WO2020137812A1 - 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法 - Google Patents

高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法 Download PDF

Info

Publication number
WO2020137812A1
WO2020137812A1 PCT/JP2019/049853 JP2019049853W WO2020137812A1 WO 2020137812 A1 WO2020137812 A1 WO 2020137812A1 JP 2019049853 W JP2019049853 W JP 2019049853W WO 2020137812 A1 WO2020137812 A1 WO 2020137812A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
pressure hydrogen
less
steel
steel material
Prior art date
Application number
PCT/JP2019/049853
Other languages
English (en)
French (fr)
Inventor
彰英 長尾
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217019452A priority Critical patent/KR102551610B1/ko
Priority to JP2020519146A priority patent/JP6989004B2/ja
Priority to US17/418,322 priority patent/US20220064770A1/en
Priority to EP19902477.9A priority patent/EP3904541A4/en
Priority to CN201980086056.4A priority patent/CN113272452B/zh
Publication of WO2020137812A1 publication Critical patent/WO2020137812A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a steel material and a steel structure suitable for a high-pressure hydrogen gas environment, and a method for manufacturing a steel material for a high-pressure hydrogen gas environment, and particularly to improvement of hydrogen embrittlement resistance of a steel material under a high-pressure hydrogen gas environment.
  • Fuel cell vehicles run by filling hydrogen into a tank instead of conventional gasoline. Therefore, a hydrogen station for refueling is needed instead of the gas station. In order to popularize fuel cell vehicles, it is important to construct many hydrogen stations for refueling in general urban areas.
  • the transport pressure is 10 MPa class
  • the line pipe is exposed to 10 MPa class hydrogen gas pressure.
  • the hydrogen storage steel structures for storing and supplying high-pressure hydrogen gas, and steel structures for hydrogen, such as line pipes used for mass transportation of hydrogen gas, are used while being exposed to the high-pressure hydrogen gas environment. To be done.
  • low-alloy steel materials which have the advantages of low price and high strength, can be considered first.
  • the low alloy steel material has a problem that it easily becomes so-called “hydrogen embrittlement”, which is brittle when hydrogen enters.
  • austenitic stainless steels such as SUS316L, which are less susceptible to hydrogen embrittlement than low-alloy steels, have been used for steel structures used in high-pressure hydrogen gas environments.
  • austenitic stainless steels such as SUS316L have high steel costs and low strength, so if they are designed to withstand high hydrogen pressure, the wall thickness becomes thicker and the price of the hydrogen structure itself increases. It becomes expensive. Therefore, there has been a strong demand for a low alloy steel material for a steel structure for hydrogen, which has a lower cost and can withstand a high-pressure hydrogen gas environment.
  • Patent Document 1 proposes high-pressure hydrogen environment steel.
  • the high-pressure hydrogen environment steel described in Patent Document 1 is a steel used in a high-pressure hydrogen environment, and in mass%, C: 0.03 to 0.18%, Si: 0.1 to 0.5%, Mn: 0.2 to 1.8. %, P: 0.025% or less, S: 0.002-0.02%, sol.Al: 0.01-0.10%, Ca: 0.001-0.10%, or V: 0.03-0.3%, including Ca/S: less than 1.5 or 11
  • the above is a steel having a chemical composition consisting of the balance Fe and impurities.
  • MnS and Ca-based composite inclusions are formed as trap sites for diffusible hydrogen, and VC is further formed, and diffusible hydrogen is used as non-diffusible hydrogen to adjust the diffusible hydrogen concentration ratio. It is said that the amount of the hydrogen is reduced and the brittleness due to diffusible hydrogen is suppressed.
  • Patent Document 2 proposes a low-alloy high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance.
  • the low alloy high strength steel described in Patent Document 2 is C: 0.10 to 0.20%, Si: 0.10 to 0.40%, Mn: 0.50 to 1.20%, P: 0.005% or less, S: 0.005% or less in mass%.
  • Cr 0.20 to 0.80%, Cu: 0.10 to 0.50%, Mo: 0.10 to 1.00%, V: 0.01 to 0.10%, B: 0.0005 to 0.005%, N: 0.01% or less, balance Fe and inevitable It is a high-strength steel with a composition of impurities.
  • tempering is performed at a relatively high temperature of 600 to 640°C, and tensile strength: 900 to 950 MPa. It is said that it is preferable to adjust to an extremely narrow range. It is said that this will result in a low alloy, high strength steel that exhibits excellent elongation and drawing characteristics even in a hydrogen atmosphere of 45 MPa and is excellent in high-pressure hydrogen environment embrittlement resistance.
  • Patent Document 3 proposes a low-alloy high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance.
  • the low-alloy high-strength steel described in Patent Document 3 is, in mass%, C: 0.10 to 0.20%, Si: 0.10 to 0.40%, Mn: 0.50 to 1.20%, P: 0.005% or less, S: 0.002% or less.
  • Ni 0.75 to 1.75%
  • Cr 0.20 to 0.80%
  • Cu 0.10 to 0.50%
  • Mo 0.10 to 1.00%
  • V 0.01 to 0.10%
  • B 0.0005 to 0.005%
  • N 0.01% or less
  • it is a Cr-Mo high strength low alloy steel containing Nb: 0.01 to 0.10% and Ti: 0.005 to 0.050%, one or two, and the balance being Fe and inevitable impurities.
  • Patent Document 4 proposes a low alloy steel for high-pressure hydrogen gas environment.
  • the low alloy steel described in Patent Document 4 is C: 0.15 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.05 to 3.0%, P: 0.025% or less, S: 0.010% or less, Al in mass%. : 0.005-0.10%, Mo: 0.5-3.0%, V: 0.05-0.30%, O (oxygen): 0.01% or less, N: 0.03% or less, and the composition consisting of the balance Fe and impurities, and Tensile strength: Low alloy steel for high pressure hydrogen gas environment with 900MPa or more.
  • B 0.0003 to 0.003% may be contained.
  • N 0.010% or less.
  • Patent Document 5 proposes a steel for a high-pressure hydrogen gas storage container having excellent hydrogen resistance.
  • MC-based carbide (Mo, V) C is obtained by subjecting a steel having the above-described composition to stress-relief annealing for a long time after normalizing treatment during steel sheet production. It is said that the particles are finely and densely dispersed and precipitated to improve hydrogen resistance such as hydrogen embrittlement resistance of steel.
  • Patent Document 6 proposes a steel material for high-pressure hydrogen storage.
  • the steel material described in Patent Document 6 is, by mass%, C: 0.05 to 0.12%, Si: 0.01 to 0.50%, Mn: more than 0.6 to 1.8%, P: 0.02% or less, S: 0.003% or less, Al: It contains 0.01 to 0.08%, the balance is Fe and unavoidable impurities, and the bainite is mainly composed of an area fraction of 90% or more and the average grain size is 50 nm or less and the cementite with an average aspect ratio of 3 or less is contained in bainite. Steel material that is dispersed and precipitated. According to the technique described in Patent Document 6, by dispersing fine cementite having a small aspect ratio, it is possible to reduce the amount of hydrogen penetration from the high-pressure hydrogen atmosphere, further improve the base material toughness, and Brittleness is said to be suppressed.
  • Patent Document 7 proposes a high-strength steel material for a high-pressure hydrogen storage container.
  • the high-strength steel material described in Patent Document 7 is, by mass%, C: 0.05 to 0.15%, Si: 0.01 to 0.50%, Mn: more than 0.6 to 2.5%, P: 0.02% or less, S: 0.003% or less, Al: 0.01-0.08%, Pcm 0.19 or more, balance Fe and unavoidable impurities, lower bainite with area fraction 70% or more and island martensite with area fraction 3% or less It is a high-strength steel material having a tensile strength of 780 Mpa or more.
  • Patent Document 8 describes a steel material having excellent fatigue crack growth resistance in a high-pressure hydrogen environment.
  • the steel materials described in Patent Document 8 are C: 0.05 to 0.60%, Si: 0.01 to 2.0%, Mn: 0.3 to 3.0%, P: 0.001 to 0.040%, S: 0.0001 to 0.010%, N in mass%. : 0.0001-0.0060%, Al: 0.01-1.5%, Ti: 0.01-0.20%, Nb: 0.01-0.20%, V: 0.01% or more and less than 0.05%, or 2 or more,
  • B 0.0001 to 0.01%
  • Mo 0.005 to 2.0%
  • Cr 0.005 to 3.0%
  • one or more components and 95% or more by volume of tempered martensite.
  • the fatigue crack growth rate can be dramatically reduced in a high-pressure hydrogen environment of 80 MPa or more compared with conventional steel, and use of a hydrogen pressure accumulator or the like used in a high-pressure hydrogen environment It is said that the life can be improved and the safety of hydrogen storage containers used in a high-pressure hydrogen environment can be improved.
  • Non-Patent Document 1 and Non-Patent Document 2 describe fracture toughness values of low alloy steels.
  • the upper bainite containing coarse carbides should be reduced.
  • the present invention is suitable for a steel structure used in a high-pressure hydrogen gas environment, such as a hydrogen pressure accumulator, a hydrogen line pipe, etc.
  • An object of the present invention is to provide a steel material and a steel structure having excellent brittleness characteristics, and a method for producing a steel material for a high-pressure hydrogen gas environment.
  • excellent in hydrogen embrittlement resistance under high-pressure hydrogen gas environment means that at a room temperature (20 ⁇ 10°C) and a pressure of 115 MPa in a hydrogen gas atmosphere, the Japan Pressure Vessel Research Conference Material Research Group
  • the fracture toughness value K IH obtained by conducting the fracture toughness test in accordance with the Task Force for Hydrogen Embrittlement TASK Group V (1991) is 40 MPa ⁇ m 1/2 or more.
  • steel material here includes thin steel plates, thick steel plates, seamless steel pipes, electric resistance welded steel pipes, shaped steels, steel bars, and the like.
  • the present inventor diligently studied various factors affecting the hydrogen embrittlement resistance of carbon-based and low-alloy steels.
  • Si and Cu, or even Al in a composite amount of 0.5% or more by mass %, the hydrogen embrittlement resistance of steel materials in a high-pressure hydrogen gas atmosphere is significantly improved. I found it.
  • uniformly cooling the steel material it is possible to suppress the local temperature rise due to localization of the transformation heat generation by homogenizing the transformation timing, making it easier to obtain martensite or lower bainite. It was found that the fracture toughness value K IH in gas can be increased.
  • the present invention has been completed by further studies based on such findings. That is, the gist of the present invention is as follows. (1)% by mass, C: 0.04 to 0.50%, Si: 0.5 to 2.0%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.010% or less, N: 0.0005 to 0.0080%, Al: 0.010 %-2.0%, O: 0.0100% or less, Cu: 0.5-2.0%, with a composition consisting of balance Fe and unavoidable impurities, tensile strength: 560 MPa or more, in a high-pressure hydrogen gas atmosphere High-pressure hydrogen gas environment steel with fracture toughness value K IH of 40 MPa ⁇ m 1/2 or more.
  • a steel material for high pressure hydrogen gas environment wherein the mass% is Al: 0.5 to 2.0% in (1).
  • Mass% C 0.04 to 0.50%, Si: 0.5 to 2.0%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.010% or less, N: 0.0005 to 0.0080%, Al: 0.010 % To 2.0%, O: 0.0100% or less, Cu: 0.5 to 2.0%, and a steel material having a composition of balance Fe and unavoidable impurities, heated to the Ac 3 transformation point or higher, and hot rolled.
  • a method for producing a steel material for a high-pressure hydrogen gas environment which has a fracture toughness value K IH of at least 560 MPa in a high-pressure hydrogen gas atmosphere of 40 MPa ⁇ m 1/2 or more.
  • Mass% C 0.04 to 0.50%, Si: 0.5 to 2.0%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.010% or less, N: 0.0005 to 0.0080%, Al: 0.010 % To 2.0%, O: 0.010% or less, Cu: 0.5 to 2.0%, and a steel material having a composition consisting of the balance Fe and unavoidable impurities, heated to the Ac 3 transformation point or higher, and hot rolled. alms and steel of a predetermined shape and subsequently with (Ar 3 transformation point -50 ° C.) or more cooling rate from the temperature 1 ⁇ 200 °C / s, and cooled to the cooling stop temperature of 250 ° C.
  • Ac 1 transformation point A method for producing a steel material for high-pressure hydrogen gas environment that has been subjected to direct quenching and tempering treatment at a temperature and has a tensile strength of 560 MPa or more and a fracture toughness value K IH in a high-pressure hydrogen gas atmosphere of 40 MPa ⁇ m 1/2 or more.
  • Tensile strength 560 MPa or more
  • fracture toughness value K IH in high-pressure hydrogen gas atmosphere is 40 MPa -Method for producing steel material for high-pressure hydrogen gas environment with m 1/2 or more.
  • a steel material having extremely improved hydrogen embrittlement resistance under a high-pressure hydrogen gas environment can be easily and simply manufactured, and the industrially remarkable effect is achieved.
  • the hydrogen embrittlement resistance of steel structures such as high-pressure hydrogen gas pressure accumulators and high-pressure hydrogen gas line pipes can be significantly improved, and fatigue resistance characteristics are improved. It also has the effect of greatly contributing to the extension of life.
  • the steel material of the present invention has, as a basic composition, in mass%, C: 0.04 to 0.50%, Si: 0.5 to 2.0%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.010% or less, N: 0.0005. .About.0.0080%, Al:0.010% to 2.0%, O:0.0100% or less, Cu:0.5 to 2.0%, and the balance Fe and inevitable impurities.
  • Si and Cu, or further Al makes the structure of dislocation generated when the material is deformed in hydrogen gas into a bain, and fracture toughness value K IH in hydrogen gas It has been found that it has the effect of increasing the. This improves the hydrogen embrittlement resistance. Such an effect becomes remarkable when at least both Si and Cu are contained by 0.5% or more, and further when Al is contained by 0.5% or more. Therefore, in the present invention, Si: 0.5 to 2.0%, Cu: 0.5 to 2.0%, or Al: 0.5 to 2.0% is added.
  • Si 0.5-2.0% Si, like Cu and Al, is an element that improves the hydrogen embrittlement resistance, and is contained in the present invention in an amount of 0.5% or more.
  • Si is limited to the range of 0.5 to 2.0%. In addition, it is preferably 0.75% or more, and preferably 2.00% or less. It is more preferably 1.00% or more.
  • Cu 0.5-2.0% Like Si and Al, Cu is an element that improves the hydrogen embrittlement resistance, and is contained in the present invention in an amount of 0.5% or more. On the other hand, a large content of Cu exceeding 2.0% facilitates hot cracking during heating or welding. Therefore, Cu is limited to the range of 0.5 to 2.0%. In addition, it is preferably 0.75% or more, and preferably 2.00% or less. It is more preferably 1.00% or more.
  • Al 0.010-2.0%
  • Al is an element that contributes to the improvement of hydrogen embrittlement resistance.
  • Al which is contained in a relatively small amount, acts as a deoxidizer, forms nitride AlN, suppresses coarsening of crystal grains during heating, and contributes to refinement of the structure.
  • Al is set to 0.010% or more in the present invention.
  • Al is preferably 0.5% or more and 2.0% or less. It is more preferably 0.75% or more, and further preferably 1.00% or more.
  • C 0.04 to 0.50%
  • C is an element that contributes to the increase of strength and improves hardenability, and it is necessary to contain 0.04% or more in order to secure desired strength and hardenability.
  • the content exceeds 0.50%, the weldability is significantly lowered and the toughness of the base material and the weld heat affected zone is lowered. Therefore, C is limited to the range of 0.04 to 0.50%. In addition, it is preferably 0.10% or more, and preferably 0.45% or less.
  • Mn 0.5-2.0%
  • Mn is an element that contributes to the increase in strength through the improvement of hardenability. In order to obtain such an effect, it is necessary to contain 0.5% or more, but if it exceeds 2.0%, the grain boundary strength is lowered and the low temperature toughness is lowered. Therefore, Mn is limited to the range of 0.5 to 2.0%. In addition, it is preferably 0.8% or more, and preferably 1.5% or less.
  • P 0.05% or less P tends to segregate in the crystal grain boundaries and the like, and reduces the bonding strength of the crystal grains and the toughness. Therefore, it is desirable to reduce P as much as possible, but up to 0.05% is acceptable. Therefore, P was limited to 0.05% or less.
  • S 0.010% or less S is likely to segregate at the crystal grain boundaries and easily form MnS which is a non-metallic inclusion, resulting in a decrease in ductility and toughness. Therefore, it is desirable to reduce S as much as possible, but up to 0.010% is acceptable. Therefore, S is limited to 0.010% or less.
  • N 0.0005 to 0.0080% N combines with a nitride forming element such as Nb, Ti and Al to form a nitride, pinning austenite grains during heating, suppressing coarsening of crystal grains, and having an effect of refining the structure.
  • a nitride forming element such as Nb, Ti and Al
  • the content of 0.0005% or more is required.
  • the content exceeds 0.0080% the amount of solute N increases, and the toughness of the base material and the weld heat affected zone is reduced. Therefore, N is limited to the range of 0.0005 to 0.0080%. In addition, it is preferably 0.0020% or more, and preferably 0.0050% or less.
  • O 0.0100% or less
  • O (oxygen) forms oxides such as alumina, increases the amount of non-metallic inclusions, and leads to deterioration of workability such as deterioration of ductility, so it is desirable to reduce as much as possible. Up to% is acceptable. Therefore, O (oxygen) is limited to 0.0100% or less. The content is preferably 0.0050% or less.
  • the above-mentioned components are the basic composition.
  • Ni, Cr, Mo, W, Nb, V, Ti, and B are elements that contribute to the improvement of hardenability, and one element or two or more elements can be contained as necessary.
  • Ni 0.05-2.00%
  • Ni is an element that not only improves hardenability but also has an effect of improving toughness. In order to obtain such effects, the content of 0.05% or more is required. On the other hand, if the content exceeds 2.00%, the material cost increases and the economic efficiency decreases. Therefore, when Ni is contained, it is preferable to limit Ni to the range of 0.05 to 2.00%. In addition, it is more preferably 0.50% or more, and further preferably 1.50% or less.
  • Cr 0.10-2.50% Cr is an element that contributes to ensuring strength through improvement of hardenability, and in order to obtain such an effect, the content of Cr is required to be 0.10% or more. On the other hand, if it is contained in a large amount exceeding 2.50%, the weldability is deteriorated. For this reason, it is preferable to limit the content of Cr to the range of 0.10 to 2.50%. In addition, it is more preferably 0.50% or more, and further preferably 1.50% or less.
  • Mo 0.05-2.00%
  • Mo is an element that contributes to ensuring the strength through the improvement of the hardenability, and in order to obtain such an effect, the content of 0.05% or more is required.
  • Mo is preferably limited to the range of 0.05 to 2.00%.
  • the content is more preferably 0.20% or more, and even more preferably 1.50% or less.
  • W 0.05-2.00%
  • W is an element that contributes to ensuring the strength through the improvement of the hardenability, and in order to obtain such an effect, the content of 0.05% or more is required.
  • W is preferably limited to 0.05 to 2.00%.
  • the content is more preferably 0.20% or more, and even more preferably 1.50% or less.
  • Nb 0.005-0.100%
  • Nb is an element that has the effect of suppressing the coarsening of crystal grains by finely precipitating carbonitrides during heating and pinning austenite grains in addition to improving the hardenability. Such an effect is recognized when the content is 0.005% or more. On the other hand, if the content exceeds 0.100%, the toughness of the weld heat affected zone is reduced. Therefore, when it is contained, Nb is preferably limited to the range of 0.005 to 0.100%. The content is more preferably 0.010% or more, and further preferably 0.050% or less.
  • V 0.005-0.200%
  • V is an element which has the effect of suppressing the coarsening of crystal grains by further precipitating carbonitrides during heating and pinning austenite grains in addition to improving the hardenability. Such an effect is recognized when the content is 0.005% or more. On the other hand, if the content exceeds 0.200%, the toughness of the weld heat affected zone is reduced. Therefore, when it is contained, V is preferably limited to the range of 0.005 to 0.200%. The content is more preferably 0.010% or more, and further preferably 0.150% or less.
  • Ti 0.005-0.100%
  • Ti is an element that not only improves hardenability, but also finely precipitates carbonitrides during heating, pinning austenite grains and suppressing coarsening of crystal grains. Such an effect is recognized when the content is 0.005% or more. On the other hand, if the content exceeds 0.100%, the toughness of the weld heat affected zone is reduced. Therefore, when it is contained, Ti is preferably limited to the range of 0.005 to 0.100%. The content is more preferably 0.010% or more, and further preferably 0.050% or less.
  • B 0.0005 to 0.0050%
  • B is an element that contributes to the improvement of hardenability when contained in a trace amount. In order to obtain such effects, the content of 0.0005% or more is required. On the other hand, if the content exceeds 0.0050%, the toughness decreases. Therefore, when B is contained, it is preferable to limit B to the range of 0.0005 to 0.0050%. In addition, it is more preferably 0.0010% or more, and further preferably 0.0020% or less.
  • Nd, Ca, Mg, REM are all elements that contribute to the improvement of ductility, toughness, and further hydrogen embrittlement resistance through the morphology control of inclusions, and are selected as necessary, You may contain 1 type(s) or 2 or more types.
  • Nd 0.005 ⁇ 1.000%
  • Nd is an element that forms a sulfide-based inclusion by combining with S, reduces the amount of segregation of S at grain boundaries, and contributes to the improvement of toughness and hydrogen embrittlement resistance. In order to obtain such effects, the content of 0.005% or more is required. On the other hand, if the content exceeds 1.000%, the toughness of the weld heat affected zone is reduced. Therefore, when it is contained, Nd is preferably limited to the range of 0.005 to 1.000%. In addition, it is more preferably 0.010% or more, and further preferably 0.500% or less.
  • Ca 0.0005 to 0.0050%
  • Ca has a strong affinity with S and replaces MnS, which is a sulfide-based inclusion that is easily expanded by rolling, and forms CaS, which is a spherical sulfide-based inclusion that is difficult to expand by rolling, and forms a sulfide. It is an element that contributes to the morphology control of system inclusions and has the effect of improving ductility and toughness. In order to obtain such effects, the content of 0.0005% or more is required. On the other hand, if the content exceeds 0.0050%, the cleanliness decreases, and the ductility, toughness, etc. decrease. Therefore, when Ca is contained, it is preferable to limit Ca to the range of 0.0005 to 0.0050%. In addition, it is more preferably 0.0010% or more, and further preferably 0.0020% or less.
  • Mg 0.0005 to 0.0050% Similar to Ca, Mg has a strong affinity with S, forms sulfide inclusions, and improves ductility and toughness. In order to obtain such effects, the content of 0.0005% or more is required. On the other hand, if the content exceeds 0.0050%, the cleanliness decreases. Therefore, when containing Mg, it is preferable to limit the Mg content to the range of 0.0005 to 0.0050%. In addition, it is more preferably 0.0010% or more, and further preferably 0.0020% or less.
  • REM 0.0005 to 0.0050% REM is an element that forms sulfide-based inclusions such as REM(O,S), reduces the amount of solute S in crystal grain boundaries, and contributes to the improvement of SR crack resistance. In order to obtain such effects, it is necessary to contain 0.0005% or more of REM. On the other hand, if the content exceeds 0.0050%, a large amount of REM sulfides are accumulated in the precipitated crystal zone during casting, resulting in deterioration of the material such as ductility and toughness. Therefore, when it is contained, REM is preferably limited to the range of 0.0005 to 0.0050%. In addition, it is more preferably 0.0010% or more, and further preferably 0.0020% or less. It should be noted that “REM” here is an abbreviation for Rare Earth Metal (rare earth element).
  • the balance other than the above components consists of Fe and inevitable impurities.
  • the high-pressure hydrogen gas environment steel material of the present invention is a steel material having the composition described above, and a structure comprising a combination of ferrite and pearlite, or lower bainite, martensite, tempered lower bainite, tempered martensite, or a combination thereof. ..
  • the steel material for high-pressure hydrogen gas environment of the present invention has the above-mentioned composition and the above-mentioned structure, and has a tensile strength: high strength of 560 MPa or more, and a fracture toughness value K in a high-pressure hydrogen gas atmosphere.
  • IH A steel material with a hydrogen embrittlement resistance of 40 MPa ⁇ m 1/2 or more.
  • molten steel having the composition described above is melted in a conventional melting furnace such as a converter or an electric furnace, and a cast piece such as a slab having a predetermined shape by a continuous casting method, or a cast piece (a steel ingot) by an ingot making method or the like. ) Is hot-rolled to form a slab or other shaped piece of steel into a steel material.
  • a conventional melting furnace such as a converter or an electric furnace
  • a cast piece such as a slab having a predetermined shape by a continuous casting method, or a cast piece (a steel ingot) by an ingot making method or the like.
  • the steel material obtained is then placed in a heating furnace.
  • the heating temperature is the Ac 3 transformation point or higher. If the heating temperature is lower than the Ac 3 transformation point, the deformation resistance of the material to be rolled becomes high and the load on the rolling apparatus becomes large, and a part of the untransformed structure remains. It cannot be secured.
  • the heating temperature is preferably 1100 to 1300°C. If the heating temperature is less than 1100°C, the deformation resistance is high and the load on the rolling mill becomes too large. On the other hand, if the heating temperature exceeds 1300°C, the crystal grains become coarse and the toughness decreases.
  • the steel material heated to the prescribed temperature is then hot-rolled to obtain the steel material with prescribed dimensions and shape.
  • the “steel material” here includes thin plates, thick plates, steel pipes, shaped steels, steel bars, and the like.
  • the "hot rolling” referred to here may be a steel material having a predetermined size and shape, and the rolling conditions are not particularly limited. When the steel material is a seamless steel pipe, the hot rolling includes rolling including piercing rolling.
  • the steel material rolled into the specified size and shape is allowed to cool to room temperature as it is, and after cooling, reheated and tempered by reheating and quenching and tempering treatment, or hot rolling followed by accelerated cooling treatment. Alternatively, it is preferable that direct quenching and tempering treatment is performed subsequent to hot rolling.
  • the temperature is specified in the manufacturing conditions at the center of the steel material.
  • the steel material is a thin plate, a thick plate, a steel pipe, or a shaped steel, it is the center of the plate thickness (wall thickness), and the bar steel is the center of the radial direction.
  • the regulation of the temperature is not limited to the center itself.
  • the steel material rolled into the prescribed size and shape is not cooled to room temperature and continues to be cooled at a cooling start temperature of (Ar 3 transformation point ⁇ 50° C.) or higher at a cooling rate of 1 to 200° C./s and a cooling stop temperature: Accelerated cooling is performed to cool to a cooling stop temperature of 600°C or less.
  • the cooling start temperature is lower than (Ar 3 transformation point ⁇ 50° C.)
  • the transformation amount of austenite increases before the cooling starts, and desired properties cannot be ensured after accelerated cooling. Therefore, the cooling start temperature is limited to a temperature higher than (Ar 3 transformation point ⁇ 50° C.).
  • the cooling rate of the accelerated cooling is less than 1° C./s, the cooling is too slow and desired characteristics cannot be secured.
  • the usual cooling method does not exceed 200°C/s. Therefore, the cooling rate of the accelerated cooling process is limited to the range of 1 to 200°C/s.
  • the cooling rate is an average cooling rate at the center of the plate thickness (wall thickness).
  • the cooling means is not particularly limited, and water cooling or the like is preferable.
  • the cooling stop temperature of accelerated cooling is higher than 600° C., the desired transformation cannot be completed, so that the desired characteristics cannot be secured. Therefore, the cooling stop temperature for accelerated cooling is limited to 600°C or lower.
  • the above steel material is heated to the Ac 3 transformation point or higher and hot-rolled into a steel material having a predetermined size and shape, and then continuously (Ar 3 transformation point ⁇ 50° C.) or higher temperature in the range of 1 to 200° C./s.
  • a quenching process of cooling to a cooling stop temperature of 250° C. or less at a cooling rate and a tempering process of subsequently tempering at a tempering temperature of an Ac 1 transformation point or less are performed.
  • the heating temperature of the steel material is less than the Ac 3 transformation point, a part of the untransformed structure remains, so that the desired steel structure cannot be obtained after hot rolling, quenching and tempering.
  • the heating temperature before hot rolling is set to the Ac 3 transformation point or higher. If the quenching start temperature after hot rolling is lower than (Ar 3 transformation point ⁇ 50° C.), the transformation amount of austenite before quenching is large and the desired steel structure cannot be obtained after quenching and tempering. Therefore, after hot rolling, quenching is performed by starting cooling from (Ar 3 transformation point ⁇ 50° C.) or higher.
  • the cooling rate when quenching from (Ar 3 transformation point ⁇ 50° C.) or higher is 1 to 200° C./s in order to obtain a desired structure.
  • the cooling rate is an average cooling rate at the plate thickness center.
  • the cooling means is not particularly limited and may be water cooling or the like.
  • the quenching process is a quenching that cools to a temperature of 250° C. or less. After quenching, continue to temper at a temperature below the Ac 1 transformation point. If the tempering temperature exceeds the Ac 1 transformation point, a portion of the material is transformed into austenite, so that the desired characteristics cannot be obtained after tempering.
  • the steel material which has been rolled to a predetermined size and once cooled to room temperature, is then heated at a quenching heating temperature of the Ac 3 transformation point or higher, and then from the quenching start temperature of (Ar 3 transformation point ⁇ 50° C.) or higher. Then, a quenching treatment of cooling at a cooling rate of 0.5 to 100° C./s to a temperature of 250° C. or less is performed, and then a reheating quenching and tempering process of performing tempering at a temperature of an Ac 1 transformation point or less is performed.
  • the quenching treatment for example, water or oil was used as a cooling medium, and the cooling medium was sprayed or heated so that the cooling rate was 0.5 to 100° C./s to the steel material heated to high temperature, which is the material to be cooled. It is preferable to immerse the steel material in a bath containing a refrigerant. From the viewpoint of uniform cooling, it is preferable that a steel material having a predetermined size and shape is cooled while being sprayed with a jet jet of the refrigerant while rotating in a bath containing the refrigerant. Further, the tempering treatment may be carried out by allowing the steel material heated in a tempering heating furnace or the like to cool in the air or in a protective atmosphere.
  • the quenching heating temperature is set to the Ac 3 transformation point or higher. If the quenching start temperature is lower than (Ar 3 transformation point ⁇ 50° C.), austenite starts transformation before quenching, so that desired characteristics cannot be obtained after quenching and tempering. Therefore, the quenching start temperature is limited to a temperature of (Ar 3 transformation point ⁇ 50° C.) or higher. Further, the quenching cooling rate is limited to 0.5 to 100° C./s in order to obtain desired characteristics and prevent quench cracking.
  • the quenching stop temperature is higher than 250° C.
  • the desired transformation (martensite transformation or bainite transformation) is not completed, so that the desired characteristics cannot be ensured after the tempering treatment. Therefore, the quenching stop temperature is limited to 250°C or lower.
  • the steel material is subsequently heated to a tempering temperature not higher than the Ac 1 transformation point and tempered by tempering. If the tempering temperature exceeds the Ac 1 transformation point, a part of the material is transformed into austenite, so that it becomes impossible to secure desired characteristics after the tempering treatment.
  • the Ac 3 transformation point (°C), the Ar 3 transformation point (°C) and the Ac 1 transformation point (°C) described above are calculated by using the following equations.
  • the steel material manufactured by the above manufacturing method and having excellent hydrogen permeation resistance is suitable for a steel structure for hydrogen used in a high-pressure hydrogen gas environment.
  • Examples of the "hydrogen steel structure" herein include a pressure accumulator (hydrogen accumulator) used in a hydrogen station and the like, a line pipe for hydrogen gas transportation (hydrogen line pipe), and the like.
  • type 1 using only steel material type 2 and type 3 in which carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastic) is wound around steel material are known.
  • CFRP Carbon Fiber Reinforced Plastic
  • These types are, for example, the classification of compressed natural gas automobile fuel containers, ISO 11439, ANSI/NGV, and the structure of the containers described in the High Pressure Gas Safety Act, Container Safety Regulations, Example Standards, Appendix 9, etc. ..
  • the pressure accumulator is preferably manufactured, for example, by shaping a steel material having the above-described composition into a predetermined shape and then subjecting it to reheating, quenching and tempering.
  • the design pressure of hydrogen stored in the pressure accumulator is about 35 MPa or about 70 MPa.
  • a line pipe for hydrogen transportation a seamless steel pipe, an electric resistance welded steel pipe, or a UOE type steel pipe is suitable.
  • the line pipe may be a line pipe (steel pipe) using the steel material having the above composition as it is, or a steel material having the above composition may be subjected to the above-described accelerated cooling treatment and direct quenching treatment to obtain a steel pipe. It is preferable.
  • the design pressure of hydrogen used is about 10 MPa.
  • ____ Molten steel with the composition shown in Table 1 was melted in a converter and continuously cast into slabs (slab: wall thickness 250 mm). The obtained slab was heated and hot-rolled to form a thick steel plate (thickness: 38 mm), which was once cooled to room temperature, and then subjected to reheating quenching and tempering treatment under the conditions shown in Table 2 (steel plate No. 1 to No. 16, No. 21 to No. 23). The quenching treatment was water cooling or oil cooling.
  • the obtained slab was heated under the conditions shown in Table 2 and hot-rolled into a thick steel plate having a predetermined plate thickness (38 mm), and subsequently, accelerated cooling treatment was performed under the conditions shown in Table 2. (Steel plate No. 17, No. 18).
  • the obtained slab was heated under the conditions shown in Table 2 and hot-rolled into a thick steel plate having a predetermined plate thickness (38 mm), followed by direct quenching under the conditions shown in Table 2, and then Direct quenching and tempering was performed at the tempering temperatures shown in Table 2 (steel sheets No. 19 and No. 20).
  • the temperature of the steel plate was measured with a thermocouple inserted in the center of the plate thickness.
  • the reheating quenching and tempering process simulates the production of a hydrogen pressure accumulator, and the accelerated cooling process and the direct quenching process both simulate the production of a hydrogen line pipe (steel pipe).
  • the obtained steel sheet was subjected to a tensile test, a fracture toughness test, and further a structure observation.
  • the test method was as follows. (1) Tensile properties Based on JIS Z 2201 (1980), full-thickness tensile test pieces with the rolling direction as the longitudinal direction (tensile direction) were collected from the obtained thick steel plate and conformed to JIS Z 2241. Then, a tensile test was performed to measure the tensile strength. (2) Fracture toughness test A CT test piece (sheet width: 50.8 mm) was taken from each of the obtained steel sheets so that the load direction was parallel to the rolling direction, and hydrogen embrittlement was made by the Japan Pressure Vessel Research Council Material Subcommittee.
  • a fracture toughness test was carried out in a high-pressure hydrogen gas atmosphere to determine the fracture toughness value K IH according to the Special Committee TASK Group V (1991). The test was carried out in a high-pressure hydrogen gas atmosphere of 115 MPa at room temperature (20 ⁇ 10° C.) at a constant displacement rate of 2.5 ⁇ m/min.
  • the fracture toughness test based on the rules of ASTM E399 or ASTM E1820 was also carried out to obtain the fracture toughness value K IH .
  • the fracture toughness value K IH obtained by the fracture toughness test carried out in accordance with (1 year) was almost the same as the error within 5%, and therefore is not particularly described in Table 2.
  • (3) Microstructure observation A test piece for microstructure observation was taken from the center of the thickness of the obtained steel sheet, polished, corroded (nital solution), and observed with an optical microscope (magnification: 200 times) to identify the microstructure. The tissue fraction was calculated by image analysis.
  • the fracture toughness value K IH in a high-pressure hydrogen gas atmosphere of 115 MPa is 40 MPa ⁇ m 1/2 or more, and it can be said that the hydrogen embrittlement resistance is excellent.
  • the fracture toughness value K IH in a high-pressure hydrogen gas atmosphere is less than 40 MPa ⁇ m 1/2, and the hydrogen embrittlement resistance is deteriorated.
  • Each of the examples of the present invention had high strength of tensile strength: 560 MPa or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

水素用蓄圧器、水素用ラインパイプ等用として好適な、高圧水素ガス環境下における耐水素脆化特性に優れた鋼材およびその製造方法を提供する。 所定の成分組成を有し、引張強さ:560MPa以上を有し、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材。

Description

高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
 本発明は、高圧水素ガス環境用として好適な鋼材および鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法に係り、とくに高圧水素ガス環境下における鋼材の耐水素脆化特性の向上に関する。
 近年、クリーンなエネルギー源として、また、エネルギーの多様化の観点から、世界的に水素が大きく注目されている。特に、高圧水素ガスを燃料源とする燃料電池自動車に対する期待は大きく、燃料電池自動車の開発が世界的に広く進められており、一部では、すでに実用化されている。
 燃料電池自動車は、従来のガソリンの代わりに水素をタンクに詰めて走行する。そのため、ガソリンスタンドに代わって燃料補給を行う水素ステーションが必要となる。燃料電池自動車の普及のためには、燃料補給を行う水素ステーションを一般市街地に数多く建設することが肝要となる。
 水素ステーションでは、高圧で貯蔵する水素蓄圧器から車載の水素燃料タンクへ水素を、差圧式で直接充填する形式が一般的である。車載の水素燃料タンクへの充填圧力は、航続距離をガソリン車並とするために、70MPa級とすることが目標とされている。そのため、水素ステーションの蓄圧器の圧力は、それより高い82MPa級とする必要があるとされている。このようなことから、水素ステーションの蓄圧器には、高圧水素ガス環境下で、水素を安全に貯蔵、供給できることが要求されることになる。
 また、水素ガスを大量に輸送するために、パイプラインを利用することも考えられる。この場合、輸送圧力は10MPa級となり、ラインパイプは、10MPa級の水素ガス圧に晒されることになる。
 このように、高圧水素ガスを貯蔵、供給するための水素ステーションの蓄圧器や、水素ガスの大量輸送に利用されるラインパイプ等の水素用鋼構造物は、高圧水素ガス環境に晒されながら使用される。
 鋼構造物用の材料としては、まず、低価格でかつ高強度であるという利点を有する低合金系鋼材が考えられる。しかし、低合金系鋼材は、水素が侵入すると脆化する、いわゆる「水素脆化」しやすいという問題がある。
 このため、高圧水素ガス環境下で使用される鋼構造物には、従来から、低合金鋼より水素脆化し難い、SUS316L等のオーステナイト系ステンレス鋼が利用されてきた。しかし、SUS316L等のオーステナイト系ステンレス鋼は鋼材のコストが高いことに加えて、強度が低いため、高い水素圧に耐えうるように設計すると、肉厚が厚くなり、水素用構造物自体の価格も高価となる。そのため、水素用鋼構造物向けとして、より低コストで、かつ高圧水素ガス環境にも耐えうる低合金系鋼材が強く要望されてきた。
 このような要望に対し、例えば、特許文献1には、高圧水素環境用鋼が提案されている。特許文献1に記載された高圧水素環境用鋼は、高圧水素環境下で使用される鋼であって、質量%で、C:0.03~0.18%、Si:0.1~0.5%、Mn:0.2~1.8%、P:0.025%以下、S:0.002~0.02%、sol.Al:0.01~0.10%、Ca:0.001~0.10%、あるいはさらにV:0.03~0.3%を含み、Ca/S:1.5未満または11以上で、残部Feおよび不純物からなる化学組成を有する鋼である。特許文献1に記載された技術では、拡散性水素のトラップサイトとして、MnSやCa系複合介在物、さらにはVCを形成して、拡散性水素を非拡散性水素として、拡散性水素濃度比を低減し拡散性水素による脆化を抑制する、としている。
 また、特許文献2には、耐高圧水素環境脆化特性に優れた低合金高強度鋼が提案されている。特許文献2に記載された低合金高強度鋼は、質量%で、C:0.10~0.20%、Si:0.10~0.40%、Mn:0.50~1.20%、P:0.005%以下、S:0.005%以下、Cr:0.20~0.80%、Cu:0.10~0.50%、Mo:0.10~1.00%、V:0.01~0.10%、B:0.0005~0.005%、N:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する高強度鋼であり、920℃以上での焼き入れを行ったのち、600~640℃の範囲という比較的高い温度で焼戻処理を行い、引張強さ:900~950MPaの極めて狭い範囲に調整することが好ましいとしている。これにより、45MPa水素雰囲気中でも、優れた伸び、絞り特性を示す、耐高圧水素環境脆化特性に優れた低合金高強度鋼となるとしている。
 また、特許文献3には、耐高圧水素環境脆化特性に優れた低合金高強度鋼が提案されている。特許文献3に記載された低合金高強度鋼は、質量%で、C:0.10~0.20%、Si:0.10~0.40%、Mn:0.50~1.20%、P:0.005%以下、S:0.002%以下、Ni:0.75~1.75%、Cr:0.20~0.80%、Cu:0.10~0.50%、Mo:0.10~1.00%、V:0.01~0.10%、B:0.0005~0.005%、N:0.01%以下を含有し、さらに、Nb:0.01~0.10%及びTi:0.005~0.050%のうち1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有するCr-Mo系高強度低合金鋼であり、1000~1100℃で焼ならし、880~900℃の温度範囲から焼入れを行い、その後560~580℃という比較的高い温度で焼戻処理を行い、調質後の結晶粒度番号が8.4以上の粒度で、引張強さ:900~950MPaの極めて狭い範囲に調整することが好ましいとしている。これにより、45MPa水素雰囲気中でも、優れた伸び、絞り特性を示す、耐高圧水素環境脆化特性に優れた低合金高強度鋼となるとしている。
 また、特許文献4には、高圧水素ガス環境用低合金鋼が提案されている。特許文献4に記載された低合金鋼は、質量%で、C:0.15~0.60%、Si:0.05~0.5%、Mn:0.05~3.0%、P:0.025%以下、S:0.010%以下、Al:0.005~0.10%、Mo:0.5~3.0%、V:0.05~0.30%、O(酸素):0.01%以下、N:0.03%以下を含有し、残部Feおよび不純物からなる組成を有し、かつ引張強さ:900MPa以上である高圧水素ガス環境用低合金鋼である。なお、上記した組成に加えてさらに、B:0.0003~0.003%を含有してもよいとしている。その際、N:0.010%以下に調整することが好ましいとしている。特許文献4に記載された技術によれば、Vを添加し、さらに既存の鋼よりもMo含有量を増加させ、焼戻温度を高めて、V-Mo系炭化物を活用することで、粒界の炭化物形態が改善され、耐水素環境脆化特性が大きく向上するとしている。
 また、特許文献5には、耐水素性に優れた高圧水素ガス貯蔵容器用鋼が提案されている。特許文献5に記載された高圧水素ガス貯蔵容器用鋼は、質量%で、C:0.12~0.15%、Si:0.01~0.10%、Mn:0.30~0.60%、P:0.02%以下、S:0.005%以下、Cr:2.00~2.50%、Mo:0.90~1.20%、V:0.20~0.35%、Nb:0.01~0.06%、Ti:0.002~0.030%を含有し、残部Fe及び不可避的不純物からなり、MC系炭化物析出指数MCI=(0.24V+0.06Mo)/Cが0.70以上を満足する組成を有する鋼である。特許文献5に記載された技術によれば、上記した組成を有する鋼に、鋼板製造時に、焼準処理の後に長時間の応力除去焼鈍を施すことで、MC系炭化物(Mo,V)Cが微細かつ高密度に分散析出し、鋼の耐水素脆化特性等の耐水素性が向上するとしている。
 また、特許文献6には、高圧水素貯蔵用鋼材が提案されている。特許文献6に記載された鋼材は、質量%で、C:0.05~0.12%、Si:0.01~0.50%、Mn:0.6超~1.8%、P:0.02%以下、S:0.003%以下、Al:0.01~0.08%を含有し、残部Fe及び不可避的不純物からなり、金属組織が面積分率90%以上のベイナイト主体組織で、ベイナイト中に平均粒径50nm以下で、平均アスペクト比3以下のセメンタイトが分散析出している鋼材である。特許文献6に記載された技術によれば、アスペクト比が小さく微細なセメンタイトを分散させることにより、高圧水素雰囲気からの水素侵入量を低減することができ、さらに母材靭性も向上し、水素による脆化が抑制されるとしている。
 また、特許文献7には、高圧水素貯蔵容器用高強度鋼材が提案されている。特許文献7に記載された高強度鋼材は、質量%で、C:0.05~0.15%、Si:0.01~0.50%、Mn:0.6超~2.5%、P:0.02%以下、S:0.003%以下、Al:0.01~0.08%を含有し、且つPcmが0.19以上で、残部Fe及び不可避的不純物からなり、金属組織が面積分率70%以上の下部ベイナイトと面積分率3%以下の島状マルテンサイトを備え、引張強さが780Mpa以上を有する高強度鋼材である。特許文献7に記載された技術によれば、下部ベイナイト組織としセメンタイトを微細析出させて、また粗大セメンタイトおよび島状マルテンサイトの生成を抑制して、水素侵入を抑制し、高圧水素環境下での脆化や延性低下を防止させるとしている。
 また、特許文献8には、高圧水素環境中での耐疲労き裂進展特性に優れる鋼材が記載されている。特許文献8に記載された鋼材は、質量%で、C:0.05~0.60%、Si:0.01~2.0%、Mn:0.3~3.0%、P:0.001~0.040%、S:0.0001~0.010%、N:0.0001~0.0060%、Al:0.01~1.5%を含有し、さらにTi:0.01~0.20%、Nb:0.01~0.20%、V:0.01%以上0.05%未満の1種または2種以上を含有し、かつ、B:0.0001~0.01%、Mo:0.005~2.0%、Cr:0.005~3.0%の1種または2種以上を含有する成分組成と、体積率で95%以上が焼戻しマルテンサイトであり、Ti、Nb、Vのいずれか1種以上と炭素、窒素のいずれか1種以上とを有する直径100nm以下の析出物の密度が50個/μm以上であり、旧オーステナイト粒径が3μm以上である組織を有する鋼材である。特許文献8に記載された技術によれば、80MPa以上の高圧水素環境下で疲労き裂進展速度を従来鋼より飛躍的に低減でき、高圧水素環境下で使用される水素用蓄圧器等の使用寿命を改善でき、高圧水素環境下で使用される水素貯蔵容器の安全性を向上できるとしている。
 なお、非特許文献1、非特許文献2には、低合金鋼の破壊靭性値が記載されている。
特開2005-2386号公報 特開2009-46737号公報 特開2009-275249号公報 特開2009-74122号公報 特開2010-37655号公報 特開2012-107332号公報 特開2012-107333号公報 特許第5633664号公報
松本拓哉ら:日本機械学会論文集(A編)、79巻804号(2013)、p.1210~1225 松岡三郎ら:M&M2016材料力学コンフェレンス、OS16-10、(2016)、p.813~815
 特に、高圧水素ガス環境下で使用する水素用蓄圧器のような鋼構造物では、水素の充填を繰り返し行うため、構造物(容器)に繰返し応力が負荷される。そのため、水素用蓄圧器のような鋼構造物を設計する際には、疲労破壊を考慮することが必須となる。高圧水素ガス環境下で使用する鋼構造物の疲労破壊の限界点は、鋼材の水素ガス中の破壊靱性値KIHに関係する、といわれている。水素用鋼構造物の長寿命化、安全性向上という観点から、鋼材の水素ガス中の破壊靱性値KIHを高くすることが、一つの有効な指針とされている。
 鋼材の水素ガス中の破壊靱性値KIHを高くするためには、例えば、粗大な炭化物を含む上部ベイナイトを低減させたほうがよい。
 しかしながら、上記した従来技術では、鋼材の水素ガス中の破壊靱性値KIHを充分に高くすることができない、という問題があった。
 本発明は、上記した従来技術の問題に鑑み、水素用蓄圧器、水素用ラインパイプ等の、高圧水素ガス環境下で使用される鋼構造物用として好適な、高圧水素ガス環境下における耐水素脆化特性に優れた鋼材および鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法を提供することを目的とする。
 なお、ここでいう「高圧水素ガス環境下における耐水素脆化特性に優れた」とは、室温(20±10℃)、圧力:115MPaの水素ガス雰囲気中で、日本圧力容器研究会議材料研究部会水素脆化専門委員会TASK Group V編(1991年)に準拠して破壊靭性試験を実施して求めた破壊靭性値KIHが、40MPa・m1/2以上である場合をいうものとする。
 なお、破壊靭性値KIHが、40MPa・m1/2以上であれば、継目無鋼管やUOEなどの鋼管を製造するプロセスで製造可能な板厚範囲で、LBB(Leak Before Break;破裂前漏洩)が成立する蓄圧器、ラインパイプなどの水素用鋼構造物の設計を行うことが可能になる。
 また、ここでいう「鋼材」には、薄鋼板、厚鋼板、継目無鋼管、電縫鋼管、形鋼、棒鋼等が含まれる。
 本発明者は、上記した目的を達成するため、炭素系および低合金系鋼材の耐水素脆化特性に及ぼす各種要因について、鋭意検討した。その結果、SiおよびCu、あるいはさらにAlを、それぞれ、質量%で、0.5%以上複合して含有させることにより、高圧水素ガス雰囲気中における鋼材の耐水素脆化特性が顕著に向上することを新規に、見出した。また、鋼材を均一に冷却させることにより、変態のタイミングを均一化することで変態発熱の局所化による局所的な温度上昇を抑制しマルテンサイトもしくは下部ベイナイトを得やすくし、その結果、鋼材の水素ガス中の破壊靱性値KIHを高くすることができることを見出した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.04~0.50%、Si:0.5~2.0%、Mn:0.5~2.0%、P:0.05%以下、S:0.010%以下、N:0.0005~0.0080%、Al:0.010%~2.0%、O:0.0100%以下、Cu:0.5~2.0%、を含有し、残部Feおよび不可避的不純物からなる組成を有し、引張強さ:560MPa以上を有し、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材。
(2)(1)において、質量%で、Al:0.5~2.0%である高圧水素ガス環境用鋼材。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ni:0.05~2.00%、Cr:0.10~2.50%、Mo:0.05~2.00%、W:0.05~2.00%、Nb:0.005~0.100%、V:0.005~0.200%、Ti:0.005~0.100%、B:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する高圧水素ガス環境用鋼材。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nd:0.005~1.000%、Ca:0.0005~0.0050%、Mg:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する高圧水素ガス環境用鋼材。
(5)(1)ないし(4)のいずれかに記載の高圧水素ガス環境用鋼材製である高圧水素ガス環境用鋼構造物。
(6)(5)において、前記鋼構造物が蓄圧器またはラインパイプである高圧水素ガス環境用鋼構造物。
(7)質量%で、C:0.04~0.50%、Si:0.5~2.0%、Mn:0.5~2.0%、P:0.05%以下、S:0.010%以下、N:0.0005~0.0080%、Al:0.010%~2.0%、O:0.0100%以下、Cu:0.5~2.0%、を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材を、Ac3変態点以上に加熱し、熱間圧延を施して所定形状の鋼材とし、引続き(Ar3変態点-50℃)以上の温度から冷却速度:1~200℃/sで、600℃以下の冷却停止温度まで冷却する加速冷却処理を施し、引張強さ:560MPa以上で、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材の製造方法。
(8)質量%で、C:0.04~0.50%、Si:0.5~2.0%、Mn:0.5~2.0%、P:0.05%以下、S:0.010%以下、N:0.0005~0.0080%、Al:0.010%~2.0%、O:0.010%以下、Cu:0.5~2.0%、を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材を、Ac3変態点以上に加熱して、熱間圧延を施し所定形状の鋼材とし、引続き(Ar3変態点-50℃)以上の温度から冷却速度1~200℃/sで、250℃以下の冷却停止温度まで冷却し、さらにAc1変態点以下の温度で焼戻しする直接焼入れ焼戻し処理を施し、引張強さ:560MPa以上で、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材の製造方法。
(9)質量%で、C:0.04~0.50%、Si:0.5~2.0%、Mn:0.5~2.0%、P:0.05%以下、S:0.010%以下、N:0.0005~0.0080%、Al:0.010%~2.0%、O:0.0100%以下、Cu:0.5~2.0%、を含有し、残部Feおよび不可避的不純物からなる組成を有し、所定形状に成形した鋼材を、Ac3変態点以上に加熱したのち、水焼入れまたは油焼入れし、さらにAc1変態点以下の温度で焼戻しする再加熱焼入れ焼戻し処理を施し、引張強さ:560MPa以上で、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材の製造方法。
(10)(7)ないし(9)のいずれかにおいて、質量%で、Al:0.5~2.0%である高圧水素ガス環境用鋼材の製造方法。
(11)(7)ないし(10)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ni:0.05~2.00%、Cr:0.10~2.50%、Mo:0.05~2.00%、W:0.05~2.00%、Nb:0.005~0.100%、V:0.005~0.200%、Ti:0.005~0.100%、B:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する高圧水素ガス環境用鋼材の製造方法。
(12)(7)ないし(11)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nd:0.005~1.000%、Ca:0.0005~0.0050%、Mg:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する高圧水素ガス環境用鋼材の製造方法。
 本発明によれば、高圧水素ガス環境下での耐水素脆化特性が極めて向上した鋼材を、容易にかつ簡便に製造でき、産業上格段の効果を奏する。また、本発明によれば、高圧水素ガス用蓄圧器や高圧水素ガス用ラインパイプ等の鋼構造物の耐水素脆化特性を顕著に向上でき、耐疲労特性が向上して、鋼構造物の寿命延長に大きく寄与するという効果もある。
 本発明の鋼材は、基本組成として、質量%で、C:0.04~0.50%、Si:0.5~2.0%、Mn:0.5~2.0%、P:0.05%以下、S:0.010%以下、N:0.0005~0.0080%、Al:0.010%~2.0%、O:0.0100%以下、Cu:0.5~2.0%、を含有し、残部Feおよび不可避的不純物からなる組成を有する。
 まず、本発明の鋼材の組成限定理由について説明する。なお、以下、組成における質量%は、単に%で記す。
 本発明者の検討によれば、SiおよびCu、あるいはさらにAlは、水素ガス中で材料を変形させた際に、生成する転位の構造をベイン化して、水素ガス中での破壊靭性値KIHを高くする作用を有することを見出した。これにより、耐水素脆化特性が向上する。このような効果は、少なくともSiとCuをともに0.5%以上含有させた場合に顕著となり、あるいはさらにAlを、0.5%以上含有させた場合にさらに顕著となる。このようなことから、本発明では、Si:0.5~2.0%、Cu:0.5~2.0%、あるいはさらにAl:0.5~2.0%を含有させることにした。
 Si:0.5~2.0%
 Siは、Cu、Alと同様に、耐水素脆化特性を向上させる元素であり、本発明では0.5%以上含有させる。一方、2.0%を超えるSiの多量含有は、結晶粒界を脆化させ、靭性の低下を招く。このため、Siは0.5~2.0%の範囲に限定した。なお、好ましくは0.75%以上であり、好ましくは2.00%以下である。より好ましくは1.00%以上である。
 Cu:0.5~2.0%
 Cuは、Si、Alと同様に、耐水素脆化特性を向上させる元素であり、本発明では0.5%以上含有させる。一方、2.0%を超えるCuの多量含有は、加熱時や溶接時に、熱間での割れを発生させ易くする。このため、Cuは0.5~2.0%の範囲に限定した。なお、好ましくは0.75%以上であり、好ましくは2.00%以下である。より好ましくは1.00%以上である。
 Al: 0.010~2.0%
 Alは、Si、Cuと同様に、耐水素脆化特性の向上に寄与する元素である。Alは、比較的少量の含有で、脱酸剤として作用するとともに、窒化物AlNを形成し、加熱時の結晶粒の粗大化を抑制し、組織の微細化に寄与する。このような効果を得るために、本発明では、Alを0.010%以上とする。一方、2.0%を超えるAlの多量含有は、鋼材の表面疵が発生しやすくなる。なお、耐水素脆化特性の顕著な向上のためには、Alは0.5%以上であることが好ましく、2.0%以下とすることが好ましい。より好ましくは0.75%以上であり、さらに好ましくは1.00%以上である。
 なお、Si、Cu、Al以外の成分の限定理由は以下のとおりである。
 C:0.04~0.50%
 Cは、強度増加に寄与するとともに、焼入れ性を向上させる元素であり、所望の強度、焼入れ性を確保するために、0.04%以上含有する必要がある。一方、0.50%を超える含有は、溶接性が著しく低下するとともに、母材および溶接熱影響部の靭性低下を招く。このため、Cは0.04~0.50%の範囲に限定した。なお、好ましくは0.10%以上であり、好ましくは0.45%以下である。
 Mn:0.5~2.0%
 Mnは、焼入れ性向上を介して強度増加に寄与する元素である。このような効果を得るためには、0.5%以上含有する必要があるが、2.0%を超えて含有すると、粒界強度が低下し、低温靭性が低下する。このため、Mnは0.5~2.0%の範囲に限定した。なお、好ましくは0.8%以上であり、好ましくは1.5%以下である。
 P:0.05%以下
 Pは、結晶粒界等に偏析しやすく、結晶粒の接合強度を低下させ、靭性を低下させる。このため、Pはできるだけ低減することが望ましいが、0.05%までは許容できる。このようなことから、Pは0.05%以下に限定した。
 S:0.010%以下
 Sは、結晶粒界に偏析しやすく、また、非金属介在物であるMnSを生成しやすく、延性、靭性の低下を招く。このため、Sはできるだけ低減することが望ましいが、0.010%までは許容できる。このようなことから、Sは0.010%以下に限定した。
 N:0.0005~0.0080%
 Nは、Nb、Ti、Al等の窒化物形成元素と結合し、窒化物を形成し、加熱時にオーステナイト粒をピンニングし、結晶粒の粗大化を抑制し、組織を微細化する効果を有する。このような組織微細化効果を得るためには、0.0005%以上の含有を必要とする。一方、0.0080%を超える含有は、固溶N量が増加し、母材、溶接熱影響部の靭性低下を招く。このため、Nは0.0005~0.0080%の範囲に限定した。なお、好ましくは0.0020%以上であり、好ましくは0.0050%以下である。
 O:0.0100%以下
 O(酸素)は、アルミナ等の酸化物を形成し、非金属介在物量を増加させ、延性の低下など、加工性の低下を招くため、できるだけ低減することが望ましいが、0.0100%までは許容できる。このため、O(酸素)は0.0100%以下に限定した。なお、好ましくは0.0050%以下である。
 上記した成分が基本の組成であるが、上記した基本の組成に加えてさらに、選択元素として、Ni:0.05~2.00%、Cr:0.10~2.50%、Mo:0.05~2.00%、W:0.05~2.00%、Nb:0.005~0.100%、V:0.005~0.200%、Ti:0.005~0.100%、B:0.0005~0.0050%のうちから選ばれた1種または2種以上、および/または、Nd:0.005~1.000%、Ca:0.0005~0.0050%、Mg:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種以上、を選択して含有してもよい。
 Ni、Cr、Mo、W、Nb、V、Ti、Bはいずれも、焼入れ性の向上に寄与する元素であり、必要に応じて選択して、1種または2種以上含有できる。
 Ni:0.05~2.00%
 Niは、焼入れ性の向上に加えてさらに、靭性をも向上させる作用も有する元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.00%を超える含有は、材料コストを上昇させ、経済性が低下する。このため、含有する場合には、Niは0.05~2.00%の範囲に限定することが好ましい。なお、より好ましくは0.50%以上であり、より好ましくは1.50%以下である。
 Cr:0.10~2.50%
 Crは、焼入れ性の向上を介して、強度確保に寄与する元素であり、このような効果を得るためには、0.10%以上の含有を必要とする。一方、2.50%を超えて多量に含有すると、溶接性が低下する。このため、含有するには、Crは0.10~2.50%の範囲に限定することが好ましい。なお、より好ましくは0.50%以上であり、より好ましくは1.50%以下である。
 Mo:0.05~2.00%
 Moは、焼入れ性の向上を介して、強度確保に寄与する元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.00%を超えて多量に含有すると、材料コストの高騰を招き、経済性が低下する。このため、含有する場合には、Moは0.05~2.00%の範囲に限定することが好ましい。なお、より好ましくは0.20%以上であり、より好ましくは1.50%以下である。
 W:0.05~2.00%
 Wは、焼入れ性の向上を介して、強度確保に寄与する元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.00%を超えて多量に含有すると、溶接性が低下する。このため、含有する場合には、Wは0.05~2.00%に限定することが好ましい。なお、より好ましくは0.20%以上であり、より好ましくは1.50%以下である。
 Nb:0.005~0.100%
 Nbは、焼入れ性の向上に加えてさらに、加熱時に炭窒化物を微細析出させ、オーステナイト粒をピンニングして、結晶粒の粗大化を抑制する作用を有する元素である。このような効果は0.005%以上の含有で認められる。一方、0.100%を超える含有は、溶接熱影響部の靭性を低下させる。このため、含有する場合には、Nbは0.005~0.100%の範囲に限定することが好ましい。なお、より好ましくは0.010%以上であり、より好ましくは0.050%以下である。
 V:0.005~0.200%
 Vは、焼入れ性の向上に加えてさらに、加熱時に炭窒化物を微細析出させ、オーステナイト粒をピンニングして、結晶粒の粗大化を抑制する作用を有する元素である。このような効果は0.005%以上の含有で認められる。一方、0.200%を超える含有は、溶接熱影響部の靭性を低下させる。このため、含有する場合には、Vは0.005~0.200%の範囲に限定することが好ましい。なお、より好ましくは0.010%以上であり、より好ましくは0.150%以下である。
 Ti:0.005~0.100%
 Tiは、焼入れ性の向上に加えてさらに、加熱時に炭窒化物を微細析出させ、オーステナイト粒をピンニングして、結晶粒の粗大化を抑制する作用を有する元素である。このような効果は0.005%以上の含有で認められる。一方、0.100%を超える含有は、溶接熱影響部の靭性を低下させる。このため、含有する場合には、Tiは0.005~0.100%の範囲に限定することが好ましい。なお、より好ましくは0.010%以上であり、より好ましくは0.050%以下である。
 B:0.0005~0.0050%
 Bは、微量の含有で焼入れ性の向上に寄与する元素である。このような効果を得るためには、0.0005%以上の含有を必要とする。一方、0.0050%を超えて含有すると、靭性が低下する。このため、含有する場合には、Bは0.0005~0.0050%の範囲に限定することがこのましい。なお、より好ましくは0.0010%以上であり、より好ましくは0.0020%以下である。
 また、Nd、Ca、Mg、REMはいずれも、介在物の形態制御を介して、延性、靭性、さらには耐水素脆化特性の向上に寄与する元素であり、必要に応じて選択して、1種または2種以上含有してもよい。
 Nd:0.005~1.000%
 Ndは、Sと結合し硫化物系介在物を形成し、Sの粒界偏析量を低減して、靭性および耐水素脆性の向上に寄与する元素である。このような効果を得るためには、0.005%以上の含有を必要とする。一方、1.000%を超える含有は、溶接熱影響部の靭性を低下させる。このため、含有する場合には、Ndは0.005~1.000%の範囲に限定することが好ましい。なお、より好ましくは0.010%以上であり、より好ましくは0.500%以下である。
 Ca:0.0005~0.0050%
 Caは、Sとの親和力が強く、圧延によって展伸しやすい硫化物系介在物であるMnSに代えて、圧延により展伸しにくい球状の硫化物系介在物であるCaSを形成し、硫化物系介在物の形態制御に寄与する元素であり、延性、靭性を向上させる作用を有する。このような効果を得るためには、0.0005%以上の含有を必要とする。一方、0.0050%を超えて含有すると、清浄度が低下し、延性、靭性等が低下する。このため、含有する場合には、Caは0.0005~0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.0010%以上であり、より好ましくは0.0020%以下である。
 Mg:0.0005~0.0050%
 Mgは、Caと同様に、Sとの親和力が強く、硫化物系介在物を形成し、延性、靭性を向上させる。このような効果を得るためには、0.0005%以上の含有を必要とする。一方、0.0050%を超えて含有すると、清浄度の低下を招く。このため、含有する場合には、Mgは0.0005~0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.0010%以上であり、より好ましくは0.0020%以下である。
 REM:0.0005~0.0050%
 REMは、REM(O,S)等の硫化物系介在物を形成し、結晶粒界の固溶S量を低減して、耐SR割れ性の改善に寄与する元素である。このような効果を得るためには、REMは0.0005%以上含有する必要がある。一方、0.0050%を超える含有は、鋳造時に沈殿晶帯にREM系硫化物が多量に集積し、延性、靭性等材質の低下を招く。このため、含有する場合には、REMは0.0005~0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.0010%以上であり、より好ましくは0.0020%以下である。なお、ここでいう「REM」は、Rare Earth Metal(希土類元素)の略である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 本発明の高圧水素ガス環境用鋼材は、上記した組成を有し、フェライトとパーライトの組合せ、または下部ベイナイト、マルテンサイト、焼戻し下部ベイナイト、焼戻しマルテンサイト、あるいはその組合せからなる組織を有する鋼材である。
 また、本発明の高圧水素ガス環境用鋼材は、上記した組成と、上記した組織とを有し、引張強さ:560MPa以上の高強度を有し、高圧水素ガス雰囲気中での破壊靭性値KIH:40MPa・m1/2以上を有する耐水素脆化特性に優れた鋼材である。
 つぎに、本発明の高圧水素ガス環境用鋼材の好ましい製造方法について説明する。
 まず、上記した組成の溶鋼を、転炉、電気炉等の常用の溶製炉で溶製し、連続鋳造法で所定形状のスラブ等の鋳片、あるいは造塊法等で鋳片(鋼塊)を熱間圧延して所定形状のスラブ等の鋼片とし、鋼素材とする。
 得られた鋼素材は、ついで、加熱炉に装入される。加熱温度は、Ac3変態点以上とする。加熱温度がAc3変態点未満では、被圧延材の変形抵抗が高くなり圧延装置への負荷が多大となるうえ、一部未変態組織が残存するため、その後の処理によっても、所望の特性を確保できなくなる。なお、加熱温度としては、1100~1300℃とすることが好ましい。加熱温度が1100℃未満では、変形抵抗が高く、圧延機への負荷が大きくなりすぎる。一方、加熱温度が1300℃を超えると、結晶粒が粗大化し、靭性が低下する。
 所定の温度に加熱された鋼素材は、ついで、熱間圧延を施され、所定の寸法形状の鋼材とされる。ここでいう「鋼材」は、薄板、厚板、鋼管、形鋼、棒鋼等を含むものとする。また、ここでいう「熱間圧延」は、所定寸法形状の鋼材とすることができればよく、とくにその圧延条件については限定されない。鋼材が継目無鋼管である場合には、熱間圧延は穿孔圧延を含む圧延とする。
 所定の寸法形状に圧延された鋼材は、そのまま室温まで放冷し、冷却後、再加熱し焼入れ焼戻しする再加熱焼入れ焼戻し処理を施されるか、あるいは熱間圧延に引続き、加速冷却処理を施されるか、あるいは、熱間圧延に引続き、直接焼入れ焼戻し処理を施されることが好ましい。
 つぎに、加速冷却処理、直接焼入れ焼戻し処理、再加熱焼入れ焼戻し処理について、それぞれ説明する。
 なお、製造条件における温度の規定は鋼材中心部とする。鋼材が、薄板、厚板、鋼管、形鋼である場合は板厚(肉厚)中心、棒鋼では径方向の中心とする。但し、中心部近傍はほぼ同様の温度履歴となるので、温度の規定は中心そのものに限定するものではない。
(加速冷却処理)
 所定寸法形状に圧延された鋼材は、室温に冷却されることなく、引続き、(Ar3変態点-50℃)以上の冷却開始温度から、冷却速度:1~200℃/sで冷却停止温度:600℃以下の冷却停止温度まで冷却する加速冷却処理を施される。冷却開始温度が(Ar3変態点-50℃)未満では、冷却開始前にオーステナイトの変態量が多くなり、加速冷却後に所望の特性を確保できなくなる。このため、冷却開始温度は(Ar3変態点-50℃)以上の温度に限定した。また、加速冷却の冷却速度が1℃/s未満では冷却が遅すぎ、所望の特性を確保できない。一方、通常の冷却方法では、200℃/sを超えることはない。このため、加速冷却処理の冷却速度は1~200℃/sの範囲に限定した。なお、冷却速度は、板厚(肉厚)中心での平均冷却速度である。冷却手段は特に限定する必要はなく、水冷等とすることが好ましい。また、加速冷却の冷却停止温度が600℃超えの高温では、所望の変態が完了しないため、所望の特性を確保できない。このため、加速冷却の冷却停止温度は600℃以下の温度に限定した。
(直接焼入れ焼戻し処理)
 上記鋼素材を、Ac3変態点以上に加熱し、所定寸法形状の鋼材に熱間圧延されたのち、引続き(Ar3変態点-50℃)以上の温度から1~200℃/sの範囲の冷却速度で250℃以下の冷却停止温度まで冷却する焼入れ処理と、引続きAc1変態点以下の焼戻し温度で焼戻しする焼戻し処理を施される。鋼素材の加熱温度がAc3変態点未満では、一部未変態組織が残存するため、熱間圧延および焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、熱間圧延前の加熱温度はAc3変態点以上とする。また、熱間圧延後の焼入れの開始温度が(Ar3変態点-50℃)未満であると、焼入れ前のオーステナイトの変態量が多く、焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、熱間圧延後、(Ar3変態点-50℃)以上から冷却を開始し、焼入れを行う。(Ar3変態点-50℃)以上から焼入れる際の冷却速度は、所望の組織を得るため、1~200℃/sとする。なお、該冷却速度は、板厚中心での平均冷却速度である。冷却手段は特に限定する必要はなく、水冷等により行えばよい。また、焼入れの冷却速度が1℃/s未満では冷却が遅すぎ、所望の特性を確保できない。一方、通常の冷却方法では、200℃/sを超えることはない。また、該焼入れを250℃超えの温度で停止すると、所望のマルテンサイト変態、ベイナイト変態が完了しないため、焼戻し後に所望の特性を得ることができない。このため、焼入れ処理は、250℃以下の温度まで冷却する焼入れとすることとする。焼入れ後は、引き続きAc1変態点以下の温度で焼戻す。焼戻し温度がAc1変態点を超えると、一部オーステナイトに変態するため、焼戻し後に所望の特性を得ることができなくなる。
(再加熱焼入れ焼戻し処理)
 所定寸法形状に圧延され、一旦、室温まで冷却された鋼材は、ついで、Ac3変態点以上の焼入れ加熱温度で加熱されたのち、引続き(Ar3変態点-50℃)以上の焼入れ開始温度から、冷却速度:0.5~100℃/sで250℃以下の温度まで冷却する焼入れ処理を施され、ついで、Ac1変態点以下の温度で焼戻しする、再加熱焼入れ焼戻し処理を施す。
 なお、焼入れ処理は、冷媒を例えば水あるいは油とし、被冷却材である高温に加熱された鋼材に、冷却速度:0.5~100℃/sとなるように、冷媒を吹き付けるか、あるいは加熱された鋼材を、冷媒を貯めた浴槽中に浸漬することにより、行うことが好ましい。均一冷却の観点から、冷媒を貯めた浴槽中で、所定寸法形状の鋼材は回転しながら冷媒のジェット噴流を吹き付けながら冷却することが好ましい。また、焼戻し処理は、焼戻し加熱炉等で加熱された鋼材を大気中あるいは保護雰囲気中で放冷すればよい。
 焼入れ加熱温度が、Ac3変態点未満では、一部未変態組織が残存するため、焼入れ、焼戻し後に所望の特性を確保できなくなる。このため、焼入れ加熱温度はAc3変態点以上とする。また、焼入れ開始温度が(Ar3変態点-50℃)未満では、焼入れ開始前にオーステナイトが変態を開始するため、焼入れ、焼戻し後に所望の特性を得ることができない。このため、焼入れ開始温度は、(Ar3変態点-50℃)以上の温度に限定した。また、焼入れ冷却速度は、所望の特性を得るとともに、焼割れを防止するため、0.5~100℃/sに限定した。焼入れ冷却停止温度が、250℃を超える高温では、所望の変態(マルテンサイト変態あるいはベイナイト変態)が完了しないため、焼戻し処理後に所望の特性を確保できない。そのため、焼入れ停止温度は250℃以下の温度に限定した。
 焼入れ処理後は、引続き鋼材をAc1変態点以下の焼戻し温度に加熱し、焼戻しする焼戻し処理を施す。焼戻し温度がAc1変態点を超えると、一部オーステナイトに変態するため、焼戻し処理後に所望の特性を確保することができなくなる。
 なお、上記した、Ac3変態点(℃)、Ar3変態点(℃)およびAc1変態点(℃)は、次式を用いて算出したものを使用するものとする。
 Ac3(℃)=854-180C+44Si-14Mn-17.8Ni-1.7Cr、
 Ar3(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo、
 Ac1(℃)=723-14Mn+22Si-14.4Ni+23.3Cr
 ここで、各元素記号は、各元素の鋼中含有量(質量%)である。
 上記した製造方法で製造された耐水素透過性能に優れた鋼材は、高圧水素ガス環境中で使用される水素用鋼構造物用として好適である。ここでいう「水素用鋼構造物」としては、水素ステーションなどで使用される蓄圧器(水素用蓄圧器)、水素ガス輸送用のラインパイプ(水素用ラインパイプ)等が例示できる。
 水素ステーションなどで使用される蓄圧器としては、鋼材のみを用いるタイプ1、鋼材に炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)を巻く、タイプ2およびタイプ3が知られている。これらのタイプは、例えば、圧縮天然ガス自動車燃料容器に関する各規格、ISO 11439、ANSI/NGVや、高圧ガス保安法 容器保安規則例示基準別添9などに記載される容器の構造についての区分である。なお、蓄圧器は、例えば上記した組成を有する鋼材を、所定形状に成形後、再加熱焼入れ焼戻し処理を施すことにより製造することが好ましい。なお、蓄圧器に貯蔵される水素の設計圧力は、35MPa程度または70MPa程度である。
 また、水素輸送用のラインパイプとしては、継目無鋼管、電縫鋼管、またはUOEタイプの鋼管が好適である。なお、ラインパイプは、上記した組成を有する鋼材をそのまま用いてラインパイプ(鋼管)としても、あるいは上記した組成を有する鋼素材に、上記した加速冷却処理、直接焼入れ処理を施して、鋼管とすることが好ましい。なお、ラインパイプでは、使用する水素の設計圧力としては、10MPa程度である。
 以下、実施例に基づいて、さらに本発明について説明する。
 表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造して鋳片(スラブ:肉厚250mm)とした。得られた鋳片を加熱し熱間圧延して、厚鋼板(板厚:38mm)とし一旦室温まで冷却したのち、表2に示す条件で再加熱焼入れ焼戻し処理を施した(鋼板No.1~No.16、No.21~No.23)。なお、焼入れ処理は水冷、あるいは油冷とした。
 また、得られた鋳片に、表2に示す条件で加熱し、熱間圧延して所定板厚(38mm)の厚鋼板としたのち、引続き、表2に示す条件で加速冷却処理を施した(鋼板No.17、No.18)。
 また、得られた鋳片に、表2に示す条件で加熱し、熱間圧延して所定板厚(38mm)の厚鋼板としたのち、引続き、表2に示す条件で直接焼入れし、その後、表2に示す焼戻し温度で焼戻す直接焼入れ焼戻し処理を施した(鋼板No.19、No.20)。なお、鋼板の温度測定は、板厚中心部に挿入した熱電対によって実施した。
 ここでは、再加熱焼入れ焼戻し処理は、水素用蓄圧器の製造を、加速冷却処理、直接焼入れ処理はともに、水素用ラインパイプ(鋼管)の製造を、それぞれシミュレイトするものとした。
 得られた鋼板について、引張試験、破壊靭性試験、さらには組織観察を実施した。試験方法は次のとおりとした。
(1)引張特性
 得られた厚鋼板から、JIS Z 2201(1980)に準拠して、圧延方向を長手方向(引張方向)とする全厚引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張強さを測定した。
(2)破壊靱性試験
 得られた各鋼板から、荷重負荷方向が圧延方向と平行になるように、CT試験片(板幅:50.8mm)を採取し、日本圧力容器研究会議材料部会水素脆化専門委員会TASKGroup V編(1991年)に準拠して、高圧水素ガス雰囲気中で破壊靭性試験を実施し、破壊靭性値KIHを求めた。なお、試験は、室温(20±10℃)、115MPaの高圧水素ガス雰囲気中で、2.5μm/minの一定変位速度で実施した。
 なお、一部では、ASTM E399またはASTM E1820の規定に準拠した破壊靱性試験も実施し破壊靭性値KIHを得たが、日本圧力容器研究会議材料部会水素脆化専門委員会TASKGroup V編(1991年)に準拠して実施した破壊靭性試験により得られた破壊靭性値KIHに対して、誤差5%以内のほぼ同等の値であったため、表2にはとくに記載していない。
(3)組織観察
 得られた鋼板の板厚中央部から、組織観察用試験片を採取し、研磨し腐蝕(ナイタール液)し、光学顕微鏡(倍率:200倍)で観察し、組織の同定と、画像解析により組織分率を算出した。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、115MPa高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上を示し、耐水素脆化特性に優れているといえる。一方、組成が本発明の範囲を外れる比較例は、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2未満と、耐水素脆化特性が低下している。なお、本発明例はいずれも、引張強さ:560MPa以上の高強度を有していた。
 このことから、本発明によれば、耐水素脆化特性に優れた製品(水素用鋼構造物)を製造することができることを確認できた。

Claims (12)

  1.  質量%で、
     C :0.04~0.50%、            Si:0.5~2.0%、
     Mn:0.5~2.0%、             P :0.05%以下、
     S :0.010%以下、             N :0.0005~0.0080%、
     Al:0.010%~2.0%、      O :0.0100%以下、
     Cu:0.5~2.0%、
    を含有し、残部Feおよび不可避的不純物からなる組成を有し、
    引張強さ:560MPa以上を有し、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材。
  2.  質量%で、Al:0.5~2.0%である請求項1に記載の高圧水素ガス環境用鋼材。
  3.  前記組成に加えてさらに、質量%で、Ni:0.05~2.00%、Cr:0.10~2.50%、Mo:0.05~2.00%、W:0.05~2.00%、Nb:0.005~0.100%、V:0.005~0.200%、Ti:0.005~0.100%、B:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する請求項1または2に記載の高圧水素ガス環境用鋼材。
  4.  前記組成に加えてさらに、質量%で、Nd:0.005~1.000%、Ca:0.0005~0.0050%、Mg:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する請求項1ないし3のいずれかに記載の高圧水素ガス環境用鋼材。
  5.  請求項1ないし4のいずれかに記載の高圧水素ガス環境用鋼材製である高圧水素ガス環境用鋼構造物。
  6.  前記鋼構造物が蓄圧器またはラインパイプである請求項5に記載の高圧水素ガス環境用鋼構造物。
  7.  質量%で、
     C :0.04~0.50%、            Si:0.5~2.0%、
     Mn:0.5~2.0%、             P :0.05%以下、
     S :0.010%以下、             N :0.0005~0.0080%、
     Al:0.010%~2.0%、    O :0.0100%以下、
     Cu:0.5~2.0%、を含有し、
    残部Feおよび不可避的不純物からなる組成を有する鋼素材を、Ac3変態点以上に加熱し、熱間圧延を施して所定形状の鋼材とし、引続き(Ar3変態点-50℃)以上の温度から冷却速度:1~200℃/sで、600℃以下の冷却停止温度まで冷却する加速冷却処理を施し、引張強さ:560MPa以上で、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材の製造方法。
  8.  質量%で、
     C :0.04~0.50%、            Si:0.5~2.0%、
     Mn:0.5~2.0%、             P :0.05%以下、
     S :0.010%以下、             N :0.0005~0.0080%、
     Al:0.010%~2.0%、    O :0.0100%以下、
     Cu:0.5~2.0%、を含有し、
    残部Feおよび不可避的不純物からなる組成を有する鋼素材を、Ac3変態点以上に加熱して、熱間圧延を施し所定形状の鋼材とし、引続き(Ar3変態点-50℃)以上の温度から冷却速度1~200℃/sで、250℃以下の冷却停止温度まで冷却し、さらにAc1変態点以下の温度で焼戻しする直接焼入れ焼戻し処理を施し、引張強さ:560MPa以上で、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材の製造方法。
  9.  質量%で、
     C :0.04~0.50%、            Si:0.5~2.0%、
     Mn:0.5~2.0%、             P :0.05%以下、
     S :0.010%以下、             N :0.0005~0.0080%、
     Al:0.010%~2.0%、    O :0.0100%以下、
     Cu:0.5~2.0%、を含有し、
    残部Feおよび不可避的不純物からなる組成を有し、所定形状に成形した鋼材を、Ac3変態点以上に加熱したのち、水焼入れまたは油焼入れし、さらにAc1変態点以下の温度で焼戻しする再加熱焼入れ焼戻し処理を施し、引張強さ:560MPa以上で、高圧水素ガス雰囲気中の破壊靭性値KIHが40MPa・m1/2以上である高圧水素ガス環境用鋼材の製造方法。
  10.  質量%で、Al:0.5~2.0%である請求項7ないし9のいずれかに記載の高圧水素ガス環境用鋼材の製造方法。
  11.  前記組成に加えてさらに、質量%で、Ni:0.05~2.00%、Cr:0.10~2.50%、Mo:0.05~2.00%、W:0.05~2.00%、Nb:0.005~0.100%、V:0.005~0.200%、Ti:0.005~0.100%、B:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する請求項7ないし10のいずれかに記載の高圧水素ガス環境用鋼材の製造方法。
  12.  前記組成に加えてさらに、質量%で、Nd:0.005~1.000%、Ca:0.0005~0.0050%、Mg:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種以上を含有する請求項7ないし11のいずれかに記載の高圧水素ガス環境用鋼材の製造方法。
PCT/JP2019/049853 2018-12-26 2019-12-19 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法 WO2020137812A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217019452A KR102551610B1 (ko) 2018-12-26 2019-12-19 고압 수소 가스 환경용 강재 및 고압 수소 가스 환경용 강 구조물 그리고 고압 수소 가스 환경용 강재의 제조 방법
JP2020519146A JP6989004B2 (ja) 2018-12-26 2019-12-19 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
US17/418,322 US20220064770A1 (en) 2018-12-26 2019-12-19 Steel material for high-pressure hydrogen gas environment, steel structure for high-pressure hydrogen gas environment, and methods for producing steel material for high-pressure hydrogen gas environment
EP19902477.9A EP3904541A4 (en) 2018-12-26 2019-12-19 STEEL FOR HIGH PRESSURE HYDROGEN GAS ENVIRONMENTS, STEEL STRUCTURE FOR HIGH PRESSURE HYDROGEN GAS ENVIRONMENTS AND METHOD OF MAKING STEEL FOR HIGH PRESSURE HYDROGEN GAS ENVIRONMENTS
CN201980086056.4A CN113272452B (zh) 2018-12-26 2019-12-19 高压氢气环境用钢材和高压氢气环境用钢结构物及高压氢气环境用钢材的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242130 2018-12-26
JP2018-242130 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137812A1 true WO2020137812A1 (ja) 2020-07-02

Family

ID=71128623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049853 WO2020137812A1 (ja) 2018-12-26 2019-12-19 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法

Country Status (6)

Country Link
US (1) US20220064770A1 (ja)
EP (1) EP3904541A4 (ja)
JP (1) JP6989004B2 (ja)
KR (1) KR102551610B1 (ja)
CN (1) CN113272452B (ja)
WO (1) WO2020137812A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102441A1 (ja) * 2020-11-11 2022-05-19 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2022145068A1 (ja) * 2020-12-28 2022-07-07 日本製鉄株式会社 鋼材
WO2022209896A1 (ja) * 2021-03-30 2022-10-06 Jfeスチール株式会社 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法
WO2024014098A1 (ja) * 2022-07-14 2024-01-18 Jfeスチール株式会社 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管
WO2024071356A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 耐水素脆化特性に優れたラインパイプ用鋼材、その製造方法、耐水素脆化特性に優れたラインパイプ用鋼管およびその製造方法
WO2024071357A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 ラインパイプ用鋼材とその製造方法、ラインパイプ用鋼管およびその製造方法
WO2024071358A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中破壊靭性に優れた高強度ラインパイプ用鋼材、その製造方法、高強度ラインパイプ用鋼管およびその製造方法
WO2024071354A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法
WO2024071352A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 耐水素脆化特性に優れたラインパイプ用鋼管、その製造方法、ラインパイプ用鋼材およびその製造方法
WO2024071353A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法
RU2821402C2 (ru) * 2021-03-30 2024-06-24 ДжФЕ СТИЛ КОРПОРЕЙШН Стальная труба для водорода высокого давления, сосуд для водорода высокого давления и способ изготовления стальной трубы

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680466B2 (en) 2021-02-08 2023-06-20 TerraH2 LLC Hydrogen storage and recovery with fracture monitoring
KR20230094377A (ko) 2021-12-21 2023-06-28 주식회사 포스코 수소 취화 저항성이 우수한 고강도 강판 및 그 제조방법
KR20230172297A (ko) 2022-06-15 2023-12-22 현대자동차주식회사 수소 취화 저항성 및 강도가 우수한 합금강 및 이의 제조방법
KR20240035102A (ko) 2022-09-08 2024-03-15 주식회사 포스코 수소취화 저항성 및 저온인성이 우수한 고강도 강재 및 그 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633664B2 (ja) 1976-05-01 1981-08-05
JP2005002386A (ja) 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd 高圧水素環境用鋼、鋼管およびその製造方法
JP2009046737A (ja) 2007-08-21 2009-03-05 Japan Steel Works Ltd:The 耐高圧水素環境脆化特性に優れた低合金高強度鋼およびその製造方法
JP2009074122A (ja) 2007-09-19 2009-04-09 Sumitomo Metal Ind Ltd 高圧水素ガス環境用低合金鋼および高圧水素用容器
JP2009275249A (ja) 2008-05-13 2009-11-26 Japan Steel Works Ltd:The 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法
JP2010037655A (ja) 2008-07-09 2010-02-18 Nippon Steel Corp 耐水素性に優れた高圧水素ガス貯蔵容器用鋼およびその製造方法
JP2012107332A (ja) 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵用鋼材
JP2012107333A (ja) 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵容器用高強度鋼材
JP2014198878A (ja) * 2013-03-29 2014-10-23 Jfeスチール株式会社 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
JP2014227573A (ja) * 2013-05-22 2014-12-08 株式会社日本製鋼所 耐高圧水素環境脆化特性に優れた高強度鋼およびその製造方法
US20150047754A1 (en) * 2013-08-13 2015-02-19 Hyundai Motor Company Cr-Mo ALLOY STEEL COMPOSITION HAVING EXCELLENT HYDROGEN BRITTLENESS RESISTANCE AND METHOD FOR HEAT TREATMENT OF THE SAME
JP2018012855A (ja) * 2016-07-20 2018-01-25 新日鐵住金株式会社 低合金鋼材、低合金鋼管および容器、ならびにその容器の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633664U (ja) 1979-08-22 1981-04-02
CN100510141C (zh) * 2004-12-28 2009-07-08 株式会社神户制钢所 耐氢脆化特性优良的超高强度薄钢板
CN101368251B (zh) * 2008-09-28 2010-11-17 舞阳钢铁有限责任公司 一种大厚度临氢设备用钢板及其生产工艺
EP2980247B1 (en) * 2013-03-29 2023-10-18 JFE Steel Corporation Method for producing a steel structure for hydrogen gas
EP3351650B1 (en) * 2015-09-17 2021-05-19 JFE Steel Corporation Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633664B2 (ja) 1976-05-01 1981-08-05
JP2005002386A (ja) 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd 高圧水素環境用鋼、鋼管およびその製造方法
JP2009046737A (ja) 2007-08-21 2009-03-05 Japan Steel Works Ltd:The 耐高圧水素環境脆化特性に優れた低合金高強度鋼およびその製造方法
JP2009074122A (ja) 2007-09-19 2009-04-09 Sumitomo Metal Ind Ltd 高圧水素ガス環境用低合金鋼および高圧水素用容器
JP2009275249A (ja) 2008-05-13 2009-11-26 Japan Steel Works Ltd:The 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法
JP2010037655A (ja) 2008-07-09 2010-02-18 Nippon Steel Corp 耐水素性に優れた高圧水素ガス貯蔵容器用鋼およびその製造方法
JP2012107332A (ja) 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵用鋼材
JP2012107333A (ja) 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵容器用高強度鋼材
JP2014198878A (ja) * 2013-03-29 2014-10-23 Jfeスチール株式会社 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
JP2014227573A (ja) * 2013-05-22 2014-12-08 株式会社日本製鋼所 耐高圧水素環境脆化特性に優れた高強度鋼およびその製造方法
US20150047754A1 (en) * 2013-08-13 2015-02-19 Hyundai Motor Company Cr-Mo ALLOY STEEL COMPOSITION HAVING EXCELLENT HYDROGEN BRITTLENESS RESISTANCE AND METHOD FOR HEAT TREATMENT OF THE SAME
JP2018012855A (ja) * 2016-07-20 2018-01-25 新日鐵住金株式会社 低合金鋼材、低合金鋼管および容器、ならびにその容器の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MATSUMOTO TAKUYA ET AL., TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES A, vol. 79
MATSUOKA SABURO ET AL., M&M 2016 ZAIRYO RIKIGAKU CONFERENCE (STRENGTH OF MATERIALS CONFERENCE), OS16-10, 2016, pages 813 - 815
See also references of EP3904541A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022102441A1 (ja) * 2020-11-11 2022-05-19
JP7211554B2 (ja) 2020-11-11 2023-01-24 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2022102441A1 (ja) * 2020-11-11 2022-05-19 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2022145068A1 (ja) * 2020-12-28 2022-07-07 日本製鉄株式会社 鋼材
RU2821402C2 (ru) * 2021-03-30 2024-06-24 ДжФЕ СТИЛ КОРПОРЕЙШН Стальная труба для водорода высокого давления, сосуд для водорода высокого давления и способ изготовления стальной трубы
WO2022209896A1 (ja) * 2021-03-30 2022-10-06 Jfeスチール株式会社 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法
JP7226656B1 (ja) * 2021-03-30 2023-02-21 Jfeスチール株式会社 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法
WO2024014098A1 (ja) * 2022-07-14 2024-01-18 Jfeスチール株式会社 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管
JP7424550B1 (ja) 2022-07-14 2024-01-30 Jfeスチール株式会社 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管
WO2024071356A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 耐水素脆化特性に優れたラインパイプ用鋼材、その製造方法、耐水素脆化特性に優れたラインパイプ用鋼管およびその製造方法
WO2024071357A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 ラインパイプ用鋼材とその製造方法、ラインパイプ用鋼管およびその製造方法
WO2024071358A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中破壊靭性に優れた高強度ラインパイプ用鋼材、その製造方法、高強度ラインパイプ用鋼管およびその製造方法
WO2024071354A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法
WO2024071352A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 耐水素脆化特性に優れたラインパイプ用鋼管、その製造方法、ラインパイプ用鋼材およびその製造方法
WO2024071353A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法

Also Published As

Publication number Publication date
EP3904541A4 (en) 2022-03-09
EP3904541A1 (en) 2021-11-03
KR102551610B1 (ko) 2023-07-04
CN113272452A (zh) 2021-08-17
JP6989004B2 (ja) 2022-01-05
CN113272452B (zh) 2023-03-21
KR20210094029A (ko) 2021-07-28
US20220064770A1 (en) 2022-03-03
JPWO2020137812A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
JP6989004B2 (ja) 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
JP6299885B2 (ja) 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法
JP5713152B2 (ja) 水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
JP5928394B2 (ja) 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
JP5812115B2 (ja) 高張力熱延鋼板及びその製造方法
WO2010087512A1 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
JP7371604B2 (ja) 高圧水素ガス環境用鋼材の製造方法
JP5499731B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
JP5418251B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板の製造方法
JP6492862B2 (ja) 低温用厚鋼板及びその製造方法
JP5742123B2 (ja) ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法
US20150368737A1 (en) Hot-rolled steel sheet for high strength linepipe having tensile strength of 540 mpa or more
JP2012107333A (ja) 高圧水素貯蔵容器用高強度鋼材
JP6202065B2 (ja) 水素用鋼構造物
CN113166896A (zh) 抗氢致开裂性优异的压力容器用钢材及其制备方法
WO2024071353A1 (ja) 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020519146

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217019452

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019902477

Country of ref document: EP

Effective date: 20210726