WO2008126534A1 (en) * 2007-03-13 2008-10-23 Toyo Tanso Co., Ltd. Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source material, conductive assistant for electrode, catalyst supporting member and conductive film, each using the carbon material
JP2008266133A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing carbon nanotube
WO2017146218A1 (en) * 2016-02-26 2017-08-31 学校法人早稲田大学 Removal method and removal device for removing metal particles from carbon nanotube mixture containing metal particles, and composite of hollow carbon particles and carbon nanotubes obtained thereby

Also Published As

Publication number Publication date
JP7278539B2 (en) 2023-05-22
JP2020132504A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
Shanov et al. Synthesis and characterization of carbon nanotube materials
JP4747295B2 (en) Method for producing coaxial carbon nanotube sheet
Pan et al. Oriented silicon carbide nanowires: synthesis and field emission properties
TWI444328B (en) A carbon material of carbon nanotubes and a carbon material obtained by the purification method, and a resin molded body using the carbon material, a fiber, a heat sink, a sliding material, an electric field source material of the electric field, a conductive material Of the electrode Agent, catalyst carrier and conductive film
WO2009110591A1 (en) Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
Lü et al. Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction
JP2017206413A (en) Carbon nanotubes and method for producing the same, and carbon nanotubes dispersion
JP2007145634A (en) Double-walled carbon nanotube, bulk structure of the same, method and apparatus for producing them, and applications of the nanotube and bulk structure
JP2011016711A (en) Carbon nanotube and method for producing the same
EP2403801A2 (en) Method for making cohesive assemblies of carbon
CN107792846B (en) Method for purifying carbon nanotubes
WO2017146218A1 (en) Removal method and removal device for removing metal particles from carbon nanotube mixture containing metal particles, and composite of hollow carbon particles and carbon nanotubes obtained thereby
US20060093545A1 (en) Process for producing monolayer carbon nanotube with uniform diameter
Tony et al. Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperature
WO2020175450A1 (en) Method and device for purifying carbon nanotubes
TW201420499A (en) Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use
US20030129119A1 (en) Nanocarbon materials and process for producing the same
US20150239740A1 (en) Method for fabricating porous carbon material
Maboya et al. One-step synthesis of carbon nanotubes with secondary growth of carbon nanofibers: effect of chlorine, synthesis time and temperature
JP4696598B2 (en) carbon nanotube
Yaya et al. Purification of single-walled carbon nanotubes
RU2430879C2 (en) Method of cleaning multilayer carbon tubes
JP4567319B2 (en) Method for producing carbon nanotube
Jain et al. Solid‐state synthesis of well‐defined carbon nanocapsules from organometallic precursors
TW202243996A (en) Pellicle membrane for a lithographic apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763073

Country of ref document: EP

Kind code of ref document: A1