WO2020158685A1 - Sn particles, conductive composition using the same, and method for producing sn particles - Google Patents

Sn particles, conductive composition using the same, and method for producing sn particles Download PDF

Info

Publication number
WO2020158685A1
WO2020158685A1 PCT/JP2020/002835 JP2020002835W WO2020158685A1 WO 2020158685 A1 WO2020158685 A1 WO 2020158685A1 JP 2020002835 W JP2020002835 W JP 2020002835W WO 2020158685 A1 WO2020158685 A1 WO 2020158685A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mass
less
volume
plasma
Prior art date
Application number
PCT/JP2020/002835
Other languages
French (fr)
Japanese (ja)
Inventor
服部 隆志
松山 敏和
晃祐 織田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020569624A priority Critical patent/JPWO2020158685A1/en
Publication of WO2020158685A1 publication Critical patent/WO2020158685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to Sn particles, a conductive composition using the same, and a method for producing Sn particles.
  • a multilayer ceramic capacitor (MLCC) used in electronic devices generally includes an external electrode containing Cu and a plating layer containing Ni and Sn.
  • a conductive resin layer containing a metal powder such as Sn and a resin may be formed between the electrode and the plating layer for the purpose of relaxing external stress such as thermal shock and physical stress. ..
  • Mn is contained in an amount of 0.005% by mass or more and 0.1% by mass or less and Ge in an amount of 0.001% by mass or more and 0.1% by mass or less, and the balance
  • a paste using a solder alloy whose main component is Sn is described. It is also described in the same literature that this solder alloy can suppress the increase in the oxide film thickness and improve the fusion property.
  • Patent Document 2 describes a solder material including a solder layer made of a metal material having a Sn content of 40% or more, and a SnO film and a SnO 2 film that cover the surface of the solder layer. It is also described in the same document that this solder material can be used as a solder paste for a solder joint of an electronic component.
  • an object of the present invention is to provide Sn particles having a small particle size and excellent sinterability at low temperatures.
  • the present invention provides a Sn particle containing Sn and oxygen (O), 40 mass% or more of Sn is contained, 0.55 mass% or less of O is contained,
  • the present invention provides Sn particles having a ratio (mass %.g/m 2 ) of O content (mass %) to BET specific surface area (m 2 /g) of 0.40 or less.
  • the present invention also provides a conductive composition containing the Sn particles.
  • the present invention has a step of supplying Sn base powder to the plasma flame generated in the chamber to gasify the Sn base powder, and cooling the gasified Sn base powder to generate Sn particles.
  • the inside of the chamber is a reducing gas atmosphere or an inert gas atmosphere, and the pressure inside is lower than atmospheric pressure by 20 kPa or more and 40 kPa or less,
  • a method for producing Sn particles, wherein the ratio of plasma output to the amount of Sn mother powder supplied is 0.01 kW ⁇ min/g or more and 20 kW ⁇ min/g or less.
  • FIG. 1 is a schematic diagram showing an example of a DC plasma device for producing tin particles of the present invention.
  • the present invention will be described below based on its preferred embodiments.
  • the tin particles of the present invention (hereinafter, also referred to as “Sn particles”) contain tin (Sn) and oxygen (O) in a predetermined ratio, and the specific surface area and the oxygen content have a predetermined ratio. It has become.
  • the Sn particle contains Sn as its constituent metal.
  • the content of Sn in the Sn particles is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
  • the Sn particles may be an alloy containing Sn.
  • the Sn content is preferably in the same range as described above, but in the case of Sn-Bi alloy, the mechanical strength of the conductive film after sintering is decreased due to the low melting point of the alloy. From the viewpoint of preventing the decrease, the Sn content is preferably 30% by mass or more and less than 100% by mass.
  • the content of Sn is measured, for example, by a sample solution obtained by dissolving Sn particles in an acid such as an inorganic acid by plasma emission analysis by ICP (high frequency inductively coupled plasma). can do.
  • the Sn particles further contain O.
  • O content in the particles is extremely low.
  • the content of O in the Sn particles is, for example, an oxide of a metal that constitutes the Sn particles, such as Sn.
  • the O content may be at least one of SnO, SnO 2 and SnO 3 . It is preferable that these Sn oxides are present on the surface of the Sn particles and in the vicinity thereof, and that the inner region of the particles is a single crystal phase of Sn rather than the sites.
  • the content of O in the Sn particles is preferably 0.55% by mass or less, more preferably 0.50% by mass or less, from the viewpoint of further improving the sinterability at low temperature. It is more preferably 0.40% by mass or less.
  • the lower limit of the O content is preferably as small as possible, but it is preferably 0.05% by mass from the viewpoint of stability of particles in the air.
  • the O content can be measured using, for example, an oxygen analyzer ONH836 manufactured by LECO. Specifically, 0.1 g of a measurement sample is weighed in a graphite crucible and heated in a helium gas atmosphere. Carbon monoxide and carbon dioxide produced by the reaction of carbon and oxygen during heating were detected by a non-dispersion infrared absorption method, and the O content ratio (mass %) was calculated.
  • the Sn particles preferably have a ratio of O content (mass %) to BET specific surface area (m 2 /g) (unit: mass %.g/m 2 ) of 0.40 or less. , 0.30 or less is more preferable.
  • the lower limit of the ratio is preferably as small as possible, but it is preferably 0.01 from the viewpoint of improving stability in the atmosphere.
  • the BET specific surface area of the Sn particles is preferably 1 m 2 /g or more, more preferably 1.5 m 2 /g or more.
  • the upper limit of the BET specific surface area is preferably 5 m 2 /g, more preferably 4 m 2 /g. Since the size of the BET specific surface area and the small particle diameter are substantially correlated, the BET specific surface area within this range is advantageous in that the particle diameter of the Sn particles can be made sufficiently small. Is.
  • a nitrogen-helium mixed gas containing 30% by volume of nitrogen as an adsorbing gas and 70% by volume of helium as a carrier gas and a BET specific surface area measuring device (HM model-1210 manufactured by Mountech Co., Ltd.)can be measured in accordance with JIS R 1626 “Gas adsorption of fine ceramic powder: Method of measuring specific surface area by BET method”, “6.2 Flow method”, “(3.5) One-point method”.
  • the Sn particles may contain only Sn as a constituent metal, and Sn, Au, Ag, Cu, Si, Ni, Ti, Fe, Co, Cr, Mg, Al, Mn, Mo, W, Ta, It may contain an alloy in combination with one or more metal elements such as In, Zr, Nb, Ge, Zn, Bi and Sb.
  • Specific examples of the alloy contained in the Sn particles include Sn-Bi alloy, Sn-Ag alloy, Sn-Cu alloy, and Sn-Ag-Cu alloy.
  • the Sn-Ag-Cu alloy is more preferably used because it can be sufficiently sintered at a low temperature and can improve the conductivity and mechanical strength of the conductive film after sintering.
  • the Sn particles preferably contain only Sn as a constituent metal or an alloy in which Sn and at least one of Bi, Ag, and Cu are combined, and Sn, Ag, and Cu More preferably, it comprises an alloy. Note that it is permissible for the Sn particles to contain unavoidable impurities as long as the effects of the present invention are not impaired.
  • the Ag content is 0.1% by mass or more from the viewpoint of improving the mechanical strength of the film containing the Sn particles. Is preferable, and 2.5% by mass or more is more preferable.
  • the upper limit of the Ag content is preferably 4.0% by mass, and more preferably 3.5% by mass from the viewpoint of suppressing the corrosion of the connection target while maintaining good low-temperature sinterability. preferable.
  • the Cu content is preferably 0.1% by mass or more, and more preferably 0.3% by mass or more, from the viewpoint of suppressing the corrosion of the connection target.
  • the upper limit of the Cu content is preferably 1.0% by mass, and is preferably 0.75% by mass, from the viewpoint of improving the mechanical strength of the film while maintaining good low-temperature sinterability. More preferable.
  • the Sn particles have a specific particle diameter from the viewpoint of enabling the formation of a thin conductive film capable of realizing miniaturization and high performance of electronic devices.
  • the Sn particles have a volume cumulative particle diameter D SEM90 in a cumulative volume of 90% by volume measured by scanning electron microscope observation of preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less. .. It is realistic that the lower limit value of the D SEM 90 is 0.3 ⁇ m.
  • the volume cumulative particle diameter D SEM50 at a cumulative volume of 50% by volume measured by scanning electron microscope observation is preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the lower limit of the D SEM50 it is realistic that the lower limit is 0.2 ⁇ m.
  • the volume cumulative particle diameter D SEM10 at a cumulative volume of 10% by volume measured by scanning electron microscope observation is 0.7 ⁇ m or less. It is realistic that the lower limit of the D SEM 10 is 0.1 ⁇ m.
  • the paste when the Sn particles have a particle size distribution satisfying all the preferable ranges of the above-mentioned D SEM10 , D SEM50, and D SEM90 , when the Sn particles are used in the paste, the paste can be printed smoothly and uniformly. .. Further, the thickness of the film formed from the paste can be further reduced, and a conductive film which can realize miniaturization and high performance of electronic devices can be formed.
  • D SEM90 , D SEM50, and D SEM10 were obtained by randomly selecting 200 particles in which the particles do not overlap each other from the scanning electron microscope image of the Sn particles, and measuring the particle size (Haywood diameter). From the particle size, the volume when the particles are assumed to be spheres is calculated, and each particle size is obtained from the average value thereof.
  • the volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume measured by the laser diffraction scattering particle size distribution measurement method is 0 from the viewpoint of enabling the formation of a thin conductive film that can realize miniaturization and high performance of electronic devices. It is preferably 0.3 ⁇ m or more and 2.5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 2.0 ⁇ m or less.
  • D 50 can be measured, for example, by the following method. That is, 0.1 g of a measurement sample and 50 mL of water are mixed and dispersed with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 1 minute. Then, the particle size distribution is measured by using a laser diffraction/scattering particle size distribution measuring device, for example, MT3300 EXII manufactured by Microtrac Bell.
  • an ultrasonic homogenizer manufactured by Nippon Seiki Seisakusho, US-300T
  • D 50 / D SEM 50 is the ratio of D 50 for D SEM 50 is preferably at 1.0 to 4.5, more preferably 1.0 to 4.0, 1 It is more preferably from 0.0 to 3.0.
  • D SEM50 represents the primary particle size of the particles
  • D 50 represents the secondary particle size of the particles. Since D 50 /D SEM50 is in the above range, the degree of aggregation of Sn particles is low, The proportion of primary particles is high. As a result, when the Sn particles are contained in the paste, the dispersibility of the Sn particles in the paste can be increased, and the surface of the applied paste can be smoothed to further reduce the electric resistance.
  • the primary particle refers to an object recognized as a minimum unit as a particle, judging from the geometrical shape on the outer shape
  • the secondary particle refers to an aggregate of a plurality of primary particles.
  • the shape of the Sn particles is not particularly limited, and various shapes such as spherical shape, flake shape, and polyhedral shape can be adopted. From the viewpoint of enhancing the dispersibility of Sn particles and enhancing the denseness when sintered, it is preferably spherical.
  • the term "spherical” as used herein means one having a circularity coefficient of 0.85 or more, more preferably 0.90 or more, based on the circularity coefficient measured by the following method. The circularity coefficient is obtained by randomly selecting 200 particles of Sn particles that do not overlap each other from the scanning electron microscope image of Sn particles, and letting the area of the two-dimensional projected image of the particles be S and the perimeter be L.
  • the circularity coefficient of the particles is calculated from the formula of 4 ⁇ S/L 2 , and the arithmetic mean value of the circularity coefficients of the respective particles is used as the circularity coefficient described above.
  • the upper limit of the circularity coefficient is preferably 1. The higher the circularity coefficient, the more spherical the particle is. It can be said that the shape is close to.
  • the Sn particles are surface-treated with a surface treatment agent.
  • a surface treatment agent examples include alcohol amines such as monoethanolamine, diethanolamine and triethanolamine, and organic acids such as oleic acid and stearic acid.
  • the content of carbon (C) in the Sn particles is, with or without surface treatment, relative to the mass of the Sn particles, It is preferably 1% by mass or less, more preferably 0.5% by mass or less, and the lower limit thereof is preferably 0.001% by mass.
  • the carbon content in the Sn particles can be measured using, for example, a carbon analyzer EMIA-920V manufactured by Horiba Ltd. 0.1 g of a measurement sample, 1.5 g of tungsten powder as a combustion improver, and 0.3 g of Sn powder are weighed in a magnetic crucible and heated in an oxygen gas atmosphere. Carbon monoxide and carbon dioxide produced by the reaction of carbon and oxygen in the sample during heating were detected by the non-dispersive infrared absorption method, and the carbon content ratio (mass %) was calculated. Such carbon content can be adjusted, for example, by subjecting a high-purity raw material to a direct-current thermal plasma method or a high-frequency plasma method.
  • the particle size is small and the O content in the particles is small, so that the sinterability at low temperature is excellent. Further, when the Sn particles are used as a conductive paste, the thickness of the film formed from the paste can be reduced, and as a result, the film containing the Sn particles is a thin film and is dense, and the electrode It has both a reduction in electric resistance and mechanical strength.
  • tin mother powder (hereinafter, also referred to as “Sn mother powder”) is subjected to a DC plasma method to generate Sn particles from the mother powder.
  • the present manufacturing method is a step of supplying Sn base powder to a plasma flame generated in a chamber to gasify the Sn base powder, and cooling the gasified base powder to generate Sn particles.
  • the Sn mother powder and the mother powder of the alloy component are supplied in the same ratio as the alloy composition of the target Sn particles, or the target Sn is obtained.
  • a mother powder of an Sn-containing alloy having the same alloy composition as the particles may be supplied.
  • the Sn mother powder, the mother powder of the alloy component, and the mother powder of the Sn-containing alloy are collectively referred to simply as “mother powder”.
  • the DC plasma device 1 includes a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7, and a pressure adjusting device 8.
  • the mother powder passes from the powder supply device 2 through the powder supply nozzle 6 into the inside of the DC plasma torch 4.
  • Plasma gas is supplied to the DC plasma torch 4 from the gas supply device 7, and a plasma flame is generated.
  • the gasified mother powder is cooled and becomes a fine powder of Sn particles in the recovery pot 5. It is accumulated and collected inside.
  • the inside of the chamber 3 is controlled by the pressure adjusting device 8 so as to maintain a negative pressure relatively to the powder supply nozzle 6, thereby facilitating the supply of the mother powder to the DC plasma torch 4 and the plasma. It has a structure that stably generates a frame.
  • the apparatus shown in FIG. 1 is an example of a DC plasma apparatus, and the production of Sn particles of the present invention is not limited to this apparatus.
  • the chamber 3 has a reducing gas atmosphere containing hydrogen gas or the like, or an inert gas atmosphere containing nitrogen gas and argon gas. Is preferred. With such a configuration, the time from gasification of the mother powder to cooling is shortened, so that the particle growth of the Sn particles and the aggregation of the particles are suppressed, and the generated Sn particles are atomized. And the oxidation of the Sn particle surface is suppressed. In addition, by producing in a reducing gas atmosphere or an inert gas atmosphere, oxygen in the atmosphere is less likely to be mixed into the chamber, so that there is also an advantage that the oxidation of the generated Sn particle surface can be further suppressed.
  • a reducing gas/inert gas supply unit (not shown) is connected to the chamber 3 and the above-mentioned reducing gas or inert gas is supplied as plasma gas into the chamber 3.
  • a mixed gas of argon gas and nitrogen gas is used as the plasma gas
  • a larger vibration energy thermal energy
  • the nitrogen (diatomic molecule) gas can be imparted to the Sn mother powder by the nitrogen (diatomic molecule) gas.
  • the agglomerated state can be made uniform, so that particles with few coarse particles and a sharper particle size distribution can be obtained.
  • the ratio of the argon gas to the nitrogen gas in the plasma gas is the flow ratio of the argon gas:nitrogen gas from the viewpoint of obtaining particles having a sharp particle size distribution. It is preferably in the range of 99:1 to 10:90, and more preferably in the range of 95:5 to 60:40.
  • the ratio of the argon gas and the nitrogen gas is in the range of 99:1 to 55:45 in terms of the flow rate ratio of the argon gas:nitrogen gas, particularly 95: It is preferable to adjust the flow rate of the argon gas to be larger than that of the nitrogen gas, such as in the range of 5 to 55:45. With such a ratio, there is an advantage in that the decline of the plasma flame can be prevented.
  • the pressure inside the chamber 3 is controlled so that a negative pressure is maintained relatively more than the powder supply nozzle 6, so that the pressure at the powder supply nozzle 6 and the pressure inside the chamber 3 are controlled.
  • the differential pressure is preferably within a specific range.
  • the internal pressure of the chamber 3 is reduced to 50 kPa or more lower than the atmospheric pressure to make the negative pressure, so that the mother powder is sucked from the powder supply nozzle 6 to the chamber 3 side. For this reason, the amount of mother powder supplied to the DC plasma device was increased to improve the particle production efficiency.
  • the present inventor diligently studied a method for achieving both fine particle formation of Sn particles and suppression of surface oxidation while maintaining the production efficiency of Sn particles, and found that the pressure difference between the pressure inside the chamber and the atmospheric pressure was determined by the conventional technique. Surprisingly, it is possible to manufacture Sn particles in which the particle diameter is further reduced and the oxidation of the particle surface is suppressed by manufacturing the Sn particles in a negative pressure state that is smaller than the above, while maintaining the particle manufacturing efficiency. Found.
  • the pressure inside the chamber 3 is preferably lower than the atmospheric pressure by 20 kPa or more and 40 kPa or less, and more preferably 20 kPa or more and 35 kPa or less.
  • the negative pressure within such a range, when the Sn particles are formed from the gasified mother powder, the Sn growth generated by further suppressing the particle growth of the Sn particles and the agglomeration of the particles.
  • the particles can be efficiently made fine, and the oxidation of the surface of the Sn particles is further suppressed.
  • the inside of the chamber 3 is a reducing gas atmosphere or an inert gas atmosphere, it is more advantageous.
  • the pressure inside the chamber 3 can be appropriately controlled by, for example, the pressure adjusting device 8.
  • the cooling gas can be supplied by, for example, a cooling gas supply unit (not shown) connected to the side wall of the chamber 3.
  • a cooling gas for example, a reducing gas such as hydrogen gas or an inert gas such as nitrogen gas or argon gas can be used.
  • the mother powder used in the present production method is not particularly limited, but from the viewpoint of obtaining Sn particles whose surface oxidation is suppressed, it is preferable to use a mother powder containing a small amount of oxide.
  • the particle diameter D 50 of the mother powder is preferably 3.0 ⁇ m or more and 50 ⁇ m or less, more preferably 5.0 ⁇ m or more and 30 ⁇ m or less.
  • the feed rate of the mother powder is preferably 5 g/min or more and 200 g/min or less, and more preferably 10 g/min or more and 100 g/min or less.
  • the shape of the mother powder is not particularly limited, and examples thereof include a dendritic shape, a stick shape, a flake shape, a cubic shape, and a spherical shape. From the viewpoint of stabilizing the supply efficiency to the plasma torch, it is preferable to use spherical mother powder. Measurement of D 50 of the mother powder may be carried out in the same manner as the measurement of the D 50 of the above-mentioned Sn particles.
  • Whether or not the plasma frame is in a laminar flow state is determined by observing the plasma frame from the side where the frame width is thickest and the aspect ratio of the frame length to the frame width (hereinafter, frame aspect ratio) is 3 or less. It can be determined by whether or not the above. Specifically, if the frame aspect ratio is 3 or more, it can be determined that the flow is laminar, and if it is less than 3, it can be determined that the flow is turbulent.
  • the plasma output of the DC plasma device is preferably set to 2 kW or more and 100 kW or less, and more preferably 2 kW or more and 40 kW or less.
  • the gas flow rate of the plasma gas is preferably set to 0.1 L/min or more and 25 L/min or less, more preferably 0.5 L/min or more and 21 L/min or less.
  • the plasma output ratio is preferably 0.01 kW ⁇ min/g or more and 20 kW ⁇ min/g or less, and more preferably 0.05 kW ⁇ min/g or more and 15 kW ⁇ min/g or less.
  • the plasma gas flow rate with respect to the plasma output Ratio (unit: L/(min ⁇ kW)) is preferably 0.50 or more and 2.00 or less, more preferably 0.70 or more and 1.70 or less, and still more preferably 0.75 or more and 1.50 or less.
  • the Sn particles thus obtained are collected and collected in the recovery pot 5 as a fine powder which is an aggregate of the particles.
  • the recovered Sn particles may be used as they are, or may be classified in order to remove coarse agglomerated particles existing as contamination.
  • the classification may be performed by using an appropriate classifying device to separate the coarse powder and the fine powder so that the target particle size is centered.
  • ⁇ Sn particles are preferably used as a metal filler compounded in a conductive composition.
  • the conductive composition include a conductive paste and a conductive ink. These conductive compositions contain components such as Sn particles as a metal filler, a binder resin and an organic solvent.
  • the wiring composition of the printed wiring board can be formed, for example, by applying the conductive composition by a predetermined means. It can also be used as a via filling material in a printed wiring board or as an adhesive when surface-mounting an electronic device on the printed wiring board. Further, it can be used for forming electrodes of chip parts.
  • the Sn particles of the present invention have a small particle size and high sinterability at low temperatures, they can be used in small electronic components such as a multilayer ceramic capacitor (MLCC) that requires miniaturization and high performance. It can be suitably used for a conductive resin layer or the like.
  • MLCC multilayer ceramic capacitor
  • the flow rate of the plasma gas was 18.5 L/min.
  • the plasma output was 16.5 kW, and the ratio of the plasma gas flow rate to the plasma output was 1.12 (L/(min ⁇ kW)).
  • the ratio of plasma output to the amount of mother powder supplied was 0.47 kW ⁇ min/g.
  • the plasma flame had a flame aspect ratio of 4 and was in a laminar flow state.
  • the inside of the chamber 3 was made a nitrogen gas atmosphere, and the pressure inside the chamber 3 was set to be 30 kPa lower than the atmospheric pressure. Further, at the time of manufacturing, nitrogen gas at 25° C. was supplied as a cooling gas at a flow rate of 290 L/min. In this way, the target Sn particles were obtained.
  • the Sn content in the Sn particles of this example was 96.5% by mass.
  • Example 2 Sn particles were produced in the same manner as in Example 1 except that the pressure inside the chamber 3 was lowered by 20 kPa from the atmospheric pressure.
  • the Sn content in the Sn particles of this example was 96.5% by mass.
  • the Sn content in the Sn particles of this example was 100% by mass.
  • Example 1 Sn particles were produced in the same manner as in Example 1 except that the pressure inside the chamber 3 was lower than atmospheric pressure by 50 kPa and the flow rate of the cooling gas was 10 L/min. The Sn content in the Sn particles of this comparative example was 96.5% by mass.
  • Example 2 Sn particles were produced in the same manner as in Example 1 except that the pressure inside the chamber 3 was lowered by 50 kPa from the atmospheric pressure. The Sn content in the Sn particles of this comparative example was 96.5% by mass.
  • An alumina container was filled with the Sn particles of Examples and Comparative Examples, and the temperature was raised from room temperature (25° C.) to 300° C. at a heating rate of 10° C./min in a nitrogen gas atmosphere. Then, the temperature was lowered to room temperature, and the shrinkage ratio of the Sn particles after the temperature was lowered was confirmed. That is, an alumina container containing Sn particles after sintering was photographed from the upper surface direction, and the number of pixels on the bottom surface of the alumina container was determined using Image J as image processing software using the photographic data. Similarly, the number of pixels in a region where Sn particles after sintering were present was determined using Image J.
  • Example 4 Sn-Bi particles were produced in the same manner as in Example 4 except that the pressure inside the chamber 3 of Example 4 was lower than atmospheric pressure by 50 kPa.
  • the Sn content in the Sn particles of this comparative example was 42% by mass.
  • the Sn particles of the examples have a large specific surface area, and that D SEM90 can efficiently produce fine particles of about 1 ⁇ m.
  • the Sn particles of the example in which the differential pressure between the atmospheric pressure and the pressure inside the chamber 3 is in a suitable range has a smaller O content than the Sn particles of the comparative example, and the particles are sintered together. It turns out that it has excellent properties.
  • the Sn particles of the example since the D 50 /D SEM50 ratio is small, the particle distribution becomes sharp and the dispersibility is high, and a smooth and thin coating film is formed when a paste containing the particles is formed. be able to.
  • Sn particles having a small particle size and excellent in sinterability at low temperatures, and a conductive composition containing the particles.

Abstract

The Sn particles of the present invention contain greater than or equal to 40 mass% of Sn and less than or equal to 0.55 mass% of oxygen (O), and have a ratio (mass%・g/m2) of oxygen content (mass%) to BET specific surface area (m2/g) of less than or equal to 0.40. The Sn particles preferably include 0.1-4.0 mass%, inclusive, of Ag, and 0.1-1.0 mass%, inclusive, of Cu. The Sn particles also preferably contain greater than or equal to 0.05 mass% of oxygen. The BET specific surface area of the Sn particles is preferably greater than or equal to 1 m2/g. The Sn particles are preferably spherical. The present invention also pertains to a preferable method for producing the Sn particles.

Description

Sn粒子、それを用いた導電性組成物及びSn粒子の製造方法Sn particles, conductive composition using the same, and method for producing Sn particles
 本発明は、Sn粒子、それを用いた導電性組成物及びSn粒子の製造方法に関する。 The present invention relates to Sn particles, a conductive composition using the same, and a method for producing Sn particles.
 電子機器に用いられる積層セラミックコンデンサ(MLCC)は、一般的に、Cuを含む外部電極と、Ni及びSnを含むメッキ層とを備えている。これに加えて、熱衝撃や物理的応力などの外的応力緩和の目的で、Sn等の金属粉及び樹脂を含む導電性樹脂層が、電極とメッキ層との間に形成されることがある。 A multilayer ceramic capacitor (MLCC) used in electronic devices generally includes an external electrode containing Cu and a plating layer containing Ni and Sn. In addition to this, a conductive resin layer containing a metal powder such as Sn and a resin may be formed between the electrode and the plating layer for the purpose of relaxing external stress such as thermal shock and physical stress. ..
 導電性樹脂層に用いられる材料として、例えば特許文献1には、Mnを0.005質量%以上0.1質量%以下、Geを0.001質量%以上0.1質量%以下で含み、残部の主成分をSnとしたはんだ合金を用いたペーストが記載されている。このはんだ合金は、酸化膜厚の増加が抑制され、融合性を向上させることができることも同文献に記載されている。 As a material used for the conductive resin layer, for example, in Patent Document 1, Mn is contained in an amount of 0.005% by mass or more and 0.1% by mass or less and Ge in an amount of 0.001% by mass or more and 0.1% by mass or less, and the balance A paste using a solder alloy whose main component is Sn is described. It is also described in the same literature that this solder alloy can suppress the increase in the oxide film thickness and improve the fusion property.
 特許文献2には、Snの含有量が40%以上である金属材料からなるはんだ層と、はんだ層の表面を被覆するSnO膜及びSnO膜を備えたはんだ材料が記載されている。このはんだ材料は、はんだペーストとして、電子部品のはんだ継手に用いることができることも同文献に記載されている。 Patent Document 2 describes a solder material including a solder layer made of a metal material having a Sn content of 40% or more, and a SnO film and a SnO 2 film that cover the surface of the solder layer. It is also described in the same document that this solder material can be used as a solder paste for a solder joint of an electronic component.
US 2017/216975 A1US 2017/216975 A1 US 2017/252871 A1US 2017/252871 A1
 ところで近年、電子機器の小型化や高性能化に対応するため、導電性樹脂層の薄膜化が求められている。導電性樹脂層を薄膜化するためには、構成材料の一つであるSn粒子の粒子径を小さくすることが望まれている。しかし、特許文献1及び2に記載のはんだ材料は、Sn粒子の粒子径が大きいため、導電性樹脂層の薄膜化に対応することができない。
 そこで、微細なSn粒子を製造する方法として、直流熱プラズマ法(以下、「DCプラズマ法」ともいう。)が用いられるが、現状の製造条件で得られるSn粒子は、酸素(O)の含有量が高くなってしまい、低温での溶融性が十分なものとはならなかった。また、これに起因して、電極の電気抵抗の増大や機械的強度の低下を引き起こす可能性があった。
By the way, in recent years, in order to respond to downsizing and higher performance of electronic devices, thinning of the conductive resin layer is required. In order to reduce the thickness of the conductive resin layer, it is desired to reduce the particle size of Sn particles, which is one of the constituent materials. However, the solder materials described in Patent Documents 1 and 2 cannot cope with thinning of the conductive resin layer because the Sn particles have a large particle diameter.
Therefore, a direct current thermal plasma method (hereinafter, also referred to as “DC plasma method”) is used as a method for producing fine Sn particles, but the Sn particles obtained under the current production conditions contain oxygen (O). The amount became high, and the meltability at low temperature was not sufficient. Further, due to this, there is a possibility that the electrical resistance of the electrode may increase and the mechanical strength may decrease.
 したがって、本発明の課題は、粒子径が小さく、且つ低温での焼結性に優れたSn粒子を提供することにある。 Therefore, an object of the present invention is to provide Sn particles having a small particle size and excellent sinterability at low temperatures.
 本発明は、Snと酸素(O)とを含むSn粒子であって、
 前記Snを40質量%以上含み、前記Oを0.55質量%以下含み、
 BET比表面積(m/g)に対するO含有量(質量%)の比(質量%・g/m)が0.40以下である、Sn粒子を提供するものである。
The present invention provides a Sn particle containing Sn and oxygen (O),
40 mass% or more of Sn is contained, 0.55 mass% or less of O is contained,
The present invention provides Sn particles having a ratio (mass %.g/m 2 ) of O content (mass %) to BET specific surface area (m 2 /g) of 0.40 or less.
 また本発明は、前記Sn粒子を含んでなる導電性組成物を提供するものである。 The present invention also provides a conductive composition containing the Sn particles.
 更に本発明は、チャンバー内に発生させたプラズマフレームにSn母粉を供給して該Sn母粉をガス化させ、ガス化した前記Sn母粉を冷却してSn粒子を生成させる工程を有し、
 前記チャンバーは、その内部が還元ガス雰囲気又は不活性ガス雰囲気であり、且つその内部の圧力が大気圧よりも20kPa以上40kPa以下低く、
 Sn母粉の供給量に対するプラズマ出力の比が、0.01kW・min/g以上20kW・min/g以下である、Sn粒子の製造方法を提供するものである。
Further, the present invention has a step of supplying Sn base powder to the plasma flame generated in the chamber to gasify the Sn base powder, and cooling the gasified Sn base powder to generate Sn particles. ,
The inside of the chamber is a reducing gas atmosphere or an inert gas atmosphere, and the pressure inside is lower than atmospheric pressure by 20 kPa or more and 40 kPa or less,
A method for producing Sn particles, wherein the ratio of plasma output to the amount of Sn mother powder supplied is 0.01 kW·min/g or more and 20 kW·min/g or less.
図1は、本発明のスズ粒子を製造するDCプラズマ装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a DC plasma device for producing tin particles of the present invention.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明のスズ粒子(以下、これを「Sn粒子」ともいう。)は、スズ(Sn)と酸素(O)とを所定の割合で含み、且つ比表面積と酸素含有量とが所定の比となっているものである。 The present invention will be described below based on its preferred embodiments. The tin particles of the present invention (hereinafter, also referred to as “Sn particles”) contain tin (Sn) and oxygen (O) in a predetermined ratio, and the specific surface area and the oxygen content have a predetermined ratio. It has become.
 Sn粒子は、その構成金属としてSnを含む。Sn粒子におけるSnの含有量は、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることが更に好ましい。Snの含有量を40質量%以上とすることによって、コンデンサ等の電子素子を製造する際に、Sn粒子の融点を低く抑えて低温で焼結することができる。その結果、高温負荷に起因した素子の不具合を低減することができる。 The Sn particle contains Sn as its constituent metal. The content of Sn in the Sn particles is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more. By setting the content of Sn to 40% by mass or more, it is possible to suppress the melting point of Sn particles to be low and sinter at a low temperature when manufacturing an electronic element such as a capacitor. As a result, it is possible to reduce defects of the element due to the high temperature load.
 また、後述するように、Sn粒子は、Snを含む合金としてもよい。この場合のSn含有量は、上述した範囲と同様であることが好ましいが、Sn-Bi合金である場合には、該合金の低い融点に起因した、焼結後の導電膜の機械的強度の低下を防止する観点から、Sn含有量は30質量%以上100質量%未満であることが好ましい。いずれの場合であっても、Snの含有量は、例えば、ICP(高周波誘導結合プラズマ)によるプラズマ発光分析によって、Sn粒子を無機酸等の酸に溶解させて得られる試料溶液を分析対象として測定することができる。 Also, as described later, the Sn particles may be an alloy containing Sn. In this case, the Sn content is preferably in the same range as described above, but in the case of Sn-Bi alloy, the mechanical strength of the conductive film after sintering is decreased due to the low melting point of the alloy. From the viewpoint of preventing the decrease, the Sn content is preferably 30% by mass or more and less than 100% by mass. In any case, the content of Sn is measured, for example, by a sample solution obtained by dissolving Sn particles in an acid such as an inorganic acid by plasma emission analysis by ICP (high frequency inductively coupled plasma). can do.
 Sn粒子は、更にOを含む。本発明のSn粒子は、該粒子中のOの含有量が極めて少ないことを特徴の一つとしている。Sn粒子におけるOの含有態様は、例えばSn等のSn粒子を構成する金属の酸化物である。Sn粒子において、Snの酸化物を含む場合には、Oの含有態様は、SnO、SnO及びSnOのうち少なくとも一種であり得る。これらのSn酸化物は、Sn粒子の表面及びその近傍の部位に存在しており、該部位よりも粒子の内部域は、Snの単結晶相になっていることが好ましい。 The Sn particles further contain O. One feature of the Sn particles of the present invention is that the O content in the particles is extremely low. The content of O in the Sn particles is, for example, an oxide of a metal that constitutes the Sn particles, such as Sn. When the Sn particles contain Sn oxide, the O content may be at least one of SnO, SnO 2 and SnO 3 . It is preferable that these Sn oxides are present on the surface of the Sn particles and in the vicinity thereof, and that the inner region of the particles is a single crystal phase of Sn rather than the sites.
 Sn粒子におけるOの含有量は、低温での焼結性を一層優れたものとする観点から、0.55質量%以下であることが好ましく、0.50質量%以下であることがより好ましく、0.40質量%以下であることが更に好ましい。一方で、Oの含有量の下限は少なければ少ないほど好ましいが、大気中での粒子の安定性の観点から、0.05質量%であることが好ましい。 The content of O in the Sn particles is preferably 0.55% by mass or less, more preferably 0.50% by mass or less, from the viewpoint of further improving the sinterability at low temperature. It is more preferably 0.40% by mass or less. On the other hand, the lower limit of the O content is preferably as small as possible, but it is preferably 0.05% by mass from the viewpoint of stability of particles in the air.
 Oの含有量は、例えば、LECO社製の酸素分析装置ONH836を用いて測定することができる。詳細には、測定試料0.1gを黒鉛坩堝内に秤量し、ヘリウムガス雰囲気下で加熱する。加熱の際に炭素と酸素とが反応して生成した一酸化炭素及び二酸化炭素を非分散赤外線吸収法で検出し、Oの含有割合(質量%)を算出した。 The O content can be measured using, for example, an oxygen analyzer ONH836 manufactured by LECO. Specifically, 0.1 g of a measurement sample is weighed in a graphite crucible and heated in a helium gas atmosphere. Carbon monoxide and carbon dioxide produced by the reaction of carbon and oxygen during heating were detected by a non-dispersion infrared absorption method, and the O content ratio (mass %) was calculated.
 これに加えて、Sn粒子は、BET比表面積(m/g)に対するO含有量(質量%)の比(単位:質量%・g/m)が、0.40以下であることが好ましく、0.30以下であることがより好ましい。前記の比の下限は小さいほど好ましいが、大気での安定性を高める観点から、0.01であることが好ましい。 In addition to this, the Sn particles preferably have a ratio of O content (mass %) to BET specific surface area (m 2 /g) (unit: mass %.g/m 2 ) of 0.40 or less. , 0.30 or less is more preferable. The lower limit of the ratio is preferably as small as possible, but it is preferably 0.01 from the viewpoint of improving stability in the atmosphere.
 Sn粒子におけるBET比表面積は、1m/g以上であることが好ましく、1.5m/g以上であることがより好ましい。BET比表面積の上限としては、5m/gであることが好ましく、4m/gであることがより好ましい。BET比表面積の大きさと、粒子径の小ささとは概ね相関しているので、BET比表面積がこのような範囲にあることによって、Sn粒子の粒子径を十分に小さくすることができる点で有利である。 The BET specific surface area of the Sn particles is preferably 1 m 2 /g or more, more preferably 1.5 m 2 /g or more. The upper limit of the BET specific surface area is preferably 5 m 2 /g, more preferably 4 m 2 /g. Since the size of the BET specific surface area and the small particle diameter are substantially correlated, the BET specific surface area within this range is advantageous in that the particle diameter of the Sn particles can be made sufficiently small. Is.
 BET比表面積は、吸着ガスである窒素を30容量%、キャリアガスであるヘリウムを70容量%含有する窒素-ヘリウム混合ガスと、BET比表面積測定装置(株式会社マウンテック製、HM model-1210)とを用いて、JIS R 1626「ファインセラミックス粉体の気体吸着 BET法による比表面積の測定方法」の「6.2流動法」の「(3.5)一点法」に従って測定することができる。 As for the BET specific surface area, a nitrogen-helium mixed gas containing 30% by volume of nitrogen as an adsorbing gas and 70% by volume of helium as a carrier gas, and a BET specific surface area measuring device (HM model-1210 manufactured by Mountech Co., Ltd.) Can be measured in accordance with JIS R 1626 “Gas adsorption of fine ceramic powder: Method of measuring specific surface area by BET method”, “6.2 Flow method”, “(3.5) One-point method”.
 Sn粒子は、その構成金属としてSnのみを含んでいてもよく、Snと、Au、Ag、Cu、Si、Ni、Ti、Fe、Co、Cr、Mg、Al、Mn、Mo、W、Ta、In、Zr、Nb、Ge、Zn、Bi及びSb等の金属元素の1種以上とを組み合わせた合金を含んでいてもよい。Sn粒子に含まれる合金の具体例としては、Sn-Bi合金、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金等が挙げられる。これらのうち、Sn-Ag-Cu合金は、低温での焼結を十分に行うことができるとともに、焼結後の導電膜の導電性及び機械的強度を向上できる点で更に好ましく用いられる。つまり、Sn粒子は、その構成金属として、Snのみを含むか、又はSnと、Bi、Ag及びCuの少なくとも一種以上とを組み合わせた合金を含むことがより好ましく、Snと、Ag及びCuとの合金を含むことが更に好ましい。なお、本発明の効果を損なわない範囲で、Sn粒子が不可避不純物を含有することは許容される。 The Sn particles may contain only Sn as a constituent metal, and Sn, Au, Ag, Cu, Si, Ni, Ti, Fe, Co, Cr, Mg, Al, Mn, Mo, W, Ta, It may contain an alloy in combination with one or more metal elements such as In, Zr, Nb, Ge, Zn, Bi and Sb. Specific examples of the alloy contained in the Sn particles include Sn-Bi alloy, Sn-Ag alloy, Sn-Cu alloy, and Sn-Ag-Cu alloy. Among these, the Sn-Ag-Cu alloy is more preferably used because it can be sufficiently sintered at a low temperature and can improve the conductivity and mechanical strength of the conductive film after sintering. That is, the Sn particles preferably contain only Sn as a constituent metal or an alloy in which Sn and at least one of Bi, Ag, and Cu are combined, and Sn, Ag, and Cu More preferably, it comprises an alloy. Note that it is permissible for the Sn particles to contain unavoidable impurities as long as the effects of the present invention are not impaired.
 Sn粒子の好ましい態様として、Sn粒子にAg及びCuの双方を含む場合、Agの含有量は、Sn粒子を含む膜の機械的強度の向上を図る観点から、0.1質量%以上であることが好ましく、2.5質量%以上であることがより好ましい。Agの含有量の上限は、低温焼結性を良好なものとしつつ接続対象の溶食を抑制する観点から、4.0質量%であることが好ましく、3.5質量%であることがより好ましい。 As a preferable embodiment of the Sn particles, when the Sn particles include both Ag and Cu, the Ag content is 0.1% by mass or more from the viewpoint of improving the mechanical strength of the film containing the Sn particles. Is preferable, and 2.5% by mass or more is more preferable. The upper limit of the Ag content is preferably 4.0% by mass, and more preferably 3.5% by mass from the viewpoint of suppressing the corrosion of the connection target while maintaining good low-temperature sinterability. preferable.
 同様に、Cuの含有量は、接続対象の溶食を抑制する観点から0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましい。Cuの含有量の上限は、低温焼結性を良好なものとしつつ膜の機械的強度の向上を図る観点から、1.0質量%であることが好ましく、0.75質量%であることがより好ましい。 Similarly, the Cu content is preferably 0.1% by mass or more, and more preferably 0.3% by mass or more, from the viewpoint of suppressing the corrosion of the connection target. The upper limit of the Cu content is preferably 1.0% by mass, and is preferably 0.75% by mass, from the viewpoint of improving the mechanical strength of the film while maintaining good low-temperature sinterability. More preferable.
 電子機器の小型化や高性能化を実現可能な薄い導電膜を形成できるようにする観点から、Sn粒子は、特定の粒子径を有していることも好ましい。詳細には、Sn粒子は、走査型電子顕微鏡観察によって測定された累積体積90容量%における体積累積粒径DSEM90が2.0μm以下であることが好ましく、1.5μm以下であることがより好ましい。DSEM90の下限値としては、0.3μmであることが現実的である。 It is also preferable that the Sn particles have a specific particle diameter from the viewpoint of enabling the formation of a thin conductive film capable of realizing miniaturization and high performance of electronic devices. Specifically, the Sn particles have a volume cumulative particle diameter D SEM90 in a cumulative volume of 90% by volume measured by scanning electron microscope observation of preferably 2.0 μm or less, more preferably 1.5 μm or less. .. It is realistic that the lower limit value of the D SEM 90 is 0.3 μm.
 同様の観点から、走査型電子顕微鏡観察によって測定された累積体積50容量%における体積累積粒径DSEM50が1.5μm以下であることが好ましく、1.0μm以下であることがより好ましい。DSEM50の下限としては、0.2μmであることが現実的である。 From the same viewpoint, the volume cumulative particle diameter D SEM50 at a cumulative volume of 50% by volume measured by scanning electron microscope observation is preferably 1.5 μm or less, and more preferably 1.0 μm or less. As a lower limit of the D SEM50 , it is realistic that the lower limit is 0.2 μm.
 また、走査型電子顕微鏡観察によって測定された累積体積10容量%における体積累積粒径DSEM10が0.7μm以下であることが好ましい。DSEM10の下限としては、0.1μmであることが現実的である。 Further, it is preferable that the volume cumulative particle diameter D SEM10 at a cumulative volume of 10% by volume measured by scanning electron microscope observation is 0.7 μm or less. It is realistic that the lower limit of the D SEM 10 is 0.1 μm.
 特に、Sn粒子が上述のDSEM10、DSEM50及びDSEM90の好ましい範囲をすべて満たす粒度分布であることによって、Sn粒子をペーストに用いたときに、ペーストを平滑に且つ均一に印刷することができる。また、該ペーストから形成される膜の厚さを一層薄いものとすることができ、電子機器の小型化や高性能化を実現可能な導電膜を形成することができる。 In particular, when the Sn particles have a particle size distribution satisfying all the preferable ranges of the above-mentioned D SEM10 , D SEM50, and D SEM90 , when the Sn particles are used in the paste, the paste can be printed smoothly and uniformly. .. Further, the thickness of the film formed from the paste can be further reduced, and a conductive film which can realize miniaturization and high performance of electronic devices can be formed.
 DSEM90、DSEM50及びDSEM10は、Sn粒子の走査型電子顕微鏡像から、粒子どうしが重なり合っていないものを無作為に200個選んで粒径(ヘイウッド径)を測定し、次いで、得られた粒径から、粒子が球であると仮定したときの体積を算出し、これらの平均値から各粒径を求める。 D SEM90 , D SEM50, and D SEM10 were obtained by randomly selecting 200 particles in which the particles do not overlap each other from the scanning electron microscope image of the Sn particles, and measuring the particle size (Haywood diameter). From the particle size, the volume when the particles are assumed to be spheres is calculated, and each particle size is obtained from the average value thereof.
 また、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50は電子機器の小型化や高性能化を実現可能な薄い導電膜を形成できるようにする観点から、0.3μm以上2.5μm以下であることが好ましく、0.5μm以上2.0μm以下であることがより好ましい。 In addition, the volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume measured by the laser diffraction scattering particle size distribution measurement method is 0 from the viewpoint of enabling the formation of a thin conductive film that can realize miniaturization and high performance of electronic devices. It is preferably 0.3 μm or more and 2.5 μm or less, and more preferably 0.5 μm or more and 2.0 μm or less.
 D50は、例えば以下の方法で測定することができる。すなわち、0.1gの測定試料と水50mLとを混合し、超音波ホモジナイザ(日本精機製作所製、US-300T)で1分間分散させる。その後、レーザー回折散乱式粒度分布測定装置、例えばマイクロトラックベル製MT3300 EXIIを用いて粒度分布を測定する。 D 50 can be measured, for example, by the following method. That is, 0.1 g of a measurement sample and 50 mL of water are mixed and dispersed with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 1 minute. Then, the particle size distribution is measured by using a laser diffraction/scattering particle size distribution measuring device, for example, MT3300 EXII manufactured by Microtrac Bell.
 Sn粒子は、DSEM50に対するD50の比であるD50/DSEM50が、1.0以上4.5以下であることが好ましく、1.0以上4.0以下であることがより好ましく、1.0以上3.0以下であることが更に好ましい。一般的に、DSEM50は粒子の一次粒子径を表し、D50は粒子の二次粒子径を表すところ、D50/DSEM50が上述した範囲にあることによって、Sn粒子の凝集度が低く、一次粒子の割合が高いこととなる。その結果、Sn粒子をペーストに含有したときに、ペースト中でのSn粒子の分散性を高くできるとともに、塗布されたペースト表面を平滑にして、電気抵抗を一層低いものとすることができる。なお、一次粒子とは、外形上の幾何学的形態から判断して、粒子としての最小単位と認められる物体のことをいい、二次粒子とは複数個の一次粒子の凝集体をいう。 Sn particles, D 50 / D SEM 50 is the ratio of D 50 for D SEM 50 is preferably at 1.0 to 4.5, more preferably 1.0 to 4.0, 1 It is more preferably from 0.0 to 3.0. Generally, D SEM50 represents the primary particle size of the particles, and D 50 represents the secondary particle size of the particles. Since D 50 /D SEM50 is in the above range, the degree of aggregation of Sn particles is low, The proportion of primary particles is high. As a result, when the Sn particles are contained in the paste, the dispersibility of the Sn particles in the paste can be increased, and the surface of the applied paste can be smoothed to further reduce the electric resistance. In addition, the primary particle refers to an object recognized as a minimum unit as a particle, judging from the geometrical shape on the outer shape, and the secondary particle refers to an aggregate of a plurality of primary particles.
 Sn粒子の形状に特に制限はなく、例えば球状、フレーク状、多面体状など種々の形状を採用することができる。Sn粒子の分散性を高め、且つ焼結したときの緻密性を高める観点から、球状であることが好ましい。ここでいう球状とは、以下の方法で測定した円形度係数に基づき、好ましくは0.85以上、更に好ましくは0.90以上となるものをいう。円形度係数は、Sn粒子の走査型電子顕微鏡像から、粒子どうしが重なり合っていないものを無作為に200個選び出し、粒子の二次元投影像の面積をSとし、周囲長をLとしたときに、粒子の円形度係数を4πS/Lの式から算出し、各粒子の円形度係数の算術平均値を上述した円形度係数とする。粒子の二次元投影像が真円である場合は粒子の円形度係数は1となるので、円形度係数の上限値は好ましくは1であり、円形度係数の数値が高いほど、粒子が真球に近い形状であるといえる。 The shape of the Sn particles is not particularly limited, and various shapes such as spherical shape, flake shape, and polyhedral shape can be adopted. From the viewpoint of enhancing the dispersibility of Sn particles and enhancing the denseness when sintered, it is preferably spherical. The term "spherical" as used herein means one having a circularity coefficient of 0.85 or more, more preferably 0.90 or more, based on the circularity coefficient measured by the following method. The circularity coefficient is obtained by randomly selecting 200 particles of Sn particles that do not overlap each other from the scanning electron microscope image of Sn particles, and letting the area of the two-dimensional projected image of the particles be S and the perimeter be L. The circularity coefficient of the particles is calculated from the formula of 4πS/L 2 , and the arithmetic mean value of the circularity coefficients of the respective particles is used as the circularity coefficient described above. When the two-dimensional projection image of a particle is a perfect circle, the particle has a circularity coefficient of 1. Therefore, the upper limit of the circularity coefficient is preferably 1. The higher the circularity coefficient, the more spherical the particle is. It can be said that the shape is close to.
 Sn粒子の取扱い性を高める観点から、Sn粒子は、表面処理剤によって表面処理が施されていることも好ましい。表面処理剤としては、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルコールアミン類や、オレイン酸、ステアリン酸等の有機酸類を用いることができる。 From the viewpoint of improving the handleability of the Sn particles, it is also preferable that the Sn particles are surface-treated with a surface treatment agent. Examples of the surface treatment agent that can be used include alcohol amines such as monoethanolamine, diethanolamine and triethanolamine, and organic acids such as oleic acid and stearic acid.
 Sn粒子の低温での十分な焼結性と導電性とを両立する観点から、Sn粒子中の炭素(C)の含有量は、表面処理の有無によらず、Sn粒子の質量に対して、好ましくは1質量%以下、更に好ましくは0.5質量%以下であり、またその下限は、好ましくは0.001質量%である。 From the viewpoint of achieving both sufficient sinterability at low temperature of Sn particles and conductivity, the content of carbon (C) in the Sn particles is, with or without surface treatment, relative to the mass of the Sn particles, It is preferably 1% by mass or less, more preferably 0.5% by mass or less, and the lower limit thereof is preferably 0.001% by mass.
 Sn粒子中の炭素含有量は、例えば堀場製作所社製の炭素分析装置EMIA-920Vを用いて測定することができる。測定試料0.1gと、助燃剤としてタングステン粉1.5gと、Sn粉0.3gとを磁性坩堝内に秤量し、酸素ガス雰囲気化で加熱する。加熱の際に試料中の炭素と酸素とが反応して生成した一酸化炭素及び二酸化炭素を、非分散赤外線吸収法で検出し、炭素の含有割合(質量%)を算出した。このような炭素の含有量は、例えば高純度の原料を直流熱プラズマ法や高周波プラズマ法に供することによって調整することができる。 The carbon content in the Sn particles can be measured using, for example, a carbon analyzer EMIA-920V manufactured by Horiba Ltd. 0.1 g of a measurement sample, 1.5 g of tungsten powder as a combustion improver, and 0.3 g of Sn powder are weighed in a magnetic crucible and heated in an oxygen gas atmosphere. Carbon monoxide and carbon dioxide produced by the reaction of carbon and oxygen in the sample during heating were detected by the non-dispersive infrared absorption method, and the carbon content ratio (mass %) was calculated. Such carbon content can be adjusted, for example, by subjecting a high-purity raw material to a direct-current thermal plasma method or a high-frequency plasma method.
 以上の構成を有するSn粒子によれば、粒子径が小さく、且つ該粒子におけるOの含有量が少ないので、低温での焼結性に優れる。また、該Sn粒子を導電性ペーストとして用いたときに、該ペーストから形成される膜の厚みを薄くすることができ、その結果、Sn粒子を含む膜は薄膜でありながら緻密なものとなり、電極の電気抵抗の低減と、機械的強度とを兼ね備えたものとなる。 According to the Sn particles having the above structure, the particle size is small and the O content in the particles is small, so that the sinterability at low temperature is excellent. Further, when the Sn particles are used as a conductive paste, the thickness of the film formed from the paste can be reduced, and as a result, the film containing the Sn particles is a thin film and is dense, and the electrode It has both a reduction in electric resistance and mechanical strength.
 次に、Sn粒子の好適な製造方法について説明する。本製造方法は、スズ母粉(以下、「Sn母粉」ともいう。)をDCプラズマ法に付して、該母粉からSn粒子を生成させるものである。詳細には、本製造方法は、チャンバー内に発生させたプラズマフレームにSn母粉を供給して、Sn母粉をガス化させ、ガス化した該母粉を冷却してSn粒子を生成させる工程を有する。Sn含有合金を含むSn粒子を製造する場合には、目的とするSn粒子の合金組成と同じとなるような比率でSn母粉と合金成分の母粉とを供給するか、又は目的とするSn粒子と同じ合金組成を有するSn含有合金の母粉を供給すればよい。以下の説明では、Sn母粉、合金成分の母粉及びSn含有合金の母粉を総称して、単に「母粉」ともいう。 Next, a suitable method for producing Sn particles will be described. In this production method, tin mother powder (hereinafter, also referred to as “Sn mother powder”) is subjected to a DC plasma method to generate Sn particles from the mother powder. Specifically, the present manufacturing method is a step of supplying Sn base powder to a plasma flame generated in a chamber to gasify the Sn base powder, and cooling the gasified base powder to generate Sn particles. Have. In the case of producing Sn particles containing an Sn-containing alloy, the Sn mother powder and the mother powder of the alloy component are supplied in the same ratio as the alloy composition of the target Sn particles, or the target Sn is obtained. A mother powder of an Sn-containing alloy having the same alloy composition as the particles may be supplied. In the following description, the Sn mother powder, the mother powder of the alloy component, and the mother powder of the Sn-containing alloy are collectively referred to simply as “mother powder”.
 本製造方法に好適に用いられるDCプラズマ装置を図1に示す。同図に示すように、DCプラズマ装置1は、粉末供給装置2、チャンバー3、DCプラズマトーチ4、回収ポット5、粉末供給ノズル6、ガス供給装置7及び圧力調整装置8を備えている。この装置においては、母粉は、粉末供給装置2から粉末供給ノズル6を通してDCプラズマトーチ4内部を通過する。DCプラズマトーチ4には、プラズマガスがガス供給装置7から供給されプラズマフレームが発生する。また、DCプラズマトーチ4で発生させたプラズマフレーム内で母粉がガス化されてチャンバー3に放出された後、ガス化された母粉が冷却され、Sn粒子の微粉末となって回収ポット5内に蓄積回収される。チャンバー3の内部は、圧力調整装置8によって粉末供給ノズル6よりも相対的に陰圧が保持されるように制御されており、母粉のDCプラズマトーチ4への供給を容易にするとともに、プラズマフレームを安定して発生する構造をとっている。なお図1に示す装置は、DCプラズマ装置の一例であって、本発明のSn粒子の製造はこの装置に限定されるものではない。 A DC plasma device preferably used in this manufacturing method is shown in FIG. As shown in the figure, the DC plasma device 1 includes a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7, and a pressure adjusting device 8. In this device, the mother powder passes from the powder supply device 2 through the powder supply nozzle 6 into the inside of the DC plasma torch 4. Plasma gas is supplied to the DC plasma torch 4 from the gas supply device 7, and a plasma flame is generated. Further, after the mother powder is gasified in the plasma flame generated by the DC plasma torch 4 and discharged into the chamber 3, the gasified mother powder is cooled and becomes a fine powder of Sn particles in the recovery pot 5. It is accumulated and collected inside. The inside of the chamber 3 is controlled by the pressure adjusting device 8 so as to maintain a negative pressure relatively to the powder supply nozzle 6, thereby facilitating the supply of the mother powder to the DC plasma torch 4 and the plasma. It has a structure that stably generates a frame. The apparatus shown in FIG. 1 is an example of a DC plasma apparatus, and the production of Sn particles of the present invention is not limited to this apparatus.
 上述した構造を有するDCプラズマ装置を用いてSn粒子を製造する場合、チャンバー3は、その内部が水素ガス等を含む還元ガス雰囲気であるか、又は窒素ガス及びアルゴンガス等を含む不活性ガス雰囲気であることが好ましい。このような構成とすることによって、母粉のガス化から冷却されるまでの時間が短縮されるので、Sn粒子の粒成長及び粒子どうしの凝集を抑制して、生成されるSn粒子の微粒子化を達成できるとともに、Sn粒子表面の酸化が抑制される。また、還元ガス雰囲気又は不活性ガス雰囲気で製造することによって、大気中の酸素がチャンバー内へ混入することが少なくなるので、生成されるSn粒子表面の酸化を一層抑制できるという利点もある。還元ガス雰囲気又は不活性ガス雰囲気は、例えば、還元ガス/不活性ガス供給部(図示せず)をチャンバー3に接続して、チャンバー3内にプラズマガスとして上述の還元ガス又は不活性ガスを供給することによって達成することができる。 When Sn particles are produced using the DC plasma device having the above-described structure, the chamber 3 has a reducing gas atmosphere containing hydrogen gas or the like, or an inert gas atmosphere containing nitrogen gas and argon gas. Is preferred. With such a configuration, the time from gasification of the mother powder to cooling is shortened, so that the particle growth of the Sn particles and the aggregation of the particles are suppressed, and the generated Sn particles are atomized. And the oxidation of the Sn particle surface is suppressed. In addition, by producing in a reducing gas atmosphere or an inert gas atmosphere, oxygen in the atmosphere is less likely to be mixed into the chamber, so that there is also an advantage that the oxidation of the generated Sn particle surface can be further suppressed. As the reducing gas atmosphere or the inert gas atmosphere, for example, a reducing gas/inert gas supply unit (not shown) is connected to the chamber 3 and the above-mentioned reducing gas or inert gas is supplied as plasma gas into the chamber 3. Can be achieved by
 特に、プラズマガスとしてアルゴンガスと窒素ガスとを混合したガスを使用すると、窒素(2原子分子)ガスによって、一層大きな振動エネルギー(熱エネルギー)をSn母粉に付与することができ、そのことに起因して凝集状態を均一にできるので、粗粒が少なく、粒度分布がよりシャープな粒子を得ることができる。 In particular, when a mixed gas of argon gas and nitrogen gas is used as the plasma gas, a larger vibration energy (thermal energy) can be imparted to the Sn mother powder by the nitrogen (diatomic molecule) gas. As a result, the agglomerated state can be made uniform, so that particles with few coarse particles and a sharper particle size distribution can be obtained.
 プラズマガスとして、アルゴンガスと窒素ガスとの混合ガスを使用する場合、粒度分布のシャープな粒子を得る観点から、プラズマガスにおけるアルゴンガスと窒素ガスとの割合は、アルゴンガス:窒素ガスの流量比で99:1~10:90の範囲であることが好ましく、95:5~60:40の範囲であることが更に好ましい。また、目的とするSn粒子の粒度分布をよりシャープにする観点からは、アルゴンガスと窒素ガスの割合は、アルゴンガス:窒素ガスの流量比で99:1~55:45の範囲、特に95:5~55:45の範囲のように、窒素ガスよりもアルゴンガスの流量の方が多い比率内で調整すること好ましい。このような比率であることによって、プラズマフレームの減退を防止できるという利点も奏される。 When a mixed gas of argon gas and nitrogen gas is used as the plasma gas, the ratio of the argon gas to the nitrogen gas in the plasma gas is the flow ratio of the argon gas:nitrogen gas from the viewpoint of obtaining particles having a sharp particle size distribution. It is preferably in the range of 99:1 to 10:90, and more preferably in the range of 95:5 to 60:40. Further, from the viewpoint of sharpening the particle size distribution of the target Sn particles, the ratio of the argon gas and the nitrogen gas is in the range of 99:1 to 55:45 in terms of the flow rate ratio of the argon gas:nitrogen gas, particularly 95: It is preferable to adjust the flow rate of the argon gas to be larger than that of the nitrogen gas, such as in the range of 5 to 55:45. With such a ratio, there is an advantage in that the decline of the plasma flame can be prevented.
 また、チャンバー3の内部は、その圧力が粉末供給ノズル6よりも相対的に陰圧が保持されるように制御されているところ、粉末供給ノズル6での圧力とチャンバー3の内部の圧力との差圧が特定の範囲であることが好ましい。従来のDCプラズマ装置による製造方法では、一般的に、チャンバー3の内部の圧力を大気圧よりも50kPa以上低くして陰圧とすることによって、母粉を粉末供給ノズル6からチャンバー3側へ吸引しやすくして、DCプラズマ装置への母粉の供給量を増加させて粒子の製造効率を高めていた。本発明者は、Sn粒子の製造効率を維持しつつ、Sn粒子の微粒子化と表面酸化の抑制とを両立する方法について鋭意検討したところ、チャンバー内部の圧力と大気圧との差圧を従来技術よりも小さくした陰圧の状態でSn粒子を製造することによって、意外にも、粒子の製造効率を維持しながらも、粒子径が更に小さく、粒子表面の酸化が抑制されたSn粒子を製造できることを見出した。 In addition, the pressure inside the chamber 3 is controlled so that a negative pressure is maintained relatively more than the powder supply nozzle 6, so that the pressure at the powder supply nozzle 6 and the pressure inside the chamber 3 are controlled. The differential pressure is preferably within a specific range. In the conventional manufacturing method using the DC plasma device, generally, the internal pressure of the chamber 3 is reduced to 50 kPa or more lower than the atmospheric pressure to make the negative pressure, so that the mother powder is sucked from the powder supply nozzle 6 to the chamber 3 side. For this reason, the amount of mother powder supplied to the DC plasma device was increased to improve the particle production efficiency. The present inventor diligently studied a method for achieving both fine particle formation of Sn particles and suppression of surface oxidation while maintaining the production efficiency of Sn particles, and found that the pressure difference between the pressure inside the chamber and the atmospheric pressure was determined by the conventional technique. Surprisingly, it is possible to manufacture Sn particles in which the particle diameter is further reduced and the oxidation of the particle surface is suppressed by manufacturing the Sn particles in a negative pressure state that is smaller than the above, while maintaining the particle manufacturing efficiency. Found.
 詳細には、チャンバー3の内部の圧力が、大気圧よりも20kPa以上40kPa以下低いことが好ましく、20kPa以上35kPa以下低いことがより好ましい。このような範囲の陰圧に制御されていることによって、ガス化した母粉からSn粒子が形成される際に、Sn粒子の粒成長及び粒子どうしの凝集を一層抑制して、生成されるSn粒子の微粒子化を効率よく達成できるとともに、Sn粒子表面の酸化が一層抑制される。特に、チャンバー3の内部が還元ガス雰囲気又は不活性ガス雰囲気であることによって、更に一層有利に奏される。チャンバー3内部の圧力は、例えば圧力調整装置8によって適宜制御することができる。 Specifically, the pressure inside the chamber 3 is preferably lower than the atmospheric pressure by 20 kPa or more and 40 kPa or less, and more preferably 20 kPa or more and 35 kPa or less. By controlling the negative pressure within such a range, when the Sn particles are formed from the gasified mother powder, the Sn growth generated by further suppressing the particle growth of the Sn particles and the agglomeration of the particles. The particles can be efficiently made fine, and the oxidation of the surface of the Sn particles is further suppressed. In particular, when the inside of the chamber 3 is a reducing gas atmosphere or an inert gas atmosphere, it is more advantageous. The pressure inside the chamber 3 can be appropriately controlled by, for example, the pressure adjusting device 8.
 母粉のガス化から冷却までの時間を一層短縮して、生成されるSn粒子の微粒子化と、Sn粒子表面の酸化の低減とが両立したSn粒子を効率よく製造する観点から、チャンバー3の内部に冷却用ガスを供給して、ガス化した母粉を冷却することが好ましい。冷却用ガスの供給は、例えばチャンバー3の側壁部に接続された冷却用ガス供給部(図示せず)によって行うことができる。冷却用ガスとしては、例えば水素ガス等の還元ガスや、窒素ガス及びアルゴンガス等の不活性ガスを用いることができる。冷却用ガスは、チャンバー3内部の圧力が上述した範囲の陰圧となっていることを条件として、例えば0℃以上30℃以下の温度の冷却用ガスを、チャンバー3内部におけるプラズマフレームの先端近傍であり且つプラズマフレームの形成に干渉しない周囲に、1L/min以上400L/min以下供給することができる。 From the viewpoint of efficiently producing Sn particles in which the time from the gasification of the mother powder to the cooling is further shortened, and the fine particles of the produced Sn particles and the reduction of the oxidation of the surface of the Sn particles are both efficiently produced, It is preferable to supply a cooling gas to the inside to cool the gasified mother powder. The cooling gas can be supplied by, for example, a cooling gas supply unit (not shown) connected to the side wall of the chamber 3. As the cooling gas, for example, a reducing gas such as hydrogen gas or an inert gas such as nitrogen gas or argon gas can be used. As for the cooling gas, for example, a cooling gas having a temperature of 0° C. or higher and 30° C. or lower is provided in the vicinity of the tip of the plasma flame inside the chamber 3, provided that the pressure inside the chamber 3 is a negative pressure within the above range. And 1 L/min or more and 400 L/min or less can be supplied to the surroundings that do not interfere with the formation of the plasma flame.
 本製造方法に用いられる母粉は、特に限定されるものではないが、表面の酸化が抑制されたSn粒子を得る観点から、酸化物の含有量が少ない母粉を用いることが好ましい。母粉のプラズマ噴射性とコストの観点から、母粉の粒径D50は、好ましくは3.0μm以上50μm以下、更に好ましくは5.0μm以上30μm以下である。得られるSn粒子の製造効率の観点から、母粉の供給量は、5g/min以上200g/min以下であることが好ましく、10g/min以上100g/min以下であることが更に好ましい。また、母粉の形状に特に制限はなく、例えば樹枝状、棒状、フレーク状、キュービック状、球状などが挙げられる。プラズマトーチへの供給効率を安定化させる観点から、球状の母粉を用いることが好ましい。母粉のD50の測定は、上述したSn粒子のD50の測定と同様の方法で行うことができる。 The mother powder used in the present production method is not particularly limited, but from the viewpoint of obtaining Sn particles whose surface oxidation is suppressed, it is preferable to use a mother powder containing a small amount of oxide. From the viewpoint of the plasma sprayability of the mother powder and the cost, the particle diameter D 50 of the mother powder is preferably 3.0 μm or more and 50 μm or less, more preferably 5.0 μm or more and 30 μm or less. From the viewpoint of the production efficiency of the obtained Sn particles, the feed rate of the mother powder is preferably 5 g/min or more and 200 g/min or less, and more preferably 10 g/min or more and 100 g/min or less. The shape of the mother powder is not particularly limited, and examples thereof include a dendritic shape, a stick shape, a flake shape, a cubic shape, and a spherical shape. From the viewpoint of stabilizing the supply efficiency to the plasma torch, it is preferable to use spherical mother powder. Measurement of D 50 of the mother powder may be carried out in the same manner as the measurement of the D 50 of the above-mentioned Sn particles.
 DCプラズマ装置を使用して母粉を加熱噴射する場合、プラズマガスを使用して、プラズマフレームが層流状態となるように調整することが好ましい。このように調整すれば、投入した母粉はプラズマ炎中で瞬時に蒸発気化し、プラズマフレーム内で十分なエネルギーを供給することができるため、サブミクロンオーダーの微粒子を首尾よく形成することができる。これに加えて、粗粒の母粉が残存しにくくなるという利点がある。 When heating and injecting mother powder using a DC plasma device, it is preferable to use plasma gas and adjust so that the plasma flame is in a laminar flow state. By adjusting in this way, the introduced mother powder is instantly vaporized and evaporated in the plasma flame, and sufficient energy can be supplied in the plasma flame, so that fine particles of submicron order can be successfully formed. .. In addition to this, there is an advantage that the coarse-grained mother powder is less likely to remain.
 プラズマフレームが層流状態であるか否かは、プラズマフレームを、フレーム幅が最も太く観察される側面から観察したときに、フレーム幅に対するフレーム長さの縦横比(以下、フレームアスペクト比)が3以上であるか否かによって判断することができる。具体的には、フレームアスペクト比が3以上であれば層流状態と判断することができ、3未満であれば乱流状態と判断することができる。 Whether or not the plasma frame is in a laminar flow state is determined by observing the plasma frame from the side where the frame width is thickest and the aspect ratio of the frame length to the frame width (hereinafter, frame aspect ratio) is 3 or less. It can be determined by whether or not the above. Specifically, if the frame aspect ratio is 3 or more, it can be determined that the flow is laminar, and if it is less than 3, it can be determined that the flow is turbulent.
 プラズマフレームが層流状態となるようにするためには、プラズマ出力とガス流量を調整することが有利である。詳細には、DCプラズマ装置のプラズマ出力を好ましくは2kW以上100kW以下、更に好ましくは2kW以上40kW以下に設定する。また、プラズマガスのガス流量に関しては、好ましくは0.1L/min以上25L/min以下、更に好ましくは0.5L/min以上21L/min以下に設定する。 ▽It is advantageous to adjust the plasma output and gas flow rate so that the plasma flame becomes laminar. Specifically, the plasma output of the DC plasma device is preferably set to 2 kW or more and 100 kW or less, and more preferably 2 kW or more and 40 kW or less. The gas flow rate of the plasma gas is preferably set to 0.1 L/min or more and 25 L/min or less, more preferably 0.5 L/min or more and 21 L/min or less.
 プラズマフレーム内で十分な熱エネルギーを母粉に供給し、サブミクロンオーダーの微粒子を首尾よく形成することに加えて、粗粒の母粉を残存しにくくするという観点から、母粉の供給量に対するプラズマ出力の比は、好ましくは0.01kW・min/g以上20kW・min/g以下であり、更に好ましくは0.05kW・min/g以上15kW・min/g以下である。 In addition to supplying sufficient heat energy to the mother powder in the plasma flame to successfully form submicron-order fine particles, it is difficult to leave coarse mother powder The plasma output ratio is preferably 0.01 kW·min/g or more and 20 kW·min/g or less, and more preferably 0.05 kW·min/g or more and 15 kW·min/g or less.
 特に、プラズマフレームを層流状態に安定的に保ちつつ、母粉のガス化に必要な流速を確実に得る観点から、上述の範囲のプラズマ出力及びガス流量を保ちつつ、プラズマ出力に対するプラズマガス流量の比(単位:L/(min・kW))を、好ましくは0.50以上2.00以下、より好ましくは0.70以上1.70以下、更に好ましくは0.75以上1.50以下に設定する。 In particular, from the viewpoint of reliably obtaining the flow rate required for gasification of the mother powder while stably maintaining the plasma flame in the laminar flow state, while maintaining the plasma output and the gas flow rate in the above range, the plasma gas flow rate with respect to the plasma output Ratio (unit: L/(min·kW)) is preferably 0.50 or more and 2.00 or less, more preferably 0.70 or more and 1.70 or less, and still more preferably 0.75 or more and 1.50 or less. Set.
 このようにして得られたSn粒子は、該粒子の集合体である微粉末となって回収ポット5内に蓄積回収される。回収されたSn粒子は、そのままでも用いてもよく、コンタミネーションとして存在する粗大凝集粒子の除去を行うために分級してもよい。分級は、適切な分級装置を用いて、目的とする粒度が中心となるように、粗粉や微粉を分離するようにすればよい。 The Sn particles thus obtained are collected and collected in the recovery pot 5 as a fine powder which is an aggregate of the particles. The recovered Sn particles may be used as they are, or may be classified in order to remove coarse agglomerated particles existing as contamination. The classification may be performed by using an appropriate classifying device to separate the coarse powder and the fine powder so that the target particle size is centered.
 Sn粒子は、導電性組成物に配合される金属フィラーとして好適に用いられる。導電性組成物としては、例えば導電ペーストや導電インクなどが挙げられる。これらの導電性組成物は、金属フィラーとしてのSn粒子、バインダ樹脂及び有機溶媒等の成分を含むものである。導電性組成物は、例えばこれを所定の手段によって塗布することで、プリント配線基板の配線回路を形成することができる。またプリント配線基板中のビア充填用材料や、プリント配線基板に電子デバイスを表面実装するときの接着剤として用いることもできる。更に、チップ部品の電極形成に用いることもできる。特に、本発明のSn粒子は、粒子径が小さく、且つ低温での焼結性の高いものであるので、小型化や高性能化が要求される積層セラミックコンデンサ(MLCC)等の小型電子部品の導電性樹脂層等に好適に用いることができる。 ∙ Sn particles are preferably used as a metal filler compounded in a conductive composition. Examples of the conductive composition include a conductive paste and a conductive ink. These conductive compositions contain components such as Sn particles as a metal filler, a binder resin and an organic solvent. The wiring composition of the printed wiring board can be formed, for example, by applying the conductive composition by a predetermined means. It can also be used as a via filling material in a printed wiring board or as an adhesive when surface-mounting an electronic device on the printed wiring board. Further, it can be used for forming electrodes of chip parts. In particular, since the Sn particles of the present invention have a small particle size and high sinterability at low temperatures, they can be used in small electronic components such as a multilayer ceramic capacitor (MLCC) that requires miniaturization and high performance. It can be suitably used for a conductive resin layer or the like.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the invention is not limited to such embodiments.
〔実施例1〕
 図1に示す構造のDCプラズマ装置1を用いて、以下のとおりSn粒子を製造した。粉末供給装置2から粉末供給ノズル6を通して、母粉としてSn-Ag-Cu母粉(Sn:96.5質量%、Ag:3.0質量%、Cu:0.5質量%、粒径D50=13μm、球状粒子)を35g/minの供給量で導入した。これとともに、プラズマガスとしてアルゴンガスと窒素ガスとの混合ガス(流量比として、アルゴンガス:窒素ガス=76:24)をプラズマフレームの内部に供給した。プラズマガスの流量は18.5L/minとした。プラズマ出力は16.5kWであり、プラズマ出力に対するプラズマガス流量の比は1.12(L/(min・kW))であった。また、母粉の供給量に対するプラズマ出力の比は0.47kW・min/gであった。プラズマフレームはフレームアスペクト比が4であり、層流状態であった。
[Example 1]
Sn particles were manufactured as follows using the DC plasma device 1 having the structure shown in FIG. Sn—Ag—Cu mother powder (Sn: 96.5% by mass, Ag: 3.0% by mass, Cu: 0.5% by mass, particle diameter D 50) as a mother powder from the powder supplying device 2 through the powder supplying nozzle 6. =13 μm, spherical particles) were introduced at a supply rate of 35 g/min. At the same time, a mixed gas of argon gas and nitrogen gas (a flow rate ratio of argon gas:nitrogen gas=76:24) was supplied to the inside of the plasma flame as the plasma gas. The flow rate of the plasma gas was 18.5 L/min. The plasma output was 16.5 kW, and the ratio of the plasma gas flow rate to the plasma output was 1.12 (L/(min·kW)). The ratio of plasma output to the amount of mother powder supplied was 0.47 kW·min/g. The plasma flame had a flame aspect ratio of 4 and was in a laminar flow state.
 チャンバー3の内部は窒素ガス雰囲気とし、チャンバー3内部の圧力は大気圧よりも30kPa低くした。また、製造時において、冷却用ガスとして25℃の窒素ガスを290L/minの流量で供給した。このようにして、目的とするSn粒子を得た。本実施例のSn粒子におけるSn含有量は96.5質量%であった。 The inside of the chamber 3 was made a nitrogen gas atmosphere, and the pressure inside the chamber 3 was set to be 30 kPa lower than the atmospheric pressure. Further, at the time of manufacturing, nitrogen gas at 25° C. was supplied as a cooling gas at a flow rate of 290 L/min. In this way, the target Sn particles were obtained. The Sn content in the Sn particles of this example was 96.5% by mass.
〔実施例2〕
 チャンバー3の内部の圧力を、大気圧よりも20kPa低くした他は、実施例1と同様にSn粒子を製造した。本実施例のSn粒子におけるSn含有量は96.5質量%であった。
[Example 2]
Sn particles were produced in the same manner as in Example 1 except that the pressure inside the chamber 3 was lowered by 20 kPa from the atmospheric pressure. The Sn content in the Sn particles of this example was 96.5% by mass.
〔実施例3〕
 母粉としてSn母粉(Sn:100質量%、粒径D50=15μm、球状粒子)を用いた他は、実施例1と同様にSn粒子を得た。本実施例のSn粒子におけるSn含有量は100質量%であった。
[Example 3]
Sn particles were obtained in the same manner as in Example 1 except that Sn mother powder (Sn: 100% by mass, particle diameter D 50 =15 μm, spherical particles) was used as the mother powder. The Sn content in the Sn particles of this example was 100% by mass.
〔比較例1〕
 チャンバー3の内部の圧力を、大気圧よりも50kPa低くし、冷却用ガスの流量を10L/minとした他は、実施例1と同様にSn粒子を製造した。本比較例のSn粒子におけるSn含有量は96.5質量%であった。
[Comparative Example 1]
Sn particles were produced in the same manner as in Example 1 except that the pressure inside the chamber 3 was lower than atmospheric pressure by 50 kPa and the flow rate of the cooling gas was 10 L/min. The Sn content in the Sn particles of this comparative example was 96.5% by mass.
〔比較例2〕
 チャンバー3の内部の圧力を、大気圧よりも50kPa低くした他は、実施例1と同様にSn粒子を製造した。本比較例のSn粒子におけるSn含有量は96.5質量%であった。
[Comparative Example 2]
Sn particles were produced in the same manner as in Example 1 except that the pressure inside the chamber 3 was lowered by 50 kPa from the atmospheric pressure. The Sn content in the Sn particles of this comparative example was 96.5% by mass.
〔比較例3〕
 母粉としてSn母粉(Sn:100質量%、粒径D50=15μm、球状粒子)を11g/minの供給量で導入し、チャンバー3の内部の圧力を大気圧よりも50kPa低くし、冷却用ガスの流量を30L/minとした他は、実施例1と同様にSn粒子を得た。なお、本比較例では、母粉の供給量に対するプラズマ出力の比は1.5kW・min/gであった。本比較例のSn粒子におけるSn含有量は100質量%であった。
[Comparative Example 3]
As a mother powder, Sn mother powder (Sn: 100% by mass, particle diameter D 50 =15 μm, spherical particles) was introduced at a supply rate of 11 g/min, and the pressure inside the chamber 3 was reduced to 50 kPa below atmospheric pressure and cooled. Sn particles were obtained in the same manner as in Example 1 except that the flow rate of the working gas was 30 L/min. In this comparative example, the ratio of plasma output to the amount of mother powder supplied was 1.5 kW·min/g. The Sn content in the Sn particles of this comparative example was 100% by mass.
 〔粒子物性の評価〕
 実施例及び比較例のSn粒子について、DSEM10、DSEM50、DSEM90、D50、BET比表面積、O含有量、C含有量及び円形度係数を上述の方法に従って、それぞれ測定した。結果を表1に示す。
[Evaluation of physical properties of particles]
For the Sn particles of Examples and Comparative Examples, D SEM10 , D SEM50 , D SEM90 , D 50 , BET specific surface area, O content, C content, and circularity coefficient were measured according to the methods described above. The results are shown in Table 1.
〔焼結性の評価〕
 アルミナ容器に実施例及び比較例のSn粒子を満たし、窒素ガス雰囲気下で室温(25℃)から300℃まで10℃/minの昇温速度で昇温した。その後、室温まで降温して、降温した後のSn粒子の収縮率を確認した。すなわち、焼結後のSn粒子を含んだアルミナ容器を上面方向から写真撮影し、当該写真データを用いて、アルミナ容器底面におけるピクセル数を画像処理ソフトとしてImage Jを用いて求めた。同様に、焼結後のSn粒子が存在する領域におけるピクセル数をImage Jを用いて求めた。アルミナ容器底面のピクセル数をP1とし、焼結後のSn粒子の存在領域のピクセル数をP2としたときの収縮率(%)を以下の式によって算出した。収縮率が高いほど溶融性が高く、焼結性に優れることを意味する。
  収縮率(%)=(P1-P2)×100/P1
[Evaluation of sinterability]
An alumina container was filled with the Sn particles of Examples and Comparative Examples, and the temperature was raised from room temperature (25° C.) to 300° C. at a heating rate of 10° C./min in a nitrogen gas atmosphere. Then, the temperature was lowered to room temperature, and the shrinkage ratio of the Sn particles after the temperature was lowered was confirmed. That is, an alumina container containing Sn particles after sintering was photographed from the upper surface direction, and the number of pixels on the bottom surface of the alumina container was determined using Image J as image processing software using the photographic data. Similarly, the number of pixels in a region where Sn particles after sintering were present was determined using Image J. When the number of pixels on the bottom surface of the alumina container is P1 and the number of pixels on the area where Sn particles exist after sintering is P2, the shrinkage ratio (%) was calculated by the following formula. Higher shrinkage means higher meltability and better sinterability.
Shrinkage rate (%)=(P1-P2)×100/P1
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例4〕
 実施例1で用いたSn-Ag-Cu母粉に代えて、Sn-Bi母粉(Sn:42質量%、Bi:58質量%、粒径D50=13μm、球状粒子)を30g/minの供給量で導入した。また、プラズマ出力を13.1kWに変更し、プラズマ出力に対するプラズマガス流量の比を1.41(L/(min・kW))とした。さらに、母粉の供給量に対するプラズマ出力の比を0.44kW・min/gとした。これに加えて、冷却用ガスの流量を130L/minとした、これらの条件以外は実施例1と同様にして、Sn-Bi粒子を製造した。本実施例のSn粒子におけるSn含有量は42質量%であった。
[Example 4]
Instead of the Sn—Ag—Cu base powder used in Example 1, Sn—Bi base powder (Sn: 42% by mass, Bi: 58% by mass, particle diameter D 50 =13 μm, spherical particles) of 30 g/min was used. Introduced in supply. Further, the plasma output was changed to 13.1 kW and the ratio of the plasma gas flow rate to the plasma output was 1.41 (L/(min·kW)). Further, the ratio of plasma output to the amount of mother powder supplied was 0.44 kW·min/g. In addition to this, Sn-Bi particles were produced in the same manner as in Example 1 except that the cooling gas flow rate was 130 L/min. The Sn content in the Sn particles of this example was 42 mass %.
〔比較例4〕
 実施例4のチャンバー3の内部の圧力を大気圧よりも50kPa低くした以外は、実施例4と同様にして、Sn-Bi粒子を製造した。本比較例のSn粒子におけるSn含有量は42質量%であった。
[Comparative Example 4]
Sn-Bi particles were produced in the same manner as in Example 4 except that the pressure inside the chamber 3 of Example 4 was lower than atmospheric pressure by 50 kPa. The Sn content in the Sn particles of this comparative example was 42% by mass.
〔評価〕
 実施例4及び比較例4のSn-Bi粒子について、上述と同様にして粒子物性及び焼結性の評価を行った。結果を表2に示す。
[Evaluation]
The Sn—Bi particles of Example 4 and Comparative Example 4 were evaluated for particle properties and sinterability in the same manner as described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、実施例のSn粒子は、比表面積が大きく、また、DSEM90が1μm程度の微粒子を効率よく製造できることが判る。また、大気圧とチャンバー3の内部の圧力との差圧を好適な範囲とした実施例のSn粒子は、比較例のSn粒子と比較して、Oの含有量が少なく、粒子どうしの焼結性に優れることが判る。また、実施例のSn粒子によれば、D50/DSEM50の比が小さいので、粒子分布がシャープとなり分散性が高く、該粒子を含むペーストとしたときに、平滑且つ薄い塗膜を形成することができる。 As shown in Tables 1 and 2, it is understood that the Sn particles of the examples have a large specific surface area, and that D SEM90 can efficiently produce fine particles of about 1 μm. In addition, the Sn particles of the example in which the differential pressure between the atmospheric pressure and the pressure inside the chamber 3 is in a suitable range has a smaller O content than the Sn particles of the comparative example, and the particles are sintered together. It turns out that it has excellent properties. In addition, according to the Sn particles of the example, since the D 50 /D SEM50 ratio is small, the particle distribution becomes sharp and the dispersibility is high, and a smooth and thin coating film is formed when a paste containing the particles is formed. be able to.
 本発明によれば、粒子径が小さく、且つ低温での焼結性に優れたSn粒子及び該粒子を含む導電性組成物が提供される。
 
According to the present invention, there are provided Sn particles having a small particle size and excellent in sinterability at low temperatures, and a conductive composition containing the particles.

Claims (10)

  1.  Snと酸素(O)とを含むSn粒子であって、
     前記Snを40質量%以上含み、前記Oを0.55質量%以下含み、
     BET比表面積(m/g)に対するO含有量(質量%)の比(質量%・g/m)が0.40以下である、Sn粒子。
    A Sn particle containing Sn and oxygen (O),
    40 mass% or more of Sn is contained, 0.55 mass% or less of O is contained,
    Sn particles having a ratio (mass %.g/m 2 ) of O content (mass %) to BET specific surface area (m 2 /g) of 0.40 or less.
  2.  前記Oを0.05質量%以上含む、請求項1に記載のSn粒子。 The Sn particles according to claim 1, wherein the content of O is 0.05% by mass or more.
  3.  Au、Ag、Cu、Si、Ni、Ti、Fe、Co、Cr、Mg、Al、Mn、Mo、W、Ta、In、Zr、Nb、Ge、Zn、Bi及びSbの少なくとも一種の金属を更に含む、請求項1又は2に記載のSn粒子。 Further, at least one metal selected from Au, Ag, Cu, Si, Ni, Ti, Fe, Co, Cr, Mg, Al, Mn, Mo, W, Ta, In, Zr, Nb, Ge, Zn, Bi and Sb. The Sn particle according to claim 1 or 2, which comprises:
  4.  Agを0.1質量%以上4.0質量%以下含み、Cuを0.1質量%以上1.0質量%以下含む、請求項1ないし3のいずれか一項に記載のSn粒子。 The Sn particles according to any one of claims 1 to 3, containing 0.1 mass% or more and 4.0 mass% or less of Ag, and 0.1 mass% or more and 1.0 mass% or less of Cu.
  5.  走査型電子顕微鏡観察によって測定された累積体積90容量%における体積累積粒径DSEM90が2.0μm以下である、請求項1ないし4のいずれか一項に記載のSn粒子。 The Sn particles according to any one of claims 1 to 4, wherein a volume cumulative particle diameter D SEM90 at a cumulative volume of 90% by volume measured by scanning electron microscope observation is 2.0 µm or less.
  6.  BET比表面積が1m/g以上である、請求項1ないし5のいずれか一項に記載のSn粒子。 The Sn particles according to any one of claims 1 to 5, having a BET specific surface area of 1 m 2 /g or more.
  7.  球状である、請求項1ないし6のいずれか一項に記載のSn粒子。 The Sn particles according to any one of claims 1 to 6, which are spherical.
  8.  走査型電子顕微鏡観察によって測定された累積体積50容量%における体積累積粒径DSEM50に対する、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50の比D50/DSEM50が、1.0以上4.5以下である、請求項1ないし7のいずれか一項に記載のSn粒子。 Ratio D 50 /D of volume cumulative particle diameter D 50 at cumulative volume of 50 volume% by laser diffraction scattering type particle size distribution measurement method to volume cumulative particle diameter D SEM50 at cumulative volume of 50 volume% measured by scanning electron microscope observation. The Sn particles according to any one of claims 1 to 7, wherein SEM50 is 1.0 or more and 4.5 or less.
  9.  請求項1ないし8のいずれか一項に記載のSn粒子を含んでなる導電性組成物。 A conductive composition comprising the Sn particles according to any one of claims 1 to 8.
  10.  チャンバー内に発生させたプラズマフレームにSn母粉を供給して該Sn母粉をガス化させ、ガス化した前記Sn母粉を冷却してSn粒子を生成させる工程を有し、
     前記チャンバーは、その内部が還元ガス雰囲気又は不活性ガス雰囲気であり、且つその内部の圧力が大気圧よりも20kPa以上40kPa以下低く、
     Sn母粉の供給量に対するプラズマ出力の比が、0.01kW・min/g以上20kW・min/g以下である、Sn粒子の製造方法。
     
    A step of supplying Sn base powder to a plasma flame generated in the chamber to gasify the Sn base powder, and cooling the gasified Sn base powder to generate Sn particles;
    The inside of the chamber is a reducing gas atmosphere or an inert gas atmosphere, and the pressure inside is lower than atmospheric pressure by 20 kPa or more and 40 kPa or less,
    A method for producing Sn particles, wherein the ratio of the plasma output to the supply amount of Sn mother powder is 0.01 kW·min/g or more and 20 kW·min/g or less.
PCT/JP2020/002835 2019-01-28 2020-01-27 Sn particles, conductive composition using the same, and method for producing sn particles WO2020158685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569624A JPWO2020158685A1 (en) 2019-01-28 2020-01-27 Sn particles, a conductive composition using the Sn particles, and a method for producing Sn particles.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012580 2019-01-28
JP2019-012580 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020158685A1 true WO2020158685A1 (en) 2020-08-06

Family

ID=71840150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002835 WO2020158685A1 (en) 2019-01-28 2020-01-27 Sn particles, conductive composition using the same, and method for producing sn particles

Country Status (3)

Country Link
JP (1) JPWO2020158685A1 (en)
TW (1) TW202037730A (en)
WO (1) WO2020158685A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246010A (en) * 1995-03-10 1996-09-24 Namitsukusu Kk Production of metal powder
JP2001332254A (en) * 2000-03-13 2001-11-30 Canon Inc Manufacturing method for electrode material of lithium secondary battery, electrode structure of the lithium secondary battery and the lithium secondary battery and manufacturing method therefor
JP2006274399A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Method for manufacturing fine powder of alloy, and fine powder of alloy
JP2008106327A (en) * 2006-10-26 2008-05-08 Sumitomo Metal Mining Co Ltd Fine powder of tin and production method therefor
JP2013004498A (en) * 2011-06-22 2013-01-07 Taiyo Holdings Co Ltd Method for forming conductive pattern using laser beam and composition used for the method
JP2013004404A (en) * 2011-06-20 2013-01-07 Dowa Holdings Co Ltd Electrode material for secondary battery, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246010A (en) * 1995-03-10 1996-09-24 Namitsukusu Kk Production of metal powder
JP2001332254A (en) * 2000-03-13 2001-11-30 Canon Inc Manufacturing method for electrode material of lithium secondary battery, electrode structure of the lithium secondary battery and the lithium secondary battery and manufacturing method therefor
JP2006274399A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Method for manufacturing fine powder of alloy, and fine powder of alloy
JP2008106327A (en) * 2006-10-26 2008-05-08 Sumitomo Metal Mining Co Ltd Fine powder of tin and production method therefor
JP2013004404A (en) * 2011-06-20 2013-01-07 Dowa Holdings Co Ltd Electrode material for secondary battery, and method for manufacturing the same
JP2013004498A (en) * 2011-06-22 2013-01-07 Taiyo Holdings Co Ltd Method for forming conductive pattern using laser beam and composition used for the method

Also Published As

Publication number Publication date
JPWO2020158685A1 (en) 2021-12-02
TW202037730A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5937730B2 (en) Method for producing copper powder
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
WO2009084645A1 (en) Copper powder for electrically conductive paste, and electrically conductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP7090511B2 (en) Silver powder and its manufacturing method
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP7080856B2 (en) Metal powder and its manufacturing method
CA2345804C (en) Method for preparing metal powder
JP5576199B2 (en) Copper powder for conductive paste and conductive paste
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JP7272834B2 (en) Silver powder and its manufacturing method
TW201842989A (en) Nickel powder and nickel paste
JP3812359B2 (en) Method for producing metal powder
JP4433743B2 (en) Method for producing copper fine particles
WO2020158685A1 (en) Sn particles, conductive composition using the same, and method for producing sn particles
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JP7390198B2 (en) Glass particles, conductive composition using the same, and method for producing glass particles
JP2010275578A (en) Silver powder and production method therefor
WO2021199694A1 (en) Nickel-containing particle, electroconductive composition including same, and method for manufacturing nickel-containing particle
WO2023074827A1 (en) Copper particles and method for producing same
JP6367013B2 (en) Tin powder and method for producing the same
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP5969118B2 (en) Copper powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748571

Country of ref document: EP

Kind code of ref document: A1