JP2006274399A - Method for manufacturing fine powder of alloy, and fine powder of alloy - Google Patents

Method for manufacturing fine powder of alloy, and fine powder of alloy Download PDF

Info

Publication number
JP2006274399A
JP2006274399A JP2005098234A JP2005098234A JP2006274399A JP 2006274399 A JP2006274399 A JP 2006274399A JP 2005098234 A JP2005098234 A JP 2005098234A JP 2005098234 A JP2005098234 A JP 2005098234A JP 2006274399 A JP2006274399 A JP 2006274399A
Authority
JP
Japan
Prior art keywords
powder
alloy
alloy powder
refractory metal
temperature plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098234A
Other languages
Japanese (ja)
Inventor
Shujiro Kamisaka
修治郎 上坂
Hiroshi Takashima
洋 高島
Keisuke Inoue
惠介 井上
Kazuya Saito
和也 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005098234A priority Critical patent/JP2006274399A/en
Publication of JP2006274399A publication Critical patent/JP2006274399A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a powder of an alloy consisting of refractory metals and containing a reduced amount of oxygen in particular, and to provide the fine powder of the alloy consisting of the refractory metals and containing a small amount of oxygen. <P>SOLUTION: The method for manufacturing the fine powder of an alloy comprises the steps of: compounding two or more refractory metal elements having a melting point of 1,600°C or higher into a complex metal; melting it in high-temperature plasma containing a reducing gas; and rapidly solidifying the molten complex metal into the powder of the alloy. The fine powder of the alloy consists of two or more refractory metal elements having a melting point of 1,600°C or higher has a melted and solidified structure, has a particle diameter of 500 μm or larger and has an oxygen content controlled to 500 ppm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高融点金属の微細合金粉末およびその製造方法に関するものである。   The present invention relates to a refractory metal fine alloy powder and a method for producing the same.

近年、情報産業の急速な進展に伴って、情報産業機器部品の製造に用いられるスパッタリング用ターゲット材が使用されている。そして、このスパッタリング用ターゲット材が高融点金属を主成分とした金属ターゲット材である場合には、溶解温度が高く溶解鋳造法によって製造するのが困難なため、金属粉末を原料として熱間静水圧プレス等により焼結する製造方法が適切であることが知られている。また、2種以上の金属元素からなる合金のターゲット材の場合には、スパッタ時の成膜安定性の観点から、化学成分が粒子内で均質であり、且つ酸素含有量のより少ない合金粉末を原料とすることが望ましいとされている。特に、高融点金属元素を主成分とする合金からなる組成の場合には、合金粉末の作製が困難とされているが、例えば、高周波プラズマで形成される超高温層で高融点金属粉末等を混合造粒した造粒粉末を溶融・凝固させ、その後粉砕して高融点基合金粉末を製造する方法が提案されている(例えば、特許文献1参照)。
特開平8−170110号公報
In recent years, with the rapid development of the information industry, sputtering target materials used for manufacturing information industry equipment parts have been used. And when this sputtering target material is a metal target material whose main component is a refractory metal, the melting temperature is high and it is difficult to manufacture by a melting casting method. It is known that a production method for sintering by pressing or the like is appropriate. In the case of an alloy target material composed of two or more kinds of metal elements, from the viewpoint of film formation stability during sputtering, an alloy powder having a uniform chemical composition within the particle and having a lower oxygen content is used. It is desirable to use it as a raw material. In particular, in the case of a composition composed of an alloy containing a refractory metal element as a main component, it is difficult to produce an alloy powder. For example, an refractory metal powder or the like is used in an ultrahigh temperature layer formed by high-frequency plasma. There has been proposed a method of producing a high melting point alloy powder by melting and solidifying the granulated powder that has been mixed and granulated, and then pulverizing the powder (see, for example, Patent Document 1).
JP-A-8-170110

上述した特許文献1には、高周波プラズマの超高温層で造粒粉末粒子を溶融し、その後急冷凝固させて高融点基合金粉末を製造することが提案されている。この高融点基合金粉末の製造方法は、造粒粉末を粉末粒子状で溶融・凝固し、粉砕を不要とするため、高融点金属を主成分とする合金粉末を作製する上で非常に有効な方法である。一方で、この方法では、作製される合金粉末の酸素等ガス成分の低減に関する検証がなされておらず、ターゲット材等の原料とする場合において、特に、酸化物を形成し、スパッタによる成膜時の異常放電や、成膜後の薄膜の導電率、磁気特性等を低下させる原因となることから、極力低減することが求められる酸素の含有量の低減に関して、なお課題を残すものである。
本発明の目的は、高融点金属からなる合金粉末において、特に酸素含有量の低減を可能とする製造方法を提供すること、および低酸素の高融点金属からなる微細合金粉末を提供することである。
Patent Document 1 mentioned above proposes that a granulated powder particle is melted in an ultra-high temperature layer of high-frequency plasma and then rapidly solidified to produce a high melting point alloy powder. This method for producing a refractory base alloy powder is very effective in producing an alloy powder mainly composed of a refractory metal, because the granulated powder is melted and solidified in the form of powder particles and does not require pulverization. Is the method. On the other hand, in this method, verification regarding reduction of gas components such as oxygen of the alloy powder to be produced has not been performed, and particularly when a raw material such as a target material is used, an oxide is formed, especially during film formation by sputtering. However, there is still a problem with respect to the reduction of the oxygen content that is required to be reduced as much as possible.
An object of the present invention is to provide a manufacturing method that enables reduction of the oxygen content particularly in an alloy powder made of a refractory metal, and to provide a fine alloy powder made of a low-oxygen refractory metal. .

本発明者等は、1600℃以上の2種以上の高融点金属元素を複合化した複合体を、還元性ガスを含む高温プラズマで溶解することで、酸素含有量が劇的に低減された微細合金粉末が実現できることを見出し本発明に到達した。   The inventors of the present invention have developed a complex in which two or more refractory metal elements having a temperature of 1600 ° C. or higher are complexed with high-temperature plasma containing a reducing gas, so that the oxygen content is dramatically reduced. The inventors have found that an alloy powder can be realized and have reached the present invention.

すなわち、本発明は、融点が1600℃以上の2種以上の高融点金属元素が複合化した複合体を、還元性ガスを含む高温プラズマで溶解し、急冷凝固させて合金粉末とする微細合金粉末の製造方法である。
好ましくは、2種以上の高融点金属元素粉末を混合した後、圧縮成形した圧密体を粉砕処理して二次粉末とし、次いで該二次粉末を還元性ガスを含む高温プラズマに通過させて溶解し、急冷凝固させて合金粉末とする微細合金粉末の製造方法である。
また、もう一方の本発明は、融点が1600℃以上の2種以上の高融点金属元素からなる合金粉末であって、溶解凝固組織を有し、粒径500μm以下、かつ酸素含有量500ppm以下である微細合金粉末である。
That is, the present invention relates to a fine alloy powder in which a composite of two or more refractory metal elements having a melting point of 1600 ° C. or higher is dissolved in high-temperature plasma containing a reducing gas and rapidly solidified to form an alloy powder. It is a manufacturing method.
Preferably, after mixing two or more kinds of refractory metal element powders, the compacted compact is pulverized into a secondary powder, and then the secondary powder is passed through a high-temperature plasma containing a reducing gas to be dissolved. Then, it is a method for producing a fine alloy powder which is rapidly solidified and made into an alloy powder.
Another aspect of the present invention is an alloy powder composed of two or more refractory metal elements having a melting point of 1600 ° C. or higher, having a melt-solidified structure, a particle size of 500 μm or less, and an oxygen content of 500 ppm or less. A fine alloy powder.

本発明によれば、高融点合金粉末の酸素含有量を飛躍的に低減させることができ、情報産業機器に使用される低酸素含有量の微細合金粉末の実用化にとって欠くことのできない技術となる。   According to the present invention, the oxygen content of the high melting point alloy powder can be drastically reduced, and it becomes an indispensable technique for the practical application of the low oxygen content fine alloy powder used in information industry equipment. .

本発明の重要な特徴は、1600℃以上の2種以上の高融点金属元素からなる複合体を溶解すると同時に、複合体に含まれる酸素を低減する精錬効果を付与する手段として、還元性ガスを含む高温プラズマを用いることにある。   An important feature of the present invention is that a reducing gas is used as a means for imparting a refining effect for reducing oxygen contained in a composite while simultaneously dissolving a composite composed of two or more refractory metal elements at 1600 ° C. or higher. It is to use high temperature plasma containing.

本発明の微細合金粉末の製造方法について、以下に詳しく説明する。
本発明において、微細合金粉末の化学成分を融点が1600℃以上の2種以上の高融点金属元素としているのは、融点が1600℃以上の金属元素からなる合金においては、液相温度が1600℃程度以上の高温となるために、高周波誘導溶解等の一般的な溶解鋳造による方法では、溶解炉内に使用されている耐火物の耐熱温度を超えてしまい合金の溶湯の保持が困難となり、溶湯を凝固させた合金インゴットが実質的に作製できないためである。このため、融点が1600℃以上の高融点金属元素からなる合金を作製する場合には、合金溶湯の保持を実質的に回避する方法の検討が必要となるのである。
The production method of the fine alloy powder of the present invention will be described in detail below.
In the present invention, the chemical components of the fine alloy powder are two or more refractory metal elements having a melting point of 1600 ° C. or higher. In the case of an alloy composed of a metal element having a melting point of 1600 ° C. or higher, the liquidus temperature is 1600 ° C. Due to the high temperature above the level, the general melting casting method such as high frequency induction melting exceeds the heat resistance temperature of the refractory used in the melting furnace, making it difficult to maintain the molten alloy. This is because an alloy ingot that has been solidified cannot be substantially produced. For this reason, when producing an alloy made of a refractory metal element having a melting point of 1600 ° C. or higher, it is necessary to study a method for substantially avoiding the retention of molten alloy.

そして、本発明の微細合金粉末の製造方法においては、まず融点が1600℃以上の2種以上の高融点金属元素を複合化した複合体を作製する。この複合体とは、例えば、2種以上の高融点金属元素の粉末を混合した後に圧縮成形した圧密体、2種以上の高融点金属元素の箔体を重ね合わせて接合した接合体、1種の高融点金属元素の細線上に他の高融点金属元素を被覆した多層細線や、さらにこれらを所定サイズに粉砕、打ち抜き、切断したものが挙げられる。   And in the manufacturing method of the fine alloy powder of this invention, the composite body which compounded 2 or more types of refractory metal elements with melting | fusing point 1600 degreeC or more first is produced. The composite is, for example, a compact formed by mixing two or more kinds of powders of refractory metal elements and then compression-molded, a joined body obtained by superimposing and joining foil bodies of two or more kinds of refractory metal elements, And a multilayer thin wire coated with another refractory metal element on the refractory metal element thin wire, and those obtained by pulverizing, punching and cutting them into a predetermined size.

次に、この複合体を還元性ガスを含む高温プラズマで溶解し、急冷凝固する。複合体は、温度が5000〜10000℃にも達する高温プラズマに曝されることで溶解されると同時に、高温プラズマの領域には還元性ガスが含まれるために、特に、この還元性ガスが高温プラズマ中で活性種として作用し、酸素還元効果が促進される。一般的に高温プラズマはAr等の不活性ガスを作動ガスとして形成されるが、不活性ガスのみで高温プラズマを発生させた場合と比較して還元性ガスが含まれる場合には、高温プラズマのエネルギー密度、熱伝導率が向上し、低価酸化物の蒸発が促進されることからも、更に酸素が低減することができるものと考えられる。   Next, this composite is melted by high-temperature plasma containing a reducing gas and rapidly solidified. The composite is melted by being exposed to high-temperature plasma reaching a temperature of 5000 to 10000 ° C., and at the same time, the reducing gas is contained in the region of the high-temperature plasma. It acts as an active species in the plasma and promotes the oxygen reduction effect. In general, high-temperature plasma is formed by using an inert gas such as Ar as a working gas. However, when reducing gas is included as compared with the case where high-temperature plasma is generated using only inert gas, It is considered that oxygen can be further reduced because the energy density and thermal conductivity are improved and evaporation of the low-valent oxide is promoted.

また、本発明における還元性ガスとしてはH、CH、C、COなどが挙げられる。2H+O=2HOの反応によるHガスの還元効果は一般的に広く知られている。また、C(炭素)とH(水素)で構成される還元性ガスは高温プラズマ中においてCとHに解離し、Hは前述の様な反応により還元性ガスとして作用し、Cも同様に還元効果に寄与する。Cは、エリンガム図からもわかる様に、高温プラズマの温度領域においては2C+O=2COで表される酸化物の標準生成自由エネルギーは、あらゆる金属元素の酸化物の標準生成自由エネルギーに比べて低いことから、高温プラズマ中においては熱力学的に最も高い還元効果を持つ。そのため、CとHで構成されるCH、C、COなどが、高温プラズマ中でより高い還元効果を期待できるため、還元性ガスとしてより好ましいものである。 As the reducing gas in the present invention and the like H 2, CH 4, C 2 H 5, CO. The reduction effect of H 2 gas by the reaction of 2H 2 + O 2 = 2H 2 O is generally widely known. In addition, the reducing gas composed of C (carbon) and H (hydrogen) is dissociated into C and H in the high temperature plasma, and H acts as a reducing gas by the reaction as described above, and C is similarly reduced. Contributes to the effect. As can be seen from the Ellingham diagram, the standard free energy of formation of oxides represented by 2C + O 2 = 2CO is lower than the standard free energy of formation of oxides of all metal elements in the temperature region of high temperature plasma. Therefore, it has the highest thermodynamic reduction effect in high-temperature plasma. Therefore, CH 4 , C 2 H 5 , CO, and the like composed of C and H are more preferable as the reducing gas because a higher reduction effect can be expected in high-temperature plasma.

また、高温プラズマの領域における還元性ガスの流量は、プラズマを発生させる雰囲気の作動ガス中に5vol%以上となると、顕著な還元効果が認められ、50vol%を超えるとプラズマが不安定となり、溶解処理の効率が急激に低下する。したがって、還元性ガスの流量はプラズマを発生させる雰囲気の作動ガス中で5〜50vol%の濃度とすることが望ましい。なお、作動ガス中の還元性ガス以外の残部は、一般の不活性ガス、例えばArガスが使用できる。   In addition, when the flow rate of the reducing gas in the high temperature plasma region is 5 vol% or more in the working gas in the atmosphere generating the plasma, a remarkable reducing effect is recognized, and when it exceeds 50 vol%, the plasma becomes unstable and is dissolved. The efficiency of processing decreases rapidly. Therefore, it is desirable that the flow rate of the reducing gas be 5 to 50 vol% in the working gas in an atmosphere that generates plasma. In addition, general inert gas, for example, Ar gas, can be used for the remainder other than the reducing gas in working gas.

また、本発明の微細合金粉末の製造方法にとしては、2種以上の高融点金属元素は粉末を混合した後、圧縮成形した圧密体を粉砕した二次粉末を還元性ガスを含む高温プラズマに通過させて溶解して急冷凝固させる方法がより望ましい。それは、一般に高融点金属は化学的な生成方法によって作製した粉末形状で流通しているため、複合体の作製においては、高融点金属元素の粉末を混合した後、圧縮成形して圧密体とすることが効率的であるためである。また、2種以上の高融点金属元素を高温プラズマにより溶解して合金化するプロセスにおいては、高温プラズマで溶解する高融点金属元素の複合体が小径の粉末であると、溶解合金化のための熱エネルギーを効率よく利用できるため、圧密体を粉砕することで小径にした粉末を使用することが生産効率の上で望ましいためである。   In addition, as a method for producing a fine alloy powder of the present invention, two or more refractory metal elements are mixed with powder, and then the secondary powder obtained by pulverizing the compacted compact is formed into a high-temperature plasma containing a reducing gas. A method of passing and dissolving and rapid solidification is more desirable. In general, refractory metals are distributed in the form of powders produced by chemical production methods. Therefore, in the production of composites, powders of refractory metal elements are mixed and then compacted to form a compact. This is because it is efficient. Further, in the process of melting and alloying two or more refractory metal elements with high-temperature plasma, if the complex of the refractory metal elements dissolved with high-temperature plasma is a small-diameter powder, This is because heat energy can be used efficiently, and it is desirable in terms of production efficiency to use a powder having a small diameter by pulverizing the compact.

また、圧縮成形の方法は、特に限定されず、プレス成形、冷間静水圧プレス等の粉末を圧縮して圧密体とするものであればよい。なお、圧縮成形した圧密体に大きな空孔が存在すると、圧密体を粉砕処理した二次粉末にもこの空孔が残存し、さらに高温プラズマに通過させて溶融凝固した合金粉末に空隙を残存させる可能性がある。よって、好ましくは、圧密体は単位体積中の密度比を60%以上に圧縮成形することが望ましい。
また、二次粉末の粒径が5μmに満たない場合、高温プラズマ中においてプラズマに曝される二次粉末の粒子体積に対する比表面積が増大することで熱エネルギー吸収量が相対的に大きくなるため蒸発しやすくなる。蒸発した二次粉末の粒子は超微粒子として他の微細合金粉末に吸着する際に雰囲気内の酸素を取込む可能性があるため、回収後の微細合金粉末の酸素含有量を著しく上昇させるため好ましくない。また、二次粉末の粒径が500μmを超えると、二次粉末中に大きな空孔が残存する可能性があり、上述したように微細合金粉末中に空隙が残存する可能性が高まるため好ましくない。よって、二次粉末の粒径としては、5〜500μmとすることが望ましい。
The compression molding method is not particularly limited as long as the powder is compressed into a compacted body such as press molding or cold isostatic pressing. If large pores exist in the compacted compact, the pores also remain in the secondary powder obtained by pulverizing the compact, and voids remain in the melted and solidified alloy powder by passing it through high-temperature plasma. there is a possibility. Therefore, it is preferable that the compact is compression-molded so that the density ratio in the unit volume is 60% or more.
In addition, when the particle size of the secondary powder is less than 5 μm, the specific surface area with respect to the particle volume of the secondary powder exposed to the plasma in the high-temperature plasma increases, so that the amount of heat energy absorbed becomes relatively large, and thus the evaporation. It becomes easy to do. Since the evaporated secondary powder particles may take up oxygen in the atmosphere when adsorbed to other fine alloy powders as ultrafine particles, it is preferable to significantly increase the oxygen content of the recovered fine alloy powder. Absent. Further, when the particle size of the secondary powder exceeds 500 μm, there is a possibility that large voids may remain in the secondary powder, and the possibility that voids remain in the fine alloy powder as described above is not preferable. . Therefore, the particle size of the secondary powder is desirably 5 to 500 μm.

また、前記高温プラズマとは、φ100mm以下の円筒形のプラズマ発生空間を有する高周波誘導プラズマ装置により発生させた、還元性ガスを含む高周波誘導プラズマであることが望ましい。それは、高周波誘導プラズマは粉末粒子を溶解過程で炉材等に接触することなく粉末の回収が可能であり、尚且つ、粉末粒子を溶解し、粉末粒子として凝固させることが可能なことから、粉砕工程が必要ないため、不純物の混入を防止することができるからである。また、プラズマ発生空間が過分に大口径になると、プラズマ出力を上昇させることが可能であるが、高周波誘導プラズマ特有のヒートシンク領域が増大し、溶解効率を減少させる場合がある。そのため、より均一な温度領域の高温プラズマを発生させて、溶解効率を維持する上では、プラズマ発生空間をφ100mm以下程度にすることが望ましい。   The high-temperature plasma is preferably high-frequency induction plasma including a reducing gas generated by a high-frequency induction plasma apparatus having a cylindrical plasma generation space of φ100 mm or less. It is possible to recover the powder without contacting the furnace material etc. in the process of melting the powder particles, and the high frequency induction plasma can be pulverized because the powder particles can be melted and solidified as powder particles. This is because a process is not necessary, so that contamination of impurities can be prevented. In addition, if the plasma generation space becomes excessively large in diameter, the plasma output can be increased, but the heat sink region unique to the high frequency induction plasma increases, which may decrease the melting efficiency. Therefore, in order to generate high temperature plasma in a more uniform temperature region and maintain melting efficiency, it is desirable that the plasma generation space be about φ100 mm or less.

また、本発明におけるもう一方の重要な特徴は、融点が1600℃以上の2種以上の高融点金属元素からなる微細合金粉末として、均一な成分組成と粉末粒径、ガス成分のうち特に酸素含有量を500ppm以下に制御した点にある。   The other important feature of the present invention is that, as a fine alloy powder composed of two or more refractory metal elements having a melting point of 1600 ° C. or higher, a uniform component composition, a powder particle size, and particularly an oxygen-containing component among gas components. The amount is controlled to 500 ppm or less.

本発明の微細合金粉末は、個々の粉末粒子において、粒子を構成する2種以上の高融点金属元素が化学成分的に均一に合金化したものである。高融点金属元素の選択によって合金組織は、例えば、全率固溶体組織、共晶組織、包晶組織などとなるが、溶解凝固組織でかつ粒径500μm以下の微細粉末となることで、粉末粒子内での化学成分の均一の微細合金粉末となる。   The fine alloy powder of the present invention is obtained by uniformly alloying two or more kinds of refractory metal elements constituting particles in individual powder particles. Depending on the selection of the refractory metal element, the alloy structure becomes, for example, a full solid solution structure, a eutectic structure, a peritectic structure, etc., but becomes a fine powder having a dissolved solidified structure and a particle size of 500 μm or less. It becomes a fine alloy powder having a uniform chemical composition.

また、本発明の微細合金粉末は、粉末粒径が500μm以下である。
粉末粒径が500μm以下とするのは、上述した微細合金粉末粒子内の組成均一性の実現と同時に粉末粒子中に過大な空隙が存在しない微細合金粉末とするためである。過大な空隙が微細合金粉末内に存在すると、微細合金粉末を原料粉末として焼結体を作製した場合に、この空隙を閉塞させることは困難であるため、焼結体内に空隙が残存する可能性を増大させるとともに、焼結体の相対密度が向上しない要因ともなる。粉末粒径が500μmを越えると、過大な空隙が存在する微細粉末粒子が発生する可能性が顕著になる。
The fine alloy powder of the present invention has a powder particle size of 500 μm or less.
The reason why the powder particle size is 500 μm or less is to achieve the above-described compositional uniformity within the fine alloy powder particles and at the same time to obtain a fine alloy powder having no excessive voids in the powder particles. If excessive voids exist in the fine alloy powder, it is difficult to close the voids when a sintered body is produced using the fine alloy powder as a raw material powder. And the relative density of the sintered body is not improved. If the powder particle size exceeds 500 μm, the possibility of generating fine powder particles with excessive voids becomes significant.

また、本発明の微細合金粉末は、酸素含有量が500ppm以下である。酸素含有量を500ppm以下とするのは、酸素が多量に含まれると、微細合金粉末を原料粉末として焼結体を作製した場合に、粗大な酸化物を形成する可能性があるためである。特に、焼結体がスパッタリング用のターゲット材である場合には、粗大な酸化物が存在するとスパッタ成膜時の異常放電によるパーティクル(異物粒子)の発生、薄膜の導電率や磁気特性等の低下を引き起こす。このため、酸素含有量は極力低減するのが望ましく、酸素含有量を500ppm以下とする。   The fine alloy powder of the present invention has an oxygen content of 500 ppm or less. The reason why the oxygen content is 500 ppm or less is that when a large amount of oxygen is contained, a coarse oxide may be formed when a sintered body is produced using the fine alloy powder as a raw material powder. In particular, when the sintered body is a target material for sputtering, the presence of coarse oxides causes the generation of particles (foreign particles) due to abnormal discharge during sputter deposition, and decreases the conductivity and magnetic properties of the thin film. cause. For this reason, it is desirable to reduce the oxygen content as much as possible, and the oxygen content is set to 500 ppm or less.

以下の実施例で本発明を更に詳しく説明する。
図1は高温プラズマ処理装置の一例を示す構成図である。実施例においては、高温プラズマ装置には図1に示す構造のものを用いた。本装置は交流高温プラズマ装置である誘導結合型RFプラズマトーチから構成されるもので、冷却壁1で仕切られたプラズマ発生空間2を有し、その外側に設けた高周波コイル3と、高周波コイル3の軸方向の一方から作動ガスを供給する作動ガス供給部4と、高周波コイルの内側に発生させた高温プラズマ炎5中にキャリアガスとともに粉末原料を供給する粉末供給ノズル6と、粉末供給ノズル6へチューブを介して粉末原料を定量的に搬送する粉末供給装置7と、プラズマ炎の下流側に設けたチャンバー8と、チャンバー8の底部にプラズマ炎中を通過した粉末を回収するための回収容器9と、チャンバーからの排気を行う排気装置10を具備する粉末の熱プラズマ処理装置である。
The following examples further illustrate the present invention.
FIG. 1 is a configuration diagram showing an example of a high-temperature plasma processing apparatus. In the embodiment, the high temperature plasma apparatus having the structure shown in FIG. 1 was used. This apparatus is composed of an inductively coupled RF plasma torch which is an AC high temperature plasma apparatus, and has a plasma generation space 2 partitioned by a cooling wall 1, a high frequency coil 3 provided outside the plasma generation space 2, and a high frequency coil 3. A working gas supply unit 4 for supplying a working gas from one of the axial directions, a powder supply nozzle 6 for supplying a powder raw material together with a carrier gas into a high-temperature plasma flame 5 generated inside the high-frequency coil, and a powder supply nozzle 6 A powder supply device 7 that quantitatively conveys the powder raw material through the tube, a chamber 8 provided on the downstream side of the plasma flame, and a collection container for collecting the powder that has passed through the plasma flame at the bottom of the chamber 8 9 and a thermal plasma processing apparatus for powder comprising an exhaust apparatus 10 for exhausting air from the chamber.

この装置はφ100mmの円筒形のプラズマ発生空間を有しており、処理時のプラズマ動作条件は出力180kW、圧力80kPa、作動ガスとして不活性ガスのArガスを合計300L/min(nor)、還元性ガスとして水素ガスを合計50L/min(nor)、キャリアガスとして不活性ガスのArガス10L/min(nor)の設定とした。また、熱プラズマ炎への処理粉末の供給速度は10kg/hで設定した。   This apparatus has a cylindrical plasma generation space of φ100 mm, plasma operating conditions during processing are an output of 180 kW, a pressure of 80 kPa, a total of 300 L / min (nor) of inert Ar gas as a working gas, and a reducing property. A total of 50 L / min (nor) of hydrogen gas was used as the gas, and an inert gas Ar gas of 10 L / min (nor) was used as the carrier gas. Moreover, the supply rate of the processing powder to the thermal plasma flame was set at 10 kg / h.

まず、融点がともに1600℃以上の高融点金属元素であるMo(融点2615℃)およびNb(融点2468℃)について、それぞれ粒径45μm以下のMo粉末とNb粉末と準備した。これらの高融点金属元素粉末を混合機により1時間混合した後、この混合粉末を冷間静水圧プレスにより圧縮成形した圧密体を成形した。この圧密体をジョークラッシャーおよびディスクミルで粉砕処理し、最大粒径が106μm以下の二次粉末を作製した。作製したMoNbの複合体である二次粉末を図1に示す高温プラズマ装置により、還元性ガスとしてHガスを含む高温プラズマで溶解、還元し、チャンバー8内を落下させながら急冷凝固させて、チャンバー底部の回収容器9でMoNb微細合金粉末を回収した。このMoNb微細合金粉末を試料1とする。なお、試料1の平均粒径は48μmであった。また、高温プラズマの高周波電源周波数は2MHzである。 First, Mo powder and Nb powder each having a particle size of 45 μm or less were prepared for Mo (melting point: 2615 ° C.) and Nb (melting point: 2468 ° C.), which are high melting point metal elements having both melting points of 1600 ° C. or more. These refractory metal element powders were mixed with a mixer for 1 hour, and then a compact was formed by compression-molding the mixed powder with a cold isostatic press. The compacted body was pulverized by a jaw crusher and a disk mill to produce a secondary powder having a maximum particle size of 106 μm or less. The produced secondary powder, which is a composite of MoNb, is melted and reduced with high-temperature plasma containing H 2 gas as a reducing gas by the high-temperature plasma apparatus shown in FIG. 1 and rapidly cooled and solidified while dropping in the chamber 8. The MoNb fine alloy powder was recovered in the recovery container 9 at the bottom of the chamber. This MoNb fine alloy powder is designated as Sample 1. The average particle size of Sample 1 was 48 μm. Further, the high frequency power supply frequency of the high temperature plasma is 2 MHz.

また、比較例として、高温プラズマに還元性ガスを含ませず、二次粉末の溶解に必要な高出力を安定的に制御するためにNガスを使用し、それ以外の条件は上記と同様の方法で、MoNb微細合金粉末を作製した。これを試料2とする。 In addition, as a comparative example, N 2 gas is used in order to stably control the high output necessary for dissolving the secondary powder without containing the reducing gas in the high temperature plasma, and other conditions are the same as above. Thus, a MoNb fine alloy powder was produced. This is designated as Sample 2.

試料1および試料2に関して、酸素と炭素を赤外線吸収法によって、窒素と水素を熱伝導度法によって、それぞれガス成分分析を行った。測定結果を表1に示す。表1から、還元性ガスを含まない高温プラズマで作製した試料2においては、高温プラズマに通過させる前の二次粉末と比較して若干酸素含有量は低減されているが、十分な還元効果が得られていないことが分かる。これに対して、還元性ガスとして水素ガスを含む高温プラズマにより作製した試料1においては、Nbは酸素との親和力が高いにも関わらず、酸素含有量が500ppm以下となり十分な酸素低減がなされていることが分かる。   Samples 1 and 2 were subjected to gas component analysis using oxygen and carbon by infrared absorption method and nitrogen and hydrogen by thermal conductivity method, respectively. The measurement results are shown in Table 1. From Table 1, sample 2 produced with high-temperature plasma containing no reducing gas has a slightly reduced oxygen content compared to the secondary powder before passing through high-temperature plasma, but has a sufficient reduction effect. It turns out that it is not obtained. On the other hand, in the sample 1 produced by high-temperature plasma containing hydrogen gas as a reducing gas, Nb has a high affinity with oxygen, but the oxygen content is not more than 500 ppm and sufficient oxygen reduction is performed. I understand that.

また、試料1の粉末断面を走査型電子顕微鏡(SEM)によって組織観察した。このSEMによる組織写真を図2に示す。また、試料1の化学成分の状態を確認するために、図2と同一視野において、SEMによって化学成分をカラーマップ化した。このカラーマップのスケッチを図3に示す。図2によると、全率固溶系であるMoNb合金として溶解凝固組織で均一な組織を有する微細合金であることが分かる。また、図3に示すカラーマップから、白色で示されるMo、濃灰色で示されるNbがいずれも球状の微細粉末粒子上に均一に示されており、同粒子内で化学組成が均一になっていることが分かる。   In addition, the powder cross section of Sample 1 was observed with a scanning electron microscope (SEM). The structure photograph by this SEM is shown in FIG. Further, in order to confirm the state of the chemical component of the sample 1, the chemical component was color mapped by SEM in the same field of view as FIG. A sketch of this color map is shown in FIG. According to FIG. 2, it can be seen that the MoNb alloy, which is a complete solid solution system, is a fine alloy having a uniform structure with a melt-solidified structure. Further, from the color map shown in FIG. 3, both Mo shown in white and Nb shown in dark gray are uniformly shown on the spherical fine powder particles, and the chemical composition becomes uniform in the particles. I understand that.

本発明の実施例で用いる高温プラズマ装置の一例を示す構成図である。It is a block diagram which shows an example of the high temperature plasma apparatus used in the Example of this invention. 本発明の実施例で作製した試料1の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the sample 1 produced in the Example of this invention. 図3と同一視野において、走査型電子顕微鏡でカラーマップ化したスケッチである。FIG. 4 is a color map sketched with a scanning electron microscope in the same field of view as FIG. 3.

符号の説明Explanation of symbols

1. 冷却壁、2. プラズマ発生空間、3. 高周波コイル、4. 作動ガス供給部、5. 高温プラズマ炎、6. 粉末供給ノズル、7. 粉末供給装置、8. チャンバー、9. 回収容器、10. 排気装置 1. Cooling wall, 2. 2. Plasma generation space High frequency coil, 4. 4. working gas supply unit; 5. high temperature plasma flame; 6. Powder supply nozzle, Powder feeder, 8. 8. chamber; Collection container, 10. Exhaust system

Claims (3)

融点が1600℃以上の2種以上の高融点金属元素が複合化した複合体を、還元性ガスを含む高温プラズマで溶解し、急冷凝固させて合金粉末とすることを特徴とする微細合金粉末の製造方法。 A fine alloy powder characterized in that a composite of two or more refractory metal elements having a melting point of 1600 ° C. or higher is dissolved in high-temperature plasma containing a reducing gas and rapidly solidified to form an alloy powder. Production method. 融点が1600℃以上の2種以上の高融点金属元素粉末を混合した後、圧縮成形した圧密体を粉砕処理して二次粉末とし、次いで該二次粉末を還元性ガスを含む高温プラズマに通過させて溶解し、急冷凝固させて合金粉末とすることを特徴とする請求項1に記載の微細合金粉末の製造方法。 After mixing two or more refractory metal element powders having a melting point of 1600 ° C. or higher, the compacted compact is pulverized into a secondary powder, and then the secondary powder is passed through a high-temperature plasma containing a reducing gas. The method for producing a fine alloy powder according to claim 1, wherein the alloy powder is melted and rapidly solidified by cooling. 融点が1600℃以上の2種以上の高融点金属元素からなる合金粉末であって、溶解凝固組織を有し、粒径500μm以下、かつ酸素含有量が500ppm以下であることを特徴とする微細合金粉末。 An alloy powder comprising two or more refractory metal elements having a melting point of 1600 ° C. or higher, having a melt-solidified structure, a particle size of 500 μm or less, and an oxygen content of 500 ppm or less Powder.
JP2005098234A 2005-03-30 2005-03-30 Method for manufacturing fine powder of alloy, and fine powder of alloy Pending JP2006274399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098234A JP2006274399A (en) 2005-03-30 2005-03-30 Method for manufacturing fine powder of alloy, and fine powder of alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098234A JP2006274399A (en) 2005-03-30 2005-03-30 Method for manufacturing fine powder of alloy, and fine powder of alloy

Publications (1)

Publication Number Publication Date
JP2006274399A true JP2006274399A (en) 2006-10-12

Family

ID=37209431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098234A Pending JP2006274399A (en) 2005-03-30 2005-03-30 Method for manufacturing fine powder of alloy, and fine powder of alloy

Country Status (1)

Country Link
JP (1) JP2006274399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158685A1 (en) * 2019-01-28 2020-08-06 三井金属鉱業株式会社 Sn particles, conductive composition using the same, and method for producing sn particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342506A (en) * 2000-05-31 2001-12-14 Hitachi Metals Ltd Method for production of powder material and method for producing target material
JP2004091843A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Manufacturing method of high purity high melting point metal powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342506A (en) * 2000-05-31 2001-12-14 Hitachi Metals Ltd Method for production of powder material and method for producing target material
JP2004091843A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Manufacturing method of high purity high melting point metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158685A1 (en) * 2019-01-28 2020-08-06 三井金属鉱業株式会社 Sn particles, conductive composition using the same, and method for producing sn particles

Similar Documents

Publication Publication Date Title
Sun et al. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4465662B2 (en) Method for producing metal powder and method for producing target material
TWI329330B (en) Production of high-purity niobium monoxide and capacitor production therefrom
JP5874951B2 (en) Method for producing RTB-based sintered magnet
JP4240380B2 (en) Manufacturing method of magnetic material
JP2011042873A (en) Porous metal and method for producing the same
CN104372230A (en) High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof
JP6703759B2 (en) Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
CN101767203B (en) Minute spherical hydrogen-storage alloy powder preparation method
JP2005336617A (en) Target for sputtering, its production method and high melting point metal powder material
JP2005336617A5 (en)
JP2009287106A (en) Method for producing titanium spherical powder, and titanium spherical powder
JP2007211333A (en) Tungsten ultrafine powder and production method therefor
CN107617749A (en) A kind of method that spherical powder is prepared using TC4 titanium alloy scraps
JP4609763B2 (en) Method for producing low oxygen metal powder
JP2006274399A (en) Method for manufacturing fine powder of alloy, and fine powder of alloy
Qian et al. A method for the preparation of spherical titanium powder for additive manufacturing
JP2009287105A (en) Method for producing spherical titanium based powder
JP7196666B2 (en) Sintered body for rare earth magnet and method for producing the same
JP7196667B2 (en) Manufacturing method of sintered body for rare earth magnet
JPWO2020166380A1 (en) Sputtering target material
JP2011084754A (en) Method for manufacturing sputtering target
He et al. Nanophase Fe alloys consolidated to full density from mechanically milled powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100521