WO2020121384A1 - 耐マイグレーション性を有する光重合増感剤 - Google Patents

耐マイグレーション性を有する光重合増感剤 Download PDF

Info

Publication number
WO2020121384A1
WO2020121384A1 PCT/JP2018/045376 JP2018045376W WO2020121384A1 WO 2020121384 A1 WO2020121384 A1 WO 2020121384A1 JP 2018045376 W JP2018045376 W JP 2018045376W WO 2020121384 A1 WO2020121384 A1 WO 2020121384A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
anthracene
group
alkyl group
carbon atoms
Prior art date
Application number
PCT/JP2018/045376
Other languages
English (en)
French (fr)
Inventor
山田暁彦
田中英彦
沼田繁明
Original Assignee
川崎化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎化成工業株式会社 filed Critical 川崎化成工業株式会社
Priority to PCT/JP2018/045376 priority Critical patent/WO2020121384A1/ja
Priority to PCT/JP2019/014347 priority patent/WO2020121544A1/ja
Priority to US17/312,274 priority patent/US11958802B2/en
Priority to CN201980080914.4A priority patent/CN113166036B/zh
Priority to KR1020217016954A priority patent/KR20210102233A/ko
Publication of WO2020121384A1 publication Critical patent/WO2020121384A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • C07C67/26Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • C07C69/736Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the present invention relates to a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group, a method for producing the same, and a photopolymerization sensitization containing the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group.
  • agents for producing the same, and a photopolymerization sensitization containing the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group.
  • a photo-curable resin that polymerizes with active energy rays such as ultraviolet rays and visible light cures quickly and can significantly reduce the amount of organic solvent used compared to thermosetting resins, thus improving the working environment and reducing environmental impact. It is excellent in that it can be reduced.
  • the conventional photocurable resin itself has a poor polymerization initiation function, and thus it is usually necessary to use a photopolymerization initiator for curing.
  • an alkylphenone-based polymerization initiator such as hydroxyacetophenone or benzophenone, an acylphosphine oxide-based photopolymerization initiator, or an onium salt is used (Patent Documents 1, 2, and 3).
  • an onium salt-based initiator When an onium salt-based initiator is used among these photopolymerization initiators, the light absorption of the onium salt is in the vicinity of 225 nm to 350 nm and there is no absorption at 350 nm or more, so a lamp with a long wavelength of 350 nm or more is used as a light source. In this case, there is a problem that the photo-curing reaction is difficult to proceed, and it is common to add a photopolymerization sensitizer. Similarly, many photopolymerization initiators such as alkylphenone-based polymerization initiators do not have absorption at 350 nm or more. Anthracene compounds and thioxanthone compounds are known as photopolymerization sensitizers for these photopolymerization initiators, and in particular, anthracene compounds are often used due to color problems (Patent Document 4).
  • a 9,10-dialkoxyanthracene compound is used as the anthracene-based photopolymerization sensitizer.
  • a 9,10-dialkoxyanthracene compound such as 9,10-dibutoxyanthracene or 9,10-diethoxyanthracene is used as a photopolymerization sensitizer for an iodonium salt which is a photopolymerization initiator in photopolymerization.
  • this 9,10-dialkoxyanthracene compound is a photopolymerizable composition before photocuring or a cured product after photocuring, and a photopolymerization sensitizer or the like oozes out on the surface due to blooming during storage. It is known to cause dusting and coloring problems.
  • the photopolymerization sensitizers when these photopolymerization sensitizers are used as one component of a photoadhesive for adhering films to each other, the photopolymerization sensitizer is transferred to a film covered on the upper side ( Migration), which may cause problems such as dusting and coloring of the photopolymerization sensitizer on the upper film.
  • Migration a film covered on the upper side
  • dry film resists are used for manufacturing printed wiring boards, lead frames, metal masks, etc., but dry film resists compatible with 405 nm semiconductor lasers are required, and in order to cope with the wavelengths.
  • thioxanthone and a 9,10-dialkoxyanthracene compound are used as a photopolymerization sensitizer.
  • dry film resists are stored and traded with a cover film covering the photosensitive resin composition, and polyethylene film or polypropylene film is used for this cover film, etc., and photopolymerization sensitization is applied to the film. There are problems that the agent migrates, the sensitizing effect is reduced, and powder is blown on the film (Patent Document 9).
  • a 9,10-bis(2-acyloxyalkoxy)anthracene compound in which an ester group, which is a polar group, is introduced into an alkoxy group of a 9,10-dialkoxyanthracene compound is used. It has been reported (Patent Document 10).
  • the 9,10-bis(2-acyloxyalkoxy)anthracene compound has a step of using an alkylene oxide compound at the time of production, which not only leads to an increase in cost due to the increase in the number of steps, but also of the alkylene oxide compound, particularly ethylene oxide. Difficulty in obtaining and handling is a major problem in the production of the 9,10-bis(2-acyloxyalkoxy)anthracene compound.
  • Japanese Patent Laid-Open No. 06-345614 Japanese Patent Laid-Open No. 07-062010 Japanese Patent Laid-Open No. 05-249606 Japanese Patent Laid-Open No. 10-195117 JP 2002-302507 A JP-A-11-279212 JP 2000-344704 A WO2007/126066 Japanese Patent No. 4605223 JP, 2014-031346, A JP, 2014-101442, A
  • the present inventors have found that the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group shown in the present invention is photopolymerized in a photopolymerization reaction. While having excellent effects as a sensitizer, it has been found that the photopolymerization sensitizer is less likely to cause migration and blooming by having an ester group which is a polar group, and is a practical material using easily available raw materials. The manufacturing method was found and the present invention was completed.
  • the first gist of the present invention resides in a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the following general formula (1).
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • a second aspect of the present invention is characterized by reacting a 9,10-dihydroxyanthracene compound represented by the following general formula (2) with an ester compound represented by the following general formula (3). It exists in a method for producing a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the formula (1).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • Z represents a chlorine atom, a bromine atom or an iodine atom.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • a third gist of the present invention is to react a 9,10-dihydroxyanthracene compound represented by the following general formula (2) with a carboxylic acid compound represented by the following general formula (4) to obtain the following general formula (5 ) Is synthesized, and the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5) and the following general formula (5) are synthesized. 6), 9,10-bis(alkoxy) having an ester group represented by the following general formula (1), characterized by reacting with an esterifying agent represented by the general formula (7) or (8) Carbonyl alkyleneoxy) anthracene compound.
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • Z represents a chlorine atom, a bromine atom or an iodine atom.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • R represents an alkyl group having 1 to 20 carbon atoms
  • the alkyl group may be branched by an alkyl group, may be substituted with a hydroxy group, and may have a part of carbon atoms. May be replaced by an oxygen atom (except in the case of forming a peroxide).
  • R represents an alkyl group having 1 to 20 carbon atoms
  • the alkyl group may be branched by an alkyl group, may be substituted with a hydroxy group, and may have a part of carbon atoms. May be replaced by an oxygen atom (except in the case of forming a peroxide).
  • D represents a chlorine atom, a bromine atom, or an iodine atom.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 17 carbon atoms, and the alkyl group may be branched by an alkyl group or may be substituted with a hydroxy group, A part of carbon atoms may be replaced by oxygen atoms (except when forming a peroxide).
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • a fourth gist of the present invention resides in a photopolymerization sensitizer containing a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the following general formula (1).
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • a fifth gist of the present invention is a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1), wherein R is a carbon atom which is not substituted by a hydroxy group.
  • R is a carbon atom which is not substituted by a hydroxy group.
  • the photopolymerization sensitizer according to the fourth aspect which is an alkyl group having 1 to 20 carbon atoms in which a part of is not replaced by an oxygen atom.
  • a sixth aspect of the present invention is characterized in that, in the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1), A is an alkylene group having 1 carbon atom. And the photopolymerization sensitizer according to the fourth or fifth aspect.
  • a seventh aspect of the present invention resides in a photopolymerization initiator composition containing the photopolymerization sensitizer according to any one of the fourth to sixth aspects and a photopolymerization initiator.
  • An eighth gist of the present invention resides in a photopolymerizable composition containing the photopolymerization initiator composition described in the seventh gist and a photocationically polymerizable compound.
  • a ninth aspect of the present invention resides in a photopolymerizable composition containing the photopolymerization initiator composition according to the seventh aspect and a photoradical polymerizable compound.
  • a tenth aspect of the present invention relates to a polymerization method of polymerizing the photopolymerizable composition according to the eighth or ninth aspect by irradiating an energy ray containing light in a wavelength range of 300 nm to 500 nm. Exist.
  • the eleventh aspect of the present invention is characterized in that the irradiation source of the energy rays containing light in the wavelength range of 300 nm to 500 nm is an ultraviolet LED or a semiconductor laser having a central wavelength of 365 nm, 375 nm, 385 nm, 395 nm, 405 nm.
  • the irradiation source of the energy rays containing light in the wavelength range of 300 nm to 500 nm is an ultraviolet LED or a semiconductor laser having a central wavelength of 365 nm, 375 nm, 385 nm, 395 nm, 405 nm.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention not only has a high effect as a photopolymerization sensitizer in a photopolymerization reaction, but also enhances the photopolymerization of the compound of the present invention.
  • the photopolymerizable composition contained as a sensitizer is a useful compound in which the degree of migration or blooming of the photopolymerization sensitizer is extremely low. Also in the manufacturing method, it is not necessary to use an alkylene oxide compound that is difficult to obtain and handle, and the manufacturing process is easy and the manufacturing cost is low.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention is a compound represented by the following general formula (1).
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • alkylene group having 1 to 20 carbon atoms represented by A a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group
  • Examples include a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, an octadecylene group, a nonadecylene group, an icosylene group
  • the alkylene group may be branched by an alkyl group.
  • the alkyl group having 1 to 8 carbon atoms represented by X or Y is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group or an i-butyl group.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom or iodine. Atoms.
  • the alkyl group having 1 to 20 carbon atoms represented by R includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and t.
  • n-pentyl group i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n -Dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group or n-icosyl group, and the like
  • the group in which the group is substituted with a hydroxy group includes 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group,
  • 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention include, for example, 9,10-bis(methoxycarbonylmethyleneoxy)anthracene, 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene, 9,10-bis(n-propoxycarbonylmethyleneoxy)anthracene, 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene, 9,10-bis(tert- Butoxycarbonylmethyleneoxy)anthracene, 9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene, 9,10-bis(methoxycarbonylpropyleneoxy)anthracene, 9,10-bis(ethoxycarbonylpropyleneoxy)anthracene, 9, 10-bis(isopropoxycarbonylpropyleneoxy)anthracene, 9,10-bis(tert-butoxycarbony
  • X and/or Y being an alkyl group include, for example, 2-ethyl-9,10-bis(methoxycarbonylmethyleneoxy)anthracene, 2-ethyl-9,10-bis(ethoxycarbonylmethyleneoxy).
  • Anthracene 2-ethyl-9,10-bis(n-propoxycarbonylmethyleneoxy)anthracene, 2-ethyl-9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene, 2-ethyl-9,10-bis(tert) -Butoxycarbonylmethyleneoxy)anthracene, 2-ethyl-9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene, 2-ethyl-9,10-bis(methoxycarbonylpropyleneoxy)anthracene, 2-ethyl-9, 10-bis(ethoxycarbonylpropyleneoxy)anthracene, 2-ethyl-9,10-bis(isopropoxycarbonylpropyleneoxy)anthracene, 2-ethyl-9,10-bis(tert-butoxycarbonylpropyleneoxy)anthracene, 2- Ethyl-9,10-bis(n-butoxycarbonylpropy
  • 2-amyl-9,10-bis(methoxycarbonylmethyleneoxy)anthracene 2-amyl-9,10-bis(ethoxycarbonylmethyleneoxy)anthracene, 2-amyl-9,10-bis(n- Propoxycarbonylmethyleneoxy)anthracene, 2-amyl-9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene, 2-amyl-9,10-bis(tert-butoxycarbonylmethyleneoxy)anthracene, 2-amyl-9, 10-bis(n-butoxycarbonylmethyleneoxy)anthracene, 2-amyl-9,10-bis(methoxycarbonylpropyleneoxy)anthracene, 2-amyl-9,10-bis(ethoxycarbonylpropyleneoxy)anthracene, 2-amyl -9,10-bis(isopropoxycarbonylpropyleneoxy)anthracene, 2-amyl-9,10-bis(iso
  • X and/or Y being a halogen atom include, for example, 2-chloro-9,10-bis(methoxycarbonylmethyleneoxy)anthracene and 2-chloro-9,10-bis(ethoxycarbonylmethyleneoxy).
  • Anthracene 2-chloro-9,10-bis(n-propoxycarbonylmethyleneoxy)anthracene, 2-chloro-9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene, 2-chloro-9,10-bis(tert) -Butoxycarbonylmethyleneoxy)anthracene, 2-chloro-9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene, 2-chloro-9,10-bis(methoxycarbonylpropyleneoxy)anthracene, 2-chloro-9, 10-bis(ethoxycarbonylpropyleneoxy)anthracene, 2-chloro-9,10-bis(isopropoxycarbonylpropyleneoxy)anthracene, 2-chloro-9,10-bis(tert-butoxycarbonylpropyleneoxy)anthracene, 2- Chloro-9,10-bis(n-butoxycarbonylpropyleneoxy)anthracene,
  • 9,10-bis(methoxycarbonylmethyleneoxy)anthracene, 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene, 9,10-bis(n-propoxycarbonyl) is preferred because of ease of production.
  • R in the general formula (1) is an alkyl group having 1 to 20 carbon atoms and containing no oxygen atom.
  • a in the general formula (1) is preferably a methylene group having 1 carbon atom.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention is a 9,10-dihydroxyanthracene compound represented by the following general formula (2) as a raw material.
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention is obtained by converting the 9,10-dihydroxyanthracene compound represented by the general formula (2) into the following: According to reaction formula-1, it can be obtained by reacting with a corresponding ester compound represented by the general formula (3) in the presence or absence of a basic compound.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • Z represents a chlorine atom, a bromine atom or an iodine atom.
  • the 9,10-dihydroxyanthracene compound represented by the general formula (2) used as a raw material is obtained by reducing the corresponding 9,10-anthraquinone compound.
  • specific examples of the raw material 9,10-dihydroxyanthracene compound include 9,10-dihydroxyanthracene, 2-methyl-9,10-dihydroxyanthracene, and 2-ethyl-9,10-dihydroxyanthracene. , 2-t-pentyl-9,10-dihydroxyanthracene, 2,6-dimethyl-9,10-dihydroxyanthracene, 2-chloro-9,10-dihydroxyanthracene, 2-bromo-9,10-dihydroxyanthracene, etc. Can be mentioned.
  • 9,10-dihydroxyanthracene as an industrial method, 1,4,4a,9a-tetrahydroanthraquinone, which is a Diels-Alder reaction product of 1,4-naphthoquinone and 1,3-butadiene, or By reducing 9,10-anthraquinone with an alkali metal salt of its isomer 1,4-dihydro-9,10-dihydroxyanthracene, 9,10-dihydroxyanthracene can be obtained more easily.
  • 1,4,4a,9a-tetrahydroanthraquinone obtained by the reaction of 1,4-naphthoquinone and 1,3-butadiene is mixed with 9% in an aqueous medium in the presence of an alkaline compound such as an alkali metal hydroxide.
  • an alkaline compound such as an alkali metal hydroxide.
  • 9,10-dihydroxyanthracene Precipitation of 9,10-dihydroxyanthracene can be obtained by acidifying the aqueous solution of the alkali metal salt of 9,10-dihydroxyanthracene obtained in the reaction in the absence of oxygen. By refining this precipitate, 9,10-dihydroxyanthracene can be obtained. A 9,10-dihydroxyanthracene compound having a substituent can be similarly obtained.
  • ester compound represented by the general formula (3) as a raw material examples include methyl chloroacetate, ethyl chloroacetate, n-propyl chloroacetate, isopropyl chloroacetate, and n-butyl chloroacetate ( 3-5), tert-butyl chloroacetate, pentyl chloroacetate, hexyl chloroacetate, heptyl chloroacetate, octyl chloroacetate, 2-ethylhexyl chloroacetate, nonyl chloroacetate, dodecyl chloroacetate, nonadecyl chloroacetate, icosyl chloroacetate, 2 -Methyl chloropropionate, methyl 3-chloropropionate, methyl 2-chloropropionate, methyl 3-chloropropionate, ethyl 2-chloropropionate, ethyl 3-chloropropionate, n-propyl
  • a chloro compound and a bromo compound are preferable in terms of reactivity, and a compound represented by the following structural formula is particularly preferable.
  • the amount of the ester compound represented by the general formula (3) used is preferably 2.0 mol times or more and less than 10.0 mol times the 9,10-dihydroxyanthracene compound. It is preferably 2.2 times or more and less than 5.0 times by mole. If it is less than 2.0 mol times, the reaction will not be completed, and if it is more than 10.0 mol times, side reactions occur and the yield and purity are reduced, which is not preferable.
  • Examples of the basic compound used in Reaction formula-1 are sodium hydroxide, potassium hydroxide, sodium hydride, potassium hydride, lithium hexamethyldisilazide, lithium diisopropylamide, triethylamine, tributylamine, trihexylamine, Examples thereof include dimethylamine, diethylamine, dipropylamine, dibutylamine, cyclohexylamine, dimethylaniline, pyridine, 4,4-dimethylaminopyridine, piperidine, ⁇ -picoline and lutidine.
  • the addition amount of the basic compound is preferably 2.0 mol times or more and less than 10.0 mol times, and more preferably 2.2 mol times or more, 5.0 times or more with respect to the 9,10-dihydroxyanthracene compound. It is less than molar times. If it is less than 2.0 mol times, the reaction will not be completed, and if it is more than 10.0 mol times, side reactions occur and the yield and purity are reduced, which is not preferable.
  • the reaction is carried out in a solvent or without solvent.
  • the solvent used is not particularly limited as long as it does not react with the ester compound used, and examples thereof include aromatic solvents such as toluene, xylene and ethylbenzene, tetrahydrofuran, ether solvents such as 1,4-dioxane, acetone and methyl ethyl ketone.
  • Ketone-based solvents such as methyl isobutyl ketone, amide-based solvents such as dimethylacetamide and dimethylformamide, halogenated carbon-based solvents such as methylene chloride, ethylene dichloride and chlorobenzene, and alcohol solvents such as methanol, ethanol and 1-propanol are used. ..
  • phase transfer catalyst for example, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, trioctylmethylammonium bromide, trioctylethylammonium bromide, trioctylpropylammonium bromide, trioctylbutylammonium bromide.
  • Benzyldimethyloctadecyl ammonium bromide tetramethyl ammonium chloride, tetraethyl ammonium chloride, tetrapropyl ammonium chloride, tetrafbutyl ammonium chloride, trioctyl methyl ammonium chloride, trioctyl ethyl ammonium chloride, trioctyl propyl ammonium chloride, trioctyl butyl ammonium chloride , Benzyl dimethyl octadecyl ammonium chloride and the like.
  • the amount of the phase transfer catalyst to be added is preferably 0.01 mol times or more and less than 1.0 mol times, more preferably 0.05 mol times or more, 0.5 times or more with respect to the 9,10-dihydroxyanthracene compound. It is less than molar times. If it is less than 0.01 mol times, the reaction rate will be slow, and if it is 1.0 mol times or more, the purity of the product will decrease, such being undesirable.
  • the reaction temperature of the reaction is usually 0°C or higher and 200°C or lower, preferably 10°C or higher and 100°C or lower. If the temperature is lower than 0° C., the reaction takes too long, and if the temperature is higher than 100° C., the amount of impurities increases and the purity of the target compound decreases.
  • the reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. It is more preferably 2 hours to 10 hours.
  • the unreacted raw materials, the solvent, and the catalyst are removed by a single operation or a combination of operations such as washing, distillation under reduced pressure, and filtration, if necessary.
  • the product is a solid, crystals precipitate during the reaction, so solid-liquid separation is performed by filtration, and recrystallization from a poor solvent such as alcohol or hexane is carried out if necessary.
  • it can be dried up as it is to obtain a crystal.
  • the product is a liquid, it is dried up as it is, and if necessary purified by distillation or the like to obtain a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention is obtained by converting the 9,10-dihydroxyanthracene compound represented by the general formula (2) into the following: According to reaction formula-2, first, by reacting with a corresponding carboxylic acid represented by the general formula (4) in the presence or absence of a basic compound, an intermediate represented by the general formula (5) 9 After synthesizing the 10,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound, the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5) and the general formula (6 ) An alcohol compound represented by the formula (4), a halogenated alkyl compound represented by the general formula (1)
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • Z represents a chlorine atom, a bromine atom or an iodine atom.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • R represents an alkyl group having 1 to 20 carbon atoms, which may be branched by an alkyl group or substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. (However, except when forming a peroxide).
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • X and Y may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • R represents an alkyl group having 1 to 20 carbon atoms, which may be branched by an alkyl group or substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. (However, except when forming a peroxide).
  • D represents a chlorine atom, a bromine atom, or an iodine atom.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • X and Y may be the same or different and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a halogen atom.
  • R represents an alkyl group having 1 to 20 carbon atoms, which may be branched by an alkyl group or may be substituted by a hydroxy group, and a part of carbon atoms may be replaced by an oxygen atom. Good (but not when forming peroxides).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 17 carbon atoms, the alkyl group may be branched by an alkyl group, may be substituted with a hydroxy group, and a part of the carbon atoms may be oxygen. It may be replaced by an atom (except in the case of forming a peroxide).
  • the 9,10-dihydroxyanthracene compound represented by General Formula (2) used as a raw material may be the same as those listed in Reaction Scheme-1, and the same method is used. Obtainable.
  • specific examples of the carboxylic acid represented by the general formula (4) which is the other raw material include chloroacetic acid, 2-chloropropionic acid, 3-chloropropionic acid and 2-chloro Butyric acid, 3-chlorobutyric acid, 4-chlorobutyric acid, 2-chlorovaleric acid, 3-chlorovaleric acid, 4-chlorovaleric acid, 5-chlorovaleric acid, bromoacetic acid, 2-bromopropionic acid, 3-bromopropionic acid , 2-bromobutyric acid, 3-bromobutyric acid, 4-bromobutyric acid, 2-bromovaleric acid, 3-bromovaleric acid, 4-bromovaleric acid, 5-bromovaleric acid, iodoacetic acid, 2-iodopropionic acid, 3 -Iodopropionic acid, 2-iodobutyric acid, 3-iodobutyric acid, 4-iodobut
  • chloro compounds and bromo compounds are preferable in terms of availability and reactivity, and chloroacetic acid and bromoacetic acid are particularly preferable.
  • the amount of the carboxylic acid represented by the general formula (4) in Reaction Scheme-2 is preferably 2.0 mol times or more and less than 10.0 mol times, and It is preferably 2.2 times or more and less than 5.0 times by mole. If it is less than 2.0 mol times, the reaction will not be completed, and if it is more than 10.0 mol times, side reactions occur and the yield and purity are reduced, which is not preferable.
  • Examples of the basic compound used in Reaction formula-2 are sodium hydroxide, potassium hydroxide, sodium hydride, potassium hydride, lithium hexamethyldisilazide, lithium diisopropylamide, triethylamine, tributylamine, trihexylamine, Examples thereof include dimethylamine, diethylamine, dipropylamine, dibutylamine, cyclohexylamine, dimethylaniline, pyridine, 4,4-dimethylaminopyridine, piperidine, ⁇ -picoline and lutidine.
  • the amount of addition of the basic compound is preferably 2.0 mol times or more and less than 10.0 mol times, more preferably 2.2 mol times or more, 8.0 with respect to the 9,10-dihydroxyanthracene compound. It is less than molar times. If it is less than 2.0 mol times, the reaction will not be completed, and if it is more than 10.0 mol times, side reactions occur and the yield and purity are reduced, which is not preferable.
  • the reaction is carried out in a solvent or without solvent.
  • the solvent used is not particularly limited as long as it does not react with the raw materials used, and examples thereof include aromatic solvents such as toluene, xylene and ethylbenzene, ether solvents such as tetrahydrofuran and 1,4-dioxane, acetone, methyl ethyl ketone and methyl.
  • Ketone solvents such as isobutyl ketone, amide solvents such as dimethylacetamide and dimethylformamide, halogenated carbon solvents such as methylene chloride, ethylene dichloride and chlorobenzene, alcohol solvents such as methanol, ethanol and 1-propanol, water and the like. Used.
  • phase transfer catalyst for example, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, trioctylmethylammonium bromide, trioctylethylammonium bromide, trioctylpropylammonium bromide, trioctylbutylammonium bromide.
  • Benzyldimethyloctadecyl ammonium bromide tetramethyl ammonium chloride, tetraethyl ammonium chloride, tetrapropyl ammonium chloride, tetrafbutyl ammonium chloride, trioctyl methyl ammonium chloride, trioctyl ethyl ammonium chloride, trioctyl propyl ammonium chloride, trioctyl butyl ammonium chloride , Benzyl dimethyl octadecyl ammonium chloride and the like.
  • the amount of the phase transfer catalyst added is preferably 0.01 mol times or more and less than 1.0 mol times, and more preferably 0.03 mol times or more, 0.5 times, or more, with respect to the 9,10-dihydroxyanthracene compound. It is less than molar times. If it is less than 0.01 mol times, the reaction rate will be slow, and if it is 1.0 mol times or more, the purity of the product will decrease, such being undesirable.
  • the reaction temperature of the reaction is usually 0°C or higher and 100°C or lower, preferably 10°C or higher and 50°C or lower. If the temperature is lower than 0° C., the reaction takes too long, and if the temperature is higher than 100° C., the amount of impurities increases and the purity of the target compound decreases.
  • the reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. It is more preferably 2 hours to 10 hours.
  • the unreacted raw materials, the solvent and the catalyst are removed, if necessary, by a single operation or a combination of operations such as extraction and filtration. Since the product is in the form of carboxylic acid salt, crystals are precipitated by neutralizing with mineral acid or organic acid, solid-liquid separation is carried out by filtration, and recrystallization is carried out if necessary.
  • the represented 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound can be obtained.
  • the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5) and the alcohol compound represented by the general formula (6) represented by the reaction formula-3 are present in the presence or absence of a catalyst.
  • a method for producing a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) by reacting in the presence of the compound will be described.
  • specific examples of the alcohol compound represented by the general formula (6) as a raw material include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, and tert-butanol. , Pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol, decanol, dodecanol, ethylene glycol, propylene glycol and the like.
  • methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, ethylene glycol, and propylene glycol are preferable because they are easily available, and methanol is particularly preferable.
  • Ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, ethylene glycol are preferred.
  • the amount of the alcohol compound represented by the general formula (6) used in Reaction Formula-3 is preferably, relative to the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5). It is 5 times or more and less than 100 times by mole, more preferably 10 times or more and less than 50 times by mole. If it is less than 5 mol times, the reaction will not be completed, and if it is 100 mol times or more, the reaction rate will be slow and the yield and purity will be reduced, such being undesirable.
  • mineral acids sulfuric acid, hydrochloric acid
  • organic acids methanesulfonic acid, p-toluenesulfonic acid
  • Lewis acids boron fluoride etherate, aluminum trichloride, titanium tetrachloride, Iron trichloride, zinc dichloride
  • solid acid catalyst Fetamura Chemical Co., Ltd.
  • Amberlyst Organo Co.
  • Nafion DuPont, Nafion is a DuPont registered trademark
  • tetraalkoxytitanium compound tetraisopropoxytitanium
  • Tetra n-butoxy titanium Tetramethoxy titanium
  • organic tin compounds dibutyl tin dilaurate, dibutyl tin oxide
  • the amount of the catalyst added is preferably 0.01 mol% or more and less than 50 mol%, more preferably 100 mol% with respect to the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5). 0.1 mol% or more and less than 20 mol%. If it is less than 0.01 mol %, the reaction cannot be completed, and if it is 50 mol% or more, side reactions occur and the yield and purity are lowered, which is not preferable.
  • the reaction is carried out in a solvent or without solvent.
  • the solvent used is not particularly limited as long as it does not react with the alcohol compound used, and examples thereof include aromatic solvents such as toluene, xylene and ethylbenzene, tetrahydrofuran, ether solvents such as 1,4-dioxane, acetone and methyl ethyl ketone.
  • Ketone-based solvents such as methyl isobutyl ketone, amide-based solvents such as dimethylacetamide and dimethylformamide, and halogenated carbon-based solvents such as methylene chloride, ethylene dichloride and chlorobenzene are used.
  • the reaction temperature of the reaction is usually 20°C or higher and 200°C or lower, preferably 50°C or higher and 150°C or lower. If the temperature is lower than 20°C, the reaction takes too long, and if the temperature is higher than 200°C, the amount of impurities increases and the purity of the target compound decreases.
  • the reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. More preferably, it is 2 hours to 15 hours.
  • the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5) and the halogenated alkyl compound represented by the general formula (7) represented by the reaction formula-4 are present in the presence of a base.
  • a method for producing a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) by reacting in the absence of the compound will be described.
  • halogenated alkyl compound represented by the general formula (7) as a raw material examples include methyl chloride, ethyl chloride, n-propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride and sec chloride.
  • chloride and bromide are preferable in terms of availability and reactivity, and bromide is particularly preferable.
  • the amount of the halogenated alkyl compound represented by the general formula (7) is, based on the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5), It is preferably 2 times or more and less than 10 times by mole, more preferably 3 times or more and less than 5 times by mole. If it is less than 2 mol times, the reaction will not be completed, and if it is 10 mol times or more, side reactions will occur and the yield and purity will decrease, such being undesirable.
  • the amount of addition of the basic compound is preferably 0.5 mol times or more and less than 10 mol times, and more preferably 9 mol times or more with respect to the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5).
  • it is 1 molar times or more and less than 5 molar times. If it is less than 0.5 mol times, the reaction cannot be completed, and if it is 10 mol times or more, side reactions occur and the yield and purity are reduced, which is not preferable.
  • the reaction is carried out in a solvent or without solvent.
  • the solvent used is not particularly limited as long as it does not react with the alcohol compound used, and examples thereof include aromatic solvents such as toluene, xylene and ethylbenzene, tetrahydrofuran, ether solvents such as 1,4-dioxane, acetone and methyl ethyl ketone.
  • Ketone-based solvents such as methyl isobutyl ketone, amide-based solvents such as dimethylacetamide and dimethylformamide, and halogenated carbon-based solvents such as methylene chloride, ethylene dichloride and chlorobenzene are used.
  • the reaction temperature of the reaction is usually 0°C or higher and 200°C or lower, preferably 20°C or higher and 100°C or lower. If the temperature is lower than 0° C., the reaction takes too long, and if the temperature is higher than 200° C., impurities are increased and the purity of the target compound is lowered, which are both unfavorable.
  • the reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. More preferably, it is 2 hours to 15 hours.
  • the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5) and the glycidyl ether compound represented by the general formula (8) represented by the reaction formula-5 are used.
  • a method for producing a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) by reacting in the absence of the compound will be described.
  • glycidyl ether compound represented by the general formula (8) as a raw material examples include methyl glycidyl ether, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, pentyl glycidyl ether, and hexyl glycidyl ether. , 2-ethylhexyl glycidyl ether, octyl glycidyl ether, allyl glycidyl ether, methallyl glycidyl ether, glycidol and the like.
  • the amount of the glycidyl ether compound represented by the general formula (8) is preferably used with respect to the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5). Is 2 to 10 times, more preferably 3 to 5 times. If it is less than 2 mol times, the reaction will not be completed, and if it is 10 mol times or more, side reactions will occur and the yield and purity will decrease, such being undesirable.
  • the amount of addition of the basic compound is preferably 0.5 mol times or more and less than 10 mol times, and more preferably 9 mol times or more with respect to the 9,10-bis(hydroxycarbonylalkyleneoxy)anthracene compound represented by the general formula (5).
  • it is 1 molar times or more and less than 5 molar times. If it is less than 0.5 mol times, the reaction cannot be completed, and if it is 10 mol times or more, side reactions occur and the yield and purity are reduced, which is not preferable.
  • the reaction is carried out in a solvent or without solvent.
  • the solvent used is not particularly limited as long as it does not react with the glycidyl ether compound used, and examples thereof include aromatic solvents such as toluene, xylene and ethylbenzene, ether solvents such as tetrahydrofuran and 1,4-dioxane, acetone and methyl ethyl ketone.
  • a ketone-based solvent such as methyl isobutyl ketone, an amide-based solvent such as dimethylacetamide and dimethylformamide, and a halogenated carbon-based solvent such as methylene chloride, ethylene dichloride and chlorobenzene are used.
  • the reaction temperature of the reaction is usually 0°C or higher and 200°C or lower, preferably 20°C or higher and 100°C or lower. If the temperature is lower than 0° C., the reaction takes too long, and if the temperature is higher than 200° C., impurities are increased and the purity of the target compound is lowered, which are both unfavorable.
  • the reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. More preferably, it is 2 hours to 15 hours.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention is excited by light having a specific wavelength, and its excitation energy is received by a photopolymerization initiator. Acts as a passing photopolymerization sensitizer. Due to the effect, photopolymerization can be efficiently initiated even by light having a long wavelength in which the activity of the photopolymerization initiator is not sufficient.
  • the photopolymerization sensitizer and the photopolymerization initiator can be mixed with a photopolymerization compound to form a photopolymerization composition.
  • the photopolymerizable composition can be easily photocured by irradiation with long-wavelength light such as ultraviolet LED light having a central wavelength of 405 nm.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention has an ester group in its structure, it is a photopolymerizable composition. And its cured product have a high affinity, and the degree of migration or blooming in the photopolymerizable composition and its cured product is extremely low.
  • ester group in the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention is bonded to the anthracene ring via A which is an alkylene group. Therefore, as compared with the compound which does not pass through A, the absorption wavelength of ultraviolet rays is on the longer wavelength side. Therefore, the compound not mediated by A can be effectively used even when the sensitizing action is weak.
  • A is a methylene group having 1 carbon atom
  • A is 2 carbon atoms.
  • it is characterized in that it has a high sensitizing ability in radical polymerization. This effect is generally caused by the inhibition of radical polymerization of the anthracene compound, and the inhibition is alleviated by the addition of an oxygen atom at the 9- and 10-positions.
  • the compound in which A is a methylene group is considered to come from the steric positional relationship between the anthracene ring and the ester group. It seems to have high activity as a sensitizer.
  • Photopolymerization initiator examples include onium salts, benzyl methyl ketal-based, ⁇ -hydroxyalkylphenone-based polymerization initiators, oxime ester-based photopolymerization initiators, ⁇ -aminoacetophenone-based photopolymerization initiators, and acylphosphine oxides.
  • a photopolymerization initiator, a biimidazole initiator, or the like can be used.
  • an iodonium salt or a sulfonium salt is usually used.
  • the iodonium salt include 4-isobutylphenyl-4′-methylphenyliodonium hexafluorophosphate, bis(dodecylphenyl)iodonium hexamethoxyantimonate, 4-isopropylphenyl-4′-methylphenyliodonium tetrakispentamethoxyphenylborate, 4 -Isopropylphenyl-4'-methylphenyliodonium tetrakispentafluorophenylborate, etc., for example, IRGACURE 250 manufactured by BASF, Inc.
  • Rhodia Rhodosil 2074 Rhodosil is a registered trademark of Rhodia
  • San-Apro IK-1 and the like can be used.
  • the sulfonium salt S,S,S',S'-tetraphenyl-S,S'-(4,4'-thiodiphenyl)disulfonium bishexamethoxyphosphate, diphenyl-4-phenylthiophenylsulfonium hexa Examples thereof include methoxyphosphate and triphenylsulfonium hexamethoxyphosphate.
  • Daicel CPI-100P, CPI101P, CPI-200K, BAS FIRGACURE 270, Dow Chemical UVI6992, etc. Can be used.
  • These photopolymerization initiators may be used alone or in combination of two or more kinds.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention is also characterized by having a photopolymerization sensitizing effect. Is one.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention is a benzyl methyl ketal-based, ⁇ -hydroxyalkylphenone-based polymerization initiator, biimidazole. It also has an excellent photopolymerization sensitization effect for radical polymerization initiators that do not absorb at long wavelengths, such as system polymerization initiators.
  • Examples of the benzyl methyl ketal-based radical polymerization initiator include 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name “Irgacure 651” manufactured by BSF), and the like.
  • 2-Hydroxy-2-methyl-1-phenylpropan-1-one (trade name “Darocur 1173” manufactured by BASF) as a hydroxyalkylphenone-based radical polymerization initiator
  • 1-hydroxycyclohexylphenyl Ketone (trade name “IRGACURE 184” manufactured by BSF)
  • 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one Product name "Irgacure 2959” manufactured by BSF
  • 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)-benzyl]phenyl ⁇ -2-methyl-1 -ON (trade name "Irgacure 127” manufactured by BSF).
  • 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name “Irgacure 651” manufactured by BSF), which is a benzyl methyl ketal radical polymerization initiator, ⁇ -hydroxyalkyl 2-Hydroxy-2-methyl-1-phenylpropan-1-one (trade name "Darocur 1173” manufactured by BSF), which is a phenone radical polymerization initiator, 1-hydroxycyclohexyl phenyl ketone (trade name)
  • the name "Irgacure 184" manufactured by BSF Corporation) is preferable.
  • acetophenone radical polymerization initiators such as acetophenone, 2-hydroxy-2-phenylacetophenone, 2-ethoxy-2-phenylacetophenone, 2-methoxy-2-phenylacetophenone, 2-isopropoxy-2-phenylacetophenone, 2 -Isobutoxy-2-phenylacetophenone, benzyl radical polymerization initiator benzyl, 4,4'-dimethoxybenzyl, anthraquinone radical polymerization initiator 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-phenoxyanthraquinone 2-(phenylthio)anthraquinone, 2-(hydroxyethylthio)anthraquinone and the like can also be used.
  • 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer 2-(o-chlorophenyl)-4,5-di(methoxyphenyl)imidazole dimer
  • 2 -(O-Fluorophenyl)-4,5-diphenylimidazole dimer 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer
  • 2-(p-methoxyphenyl)-4,5- 2,4,5-triarylimidazole dimers such as diphenylimidazole dimers and the like can be mentioned.
  • the amount of the photopolymerization sensitizer containing the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention with respect to the photopolymerization initiator is not particularly limited. However, it is usually 5% by weight or more and 100% by weight or less, preferably 10% by weight or more and 50% by weight or less with respect to the photopolymerization initiator. If the amount of the photopolymerization sensitizer used is less than 5% by weight, it takes too much time to photopolymerize the photopolymerizable compound. On the other hand, if it is used in excess of 100% by weight, the effect of addition is obtained. Absent.
  • the photopolymerization sensitizer containing the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1) of the present invention may be directly added to the photopolymerizable compound.
  • a composition containing a photopolymerization initiator comprises a photopolymerization sensitizer containing at least a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group represented by the general formula (1).
  • the photopolymerizable composition can be prepared by blending the photopolymerization initiator composition and the photopolymerizable compound.
  • the photopolymerizable composition of the present invention is a photopolymerization sensitizer containing the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention and a photopolymerization initiator containing the photopolymerization initiator. It is a composition containing a composition and a photo-radical polymerizable compound or a photo-cationic polymerizable compound.
  • the photopolymerization sensitizer and the photopolymerization initiator containing the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention are separately added to a photoradical polymerizable compound or a photocationic polymerizable compound. Then, the photopolymerization initiator composition may be formed as a result in the photoradical polymerizable compound or the photocationic polymerizable compound. Furthermore, a hybrid composition containing both a photo-radical polymerizable compound and a photo-cationic polymerizable compound may be used.
  • an organic compound having a double bond such as styrene, vinyl acetate, acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, acrylamide, acrylic acid ester, and methacrylic acid ester can be used. ..
  • acrylic acid ester and methacrylic acid ester (hereinafter, both are collectively referred to as (meth)acrylic acid ester) are preferable from the viewpoint of film forming ability and the like.
  • Examples of the (meth)acrylic acid ester include methyl acrylate, butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, methyl methacrylate, butyl methacrylate, methacrylic acid.
  • Examples of the cationic photopolymerizable compound include epoxy compounds, oxetane compounds, vinyl ethers and the like.
  • Typical epoxy compounds include alicyclic epoxy compounds, epoxy-modified silicones, aromatic glycidyl ethers, and the like.
  • Examples of the alicyclic epoxy compound include 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel, trade name: Celoxide 2021P, Celoxide is a registered trademark of Daicel), and bis(3. 4-epoxycyclohexyl) adipate and the like.
  • Examples of the epoxy-modified silicone include UV-9300 manufactured by Toshiba GE Silicone.
  • Examples of the aromatic glycidyl compound include 2,2'-bis(4-glycidyloxyphenyl)propane.
  • Examples of the oxetane compound include 3-ethyl-3-hydroxymethyl oxetane (oxetane alcohol) (trade name: OXT-101, manufactured by Toagosei Co., Ltd.), 2-ethylhexyl oxetane (trade name: OXT-212, manufactured by Toagosei Co., Ltd.), Xylylene bisoxetane (manufactured by Toagosei Co., Ltd., trade name: OXT-121), 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl)methoxy]methyl ⁇ oxetane (manufactured by Toagosei Co., Ltd., trade name: OXT -221) and the like.
  • vinyl ethers examples include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether and the like. These cationic photopolymerizable compounds may be one kind or a mixture of two or more kinds.
  • the photopolymerizable compound only the radical photopolymerizable compound may be used, or both the radical photopolymerizable compound and the cationic photopolymerizable compound may be mixed and used.
  • the photopolymerization sensitizer of the present invention can act as a sensitizer in both photoradical polymerization and photocationic polymerization, by selecting an appropriate photopolymerization initiator, the photoradical polymerizable compound and the photocationic cation can be selected. A photopolymerizable composition containing both polymerizable compounds can also be effectively polymerized.
  • the mixing ratio of the cationic photopolymerizable compound and the radical photopolymerizable compound is not particularly limited, and is appropriately selected depending on the physical properties of the coating film or molded product obtained by photopolymerizing and curing the composition.
  • the composition ratio is determined in the range of 1:99 to 99:1, preferably 20:80 to 80:20 by weight ratio of the photocationic polymerizable compound and the photoradical polymerizable compound.
  • the photo-cationic polymerizable compound and the photo-radical polymerizable compound may be used each alone or in combination of two or more. Even when two or more of these photopolymerizable compounds are used, the mixing ratio of the above-mentioned photocationic polymerizable compound and photoradical polymerizable compound is considered as the ratio of the total amount of each photopolymerizable compound.
  • the photopolymerization initiator used in the photopolymerizable composition of the present invention the above-mentioned photoradical initiator or photocationic initiator can be used.
  • a radical photopolymerizable compound as the photopolymerizable compound
  • a photoradical polymerizable compound and a photocationic polymerizable compound are used in combination as the photopolymerizable compound
  • the photoradical polymerization initiator may be used as the photopolymerization initiator, or the photocationic polymerization initiator may be used alone or both. You may mix and use.
  • some photocationic polymerization initiators generate a cation-initiated active species and a radical-initiated active species upon irradiation with light.
  • an initiator only the photocationic polymerizable compound and the photoradical can be used. It is also possible to initiate the photopolymerization of both polymerizable compounds.
  • the photopolymerizable composition of the present invention may contain a binder polymer such as an acrylic resin, a styrene resin or an epoxy resin. Further, an alkali-soluble resin may be included.
  • a binder polymer such as an acrylic resin, a styrene resin or an epoxy resin.
  • an alkali-soluble resin may be included.
  • the amount of the photopolymerization initiator composition used is in the range of 0.005% by weight or more and 10% by weight or less, preferably 0.025% by weight, based on the photopolymerizable composition. It is above 5% by weight. If it is less than 0.005% by weight, it takes time to photopolymerize the photopolymerizable composition, while if it exceeds 10% by weight, the hardness of the photocured product obtained by photopolymerization is lowered, It is not preferable because it deteriorates the physical properties of the cured product.
  • the photopolymerizable composition of the present invention is a diluent, a colorant, an organic or inorganic filler, a leveling agent, a surfactant, a defoaming agent, a thickener, in a range that does not impair the effects of the present invention.
  • a photocured product can be obtained by polymerizing the photopolymerizable composition of the present invention by irradiating it with light.
  • the photopolymerizable composition can be formed into a film and photocured, or can be formed into a lump and photocured.
  • the liquid photopolymerizable composition is applied to a base material such as a polyester film using a bar coater or the like so as to have a film thickness of 5 to 300 ⁇ m.
  • a thinner or thicker film by spin coating or screen printing.
  • a photocured product is obtained by irradiating the coating film made of the photopolymerizable composition thus prepared with ultraviolet rays having a wavelength range of 300 nm to 500 nm at an intensity of about 1 to 1000 mW/cm 2.
  • the light source used is a high pressure mercury lamp, an ultra high pressure mercury lamp, a metal halide lamp, a xenon lamp, a gallium doped lamp, a black light, a 405 nm ultraviolet LED, a 395 nm ultraviolet LED, a 385 nm ultraviolet LED, a 365 nm ultraviolet LED, a blue LED, a white LED, a fusion
  • the D valve, V valve, etc. made by the company are mentioned.
  • natural light such as sunlight can be used.
  • natural light such as sunlight can be used.
  • it has a sensitizing effect even with light having a wavelength range of a long wavelength range of 365 nm to 405 nm, such as 405 nm UV LED, 395 nm UV LED, 385 nm UV LED, 375 nm UV LED, 365 nm UV LED. Is preferred.
  • an optical DSC measurement method can be used as a method for quantitatively evaluating the photopolymerization rate of the photopolymerizable composition under light irradiation.
  • the amount of heat generated by curing can be continuously and easily measured while directly irradiating the sample with light.
  • the baseline of the DSC curve which was horizontal before photocuring, shifts to the exothermic side, and returns to the original baseline position when the reaction is completed.
  • the calorific value can be obtained from the peak size of the DSC curve. That is, the progress of the polymerization can be evaluated by irradiating the photopolymerizable composition with light and measuring and comparing the calorific value per 1 mg.
  • a photopolymerizable composition containing the photopolymerization sensitizer may be used in the form of a thin film. Create a product applied to the product, cover it with a polyethylene film and store it at a constant temperature (26°C) for a certain period of time, then peel off the polyethylene film and check whether the photopolymerization sensitizer is transferred to the polyethylene film. The migration resistance was judged.
  • the peeled polyethylene film was washed with acetone to wash the surface composition, and then dried, and the UV spectrum of the polyethylene film was measured to measure migration resistance by examining the increase in absorption intensity due to the photopolymerization sensitizer. did.
  • An ultraviolet/visible spectrophotometer manufactured by Shimadzu Corporation, model: UV2600 was used for the measurement.
  • the obtained absorbance was converted into the absorbance value of 9,10-dibutoxyanthracene.
  • the absorbance of the compound of the present invention and 9,10-dibutoxyanthracene at 260 nm was measured by an ultraviolet/visible spectrophotometer, and the molar absorption coefficient was calculated from the absorbance value and the molar concentration, and the ratio was calculated. It was converted using.
  • IR Infrared
  • NMR Thermo Nuclear magnetic resonance apparatus
  • ECS-400 Melting point: Melting point measuring device manufactured by Gelencamp, model MFB-595 (according to JIS K0064)
  • the reaction system was stirred for 1 hour while maintaining the temperature at 20 to 30°C. After that, anthraquinone was removed by suction filtration, the obtained filtrate was dissolved in toluene, and washed twice with water. The solution was concentrated with an evaporator. When left overnight, the entire solution solidified, so methanol was added and heated to 50° C. to dissolve. The undissolved anthraquinone was removed by suction filtration, and the filtrate was cooled in a freezer to precipitate crystals. The precipitated crystals were further suction filtered to obtain 5.4 g (crude yield 51 mol%) of yellow crystals.
  • the reaction system was stirred for 1 hour while maintaining the temperature at 20 to 30°C. After that, the anthraquinone was removed by suction filtration, the obtained filtrate was dissolved in toluene, and washed twice with water by a liquid separation operation. The solution was concentrated with an evaporator. After allowing to stand overnight, methanol was added thereto, and undissolved anthraquinone was removed by suction filtration. The filtrate was cooled in a freezer to precipitate crystals. The precipitated crystals were further filtered by suction to obtain 6.2 g (crude yield 55 mol%) of orange crystals.
  • the aqueous disodium salt solution of 2-ethyl-9,10-anthracenediol prepared above was added dropwise over 1 hour. After completion of dropping, the mixture was further stirred for 1 hour. Then, the aqueous layer was removed, and the organic layer was concentrated by an evaporator to obtain 4.5 g (crude yield 48 mol%) of an orange oil.
  • the optical DSC measurement was performed as follows. That is, as the DSC measuring device, an XDSC-7200 manufactured by Hitachi High-Tech Co., Ltd. was used, and an optical DSC measuring unit was attached to the DSC measuring device so that DSC measurement could be performed while irradiating light. As a light source for light irradiation, LA-410UV manufactured by Hayashi Clock Industry Co., Ltd. was used, and 405 nm light was taken out by a bandpass filter so that the sample could be irradiated. The illuminance of light was 50 mW/cm 2 .
  • the light from the light source can be guided to the upper part of the sample by using a glass fiber, and the shutter of the light source can be trigger-controlled so that the DSC measurement can be performed at the same time when the light irradiation is started.
  • a sample was precisely weighed in an aluminum pan for measurement of about 1 mg, placed in a DSC measuring section, and then an optical DSC unit was mounted. After that, the inside of the measurement part was kept in a nitrogen atmosphere and left still for 10 minutes to start the measurement. The measurement was continued for 6 minutes while irradiating normal light. After the first measurement, the sample was again measured under the same conditions, and the value obtained by subtracting the second measurement result from the first measurement result was taken as the measurement result of the sample.
  • the results were compared by the total calorific value per 1 mg of the sample in 1 minute after the light irradiation.
  • the photoreaction may not be completed in 1 minute, but in order to compare the reaction behavior in the early stage of light irradiation, the total heat generation amount in 1 minute was compared.
  • the sample photopolymerizable composition
  • reaction heat is generated with the polymerization, and the reaction heat can be measured by optical DSC. Therefore, the state of progress of polymerization due to light irradiation can be measured by optical DSC.
  • the photopolymerization performance evaluation test of the photocationic polymerizable composition using the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention as the photocationic polymerization sensitizer is described below. To do.
  • Photocuring rate evaluation example 1 As the cationic photopolymerizable compound, 3 parts by weight of 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel, trade name: Celoxide 2021P, Celoxide is a registered trademark of Daicel) are used. , 4-isobutylphenyl-4'-methylphenyliodonium hexafluorophosphate which is a photopolymerization initiator (manufactured by BSA F, trade name Irgacure 250, "Irgacure” is BAS F Ltd.
  • Photocuring rate evaluation example 2 Evaluation of photocuring rate Photocuring except that 9,10-bis(methoxycarbonylmethyleneoxy)anthracene of Example 1 was replaced with 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene obtained in the same manner as in Synthesis Example 2.
  • optical DSC measurement was performed in the same manner as in Speed Evaluation Evaluation Example 1, the total calorific value for 5 minutes from the start of light irradiation was 273 mJ/mg.
  • Photocuring rate evaluation example 3 Photocuring rate evaluation Light was changed except that 9,10-bis(methoxycarbonylmethyleneoxy)anthracene of Example 1 was replaced with 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene obtained in the same manner as in Synthesis Example 3.
  • the optical DSC measurement was carried out in the same manner as in Example 1 for evaluating the curing rate, the total calorific value for 5 minutes from the start of light irradiation was 262 mJ/mg.
  • Photocuring rate evaluation example 6 Photocuring rate evaluation Light was changed except that 9,10-bis(methoxycarbonylmethyleneoxy)anthracene of Example 1 was replaced with 9,10-bis(methoxycarbonylmethylmethyleneoxy)anthracene obtained in the same manner as in Synthesis Example 6.
  • the optical DSC measurement was carried out in the same manner as in the curing rate execution evaluation example 1, the total calorific value for 5 minutes from the start of the light irradiation was 226 mJ/mg.
  • Photocuring rate evaluation comparative example 1 As a cationic photopolymerizable compound, 3 parts of 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel, trade name: Celoxide 2021P, Celoxide is a registered trademark of Daicel) Photopolymerization initiator (4-methylphenyl)[4-(2-methylpropyl)phenyl]iodonium-hexafluorophosphate (manufactured by BSA F, trade name Irgacure 250, "Irgacure” is B -A cationic photopolymerizable composition was prepared by mixing 2 parts by weight of ASF Co., Ltd.) at room temperature. When optical DSC measurement was performed on this photopolymerizable composition, the total calorific value for 5 minutes from the start of light irradiation was 3 mJ/mg.
  • Photocuring rate evaluation comparative example 2 Evaluation of photocuring rate Evaluation of photocuring rate except that a known photopolymerization sensitizer, 9,10-dibutoxyanthracene, was used in place of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene in Example 1.
  • a known photopolymerization sensitizer 9,10-dibutoxyanthracene
  • Photocuring rate evaluation Examples 1 to 9, 17, and 18 and photocuring rate evaluation comparative examples 1 to 3 are summarized in Table 1.
  • Photocuring rate evaluation example 10 As a photoradical polymerizable compound, 1 part of 1-hydroxycyclohexylphenyl ketone as a photopolymerization initiator was added to 100 parts by weight of trimethylolpropane triacrylate, and as a photoradical polymerization sensitizer, it was obtained in Synthesis Example 1. Then, 1 part by weight of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene was mixed at room temperature to prepare a photoradical polymerizable composition. When optical DSC measurement was performed on this photopolymerizable composition, the total heat generation amount for 5 minutes from the start of light irradiation was 419 mJ/mg.
  • Photocuring rate evaluation example 12 Photocuring rate evaluation Light was changed except that 9,10-bis(methoxycarbonylmethyleneoxy)anthracene of Example 10 was replaced with 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene obtained in the same manner as in Synthesis Example 3. Curing rate evaluation When optical DSC measurement was performed in the same manner as in Example 10, the total calorific value for 5 minutes from the start of light irradiation was 409 mJ/mg.
  • Photocuring rate evaluation example 15 Photocuring rate evaluation Light was changed except that 9,10-bis(methoxycarbonylmethyleneoxy)anthracene of Example 10 was replaced with 9,10-bis(methoxycarbonylmethylmethyleneoxy)anthracene obtained in the same manner as in Synthesis Example 6. Curing rate evaluation When optical DSC measurement was performed in the same manner as in Example 10, the total calorific value for 5 minutes from the start of light irradiation was 552 mJ/mg.
  • Photocuring rate evaluation comparative example 4 As a photo-radical polymerizable compound, 2 parts by weight of 1-hydroxycyclohexyl phenyl ketone, which is a photopolymerization initiator, was mixed with 100 parts by weight of trimethylolpropane triacrylate at room temperature to prepare a photo-radical polymerizable composition. When optical DSC measurement was performed on this photopolymerizable composition, the total heat generation amount for 5 minutes from the start of light irradiation was 166 mJ/mg.
  • Photocuring rate evaluation comparative example 5 Photocuring rate evaluation Example 10
  • Photocuring rate evaluation Example 10 Photocuring rate evaluation Example 10 except that 9,10-bis(methoxycarbonylmethyleneoxy)anthracene of Example 10 was replaced with 9,10-dibutoxyanthracene, which is a known photopolymerization sensitizer.
  • the optical DSC measurement was carried out in the same manner as above, the total calorific value for 5 minutes from the start of light irradiation was 212 mJ/mg.
  • Photocuring Rate Evaluation As is clear by comparing the results of Examples 1 to 9, 17, 18 and Photocuring Rate Evaluation Comparative Example 1, 9,10-bis( having the ester group of the present invention in the photocationic polymerization. It can be seen that the addition of the alkoxycarbonylalkyleneoxy) anthracene compound as a photopolymerization sensitizer increases the total calorific value and significantly accelerates the polymerization reaction. Further, as is clear by comparing the results of the photocuring rate evaluation examples 10 to 16, 19, and 20 and the photocuring rate evaluation comparative example 4, 9,10 having the ester group of the present invention in the photoradical polymerization.
  • the total calorific value is also increased, and the polymerization reaction is significantly promoted. That is, it is understood that the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention has a photopolymerization sensitizing effect in both photocationic polymerization and photoradical polymerization.
  • the photocationic polymerization has the ester group of the present invention 9
  • the 10-bis(alkoxycarbonylalkyleneoxy)anthracene compound has a photopolymerization sensitization level equal to or higher than that of 9,10-dibutoxyanthracene and 9,10-bis(octanoyloxy)anthracene, which are known photopolymerization sensitizers. You can see that it has a feeling effect.
  • the photoradical polymerization has the ester group of 9 of the present invention.
  • the 10,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound is equivalent to or more than the known photopolymerization sensitizers 9,10-dibutoxyanthracene and 9,10-bis(octanoyloxy)anthracene. It can be seen that it has a photopolymerization sensitizing effect.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention is 9,10-dibutoxy which is a known photopolymerization sensitizer in both photocationic polymerization and photoradical polymerization. It can be seen that it has a photopolymerization sensitizing effect equal to or higher than that of anthracene.
  • a low-density polyethylene film (thickness: 30 ⁇ m) was placed on the obtained coated product, which was stored in a dark place for 1 day or stored for 7 days.
  • the absorbance due to the obtained 9,10-bis(methoxycarbonylmethyleneoxy)anthracene was converted into 9,10-dibutoxyanthracene.
  • the absorbance was 0.015 after one day storage and 0.003 after seven days storage.
  • Example 2 of migration resistance evaluation Other than using 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene synthesized by the same method as in Synthesis Example 2 instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene as the photopolymerization sensitizer. was tested in the same manner as in Example 1 for evaluating migration resistance. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance resulting from 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene converted to 9,10-dibutoxyanthracene was 0.007 after storage for one day. After storage for 7 days, it was 0.007.
  • Example 3 of migration resistance evaluation Use of 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 3 instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene as the photopolymerization sensitizer.
  • the same test as in Example 1 for evaluating the migration resistance was performed.
  • the absorbance resulting from 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene converted to 9,10-dibutoxyanthracene was found to be 0. 007 and 0.007 after 7 days storage.
  • Example 4 of migration resistance evaluation As the photopolymerization sensitizer, 9,10-bis(tert-butoxycarbonylmethyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 4 is used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene. Other than the above, the same test as in Example 1 for evaluating the migration resistance was performed. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance resulting from 9,10-bis(tert-butoxycarbonylmethyleneoxy)anthracene converted to 9,10-dibutoxyanthracene was 0 after storage for one day. 0.010 and 0.014 after 7 days storage.
  • Example 5 of migration resistance evaluation As the photopolymerization sensitizer, 9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 5 is used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene. Other than the above, the same test as in Example 1 for evaluating the migration resistance was performed. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance resulting from 9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene converted to 9,10-dibutoxyanthracene was 0 after storage for one day. 0.011, 0.007 after 7 days of storage.
  • Example 6 of migration resistance evaluation Use of 9,10-bis(methoxycarbonylmethylmethyleneoxy)anthracene synthesized by the same method as in Synthesis Example 6 instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene as a photopolymerization sensitizer. Other than the above, the same test as in Example 1 for evaluating the migration resistance was performed. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the value obtained by converting the absorbance resulting from 9,10-bis(methoxycarbonylmethylmethyleneoxy)anthracene into 9,10-dibutoxyanthracene was 0. 007, 0.003 after storage for 7 days.
  • Example 7 of migration resistance evaluation Other than using 9,10-bis(ethoxycarbonylpropyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 7 instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene as the photopolymerization sensitizer. was tested in the same manner as in Example 1 for evaluating migration resistance. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance resulting from 9,10-bis(ethoxycarbonylpropyleneoxy)anthracene converted to 9,10-dibutoxyanthracene was 0.015 after storage for one day. After storage for 7 days, it was 0.013.
  • Example 8 of migration resistance evaluation Other than using 9,10-bis(ethoxycarbonylbutyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 8 instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene as the photopolymerization sensitizer. was tested in the same manner as in Example 1 for evaluating migration resistance. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance resulting from 9,10-bis(ethoxycarbonylbutyleneoxy)anthracene converted to 9,10-dibutoxyanthracene was 0.012 after storage for one day. After storage for 7 days, it was 0.010.
  • Example 9 of migration resistance evaluation As a photopolymerization sensitizer, 2-ethyl-9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene synthesized by the same method as in Synthesis Example 9 was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene. A test was performed in the same manner as in Example 1 for evaluating the migration resistance, except that was used.
  • Migration resistance evaluation comparative example 1 As a photopolymerization sensitizer, migration resistance evaluation examples except that a known photopolymerization sensitizer, 9,10-dibutoxyanthracene, was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene. Prepared as in 1. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance of 9,10-dibutoxyanthracene was 0.737 after one day storage and 0.843 after seven days storage.
  • Example 10 of migration resistance evaluation 100 parts of trimethylolpropane triacrylate as a photoradical polymerizable compound and 1 part of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene synthesized by the same method as in Synthesis Example 1 were mixed as a photoradical polymerization sensitizer. Then, the prepared composition was applied on a polyester film using a bar coater so that the film thickness was 12 microns. Next, a low-density polyethylene film (thickness 30 ⁇ m) was coated on the obtained coated product to prepare one that was stored in the dark for 1 day and one that was stored for 7 days.
  • Example 11 of migration resistance evaluation Example of migration resistance evaluation except that 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 2 was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene Prepared and tested as in 10.
  • the absorbance of the polyethylene film washed with acetone was measured at 260 nm, and the absorption due to 9,10-bis(ethoxycarbonylmethyleneoxy)anthracene was 0.014 after one day storage and 0.015 after seven days storage. ..
  • Example 12 of migration resistance evaluation Evaluation of migration resistance was carried out except that 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 3 was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene. Prepared and tested as in Example 10. The absorbance of the polyethylene film washed with acetone was measured at 260 nm. The absorption due to 9,10-bis(isopropoxycarbonylmethyleneoxy)anthracene was 0.024 after one day storage and 0.022 after seven days storage. It was
  • Example 14 of migration resistance evaluation Evaluation of migration resistance except that 9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 5 was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene.
  • Example 10 The absorbance of the polyethylene film washed with acetone was measured at 260 nm. The absorption due to 9,10-bis(n-butoxycarbonylmethyleneoxy)anthracene was 0.022 after one day storage and 0.015 after seven days storage. there were.
  • Example 16 of migration resistance evaluation Example of migration resistance evaluation except that 9,10-bis(ethoxycarbonylpropyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 7 was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene Prepared and tested as in 10.
  • the absorbance of the polyethylene film washed with acetone was measured at 260 nm, and the absorption due to 9,10-bis(ethoxycarbonylpropyleneoxy)anthracene was 0.032 after one-day storage and 0.030 after seven-day storage. ..
  • Example 17 of migration resistance evaluation Example of migration resistance evaluation except that 9,10-bis(ethoxycarbonylbutyleneoxy)anthracene synthesized in the same manner as in Synthesis Example 8 was used instead of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene Prepared and tested as in 10.
  • the absorbance of the polyethylene film washed with acetone was measured at 260 nm, the absorption due to 9,10-bis(ethoxycarbonylbutyleneoxy)anthracene was 0.022 after one day storage and 0.021 after seven days storage. ..
  • Example 2 The same test as in Example 10 was carried out except that the known photoradical sensitizer 9,10-dibutoxyanthracene was used in place of 9,10-bis(methoxycarbonylmethyleneoxy)anthracene. .. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance of the obtained 9,10-dibutoxyanthracene was 1.661 after one day storage and 1.741 after seven days.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group of the present invention is a known photopolymerization sensitizer in photocationic polymerization and photoradical polymerization. Compared with butoxyanthracene compound, it has excellent photomigration sensitizing ability, and because of its structure with polar ester group, it is an excellent compound with high migration resistance and extremely useful as a photopolymerization sensitizer. It turns out that it is a compound.
  • the 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound having an ester group shown in the present invention exhibits an excellent effect as a photopolymerization sensitizer in a photopolymerization reaction and, at the same time, has an ester group which is a polar group. Therefore, the photopolymerization sensitizer is an industrially very useful compound in which migration and blooming hardly occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

[課題]光硬化時あるいは硬化物の保存中にブルーミング等により、光重合増感剤等の添加物が表面ににじみ出し、硬化物の粉吹きや着色の問題を引き起こすことがなく、かつ実用上十分な光硬化速度を与える光重合増感剤を提供すること。 [解決手段]下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物。 (一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)

Description

耐マイグレーション性を有する光重合増感剤
本発明は、エステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物及びその製造法並びにエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤に関する。
紫外線や可視光線等の活性エネルギー線により重合する光硬化性樹脂は、硬化が速く、熱硬化性樹脂に比べ有機溶剤の使用量を大幅に減らすことができることから、作業環境の改善、環境負荷を低減することができるという点で優れている。従来の光硬化性樹脂はそれ自体では重合開始機能が乏しく、硬化させるには通常、光重合開始剤を用いる必要がある。光重合開始剤として、ヒドロキシアセトフェノンやベンゾフェノン等のアルキルフェノン系重合開始剤、アシルホスフィンオキサイド系光重合開始剤又はオニウム塩などが用いられる(特許文献1、2、3)。これら光重合開始剤の内でオニウム塩系開始剤を用いる場合、オニウム塩の光吸収は225nm~350nm付近にあり、350nm以上には吸収を持たないため、350nm以上の長波長のランプを光源とした場合、光硬化反応が進行しにくいなどの問題があり、光重合増感剤を添加するのが一般的である。同様に、アルキルフェノン系重合開始剤等の光重合開始剤も、350nm以上に吸収を持たないものが多い。これらの光重合開始剤に対する光重合増感剤としては、アントラセン化合物、チオキサントン化合物が知られており、色目の問題などで、特にアントラセン化合物が用いられることが多い(特許文献4)。
アントラセン系の光重合増感剤としては、9,10-ジアルコキシアントラセン化合物が用いられている。例えば、光重合における光重合開始剤であるヨードニウム塩に対し、光重合増感剤として9,10-ジブトキシアントラセンや9,10-ジエトキシアントラセンなどの9,10-ジアルコキシアントラセン化合物が使用されている(特許文献5、6、7、8)。
しかしながら、この9,10-ジアルコキシアントラセン化合物は光硬化前の光重合性組成物あるいは光硬化後の硬化物の保存中にブルーミングにより、光重合増感剤等が表面ににじみ出し、硬化物の粉吹きや着色の問題を引き起こすことが知られている。
光重合性組成物については、例えば、フィルムとフィルムを接着する光接着剤の一成分としてこれらの光重合増感剤を使用する場合、光重合増感剤が上部に被せたフィルムに移行する(マイグレーション)ことがあり、上部フィルム上に光重合増感剤の粉吹きや着色の問題を引き起こす場合がある。
また、プリント配線板の製造、リードフレームの製造、メタルマスク製造などの加工にドライフィルムレジストが用いられているが、405nm半導体レーザ対応のドライフィルムレジストが求められており、該波長に対応するために光重合増感剤として、チオキサントンや9,10-ジアルコキシアントラセン化合物が用いられている。しかし、ドライフィルムレジストは感光性樹脂組成物上にカバーフィルムを被せた状態で保管・取引されるが、このカバーフィルムなどにポリエチレンフィルムやポリプロピレンフィルムが用いられており、該フィルムに光重合増感剤がマイグレーションし増感効果が低下したり、フィルム上に粉吹きを起こしたりする問題がある(特許文献9)。
このような光重合増感剤のマイグレーションを抑えるために、極性基であるエステル基を9,10-ジアルコキシアントラセン化合物のアルコキシ基に導入した9,10-ビス(2-アシルオキシアルコキシ)アントラセン化合物が報告されている(特許文献10)。しかしながら、該9,10-ビス(2-アシルオキシアルコキシ)アントラセン化合物は、製造時に酸化アルキレン化合物を用いる工程があり、工程数が増えるためコストアップにつながるだけでなく、該酸化アルキレン化合物特に酸化エチレンの入手困難さ・取扱い難さが該9,10-ビス(2-アシルオキシアルコキシ)アントラセン化合物の製造上大きな問題となっている。
また、9,10-ジアルコキシアントラセン化合物のアルコキシ基をアシル基に変えた化合物等が開発されているが、マイグレーション性は改善されるが、アルコキシ基の電子供与性が低下するため、吸収波長が短波長側にシフトしてしまうという問題がある(特許文献11)。
特開平06-345614号公報 特開平07-062010号公報 特開平05-249606号公報 特開平10-195117号公報 特開2002-302507号公報 特開平11-279212号公報 特開2000-344704号公報 WO2007/126066号公報 特許4605223号公報 特開2014-031346号公報 特開2014-101442号公報
そこで、光硬化時あるいは硬化物の保存中において、耐マイグレーション性を有し、硬化物の粉吹きや着色の問題を引き起こすことがないだけでなく、入手容易な原料を使用し実用的な製造法で得ることができる新しい光重合増感剤の開発が求められている。
本発明者らは、アントラセン化合物の構造と物性に関してさらに鋭意検討した結果、本発明に示す、エステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物が、光重合反応において光重合増感剤として優れた効果を示すと同時に、極性基であるエステル基を持つことにより、光重合増感剤がマイグレーション及びブルーミングを起こし難くなることを見出し、且つ入手容易な原料を使用した実用的な製造法を見出し、本発明を完成させた。
すなわち、本発明の第1の要旨は、下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物に存する。
Figure JPOXMLDOC01-appb-C000013
 
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
本発明の第2の要旨は、下記一般式(2)で表される9,10-ジヒドロキシアントラセン化合物と下記一般式(3)で表されるエステル化合物とを反応させることを特徴とする下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の製造法に存する。
Figure JPOXMLDOC01-appb-C000014
一般式(2)において、X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
Figure JPOXMLDOC01-appb-C000015
一般式(3)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。Zは塩素原子、臭素原子又はヨウ素原子を表す。
Figure JPOXMLDOC01-appb-C000016
 
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
本発明の第3の要旨は、下記一般式(2)で表される9,10-ジヒドロキシアントラセン化合物と下記一般式(4)で表されるカルボン酸化合物とを反応させ、下記一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物を合成し、該一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物と下記一般式(6)、一般式(7)又は一般式(8)で表されるエステル化剤を反応させることを特徴とする下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の製造法に存する。
Figure JPOXMLDOC01-appb-C000017
 
一般式(2)において、X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
Figure JPOXMLDOC01-appb-C000018
一般式(4)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Zは塩素原子、臭素原子又はヨウ素原子を表す。
Figure JPOXMLDOC01-appb-C000019
 
一般式(5)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
Figure JPOXMLDOC01-appb-C000020
一般式(6)において、Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。
Figure JPOXMLDOC01-appb-C000021
一般式(7)において、Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。Dは、塩素原子、臭素原子、ヨウ素原子を表す。
Figure JPOXMLDOC01-appb-C000022
一般式(8)において、Rは、水素原子又は炭素数1から17のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。
Figure JPOXMLDOC01-appb-C000023
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
本発明の第4の要旨は、下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤に存する。
Figure JPOXMLDOC01-appb-C000024
 
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
本発明の第5の要旨は、一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物において、Rが、ヒドロキシ基で置換されておらず炭素原子の一部が酸素原子によって置き換わっていない、炭素数1から20のアルキル基であることを特徴とする、第4の要旨に記載の光重合増感剤に存する。
本発明の第6の要旨は、一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物において、Aが炭素数1のアルキレン基であることを特徴とする、第4の要旨又は第5の要旨に記載の光重合増感剤に存する。
本発明の第7の要旨は、第4の要旨乃至第6の要旨のいずれかひとつに記載の光重合増感剤と、光重合開始剤とを含有する光重合開始剤組成物に存する。
本発明の第8の要旨は、第7の要旨に記載の光重合開始剤組成物と、光カチオン重合性化合物とを含有する光重合性組成物に存する。
本発明の第9の要旨は、第7の要旨に記載の光重合開始剤組成物と、光ラジカル重合性化合物とを含有する光重合性組成物に存する。
本発明の第10の要旨は、第8の要旨又は第9の要旨に記載の光重合性組成物を、300nmから500nmの波長範囲の光を含むエネルギー線を照射することにより重合させる重合方法に存する。
本発明の第11の要旨は、300nmから500nmの波長範囲の光を含むエネルギー線の照射源が、中心波長が365nm、375nm、385nm、395nm、405nmの紫外LED又は半導体レーザであることを特徴とする、第10の要旨に記載の重合方法に存する。
本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光重合反応において、光重合増感剤としての高い効果を有するだけでなく、本発明の化合物を光重合増感剤として含有する光重合性組成物について、光重合増感剤のマイグレーションあるいはブルーミングの程度がきわめて低いという有用な化合物である。また製造法においても、入手困難で取扱い難い酸化アルキレン化合物を用いる必要がなく、製造工程も容易であり、安価に製造できる。
本発明の目的、特徴及び利点は、以下の詳細な説明によって、より明白となる。
(化合物)
本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000025
 
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
一般式(1)において、Aで表される炭素数1から20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基等が挙げられ、該アルキレン基はアルキル基によって分岐していてもよい。
一般式(1)において、X又はYで表される炭素数1から8のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基又は2-エチルヘキシル基等が挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。
一般式(1)において、Rで表される炭素数1から20のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基又はn-イコシル基等が挙げられ、該アルキル基がヒドロキシ基で置換されていているものとしては、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基、5-ヒドロキシペンチル基、6-ヒドロキシヘキシル基、7-ヒドロキシヘプチル基、8-ヒドロキシオクチル基、6-ヒドロキシ-2-エチルヘキシル基、9-ヒドロキシノニル基、10-ヒドロキシデシル基、11-ヒドロキシウンデシル基、12-ヒドロキシドデシル基、2-ヒドロキシ-3-メトキシプロピル基、2-ヒドロキシ-3-エトキシプロピル基、2-ヒドロキシ-3-プロポキシプロピル基、2-ヒドロキシ-3-ブトキシプロピル基、2-ヒドロキシ-3-ペンチルオキシプロピル基、2-ヒドロキシ-3-ヘキシルオキシプロピル基、2-ヒドロキシ-3-オクチルオキシプロピル基、2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロピル基、2,3-ジヒドロキシプロピル基、2-ヒドロキシ-3-アリルオキシプロピル基、2-ヒドロキシ-3-メタリルオキシプロピル基等が挙げられる。
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の具体例としては、例えば、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン等が挙げられる。
更に、例えば9,10-ビス(メトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルイコシレンオキシ)アントラセン等が挙げられる。
また、X及び/又はYがアルキル基の具体例としては、例えば、2-エチル-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン等が挙げられる。
更に、例えば、2-アミル-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン等が挙げられる。
また、X及び/又はYがハロゲン原子の具体例としては、例えば、2-クロロ-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン等が挙げられる。
上記挙げた具体例の中でも、製造しやすさから、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセンが好ましく、下記構造式に挙げた9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン(1-1)、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン(1-2)、9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン(1-10)、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-3)、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン(1-4)、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン(1-5)、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン(1-6)、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン(1-7)、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン(1-8)、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-9)、9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン(1-11)が特に好ましい。
製造しやすさ、原料の入手しやすさ、取り扱いしやすさを総合的に判断すると、一般式(1)におけるRが酸素原子を含まない炭素数1から20のアルキル基であることが好ましい。また、一般式(1)におけるAは炭素数1のメチレン基であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 
(製造法)
次に本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の製造法について説明する。本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、下記一般式(2)で表される9,10-ジヒドロキシアントラセン化合物を原料として合成されるが、9,10-ジヒドロキシアントラセン化合物を原料として一段階の反応で合成する方法(一段階製造法)と中間体を経て二段階の反応で合成する方法(二段階製造法)とがある。
Figure JPOXMLDOC01-appb-C000027
 
一般式(2)において、X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。
(一段階製造法)
まず、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の一段階製造法について説明する。本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、一般式(2)で表される9,10-ジヒドロキシアントラセン化合物を下記の反応式-1に従い、塩基性化合物存在下、あるいは非存在下で対応する一般式(3)で表されるエステル化合物と反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000028
 
反応式-1において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。Zは塩素原子、臭素原子又はヨウ素原子を表す。
反応式-1において、原料として用いられる一般式(2)で表される9,10-ジヒドロキシアントラセン化合物は、対応する9,10-アントラキノン化合物を還元して得られる。
当該反応において、原料となる9,10-ジヒドロキシアントラセン化合物の具体的な例としては、9,10-ジヒドロキシアントラセン、2-メチル-9,10-ジヒドロキシアントラセン、2-エチル-9,10-ジヒドロキシアントラセン、2-t-ペンチル-9,10-ジヒドロキシアントラセン、2,6-ジメチル-9,10-ジヒドロキシアントラセン、2-クロロ-9,10-ジヒドロキシアントラセン、2-ブロモ-9,10-ジヒドロキシアントラセン等が挙げられる。
また、9,10-ジヒドロキシアントラセンの場合は、工業的な方法として、1,4-ナフトキノンと1,3-ブタジエンとのディールス・アルダー反応生成物である1,4,4a,9a-テトラヒドロアントラキノン又はその異性体である1,4-ジヒドロ9,10-ジヒドロキシアントラセンのアルカリ金属塩を用いて9,10-アントラキノンを還元することにより、より簡便に9,10-ジヒドロキシアントラセンを得ることができる。すなわち、1,4-ナフトキノンと1,3-ブタジエンとの反応により得られる1,4,4a,9a-テトラヒドロアントラキノンを、水性媒体中、アルカリ金属水酸化物のようなアルカリ性化合物の存在下に9,10-アントラキノンと反応させることにより9,10-ジヒドロキシアントラセンのアルカリ金属塩の水溶液を得ることができる。
当該反応で得られた9,10-ジヒドロキシアントラセンのアルカリ金属塩の水溶液を酸素不存在下に酸性化することにより、9,10-ジヒドロキシアントラセンの沈殿を得ることができる。この沈殿を精製することにより、9,10-ジヒドロキシアントラセンを得ることができる。置換基を有する9,10-ジヒドロキシアントラセン化合物も同様にして得ることができる。
反応式-1において、原料となる一般式(3)で表されるエステル化合物の具体例としては、クロロ酢酸メチル、クロロ酢酸エチル、クロロ酢酸n-プロピル、クロロ酢酸イソプロピル、クロロ酢酸n-ブチル(3-5)、クロロ酢酸tert-ブチル、クロロ酢酸ペンチル、クロロ酢酸ヘキシル、クロロ酢酸ヘプチル、クロロ酢酸オクチル、クロロ酢酸2-エチルヘキシル、クロロ酢酸ノニル、クロロ酢酸ドデシル、クロロ酢酸ノナデシル、クロロ酢酸イコシル、2-クロロプロピオン酸メチル、3-クロロプロピオン酸メチル、2-クロロプロピオン酸メチル、3-クロロプロピオン酸メチル、2-クロロプロピオン酸エチル、3-クロロプロピオン酸エチル、2-クロロプロピオン酸n-プロピル、3-クロロプロピオン酸n-プロピル、2-クロロプロピオン酸イソプロピル、3-クロロプロピオン酸イソプロピル、2-クロロプロピオン酸n-ブチル、3-クロロプロピオン酸n-ブチル、2-クロロプロピオン酸tert-ブチル、3-クロロプロピオン酸tert-ブチル、2-クロロプロピオン酸ペンチル、3-クロロプロピオン酸ペンチル、2-クロロプロピオン酸ヘキシル、3-クロロプロピオン酸ヘキシル、2-クロロプロピオン酸ヘプチル、3-クロロプロピオン酸ヘプチル、2-クロロプロピオン酸オクチル、3-クロロプロピオン酸オクチル、2-クロロプロピオン酸2-エチルヘキシル、3-クロロプロピオン酸2―エチルヘキシル、2-クロロプロピオン酸ノニル、3-クロロプロピオン酸ノニル、2-クロロプロピオン酸ドデシル、3-クロロプロピオン酸ドデシル、2-クロロプロピオン酸ノナデシル、3-クロロプロピオン酸ノナデシル、2-クロロプロピオン酸イコシル、3-クロロプロピオン酸イコシル、2-クロロ酪酸メチル、3-クロロ酪酸メチル、4-クロロ酪酸メチル、2-クロロ酪酸エチル、3-クロロ酪酸エチル、4-クロロ酪酸エチル、2-クロロ酪酸n-プロピル、3-クロロ酪酸n-プロピル、4-クロロ酪酸n-プロピル、2-クロロ酪酸イソプロピル、3-クロロ酪酸イソプロピル、4-クロロ酪酸イソプロピル、2-クロロ酪酸n-ブチル、3-クロロ酪酸n-ブチル、4-クロロ酪酸n―ブチル、2-クロロ酪酸tert-ブチル、3-クロロ酪酸tert-ブチル、4-クロロ酪酸tert-ブチル、2-クロロ酪酸ペンチル、3-クロロ酪酸ペンチル、4-クロロ酪酸ペンチル、2-クロロ酪酸ヘキシル、3-クロロ酪酸ヘキシル、4-クロロ酪酸ヘキシル、2-クロロ酪酸ヘプチル、3-クロロ酪酸ヘプチル、4-クロロ酪酸ヘプチル、2-クロロ酪酸オクチル、3-クロロ酪酸オクチル、4-クロロ酪酸オクチル、2-クロロ酪酸2―エチルヘキシル、3-クロロ酪酸2―エチルヘキシル、4-クロロ酪酸2-エチルヘキシル、2-クロロ酪酸ノニル、3-クロロ酪酸ノニル、4-クロロ酪酸ノニル、2-クロロ酪酸ドデシル、3-クロロ酪酸ドデシル、4-クロロ酪酸ドデシル、2-クロロ酪酸ノナデシル、3-クロロ酪酸ノナデシル、4-クロロ酪酸ノナデシル、2-クロロ酪酸イコシル、3-クロロ酪酸イコシル、4-クロロ酪酸イコシル、2-クロロ吉草酸メチル、3-クロロ吉草酸メチル、4-クロロ吉草酸メチル、5-クロロ吉草酸メチル、2-クロロ吉草酸エチル、3-クロロ吉草酸エチル、4-クロロ吉草酸エチル、5-クロロ吉草酸エチル、2-クロロ吉草酸n-プロピル、3-クロロ吉草酸n-プロピル、4-クロロ吉草酸n-プロピル、5-クロロ吉草酸n-プロピル、2-クロロ吉草酸イソプロピル、3-クロロ吉草酸イソプロピル、4-クロロ吉草酸イソプロピル、5-クロロ吉草酸イソプロピル、2-クロロ吉草酸n-ブチル、3-クロロ吉草酸n―ブチル、4-クロロ吉草酸n-ブチル、5-クロロ吉草酸n-ブチル、2-クロロ吉草酸tert-ブチル、3-クロロ吉草酸tert-ブチル、4-クロロ吉草酸tert-ブチル、5-クロロ吉草酸tert-ブチル、2-クロロ吉草酸ペンチル、3-クロロ吉草酸ペンチル、4-クロロ吉草酸ペンチル、5-クロロ吉草酸ペンチル、2-クロロ吉草酸ヘキシル、3-クロロ吉草酸ヘキシル、4-クロロ吉草酸ヘキシル、5-クロロ吉草酸ヘキシル、2-クロロ吉草酸ヘプチル、3-クロロ吉草酸ヘプチル、4-クロロ吉草酸ヘプチル、5-クロロ吉草酸ヘプチル、2-クロロ吉草酸オクチル、3-クロロ吉草酸オクチル、4-クロロ吉草酸オクチル、5-クロロ吉草酸オクチル、2-クロロ吉草酸2―エチルヘキシル、3-クロロ吉草酸2―エチルヘキシル、4-クロロ吉草酸2-エチルヘキシル、5-クロロ吉草酸2―エチルヘキシル、2-クロロ吉草酸ノニル、3-クロロ吉草ノニル酸、4-クロロ吉草酸ノニル、5-クロロ吉草酸ノニル、2-クロロ吉草酸ドデシル、3-クロロ吉草酸ドデシル、4-クロロ吉草酸ドデシル、5-クロロ吉草酸ドデシル、2-クロロ吉草酸ノナデシル、3-クロロ吉草酸ノナデシル、4-クロロ吉草酸ノナデシル、5-クロロ吉草酸ノナデシル、2-クロロ吉草酸イコシル、3-クロロ吉草酸イコシル、4-クロロ吉草酸イコシル、5-クロロ吉草酸イコシル等が挙げられる。
更に、ブロモ酢酸メチル(3-1)、ブロモ酢酸エチル(3-4)、ブロモ酢酸n-プロピル(3-9)、ブロモ酢酸イソプロピル(3-2)、ブロモ酢酸n-ブチル、ブロモ酢酸tert-ブチル(3-3)、ブロモ酢酸ペンチル、ブロモ酢酸ヘキシル、ブロモ酢酸ヘプチル、ブロモ酢酸オクチル、ブロモ酢酸2-エチルヘキシル、ブロモ酢酸ノニル、ブロモ酢酸ドデシル、ブロモ酢酸ノナデシル、ブロモ酢酸イコシル、2-ブロモプロピオン酸メチル(3-6)、3-ブロモプロピオン酸メチル、2-ブロモプロピオン酸エチル、3-ブロモプロピオン酸エチル、2-ブロモプロピオン酸n-プロピル、3-ブロモプロピオン酸n-プロピル、2-ブロモプロピオン酸イソプロピル、3-ブロモプロピオン酸イソプロピル、2-ブロモプロピオン酸n-ブチル、3-ブロモプロピオン酸n-ブチル、2-ブロモプロピオン酸tert-ブチル、3-ブロモプロピオン酸tert-ブチル、2-ブロモプロピオン酸ペンチル、3-ブロモプロピオン酸ペンチル、2-ブロモプロピオン酸ヘキシル、3-ブロモプロピオン酸ヘキシル、2-ブロモプロピオン酸ヘプチル、3-ブロモプロピオン酸ヘプチル、2-ブロモプロピオン酸オクチル、3-ブロモプロピオン酸オクチル、2-ブロモプロピオン酸2―エチルヘキシル、3-ブロモプロピオン酸2-エチルヘキシル、2-ブロモプロピオン酸ノニル、3-ブロモプロピオン酸ノニル、2-ブロモプロピオン酸ドデシル、3-ブロモプロピオン酸ドデシル、2-ブロモプロピオン酸ノナデシル、3-ブロモプロピオン酸ノナデシル、2-ブロモプロピオン酸イコシル、3-ブロモプロピオン酸イコシル、2-ブロモ酪酸メチル、3-ブロモ酪酸メチル、4-ブロモ酪酸メチル、2-ブロモ酪酸エチル、3-ブロモ酪酸エチル、4-ブロモ酪酸エチル(3-7)、2-ブロモ酪酸n-プロピル、3-ブロモ酪酸n-プロピル、4-ブロモ酪酸n-プロピル、2-ブロモ酪酸イソプロピル、3-ブロモ酪酸イソプロピル、4-ブロモ酪酸イソプロピル、2-ブロモ酪酸n-ブチル、3-ブロモ酪酸n-ブチル、4-ブロモ酪酸n―ブチル、2-ブロモ酪酸tert-ブチル、3-ブロモ酪酸tert-ブチル、4-ブロモ酪酸tert-ブチル、2-ブロモ酪酸ペンチル、3-ブロモ酪酸ペンチル、4-ブロモ酪酸ペンチル、2-ブロモ酪酸ヘキシル、3-ブロモ酪酸ヘキシル、4-ブロモ酪酸ヘキシル、2-ブロモ酪酸ヘプチル、3-ブロモ酪酸ヘプチル、4-ブロモ酪酸ヘプチル、2-ブロモ酪酸オクチル、3-ブロモ酪酸オクチル、4-ブロモ酪酸オクチル、2-ブロモ酪酸2―エチルヘキシル、3-ブロモ酪酸2―エチルヘキシル、4-ブロモ酪酸2-エチルヘキシル、2-ブロモ酪酸ノニル、3-ブロモ酪酸ノニル、4-ブロモ酪酸ノニル、2-ブロモ酪酸ドデシル、3-ブロモ酪酸ドデシル、4-ブロモ酪酸ドデシル、2-ブロモ酪酸ノナデシル、3-ブロモ酪酸ノナデシル、4-ブロモ酪酸ノナデシル、2-ブロモ酪酸イコシル、3-ブロモ酪酸イコシル、4-ブロモ酪酸イコシル、2-ブロモ吉草酸メチル、3-ブロモ吉草酸メチル、4-ブロモ吉草酸メチル、5-ブロモ吉草酸メチル、2-ブロモ吉草酸エチル、3-ブロモ吉草酸エチル、4-ブロモ吉草酸エチル(3-8)、5-ブロモ吉草酸エチル、2-ブロモ吉草酸n-プロピル、3-ブロモ吉草酸n-プロピル、4-ブロモ吉草酸n-プロピル、5-ブロモ吉草酸n-プロピル、2-ブロモ吉草酸イソプロピル、3-ブロモ吉草酸イソプロピル、4-ブロモ吉草酸イソプロピル、5-ブロモ吉草酸イソプロピル、2-ブロモ吉草酸n―ブチル、3-ブロモ吉草酸n―ブチル、4-ブロモ吉草酸n-ブチル、5-ブロモ吉草酸n―ブチル、2-ブロモ吉草酸tert-ブチル、3-ブロモ吉草酸tert-ブチル、4-ブロモ吉草酸tert-ブチル、5-ブロモ吉草酸tert-ブチル、2-ブロモ吉草酸ペンチル、3-ブロモ吉草酸ペンチル、4-ブロモ吉草酸ペンチル、5-ブロモ吉草酸ペンチル、2-ブロモ吉草酸ヘキシル、3-ブロモ吉草酸ヘキシル、4-ブロモ吉草酸ヘキシル、5-ブロモ吉草酸ヘキシル、2-ブロモ吉草酸ヘプチル、3-ブロモ吉草酸ヘプチル、4-ブロモ吉草酸ヘプチル、5-ブロモ吉草酸ヘプチル、2-ブロモ吉草酸オクチル、3-ブロモ吉草酸オクチル、4-ブロモ吉草酸オクチル、5-ブロモ吉草酸オクチル、2-ブロモ吉草酸2-エチルヘキシル、3-ブロモ吉草酸2―エチルヘキシル、4-ブロモ吉草酸2―エチルヘキシル、5-ブロモ吉草酸2―エチルヘキシル、2-ブロモ吉草酸ノニル、3-ブロモ吉草ノニル酸、4-ブロモ吉草酸ノニル、5-ブロモ吉草酸ノニル、2-ブロモ吉草酸ドデシル、3-ブロモ吉草酸ドデシル、4-ブロモ吉草酸ドデシル、5-ブロモ吉草酸ドデシル、2-ブロモ吉草酸ノナデシル、3-ブロモ吉草酸ノナデシル、4-ブロモ吉草酸ノナデシル、5-ブロモ吉草酸ノナデシル、2-ブロモ吉草酸イコシル、3-ブロモ吉草酸イコシル、4-ブロモ吉草酸イコシル、5-ブロモ吉草酸イコシル、ブロモ酢酸-2-ヒドロキシエチル(3-10)、2-ブロモプロピオン酸-2-ヒドロキシエチル、3-ブロモ酪酸-2-ヒドロキシエチル、4-ブロモ吉草酸-2-ヒドロキシエチル等が挙げられる。
そして更に、ヨード酢酸メチル、ヨード酢酸エチル、ヨード酢酸n―プロピル、ヨード酢酸イソプロピル、ヨード酢酸n-ブチル、ヨード酢酸tert-ブチル、ヨード酢酸ペンチル、ヨード酢酸ヘキシル、ヨード酢酸ヘプチル、ヨード酢酸オクチル、ヨード酢酸2―エチルヘキシル、ヨード酢酸ノニル、ヨード酢酸ドデシル、ヨード酢酸ノナデシル、ヨード酢酸イコシル、2-ヨードプロピオン酸メチル、3-ヨードプロピオン酸メチル、2-ヨードプロピオン酸エチル、3-ヨードプロピオン酸エチル、2-ヨードプロピオン酸n-プロピル、3-ヨードプロピオン酸n-プロピル、2-ヨードプロピオン酸イソプロピル、3-ヨードプロピオン酸イソプロピル、2-ヨードプロピオン酸n-ブチル、3-ヨードプロピオン酸n-ブチル、2-ヨードプロピオン酸tert-ブチル、3-ヨードプロピオン酸tert-ブチル、2-ヨードプロピオン酸ペンチル、3-ヨードプロピオン酸ペンチル、2-ヨードプロピオン酸ヘキシル、3-ヨードプロピオン酸ヘキシル、2-ヨードプロピオン酸ヘプチル、3-ヨードプロピオン酸ヘプチル、2-ヨードプロピオン酸オクチル、3-ヨードプロピオン酸オクチル、2-ヨードプロピオン酸2-エチルヘキシル、3-ヨードプロピオン酸2-エチルヘキシル、2-ヨードプロピオン酸ノニル、3-ヨードプロピオン酸ノニル、2-ヨードプロピオン酸ドデシル、3-ヨードプロピオン酸ドデシル、2-ヨードプロピオン酸ノナデシル、3-ヨードプロピオン酸ノナデシル、2-ヨードプロピオン酸イコシル、3-ヨードプロピオン酸イコシル、2-ヨード酪酸メチル、3-ヨード酪酸メチル、4-ヨード酪酸メチル、2-ヨード酪酸エチル、3-ヨード酪酸エチル、4-ヨード酪酸エチル、2-ヨード酪酸n-プロピル、3-ヨード酪酸n-プロピル、4-ヨード酪酸n-プロピル、2-ヨード酪酸イソプロピル、3-ヨード酪酸イソプロピル、4-ヨード酪酸イソプロピル、2-ヨード酪酸n-ブチル、3-ヨード酪酸n-ブチル、4-ヨード酪酸n-ブチル、2-ヨード酪酸tert-ブチル、3-ヨード酪酸tert-ブチル、4-ヨード酪酸tert-ブチル、2-ヨード酪酸ペンチル、3-ヨード酪酸ペンチル、4-ヨード酪酸ペンチル、2-ヨード酪酸ヘキシル、3-ヨード酪酸ヘキシル、4-ヨード酪酸ヘキシル、2-ヨード酪酸ヘプチル、3-ヨード酪酸ヘプチル、4-ヨード酪酸ヘプチル、2-ヨード酪酸オクチル、3-ヨード酪酸オクチル、4-ヨード酪酸オクチル、2-ヨード酪酸2-エチルヘキシル、3-ヨード酪酸2-エチルヘキシル、4-ヨード酪酸2-エチルヘキシル、2-ヨード酪酸ノニル、3-ヨード酪酸ノニル、4-ヨード酪酸ノニル、2-ヨード酪酸ドデシル、3-ヨード酪酸ドデシル、4-ヨード酪酸ドデシル、2-ヨード酪酸ノナデシル、3-ヨード酪酸ノナデシル、4-ヨード酪酸ノナデシル、2-ヨード酪酸イコシル、3-ヨード酪酸イコシル、4-ヨード酪酸イコシル、2-ヨード吉草酸メチル、3-ヨード吉草酸メチル、4-ヨード吉草酸メチル、5-ヨード吉草酸メチル、2-ヨード吉草酸エチル、3-ヨード吉草酸エチル、4-ヨード吉草酸エチル、5-ヨード吉草酸エチル、2-ヨード吉草酸n-プロピル、3-ヨード吉草酸n-プロピル、4-ヨード吉草酸n-プロピル、5-ヨード吉草酸n-プロピル、2-ヨード吉草酸イソプロピル、3-ヨード吉草酸イソプロピル、4-ヨード吉草酸イソプロピル、5-ヨード吉草酸イソプロピル、2-ヨード吉草酸n-ブチル、3-ヨード吉草酸n-ブチル、4-ヨード吉草酸n-ブチル、5-ヨード吉草酸n-ブチル、2-ヨード吉草酸tert-ブチル、3-ヨード吉草酸tert-ブチル、4-ヨード吉草酸tert-ブチル、5-ヨード吉草酸tert-ブチル、2-ヨード吉草酸ペンチル、3-ヨード吉草酸ペンチル、4-ヨード吉草酸ペンチル、5-ヨード吉草酸ペンチル、2-ヨード吉草酸ヘキシル、3-ヨード吉草酸ヘキシル、4-ヨード吉草酸ヘキシル、5-ヨード吉草酸ヘキシル、2-ヨード吉草酸ヘプチル、3-ヨード吉草酸ヘプチル、4-ヨード吉草酸ヘプチル、5-ヨード吉草酸ヘプチル、2-ヨード吉草酸オクチル、3-ヨード吉草酸オクチル、4-ヨード吉草酸オクチル、5-ヨード吉草酸オクチル、2-ヨード吉草酸2-エチルヘキシル、3-ヨード吉草酸2-エチルヘキシル、4-ヨード吉草酸2-エチルヘキシル、5-ヨード吉草酸2―エチルヘキシル、2-ヨード吉草酸ノニル、3-ヨード吉草ノニル酸、4-ヨード吉草酸ノニル、5-ヨード吉草酸ノニル、2-ヨード吉草酸ドデシル、3-ヨード吉草酸ドデシル、4-ヨード吉草酸ドデシル、5-ヨード吉草酸ドデシル、2-ヨード吉草酸ノナデシル、3-ヨード吉草酸ノナデシル、4-ヨード吉草酸ノナデシル、5-ヨード吉草酸ノナデシル、2-ヨード吉草酸イコシル、3-ヨード吉草酸イコシル、4-ヨード吉草酸イコシル、5-ヨード吉草酸イコシル、等が挙げられる。
上記挙げた具体例の中でも、クロロ化合物とブロモ化合物が反応性の点で好ましく、特に、下記構造式の化合物等が好ましい。
Figure JPOXMLDOC01-appb-C000029
 
反応式-1において一般式(3)で表されるエステル化合物の使用量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは2.0モル倍以上、10.0モル倍未満、より好ましくは、2.2モル倍以上、5.0モル倍未満である。2.0モル倍未満であると、反応が完結せず、また、10.0モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。
反応式-1において使用される塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム、リチウムヘキサメチルジシラジド、リチウムジイソプロピルアミド、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、シクロヘキシルアミン、ジメチルアニリン、ピリジン、4,4-ジメチルアミノピリジン、ピペリジン、γ-ピコリン、ルチジン等が挙げられる。
塩基性化合物の添加量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは2.0モル倍以上、10.0モル倍未満、より好ましくは、2.2モル倍以上、5.0モル倍未満である。2.0モル倍未満であると、反応が完結せず、また、10.0モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。
当該反応は溶媒中もしくは無溶媒で行う。用いられる溶媒としては使用するエステル化合物と反応しなければ特に種類を選ばず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶媒、塩化メチレン、二塩化エチレン、クロロベンゼン等のハロゲン化炭素系溶媒、メタノール、エタノール、1-プロパノール等のアルコール溶媒が用いられる。
無機塩基の水溶液中に9,10-ジヒドロキシアントラセン化合物を溶解させ、エステルと反応させる場合は、相間移動触媒の使用が有効である。相間移動触媒としては、例えば、テトラメチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラプロピルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、トリオクチルエチルアンモニウムブロマイド、トリオクチルプロピルアンモニウムブロマイド、トリオクチルブチルアンモニウムブロマイド、ベンジルジメチルオクタデシルアンモニウムブロマイド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラプロピルアンモニウムクロライド、テトラフブチルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、トリオクチルエチルアンモニウムクロライド、トリオクチルプロピルアンモニウムクロライド、トリオクチルブチルアンモニウムクロライド、ベンジルジメチルオクタデシルアンモニウムクロライド等が挙げられる。
相間移動触媒の添加量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは 0.01モル倍以上、1.0モル倍未満、より好ましくは、0.05モル倍以上、0.5モル倍未満である。0.01モル倍未満であると、反応速度が遅く、また、1.0モル倍以上だと生成物の純度が低下するので好ましくない。
当該反応の反応温度は、通常0℃以上、200℃以下、好ましくは10℃以上、100℃以下である。0℃未満だと、反応時間がかかりすぎ、100℃を超えて加熱すると、不純物が多くなり目的化合物の純度が低下し、共に好ましくない。
当該反応における反応時間は、反応温度によって異なるが、通常1時間から20時間程度である。より好ましくは2時間から10時間である。
反応終了後、必要に応じて未反応原料・溶媒及び触媒を洗浄・減圧留去・濾過等の操作を単独あるいは複数組み合わせる方法で除去する。生成物が固体の場合は反応途中に結晶が析出するので、濾過によって固液分離を行い、必要に応じてアルコールやヘキサン等の貧溶媒から再結晶させる。あるいはそのままドライアップして結晶を得ることができる。生成物が液体の場合は、そのままドライアップし、必要に応じて蒸留等の精製を行ってエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。
(二段階製造法)
次に、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の二段階製造法について説明する。本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、一般式(2)で表される9,10-ジヒドロキシアントラセン化合物を下記の反応式-2に従い、まず、塩基性化合物存在下、あるいは非存在下で対応する一般式(4)で表されるカルボン酸と反応させて中間体である一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物を合成した後、反応式-3に従い、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物と一般式(6)で表されるアルコール化合物、反応式-4に従い、一般式(7)で表されるハロゲン化アルキル化合物、反応式-5に従い、一般式(8)で表されるグリシジルエーテル化合物と反応させることにより得ることにより、一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000030
 
反応式-2においてAは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。Zは塩素原子、臭素原子又はヨウ素原子を表す。
Figure JPOXMLDOC01-appb-C000031
 
反応式-3においてAは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。また、Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。
Figure JPOXMLDOC01-appb-C000032
 
反応式-4においてAは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。また、Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。Dは、塩素原子、臭素原子、ヨウ素原子を表す。
Figure JPOXMLDOC01-appb-C000033
 
反応式-5においてAは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。Rは、水素原子又は炭素数1から17のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。
まずは中間体である一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物の製造法について説明する。
反応式-2において、原料として用いられる一般式(2)で表される9,10-ジヒドロキシアントラセン化合物は、反応式-1で挙げたものと同様のものを用いることができ、同様の方法で得ることができる。
次に、反応式-2において、もう一方の原料となる一般式(4)で表されるカルボン酸の具体例としては、クロロ酢酸、2-クロロプロピオン酸、3-クロロプロピオン酸、2-クロロ酪酸、3-クロロ酪酸、4-クロロ酪酸、2-クロロ吉草酸、3-クロロ吉草酸、4-クロロ吉草酸、5-クロロ吉草酸、ブロモ酢酸、2-ブロモプロピオン酸、3-ブロモプロピオン酸、2-ブロモ酪酸、3-ブロモ酪酸、4-ブロモ酪酸、2-ブロモ吉草酸、3-ブロモ吉草酸、4-ブロモ吉草酸、5-ブロモ吉草酸、ヨード酢酸、2-ヨードプロピオン酸、3-ヨードプロピオン酸、2-ヨード酪酸、3-ヨード酪酸、4-ヨード酪酸、2-ヨード吉草酸、3-ヨード吉草酸、4-ヨード吉草酸、5-ヨード吉草酸、等が挙げられる。
上記挙げた具体例の中でも、クロロ化合物とブロモ化合物が入手容易性、反応性の点で好ましく、特に、クロロ酢酸、ブロモ酢酸が好ましい。
反応式-2において一般式(4)で表されるカルボン酸の使用量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは2.0モル倍以上、10.0モル倍未満、より好ましくは、2.2モル倍以上、5.0モル倍未満である。2.0モル倍未満であると、反応が完結せず、また、10.0モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。
反応式-2において使用される塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム、リチウムヘキサメチルジシラジド、リチウムジイソプロピルアミド、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、シクロヘキシルアミン、ジメチルアニリン、ピリジン、4,4-ジメチルアミノピリジン、ピペリジン、γ-ピコリン、ルチジン等が挙げられる。
塩基性化合物の添加量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは2.0モル倍以上、10.0モル倍未満、より好ましくは、2.2モル倍以上、8.0モル倍未満である。2.0モル倍未満であると、反応が完結せず、また、10.0モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。
当該反応は溶媒中もしくは無溶媒で行う。用いられる溶媒としては使用する原料と反応しなければ特に種類を選ばず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶媒、塩化メチレン、二塩化エチレン、クロロベンゼン等のハロゲン化炭素系溶媒、メタノール、エタノール、1-プロパノール等のアルコール溶媒、水等が用いられる。
無機塩基の水溶液中に9,10-ジヒドロキシアントラセン化合物を溶解させ、エステルと反応させる場合は、相間移動触媒の使用が有効である。相間移動触媒としては、例えば、テトラメチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラプロピルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、トリオクチルエチルアンモニウムブロマイド、トリオクチルプロピルアンモニウムブロマイド、トリオクチルブチルアンモニウムブロマイド、ベンジルジメチルオクタデシルアンモニウムブロマイド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラプロピルアンモニウムクロライド、テトラフブチルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、トリオクチルエチルアンモニウムクロライド、トリオクチルプロピルアンモニウムクロライド、トリオクチルブチルアンモニウムクロライド、ベンジルジメチルオクタデシルアンモニウムクロライド等が挙げられる。
相間移動触媒の添加量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは 0.01モル倍以上、1.0モル倍未満、より好ましくは、0.03モル倍以上、0.5モル倍未満である。0.01モル倍未満であると、反応速度が遅く、また、1.0モル倍以上だと生成物の純度が低下するので好ましくない。
当該反応の反応温度は、通常0℃以上、100℃以下、好ましくは10℃以上、50℃以下である。0℃未満だと、反応時間がかかりすぎ、100℃を超えて加熱すると、不純物が多くなり目的化合物の純度が低下し、共に好ましくない。
当該反応における反応時間は、反応温度によって異なるが、通常1時間から20時間程度である。より好ましくは2時間から10時間である。
反応終了後、必要に応じて未反応原料・溶媒及び触媒を抽出・濾過等の操作を単独あるいは複数組み合わせる方法で除去する。生成物はカルボン酸塩の状態なので、鉱酸あるいは有機酸によって中和することで結晶を析出させ、濾過によって固液分離を行い、必要に応じて再結晶することで、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。
次に反応式-3で示される、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物と一般式(6)で表されるアルコール化合物を触媒存在下あるいは非存在下で反応させて一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を製造する方法について説明する。
反応式-3において、原料となる一般式(6)で表されるアルコール化合物の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール等が挙げられる。
上記挙げた具体例の中でも、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、エチレングリコール、プロピレングリコールが入手が容易な点で好ましく、特に、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコールが好ましい。
反応式-3において一般式(6)で表されるアルコール化合物の使用量としては、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物に対して、好ましくは5モル倍以上、100モル倍未満、より好ましくは、10モル倍以上、50モル倍未満である。5モル倍未満であると、反応が完結せず、また、100モル倍以上だと反応速度が遅くなり収率及び純度が低下するので好ましくない。
反応式-3において使用される触媒としては、鉱酸(硫酸、塩酸)、有機酸(メタンスルホン酸、p-トルエンスルホン酸)、ルイス酸(フッ化ホウ素エーテラート、三塩化アルミニウム、四塩化チタン、三塩化鉄、二塩化亜鉛)、固体酸触媒(フタムラ化学社製)、アンバーリスト(オルガノ社製)、ナフィオン(デュポン社製、ナフィオンはデュポン社登録商標)、テトラアルコキシチタン化合物(テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラメトキシチタン)、有機スズ化合物(ジラウリン酸ジブチルスズ、ジブチルスズオキシド)等が挙げられる。
触媒の添加量としては、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物に対して、好ましくは0.01モル%以上、50モル%未満、より好ましくは、0.1モル%以上、20モル%未満である。0.01モル%未満であると、反応が完結せず、また、50モル%以上だと副反応が起こり収率及び純度が低下するので好ましくない。
当該反応は溶媒中もしくは無溶媒で行う。用いられる溶媒としては使用するアルコール化合物と反応しなければ特に種類を選ばず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶媒、塩化メチレン、二塩化エチレン、クロロベンゼン等のハロゲン化炭素系溶媒が用いられる。特に使用するアルコール化合物を反応剤兼溶媒として用いることが廃棄物削減の面から好ましい。
当該反応の反応温度は、通常20℃以上、200℃以下、好ましくは50℃以上、150℃以下である。20℃未満だと、反応時間がかかりすぎ、200℃を超えて加熱すると、不純物が多くなり目的化合物の純度が低下し、共に好ましくない。
当該反応における反応時間は、反応温度によって異なるが、通常1時間から20時間程度である。より好ましくは2時間から15時間である。
反応終了後、必要に応じて未反応原料・溶媒及び触媒を中和・洗浄・減圧留去・濾過等の操作を単独あるいは複数組み合わせる方法で除去する。生成物が固体の場合は反応途中に結晶が析出するので、濾過によって固液分離を行い、必要に応じてアルコールやヘキサン等の貧溶媒から再結晶させる。あるいはそのままドライアップして結晶を得ることができる。生成物が液体の場合は、そのままドライアップし、必要に応じて蒸留等の精製を行ってエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。
次に反応式-4で示される、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物と一般式(7)で表されるハロゲン化アルキル化合物を塩基存在下あるいは非存在下で反応させて一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を製造する方法について説明する。
反応式-4において、原料となる一般式(7)で表されるハロゲン化アルキル化合物の具体例としては、塩化メチル、塩化エチル、塩化n-プロピル、塩化イソプロピル、塩化ブチル、塩化イソブチル、塩化sec-ブチル、塩化tert-ブチル、塩化ペンチル、塩化ヘキシル、塩化ヘプチル、塩化オクチル、塩化2-エチルヘキシル、塩化ノニル、塩化デシル、塩化ドデシル、塩化2-ヒドロキシエチル、臭化メチル、臭化エチル、臭化n-プロピル、臭化イソプロピル、臭化ブチル、臭化イソブチル、臭化sec-ブチル、臭化tert-ブチル、臭化ペンチル、臭化ヘキシル、臭化ヘプチル、臭化オクチル、臭化2-エチルヘキシル、臭化ノニル、臭化デシル、臭化ドデシル、臭化2-ヒドロキシエチル、ヨウ化メチル、ヨウ化エチル、ヨウ化n-プロピル、ヨウ化イソプロピル、ヨウ化ブチル、ヨウ化イソブチル、ヨウ化sec-ブチル、ヨウ化tert-ブチル、ヨウ化ペンチル、ヨウ化ヘキシル、ヨウ化ヘプチル、ヨウ化オクチル、ヨウ化2-エチルヘキシル、ヨウ化ノニル、ヨウ化デシル、ヨウ化ドデシル、ヨウ化2-ヒドロキシエチル等が挙げられる。
上記挙げた具体例の中でも、塩化物、臭化物が入手容易性、反応性の点で好ましく、特に、臭化物が好ましい。
反応式-4において一般式(7)で表されるハロゲン化アルキル化合物の使用量としては、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物に対して、好ましくは2モル倍以上、10モル倍未満、より好ましくは、3モル倍以上、5モル倍未満である。2モル倍未満であると、反応が完結せず、また、10モル倍以上だと副反応が起こり、収率及び純度が低下するので好ましくない。
反応式-4において使用される塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、リチウムヘキサメチルジシラジド、リチウムジイソプロピルアミド、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、シクロヘキシルアミン、ジメチルアニリン、ピリジン、4,4-ジメチルアミノピリジン、ピペリジン、γ-ピコリン、ルチジン等が挙げられる。
塩基性化合物の添加量としては、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物に対して、好ましくは0.5モル倍以上、10モル倍未満、より好ましくは、1モル倍以上、5モル倍未満である。0.5モル倍未満であると、反応が完結せず、また、10モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。
当該反応は溶媒中もしくは無溶媒で行う。用いられる溶媒としては使用するアルコール化合物と反応しなければ特に種類を選ばず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶媒、塩化メチレン、二塩化エチレン、クロロベンゼン等のハロゲン化炭素系溶媒が用いられる。
当該反応の反応温度は、通常0℃以上、200℃以下、好ましくは20℃以上、100℃以下である。0℃未満だと、反応時間がかかりすぎ、200℃を超えて加熱すると、不純物が多くなり目的化合物の純度が低下し、共に好ましくない。
当該反応における反応時間は、反応温度によって異なるが、通常1時間から20時間程度である。より好ましくは2時間から15時間である。
反応終了後、必要に応じて未反応原料・溶媒及び触媒を中和・洗浄・減圧留去・濾過等の操作を単独あるいは複数組み合わせる方法で除去する。生成物が固体の場合は反応途中に結晶が析出するので、濾過によって固液分離を行い、必要に応じてアルコールやヘキサン等の貧溶媒から再結晶させる。あるいはそのままドライアップして結晶を得ることができる。生成物が液体の場合は、そのままドライアップし、必要に応じて蒸留等の精製を行ってエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。
次に反応式-5で示される、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物と一般式(8)で表されるグリシジルエーテル化合物を塩基存在下あるいは非存在下で反応させて一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を製造する方法について説明する。
反応式-5において、原料となる一般式(8)で表されるグリシジルエーテル化合物の具体例としては、メチルグリシジルエーテル、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、ペンチルグリシジルエーテル、ヘキシルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、オクチルグリシジルエーテル、アリルグリシジルエーテル、メタリルグリシジルエーテル、グリシドール等が挙げられる。
反応式-5において一般式(8)で表されるグリシジルエーテル化合物の使用量としては、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物に対して、好ましくは2モル倍以上、10モル倍未満、より好ましくは、3モル倍以上、5モル倍未満である。2モル倍未満であると、反応が完結せず、また、10モル倍以上だと副反応が起こり、収率及び純度が低下するので好ましくない。
反応式-5において使用される塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、リチウムヘキサメチルジシラジド、リチウムジイソプロピルアミド、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、シクロヘキシルアミン、ジメチルアニリン、ピリジン、4,4-ジメチルアミノピリジン、ピペリジン、γ-ピコリン、ルチジン等が挙げられる。
塩基性化合物の添加量としては、一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物に対して、好ましくは0.5モル倍以上、10モル倍未満、より好ましくは、1モル倍以上、5モル倍未満である。0.5モル倍未満であると、反応が完結せず、また、10モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。
当該反応は溶媒中もしくは無溶媒で行う。用いられる溶媒としては使用するグリシジルエーテル化合物と反応しなければ特に種類を選ばず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶媒、塩化メチレン、二塩化エチレン、クロロベンゼン等のハロゲン化炭素系溶媒が用いられる。
当該反応の反応温度は、通常0℃以上、200℃以下、好ましくは20℃以上、100℃以下である。0℃未満だと、反応時間がかかりすぎ、200℃を超えて加熱すると、不純物が多くなり目的化合物の純度が低下し、共に好ましくない。
当該反応における反応時間は、反応温度によって異なるが、通常1時間から20時間程度である。より好ましくは2時間から15時間である。
反応終了後、必要に応じて未反応原料・溶媒及び触媒を中和・洗浄・減圧留去・濾過等の操作を単独あるいは複数組み合わせる方法で除去する。生成物が固体の場合は反応途中に結晶が析出するので、濾過によって固液分離を行い、必要に応じてアルコールやヘキサン等の貧溶媒から再結晶させる。あるいはそのままドライアップして結晶を得ることができる。生成物が液体の場合は、そのままドライアップし、必要に応じて蒸留等の精製を行ってエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。
(光重合増感剤)
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、特定の波長の光により励起され、その励起エネルギーを光重合開始剤に受け渡す光重合増感剤として作用する。その効果により、光重合開始剤の活性が十分でない長波長の光によっても、光重合を効率よく開始することが可能となる。当該光重合増感剤と光重合開始剤は光重合化合物と混合して光重合性組成物とすることができる。当該光重合性組成物は、例えば中心波長が405nmの紫外LED光というような長波長の光の照射によっても、容易に光硬化させることができる。
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、その構造の中にエステル基を有しているため、光重合性組成物やその硬化物との親和性が高く、光重合性組成物やその硬化物中においてマイグレーションあるいはブルーミングの程度がきわめて低いという特徴を有する。
また、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物におけるエステル基は、アルキレン基であるAを介してアントラセン環に結合しているため、Aを介さない化合物に比べ、紫外線の吸収波長がより長波長側にあるという特徴がある。そのため、Aを介さない化合物において増感作用が弱い場合においても有効に用いることができる。
更に、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物におけるAが炭素数1のメチレン基である化合物は、Aが炭素数2以上の9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物に比べ、ラジカル重合において、その増感能が高いという特徴がある。この効果は、一般にアントラセン化合物はラジカル重合阻害があり、その阻害は9,10位に酸素原子がつくことにより緩和されるが、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物においてAがメチレン基の化合物は、アントラセン環とエステル基の立体的な位置関係から来ると思われるが、特に、その阻害が弱くなり、ラジカル重合増感剤としての活性が高いものと思われる。
(光重合開始剤)
本発明で用いる光重合開始剤としては、オニウム塩、ベンジルメチルケタール系、α-ヒドロキシアルキルフェノン系重合開始剤、オキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、ビイミダゾール系開始剤等を用いることができる。
オニウム塩としては通常ヨードニウム塩またはスルホニウム塩が用いられる。ヨードニウム塩としては、4-イソブチルフェニル-4’-メチルフェニルヨードニウムヘキサフルオロフォスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサメトキシアンチモネート、4-イソプロピルフェニル-4’-メチルフェニルヨードニウムテトラキスペンタメトキシフェニルボレート、4-イソプロピルフェニル-4’-メチルフェニルヨードニウムテトラキスペンタフルオロフェニルボレート等が挙げられ、例えばビー・エー・エス・エフ社製イルガキュア250(イルガキュアはビー・エー・エス・エフ社の登録商標)、ローディア社製ロードシル2074(ロードシルはローディア社の登録商標)、サンアプロ社製のIK-1等を用いることができる。一方、スルホニウム塩としてはS,S,S’,S’-テトラフェニル-S,S’-(4、4’-チオジフェニル)ジスルホニウムビスヘキサメトキシフォスフェート、ジフェニル-4-フェニルチオフェニルスルホニウムヘキサメトキシフォスフェート、トリフェニルスルホニウムヘキサメトキシフォスフェート等が挙げられ、例えばダイセル社製CPI-100P、CPI101P、CPI-200K、ビー・エー・エス・エフ社製イルガキュア270、ダウ・ケミカル社製UVI6992等を用いることができる。これらの光重合開始剤は単独で用いても2種以上併用しても構わない。
オニウム塩として、ヨードニウム塩だけではなく、スルホニウム塩に対しても、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光重合増感効果を持つことも特徴の一つである。
また、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、ベンジルメチルケタール系、α-ヒドロキシアルキルフェノン系重合開始剤、ビイミダゾール系重合開始剤等の長波長に吸収を持たないラジカル重合開始剤に対しても優れた光重合増感効果を有している。
ベンジルメチルケタール系ラジカル重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」ビー・エー・エス・エフ社製)等が挙げられ、α-ヒドロキシアルキルフェノン系ラジカル重合開始剤としては2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名「ダロキュア1173」ビー・エー・エス・エフ社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名「イルガキュア2959」ビー・エー・エス・エフ社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]フェニル}-2-メチル-1-オン(商品名「イルガキュア127」ビー・エー・エス・エフ社製)が挙げられる。
特に、ベンジルメチルケタール系ラジカル重合開始剤である2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」ビー・エー・エス・エフ社製)、α-ヒドロキシアルキルフェノン系ラジカル重合開始剤である2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名「ダロキュア1173」ビー・エー・エス・エフ社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)が好ましい。
また、アセトフェノン系ラジカル重合開始剤であるアセトフェノン、2-ヒドロキシ-2-フェニルアセトフェノン、2-エトキシ-2-フェニルアセトフェノン、2-メトキシ-2-フェニルアセトフェノン、2-イソプロポキシ-2-フェニルアセトフェノン、2-イソブトキシ-2-フェニルアセトフェノン、ベンジル系ラジカル重合開始剤であるベンジル、4,4’-ジメトキシベンジル、アントラキノン系ラジカル重合開始剤である2-エチルアントラキノン、2-t-ブチルアントラキノン、2-フェノキシアントラキノン、2-(フェニルチオ)アントラキノン、2-(ヒドロキシエチルチオ)アントラキノン等も用いることができる。
ビイミダゾール系重合開始剤としては、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体等が挙げられる。
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤の光重合開始剤に対する使用量は、特に限定されないが、光重合開始剤に対して通常5重量%以上、100重量%以下の範囲、好ましくは10重量%以上、50重量%以下の範囲である。光重合増感剤の使用量が5重量%未満では光重合性化合物を光重合させるのに時間がかかりすぎてしまい、一方、100重量%を超えて使用しても添加に見合う効果は得られない。
(光重合開始剤組成物)
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤は、直接、光重合性化合物に添加することもできるが、あらかじめ光重合開始剤と配合することにより光重合開始剤組成物を調製した後、光重合性化合物に添加することもできる。すなわち、本発明の光重合開始剤組成物は、少なくとも、一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤と光重合開始剤を含有する組成物である。
(光重合性組成物)
さらに該光重合開始剤組成物と光重合性化合物を配合することにより、光重合性組成物を調製することもできる。本発明の光重合性組成物は、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤と光重合開始剤を含有する光重合開始剤組成物と、光ラジカル重合性化合物又は光カチオン重合性化合物とを含有する組成物である。本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤と光重合開始剤は、別々に光ラジカル重合性化合物又は光カチオン重合性化合物に添加され、光ラジカル重合性化合物又は光カチオン重合性化合物中で、結果として光重合開始剤組成物を形成してもよい。更に、光ラジカル重合性化合物と光カチオン重合性化合物の両方を含むハイブリッド組成物としてもよい。
光ラジカル重合性化合物としては、例えば、スチレン、酢酸ビニル、アクリル酸、メタクリル酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、アクリル酸エステル、メタクリル酸エステル等の二重結合を有する有機化合物を用いることができる。これらのラジカル重合性化合物のうち、フィルム形成能等の面から、アクリル酸エステルやメタクリル酸エステル(以下、両者をあわせて(メタ)アクリル酸エステルという)が好ましい。(メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸-2-ヒドロキシエチル、アクリル酸イソボルニル、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、トリシクロ[5,2,1,02,6]デカンジメタノールジアクリレート、イソボニルメタクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリブタジエンアクリレート、ポリオールアクリレート、ポリエーテルアクリレート、シリコーン樹脂アクリレート、イミドアクリレート等が挙げられる。これらの光ラジカル重合性化合物は、一種でも二種以上の混合物であっても良い。
光カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル等が挙げられる。エポキシ化合物として一般的なものは、脂環式エポキシ化合物、エポキシ変性シリコーン、芳香族のグリシジルエーテル等が挙げられる。脂環式エポキシ化合物としては、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製、商品名:セロキサイド2021P、セロキサイドはダイセル社の登録商標)、ビス(3,4-エポキシシクロヘキシル)アジペート等が挙げられる。エポキシ変性シリコーンとしては、東芝GEシリコーン製UV-9300等が挙げられる。芳香族グリシジル化合物としては、2,2’-ビス(4-グリシジルオキシフェニル)プロパン等が挙げられる。オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン(オキセタンアルコール)(東亜合成社製、商品名:OXT-101)、2-エチルヘキシルオキセタン(東亜合成社製、商品名:OXT-212)、キシリレンビスオキセタン(東亜合成社製、商品名:OXT-121)、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(東亜合成社製、商品名:OXT-221)等が挙げられる。ビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、2-エチルヘキシルビニルエーテル等が挙げられる。これらの光カチオン重合性化合物は、一種でも二種以上の混合物であっても良い。
光重合性化合物として光ラジカル重合化合物のみを用いても良いし、光ラジカル重合性化合物と光カチオン重合性化合物両者を混合して用いても良い。
本発明の光重合増感剤は、光ラジカル重合及び光カチオン重合の両方において増感剤として作用することができるため、適当な光重合開始剤を選ぶことにより、光ラジカル重合性化合物と光カチオン重合性化合物の両方を含有する光重合性組成物も効果的に重合させることができる。
光カチオン重合性化合物と光ラジカル重合性化合物の混合比について特に限定はなく、該組成物を光重合、硬化して得られる塗膜や成型物の物性に応じ適宜選択される。通常は光カチオン重合性化合物と光ラジカル重合性化合物の重量比が1対99~99対1、好ましくは20対80~80対20の範囲でその組成比を決定する。
光カチオン重合性化合物、光ラジカル重合性化合物はそれぞれ1種類ずつ用いても良いし、それぞれ2種以上を組み合わせて用いても良い。これらの光重合性化合物を2種以上用いる場合においても、上記の光カチオン重合性化合物と光ラジカル重合性化合物の混合比はそれぞれの光重合性化合物の合計量の比として考える。
本発明の光重合性組成物に用いる光重合開始剤は上述の光ラジカル開始剤もしくは光カチオン開始剤を用いることができる。通常、光重合性化合物として光ラジカル重合性化合物を用いる場合は光ラジカル重合開始剤を用いる。さらに、光重合性化合物として光ラジカル重合性化合物と光カチオン重合性化合物を併用するような場合は光重合開始剤として光ラジカル重合開始剤、もしくは光カチオン重合開始剤単独で用いても良いし両者を混合して用いてもかまわない。
特に、光カチオン重合開始剤の中には光照射によりカチオン開始活性種とラジカル開始活性種を発生するものもあり、このような開始剤を用いる場合はそれのみで光カチオン重合性化合物及び光ラジカル重合性化合物の両方の光重合を開始することも可能である。
更に、本発明の光重合性組成物には、アクリル樹脂、スチレン樹脂、エポキシ樹脂などのバインダーポリマーが含まれていてもよい。また、アルカリ可溶性樹脂が含まれていてもよい。
本発明の光重合性組成物において、光重合開始剤組成物の使用量は、光重合性組成物に対して0.005重量%以上、10重量%以下の範囲、好ましくは0.025重量%以上、5重量%以下である。0.005重量%未満だと光重合性組成物を光重合させるのに時間がかかってしまい、一方、10重量%を超えて添加すると光重合させて得られる光硬化物の硬度が低下し、硬化物の物性を悪化させるため好ましくない。
なお、本発明の光重合性組成物は、本発明の効果を損なわない範囲において、希釈剤、着色剤、有機又は無機の充填剤、レベリング剤、界面活性剤、消泡剤、増粘剤、難燃剤、酸化防止剤、安定剤、滑剤、可塑剤等の各種樹脂添加剤を配合してもよい。
(光硬化物)
本発明の光重合性組成物に光を照射して重合することにより、光硬化物を得ることができる。光重合性組成物に光を照射し重合させ光硬化させる場合、当該光重合性組成物をフィルム状に成形して光硬化させることもできるし、塊状に成形して光硬化させることもできる。フィルム状に成形して光硬化させる場合は、液状の当該光重合性組成物を例えばポリエステルフィルムなどの基材にバーコーターなどを用いて膜厚5~300ミクロンになるように塗布する。一方、スピンコーティング法やスクリーン印刷法により、さらに薄い膜厚あるいは厚い膜厚にして塗布することもできる。
このようにして調製した光重合性組成物からなる塗膜に、300nmから500nmの波長範囲を含む紫外線を1~1000mW/cm程度の強さで光照射することにより、光硬化物を得ることができる。用いる光源としては、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ガリウムドープドランプ、ブラックライト、405nm紫外線LED、395nm紫外線LED、385nm紫外線LED、365nm紫外線LED、青色LED、白色LED、フュージョン社製のDバルブ、Vバルブ等が挙げられる。また、太陽光等の自然光を使用することもできる。特に、405nm紫外線LED、395nm紫外線LED、385nm紫外線LED、375nm紫外線LED、365nm紫外線LEDのような波長が365nm~405nmというような長波長域の波長範囲を含む光でも増感作用を有することが特徴であり、好ましい。
(光DSC測定)
本発明において、光重合性組成物の光照射下における光重合速度を定量的に評価する手法として、光DSC測定法を用いることができる。この手法によれば、試料に光を直接的に照射しながら、硬化に伴う発熱量を連続的にかつ簡便に測定することができる。光DSC測定装置にセットされた試料に光照射をすると光の硬化反応が始まり発熱が観測される。光硬化前は水平であったDSC曲線のベースラインが発熱側にシフトし、反応が終了すると元のベースラインの位置に戻る。このDSC曲線のピークの大きさから、発熱量を求めることができる。すなわち光重合性組成物に光を照射し、1mgあたりの発熱量を測定、比較することによって、重合の進行状況を評価することができる。
(組成物の耐マイグレーション性の判定)
本発明の光重合性組成物に含まれる光重合増感剤がフィルム等に移行(マイグレーション)するかどうかを判定する方法としては、光重合増感剤を含む光重合性組成物を薄いフィルム状物に塗布したものを作成し、その上にポリエチレンフィルムを被せて一定温度(26℃)で一定期間保管し、その後ポリエチレンフィルムを剥がし、光重合増感剤がポリエチレンフィルムに移行しているかを調べ、耐マイグレーション性を判定した。剥がしたポリエチレンフィルムは、アセトンで表面の組成物を洗った後乾燥し、当該ポリエチレンフィルムのUVスペクトルを測定し、光重合増感剤に起因する吸収強度の増大を調べることにより耐マイグレーション性を測定した。なお、当該測定には、紫外・可視分光光度計(島津製作所製、型式:UV2600)を用いた。比較例の化合物である9,10-ジブトキシアントラセンと量的な比較するために、得られた吸光度を9,10-ジブトキシアントラセンの吸光度の値に換算した。換算に当たっては、紫外・可視分光光度計により本発明の化合物及び9,10-ジブトキシアントラセンの260nmにおける吸光度を測定し、その吸光度の値とモル濃度からそれぞれのモル吸光係数を計算し、その比をもちいて換算した。
以下、本発明を実施例に基づいて詳細に説明するが、例示を目的として提示をしたものである。すなわち、以下の実施例は、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。よって、本発明は、その趣旨を超えない限り、以下の記載例に限定されるものではない。また、特記しない限り、すべての部および百分率は重量基準である。生成物の確認は下記の機器による測定に基づいて行った。
本発明の化合物の同定は下記の機器を用いて行った。
赤外線(IR)分光光度計:Thermo社製、型式is50 FT-IR
核磁気共鳴装置(NMR):日本電子社製、型式ECS-400
融点:ゲレンキャンプ社製の融点測定装置、型式MFB-595(JIS K0064に準拠)
(合成実施例1)9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン(1-1)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.8g(1.2ミリモル)、ブロモ酢酸メチルを9.5g(62.1ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過により、収量4.7g(粗収率55 mol%)の黄色の結晶を得た。
(1)融点:151-152℃
(2)IR(cm-1):1745,1391,1363,1164,1093,774,705.
(3)H-NMR(400MHz,CDCl):δ=3.914(s,6H),4.792(s,4H),7.261-7.545(m,4H),8.319-8.366(m,4H).
(合成実施例2)9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン(1-2)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.8g(1.2ミリモル)、ブロモ酢酸エチルを10.4g(62.5ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過により、収量5.0g(粗収率55mol%)の薄黄色の結晶を得た。
(1)融点:93-94℃
(2)IR(cm-1):1754,1742,1382,1367,1241,1212,1168,1087,1034,1004,936,809,768,720,691,669,585.
(3)H-NMR(400MHz,CDCl):δ=1.370(t,J=14Hz,6H),4.376(k,J=21.6Hz,4H),4.777(s,4H),7.261-7.540(m,4H).
(合成実施例3)9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-3)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.8g(1.2ミリモル)、ブロモ酢酸イソプロピルを11.3g(62.5ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過により、収量5.9g(粗収率60mol%)の薄黄色の結晶を得た。
(1)融点:109-110℃
(2)IR(cm-1):1744,1360,1210,1163,1086,1018,1004,776,768,671.
(3)H-NMR(400MHz,CDCl):δ=1.347(d,J=6.4Hz,12H),4.743(s,4H),5.246-5.277(m,2H),7.504-7.529(m,4H),8.356-8.398(m,4H). 
(合成実施例4)9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン(1-4)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.8g(1.2ミリモル)、ブロモ酢酸-tert-ブチルを12.2g(62.5ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過によりアントラキノンを取り除き、得られた濾液を一晩放置し結晶を析出させた。析出した結晶をさらに吸引濾過することにより、収量6.5g(粗収率61mol%)の薄黄色の結晶を得た。
(1)融点:131-132℃
(2)IR(cm-1):1742,1391,1358,1232,1151,1089,1021,1004,846,776,749,670.
(3)H-NMR(400MHz,CDCl):δ=1.575(s,18H),4.659(s,4H),7.260-7.530(m,4H),8.359-8.400(m,4H).
(合成実施例5)9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン(1-5)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を3.1g(4.8ミリモル)、クロロ酢酸n-ブチルを9.4g(62.5ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過によりアントラキノンを取り除き、得られた濾液を2度水で洗浄した。水洗操作後、アントラキノンが析出したため、吸引濾過によりアントラキノンを取り除いた。濾液を一晩放置し結晶を析出させ、吸引濾過により、収量5.5g(粗収率52mol%)の黄色の結晶を得た。
(1)融点:71-72℃
(2)IR(cm-1):1749,1411,1385,1364,1246,1226,1167,1085,1035,1018,957,768,721,669,587.
(3)H-NMR(400MHz,CDCl):δ=0.967(d,J=15.2Hz,6H),1.387-1.481(m,4H),1.678-1.750(m,4H),4.317(t,J=13.2Hz,4H),4.779(s,4H),7.508-7.826(m,4H),8.319-8.377(m,4H).
(合成実施例6)9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン(1-6)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.8g(1.2ミリモル)、2-ブロモプロピオン酸メチルを10.4g(62.5ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過によりアントラキノンを取り除き、得られた濾液を分液操作により、2度水で洗浄した。エバポレーターで溶液を濃縮し、冷凍庫で冷却し結晶を析出させた。析出した結晶をさらに吸引濾過することにより、収量4.6g(粗収率50mol%)の黄色の結晶を得た。
(1)融点:130-131℃
(2)IR(cm-1):1737,1366,1207,1134,1078,1061,1020,970,748,681.
(3)H-NMR(400MHz,CDCl):δ=1.644(d,J=6.4Hz,6H),3.770(s,6H),4.904(k,J=20.4Hz,2H),7.464-7.489(m,4H),8.292-8.332(m,4H).
(合成実施例7)9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン(1-7)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.77g(1.19ミリモル)、4-ブロモ酪酸エチルを12.1g(61.8ミリモル)、9,10-ジヒドロキシアントラセンを5.0g(23.8ミリモル)、炭酸カリウムを9.9g(71.4ミリモル)、溶媒のN,N-ジメチルホルムアミドを40g加えた。反応系の温度を20~30℃に保ちながら1時間撹拌した。その後、吸引濾過によりアントラキノンを取り除き、得られた濾液をトルエンに溶かし、2度水で洗浄した。エバポレーターで溶液を濃縮した。一晩放置したところ、溶液全体が固化したため、メタノールを加え、50℃に加熱し、溶解させた。溶解しなかったアントラキノンを吸引濾過により取り除き、濾液を冷凍庫で冷却し結晶を析出させた。析出した結晶をさらに吸引濾過することにより、収量5.4g(粗収率51mol%)の黄色の結晶を得た。
(1)融点:95-96℃
(2)IR(cm-1):1721,1351,1312,1239,1183,1164,1081,1024,1015,913,767,742,669.
(3)H-NMR(400MHz,CDCl):δ=1.307(t,J=14.0Hz,6H),2.340-2.408(m,4H),2.776(t,J=14.8Hz,4H),4.171-4.235(m,8H),7.456-7.494(m,4H),8.230-8.256(m,4H).
(合成実施例8)9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン(1-8)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.77g(1.19ミリモル)、5-ブロモ吉草酸エチルを12.9g(61.8ミリモル)、9,10-ジヒドロキシアントラセンを5.0g(23.8ミリモル)、炭酸カリウムを9.9g(71.4ミリモル)、溶媒のN,N-ジメチルホルムアミドを40g加えた。反応系の温度を20~30℃に保ちながら1時間撹拌した。その後、吸引濾過によりアントラキノンを取り除き、得られた濾液をトルエンに溶かし、分液操作により、2度水で洗浄した。エバポレーターで溶液を濃縮した。一晩放置し、メタノールを加え、溶解しなかったアントラキノンを吸引濾過により取り除いた。濾液を冷凍庫で冷却し結晶を析出させた。析出した結晶をさらに吸引濾過することにより、収量6.2g(粗収率55mol%)の橙色の結晶を得た。
(1)融点:57-58℃
(2)IR(cm-1):1722,1403,1337,1284,1269,1229,1178,1167,1068,1021,934,763,675.
(3)H-NMR(400MHz,CDCl):δ=1.286(t,J=14.4Hz,6H),2.018-2.103(m,8H),2.496(t,J=13.6Hz,4H),4.151-4.205(m,8H),7.463-7.487(m,4H),8.243-8.268(m,4H).
(合成実施例9)2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-9)の合成
攪拌機、温度計付きの200mlの四つ口フラスコに、窒素雰囲気下で、2-エチルアントラキノンを5.0g(21,2ミリモル)、二酸化チオ尿素を9.1g(86.4ミリモル)、水酸化ナトリウムを8.4g(211.6ミリモル)、イオン交換水を50g加え、徐々に120℃まで昇温しながら撹拌を行った。溶液が赤黒色になったところで撹拌を止め、室温で冷却し、2-エチル-9,10-ジヒドロキシアントラセンのジナトリウム塩水溶液を調製した。次に、攪拌機、温度計付きの別の200mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を2.7g(4.23ミリモル)、ブロモ酢酸イソプロピルを10.0g(55.0ミリモル)加えた。反応系の温度を20~25℃に保ちながら、上記で調製した2-エチル-9,10-アントラセンジオールのジナトリウム塩水溶液を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、水層を除き、有機層をエバポレーターで濃縮し、収量4.5g(粗収率48mol%)のオレンジ色のオイルを得た。
(1)融点:室温で液体
(2)IR(cm-1):1728,1673,1454,1385,1373,1324,1286,1206,1085,962,931,901,825,772,750,712.
(3)H-NMR(400MHz,CDCl):δ=1.237-1.371(m,15H),2.816-2.899(m,2H),4.731(s,4H),5.014-5.123(m,1H),5.225-5.301(m,1H),7.391(d,J=9.2Hz,1H),7.461-7.512(m,2H),7.766-7.790(m,1H),8.119(d,J=7.6Hz,1H),8.284-8.368(m,2H).
(中間体合成例)9,10-ビス(ヒドロキシカルボニルメチレンオキシ)アントラセンの合成(中間体である一般式(5)の合成)
攪拌機、温度計付きの300mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトン(MIBK)を95g、触媒のテトラブチルアンモニウムブロマイド(TBAB)の50%水溶液を4.4g(6.8ミリモル)、ブロモ酢酸を49.5g(356ミリモル)加えた。反応系の温度を20~30℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩(AHQ-Na)と水酸化ナトリウムとの水溶液165.7g(137ミリモル)と水酸化ナトリウム11.4g(285ミリモル)及びイオン交換水20gを混合した水溶液を3時間かけて、滴下した。滴下終了後、さらに1.5時間撹拌した。その後、吸引濾過により、未反応の原料等を濾別し、トルエン100mlを加えて抽出を行った。有機層を分離し、水層に35%塩酸28.9g(285ミリモル)を加えて酸析を行った。析出結晶を濾過し、水洗後乾燥することにより、収量33.3g(収率75mol%)の黄色の結晶を得た。
(1)融点:250℃以上
(2)IR(cm-1):1727,1435,1377,1254,1240,1091,934,769,592,657.
(3)H-NMR(400MHz,CDCl):δ=1.631(br,2H),4.754(br,4H),7.802-7.825(m,4H),8.317-8.340(m,4H)
(合成実施例10)9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン(1-1) の合成(アルコールとの反応))
攪拌機、温度計付きの1000mlの四つ口フラスコに、窒素雰囲気下で、(中間体合成例)で得られた9,10-ビス(ヒドロキシカルボニルメチレンオキシ)アントラセン78.7g(241ミリモル)、エタノール236.0g(5119ミリモル)、濃硫酸3.9g(39ミリモル)を加えた。反応系の温度を75~80℃に保ち、副生する水をエタノールと共に抜きながら10時間撹拌した。冷却して析出した結晶を吸引濾過し、メタノールで洗浄後乾燥することにより、収量71.7g(収率78mol%)の黄色の結晶を得た。
(1)融点:93-94℃
(2)IR(cm-1):1754,1742,1382,1367,1241,1212,1168,1087,1034,1004,936,809,768,720,691,669,585.
(3)H-NMR(400MHz,CDCl):δ=1.370(t,J=14Hz,6H),4.376(k,J=21.6Hz,4H),4.777(s,4H),7.261-7.540(m,4H).
(合成実施例11)9,10-ビス(プロポキシカルボニルメチレンオキシ)アントラセンの合成(アルコールとの反応))
攪拌機、温度計付きの50mlの四つ口フラスコに、窒素雰囲気下で、(中間体合成例)で得られた9,10-ビス(ヒドロキシカルボニルメチレンオキシ)アントラセン0.4g(1.2ミリモル)、1-プロパノール1.5g(25ミリモル)、メタンスルホン酸0.01g(0.1ミリモル)を加えた。反応系の温度を50~60℃に保ちながら1.5時間撹拌した。その後、不溶分を濾別し、濾液にメタノール及びイオン交換水を加えて結晶を析出させた。析出結晶を吸引濾過し、メタノールで洗浄後乾燥することにより、収量0.12g(粗収率25mol)の黄色の結晶を得た。
(1)融点:75-76℃
(2)IR(cm-1):2950,1747,1400,1380,1359,1206,1162,776.
(3)H-NMR(400MHz,CDCl):δ=0.992(t,J=7.3Hz,6H),1.744(tq,J=6.9Hz,7.3Hz,4H),4.272(t,J=6.9Hz,4H),4.785(s,4H),7.496-7.534(m,4H),8.349-8.411(m,4H). 
(合成実施例12)9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン (1-5)の合成(アルコールとの反応))
攪拌機、温度計付きの300mlの四つ口フラスコに、窒素雰囲気下で、(中間体合成例)で得られた9,10-ビス(ヒドロキシカルボニルメチレンオキシ)アントラセン34.2g(105ミリモル)、1-ブタノール172.7g(2330ミリモル)、濃硫酸1.7g(17ミリモル)を加えた。反応系の温度を120~130℃に保ち、副生する水を抜きながら14時間撹拌した。冷却して析出した結晶を吸引濾過し、メタノールで洗浄後乾燥することにより、収量26.5g(収率58mol%)の黄色の結晶を得た。
(1)融点:71-72℃
(2)IR(cm-1):1749,1411,1385,1364,1246,1226,1167,1085,1035,1018,957,768,721,669,587.
(3)H-NMR(400MHz,CDCl):δ=0.967(d,J=15.2Hz,6H),1.387-1.481(m,4H),1.678-1.750(m,4H),4.317(t,J=13.2Hz,4H),4.779(s,4H),7.508-7.826(m,4H),8.319-8.377(m,4H).
(合成実施例13)9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン(1-11)の合成(アルコールとの反応)
攪拌機、温度計付きの50mlの四つ口フラスコに、窒素雰囲気下で、(中間体合成例)で得られた9,10-ビス(ヒドロキシカルボニルメチレンオキシ)アントラセン0.65g(2.0ミリモル)、エチレングリコール3.0g(48ミリモル)、メタンスルホン酸0.2g(2.1ミリモル)を加えた。反応系の温度を50~60℃に保ちながら4時間撹拌した。冷却後メタノール及びイオン交換水を加えて結晶を析出させた。析出結晶を吸引濾過し、メタノールで洗浄後乾燥することにより、収量0.47g(収率57mol%)の黄色の結晶を得た。
(1)融点:145-146℃
(2)IR(cm-1):3505,2950,1733,1674,1578,1077.
(3)H-NMR(400MHz,CDCl):δ=3.804(br.,4H),4.340(t,J=5.0Hz,4H),4.905(s,4H),7.552-7.584(m,4H),8.447-8.478(m,4H).
(合成実施例14)9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン(1-5)の合成(ハロゲン化アルキルとの反応)
攪拌機、温度計付きの100mlの四つ口フラスコに、(中間体合成例)で得られた9,10-ビス(ヒドロキシカルボニルメチレンオキシ)アントラセンを2.0g(6.2ミリモル)、溶媒のN,N’-ジメチルホルムアミドを43.4g、炭酸カリウムを0.87g(6.4ミリモル)を加え、窒素置換した。窒素雰囲気下で臭化n-ブチルを3.87g(28.2ミリモル)加え、ウォータバスで60℃に加温撹拌した。反応終了後、室温まで冷却させ、吸引濾過により炭酸カリウムを含む残渣を取り除いた。得られたろ液を水に空けトルエン45.6gで抽出し、トルエン層を水で洗浄した。洗浄したトルエン層をエバポレータで減圧濃縮し、収量2.28g(粗収率83.6mol%)橙色の結晶を得た。
(1)融点:71-72℃
(2)IR(cm-1):1749,1411,1385,1364,1246,1226,1167,1085,1035,1018,957,768,721,669,587.
(3)H-NMR(400MHz,CDCl):δ=0.967(d,J=15.2Hz,6H),1.387-1.481(m,4H),1.678-1.750(m,4H),4.317(t,J=13.2Hz,4H),4.779(s,4H),7.508-7.826(m,4H),8.319-8.377(m,4H).
(光DSC測定)
本実施例において光DSC測定は下記のようにして行った。すなわち、DSC測定装置は日立ハイテク社製XDSC-7200を用い、それに光DSC測定用ユニットを装着し光を照射しながらDSC測定ができるよう設えた。光照射用の光源は林時計工業社製LA-410UVを用い、バンドパスフィルターで405nm光を取り出してサンプルに照射できるようにした。光の照度は50mW/cmとした。光源の光はグラスファイバーを用いてサンプル上部まで導けるようにし、光照射開始と同時にDSC測定ができるよう光源のシャッターをトリガー制御できるようにした。光DSCの測定はサンプルを1mg程度測定用アルミパンの中に精秤し、DSC測定部に収めたのち光DSCユニットを装着した。その後測定部内を窒素雰囲気に保ち10分間静置して、測定を開始した。測定は通常光を照射しながら6分間継続した。一回目の測定後、サンプルはそのままで再度同条件で測定を行い、一回目の測定結果から二回目の測定結果を差し引いた値を該サンプルの測定結果とした。結果は特に断らない限り光照射後1分間におけるサンプル1mgあたりの総発熱量で比較した。測定条件によっては1分間で光反応が完結しない場合もあるが光照射初期の反応挙動を比較するために1分間の総発熱量で比較した。光照射に伴ってサンプル(光重合性組成物)の重合が生じた場合、重合に伴う反応熱が生ずるが光DSCではその反応熱を測定することができる。そのため、光DSCによって光照射による重合進行の状況が測定できることになる。本実施例では光照射後1分間の総発熱量を測定しているが、同一の重合性化合物を用いている限りにおいてはその値を比較した場合値が大きいほど重合が効率的に進行していると考えることができる。
このようにして、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を光カチオン重合増感剤とする光カチオン重合性組成物の光重合性能評価試験について以下に記載する。
(光硬化速度評価実施例1)
光カチオン重合性化合物として、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製、商品名:セロキサイド2021P、セロキサイドはダイセル社の登録商標)100重量部に対して、光重合開始剤である4-イソブチルフェニル-4’-メチルフェニルヨードニウムヘキサフルオロフォスフェート(ビー・エー・エス・エフ社製、商品名イルガキュア250、「イルガキュア」はビー・エー・エス・エフ社の登録商標)2重量部、光カチオン重合増感剤として、合成実施例1で得られた9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン1重量部を室温で混合し、光カチオン重合性組成物を調製した。この光重合性組成物について光DSC測定を行ったところ、光照射開始から5分間の総発熱量は256mJ/mgであった。
(光硬化速度評価実施例2)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例2と同様に得られた9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は273mJ/mgであった。
(光硬化速度評価実施例3)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例3と同様に得られた9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は262mJ/mgであった。
(光硬化速度評価実施例4)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例4と同様に得られた9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は284mJ/mgであった。
(光硬化速度評価実施例5)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例5と同様に得られた9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は248mJ/mgであった。
(光硬化速度評価実施例6)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例6と同様に得られた9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は226mJ/mgであった。
(光硬化速度評価実施例7)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例7と同様に得られた9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は308mJ/mgであった。
(光硬化速度評価実施例8)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例8と同様に得られた9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は285mJ/mgであった。
(光硬化速度評価実施例9)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例9と同様に得られた2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は260mJ/mgであった。
(光硬化速度評価実施例17)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例11と同様に得られた9,10-ビス(プロポキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は259mJ/mgであった。
(光硬化速度評価実施例18)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例13と同様に得られた9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は237mJ/mgであった。
(光硬化速度評価比較例1)
光カチオン重合性化合物として3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製、商品名:セロキサイド2021P、セロキサイドはダイセル社の登録商標)100重量部に対して、光重合開始剤である(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウム-ヘキサフルオロフォスフェート(ビー・エー・エス・エフ社製、商品名イルガキュア250、「イルガキュア」はビー・エー・エス・エフ社の登録商標)2重量部を室温で混合し、光カチオン重合性組成物を調製した。この光重合性組成物について光DSC測定を行ったところ、光照射開始から5分間の総発熱量は3mJ/mgであった。
(光硬化速度評価比較例2)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに公知の光重合増感剤である9,10-ジブトキシアントラセンを使用すること以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は230mJ/mgであった。
(光硬化速度評価比較例3)
光硬化速度評価実施例1の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに公知の光重合増感剤である9,10-ビス(オクタノイルオキシ)アントラセンを使用すること以外は光硬化速度実施評価例1と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は234mJ/mgであった。
光硬化速度評価実施例1~9、17、18と光硬化速度評価比較例1~3の結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000034
 
次に、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を光ラジカル重合増感剤とするラジカル重合性組成物の光重合性能評価試験について以下に記載する。
(光硬化速度評価実施例10)
光ラジカル重合性化合物として、トリメチロールプロパントリアクリレート100重量部に対して、光重合開始剤である1-ヒドロキシシクロヘキシルフェニルケトン2重量部、光ラジカル重合増感剤として、合成実施例1で得られた9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン1重量部を室温で混合し、光ラジカル重合性組成物を調製した。この光重合性組成物について光DSC測定を行ったところ、光照射開始から5分間の総発熱量は419mJ/mgであった。
(光硬化速度評価実施例11)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例2と同様に得られた9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は465mJ/mgであった。
(光硬化速度評価実施例12)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例3と同様に得られた9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は409mJ/mgであった。
(光硬化速度評価実施例13)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例4と同様に得られた9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は443mJ/mgであった。
(光硬化速度評価実施例14)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例5と同様に得られた9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は336mJ/mgであった。
(光硬化速度評価実施例15)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例6と同様に得られた9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は552mJ/mgであった。
(光硬化速度評価実施例16)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例9と同様に得られた2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は441mJ/mgであった。
(光硬化速度評価実施例19)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例11と同様に得られた9,10-ビス(プロポキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は379mJ/mgであった。
(光硬化速度評価実施例20)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを合成実施例13と同様に得られた9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセンに変えた以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は420mJ/mgであった。
(光硬化速度評価比較例4)
光ラジカル重合性化合物として、トリメチロールプロパントリアクリレート100重量部に対して、光重合開始剤である1-ヒドロキシシクロヘキシルフェニルケトン2重量部を室温で混合し、光ラジカル重合性組成物を調製した。この光重合性組成物について光DSC測定を行ったところ、光照射開始から5分間の総発熱量は166mJ/mgであった。
(光硬化速度評価比較例5)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを公知の光重合増感剤である9,10-ジブトキシアントラセンを使用すること以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は212mJ/mgであった。
(光硬化速度評価比較例6)
光硬化速度評価実施例10の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンを公知の光重合増感剤である9,10-ビス(オクタノイルオキシ)アントラセンを使用すること以外は光硬化速度評価実施例10と同様に光DSC測定を行ったところ、光照射開始から5分間の総発熱量は298mJ/mgであった。
光硬化速度評価実施例10~16、19、20と光硬化速度評価比較例4~6の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000035
光硬化速度評価実施例1~9、17、18及び光硬化速度評価比較例1の結果を比較することにより明らかなように、光カチオン重合において本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を光重合増感剤として添加することにより、総発熱量が増加しており、著しく重合反応を促進していることがわかる。また、光硬化速度評価実施例10~16、19、20及び光硬化速度評価比較例4の結果を比較することにより明らかなように、光ラジカル重合においても本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を添加することにより、同様に総発熱量が増加しており、著しく重合反応を促進していることがわかる。すなわち、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光カチオン重合及び光ラジカル重合のいずれにおいても光重合増感効果を持つことが分かる。
更に、光硬化速度評価実施例1~9、17、18及び光硬化速度評価比較例2、3の結果を比較することにより明らかなように、光カチオン重合において本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、公知の光重合増感剤である9,10-ジブトキシアントラセン及び9,10-ビス(オクタノイルオキシ)アントラセンと同等もしくはそれ以上の光重合増感効果を持つことがわかる。また、光硬化速度評価実施例10~16、19、20及び光硬化速度評価比較例5,6の結果を比較することにより明らかなように、光ラジカル重合においても本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、同様に公知の光重合増感剤である9,10-ジブトキシアントラセン及び9,10-ビス(オクタノイルオキシ)アントラセンと同等もしくはそれ以上の光重合増感効果を持つことがわかる。すなわち、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光カチオン重合及び光ラジカル重合のいずれにおいても公知の光重合増感剤である9,10-ジブトキシアントラセンと同等もしくはそれ以上の光重合増感効果を持つことが分かる。
(光カチオン重合における耐マイグレーション性の評価実施例)
(耐マイグレーション性評価実施例1)
エポキシ光カチオン重合性化合物として、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製セロキサイド2021P)100部に対し、光重合増感剤として合成実施例1と同様の方法で合成した9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン1部を混合し、調製した組成物をポリエステルフィルム上で膜厚が12ミクロンになるようにバーコーターを用いて塗布した。次いで、得られた塗布物上に低密度ポリエチレンフィルム(膜厚30ミクロン)を被せて、暗所で一日間保管したもの、七日間保管したものを、それぞれ保管後、ポリエチレンフィルムを剥がし、ポリエチレンフィルムをアセトンで洗い乾燥した後、フィルムのUVスペクトルを測定し、260nmの吸光度を測定した。得られた9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した。吸光度は、一日保管後0.015、七日保管後0.003であった。
(耐マイグレーション性評価実施例2)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例2と同様の方法で合成した9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.007、七日保管後0.007であった。
(耐マイグレーション性評価実施例3)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例3と同様の方法で合成した9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.007、七日保管後0.007であった。
(耐マイグレーション性評価実施例4)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例4と同様の方法で合成した9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.010、七日保管後0.014であった。
(耐マイグレーション性評価実施例5)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例5と同様の方法で合成した9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.011、七日保管後0.007であった。
(耐マイグレーション性評価実施例6)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例6と同様の方法で合成した9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.007、七日保管後0.003であった。
(耐マイグレーション性評価実施例7)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例7と同様の方法で合成した9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.015、七日保管後0.013であった。
(耐マイグレーション性評価実施例8)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例8と同様の方法で合成した9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.012、七日保管後0.010であった。
(耐マイグレーション性評価実施例9)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例9と同様の方法で合成した2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに起因する吸光度を9,10-ジブトキシアントラセン換算した値は、一日保管後0.015、七日保管後0.015であった。
(耐マイグレーション性評価比較例1)
光重合増感剤として、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに公知の光重合増感剤である9,10-ジブトキシアントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様に調製した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、9,10-ジブトキシアントラセンの吸光度は、一日保管後0.737、七日保管後0.843であった。
耐マイグレーション性評価実施例1~9と耐マイグレーション性評価比較例1の結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000036
(光ラジカル重合における組成物の耐マイグレーション性の評価実施例)
(耐マイグレーション性評価実施例10)
光ラジカル重合性化合物として、トリメチロールプロパントリアクリレート100部、光ラジカル重合増感剤として、合成実施例1と同様の方法で合成した9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン1部を混合し、調製した組成物をポリエステルフィルム上で膜厚が12ミクロンになるようにバーコーターを用いて塗布した。次いで、得られた塗布物上に低密度ポリエチレンフィルム(膜厚30ミクロン)を被せて、暗所で一日間保管したものと七日間保管したものを調製し、それぞれ保管後、被せたポリエチレンフィルムを剥がし、ポリエチレンフィルムをアセトンで洗い、乾燥した後、当該ポリエチレンフィルムのUVスペクトルを測定し、260nmの吸光度を測定したが、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.015、七日保管後0.016であった。
(耐マイグレーション性評価実施例11)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例2と同様の方法で合成した9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.014、七日保管後0.015であった。
(耐マイグレーション性評価実施例12)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例3と同様の方法で合成した9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.024、七日保管後0.022であった。
(耐マイグレーション性評価実施例13)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例4と同様の方法で合成した9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.037、七日保管後0.033であった。
(耐マイグレーション性評価実施例14)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例5と同様の方法で合成した9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.022、七日保管後0.015であった。
(耐マイグレーション性評価実施例15)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例6と同様の方法で合成した9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.007、七日保管後0.004であった。
(耐マイグレーション性評価実施例16)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例7と同様の方法で合成した9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセンに起因する吸収は、一日保管後0.032、七日保管後0.030であった。
(耐マイグレーション性評価実施例17)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例8と同様の方法で合成した9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンに起因する吸収は、一日保管後0.022、七日保管後0.021であった。
(耐マイグレーション性評価実施例18)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに合成実施例9と同様の方法で合成した2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.031、七日保管後0.032であった。
(耐マイグレーション性評価比較例2)
9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセンの代わりに公知の光ラジカル増感剤である9,10-ジブトキシアントラセンを使用すること以外は耐マイグレーション性評価実施例10と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、得られた9,10-ジブトキシアントラセンの吸光度は、一日保管後1.661、七日後1.741であった。
耐マイグレーション性評価実施例10~18と耐マイグレーション性評価比較例2の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000037
耐マイグレーション性評価実施例1から9と耐マイグレーション性評価比較例1を比較することにより明らかなように、光カチオン重合性組成物中において、公知の光カチオン重合増感剤である9,10-ジブトキシアントラセンは該光カチオン重合性組成物の上に被せたフィルムにかなりの程度移行しているのに対して、本願の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン化合物は、いずれの場合もその移行程度は極めて低く、耐マイグレーション性に優れているといえる。
一方、耐マイグレーション性評価実施例10から18と耐マイグレーション性評価比較例2を比較することにより明らかなように、光ラジカル重合性組成物中においても、公知の光ラジカル重合増感剤である9,10-ジブトキシアントラセンは、光ラジカル重合性組成物の上に被せたフィルムにかなりの程度移行しているのに対して、本願の9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン化合物は、いずれの場合もその移行程度は極めて低く、耐マイグレーション性に優れているといえる。
以上の結果より、本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光カチオン重合及び光ラジカル重合において、公知の光重合増感剤である9,10-ジブトキシアントラセン化合物と比較して、同等の光重合増感能を有するだけでなく、極性のエステル基を持つ構造のため、耐マイグレーション性が高い優れた化合物であり、光重合増感剤として極めて有用な化合物であることがわかる。
本発明に示すエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光重合反応において光重合増感剤として優れた効果を示すと同時に、極性基であるエステル基を持つことにより、光重合増感剤がマイグレーション及びブルーミングを起こし難くなる産業上非常に有用な化合物である。

 

Claims (11)

  1. 下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
  2. 下記一般式(2)で表される9,10-ジヒドロキシアントラセン化合物と下記一般式(3)で表されるエステル化合物とを反応させることを特徴とする下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の製造法。
    Figure JPOXMLDOC01-appb-C000002
     
    (一般式(2)において、X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。Zは塩素原子、臭素原子又はヨウ素原子を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
  3. 下記一般式(2)で表される9,10-ジヒドロキシアントラセン化合物と下記一般式(4)で表されるカルボン酸化合物とを反応させ、下記一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物を合成し、該一般式(5)で表される9,10-ビス(ヒドロキシカルボニルアルキレンオキシ)アントラセン化合物と下記一般式(6)、一般式(7)又は一般式(8)で表されるエステル化剤を反応させることを特徴とする下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の製造法。
    Figure JPOXMLDOC01-appb-C000005
     
    (一般式(2)において、X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000006
     
    (一般式(4)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Zは塩素原子、臭素原子又はヨウ素原子を表す。)
    Figure JPOXMLDOC01-appb-C000007
     
    (一般式(5)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (一般式(6)において、Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。)
    Figure JPOXMLDOC01-appb-C000009
    (一般式(7)において、Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。Dは、塩素原子、臭素原子、ヨウ素原子を表す。)
    Figure JPOXMLDOC01-appb-C000010
    (一般式(8)において、Rは、水素原子又は炭素数1から17のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。)
    Figure JPOXMLDOC01-appb-C000011
     
    (一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
  4. 下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光重合増感剤。
    Figure JPOXMLDOC01-appb-C000012
    (一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
  5. 一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物において、Rが、ヒドロキシ基で置換されておらず、炭素原子の一部が酸素原子によって置き換わっていない、炭素数1から20のアルキル基であることを特徴とする、請求項4に記載の光重合増感剤。
  6. 一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物において、Aが炭素数1のアルキレン基であることを特徴とする、請求項4又は5に記載の光重合増感剤。
  7. 請求項4乃至6のいずれか一項に記載の光重合増感剤と、光重合開始剤とを含有する光重合開始剤組成物。
  8. 請求項7に記載の光重合開始剤組成物と、光カチオン重合性化合物とを含有する光重合性組成物。
  9. 請求項7に記載の光重合開始剤組成物と、光ラジカル重合性化合物とを含有する光重合性組成物。
  10. 請求項8又は9に記載の光重合性組成物を、300nmから500nmの波長範囲の光を含むエネルギー線を照射することにより重合させる重合方法。
  11. 300nmから500nmの波長範囲の光を含むエネルギー線の照射源が、中心波長が365nm、375nm、385nm、395nm、405nmの紫外LED又は半導体レーザであることを特徴とする、請求項10に記載の重合方法。

     
PCT/JP2018/045376 2018-12-10 2018-12-10 耐マイグレーション性を有する光重合増感剤 WO2020121384A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/045376 WO2020121384A1 (ja) 2018-12-10 2018-12-10 耐マイグレーション性を有する光重合増感剤
PCT/JP2019/014347 WO2020121544A1 (ja) 2018-12-10 2019-03-29 耐マイグレーション性を有する光重合増感剤
US17/312,274 US11958802B2 (en) 2018-12-10 2019-03-29 Migration-resistant photopolymerization sensitizer
CN201980080914.4A CN113166036B (zh) 2018-12-10 2019-03-29 具有耐迁移性的光聚合增感剂
KR1020217016954A KR20210102233A (ko) 2018-12-10 2019-03-29 내마이그레이션성을 갖는 광 중합 증감제

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045376 WO2020121384A1 (ja) 2018-12-10 2018-12-10 耐マイグレーション性を有する光重合増感剤

Publications (1)

Publication Number Publication Date
WO2020121384A1 true WO2020121384A1 (ja) 2020-06-18

Family

ID=71076408

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/045376 WO2020121384A1 (ja) 2018-12-10 2018-12-10 耐マイグレーション性を有する光重合増感剤
PCT/JP2019/014347 WO2020121544A1 (ja) 2018-12-10 2019-03-29 耐マイグレーション性を有する光重合増感剤

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014347 WO2020121544A1 (ja) 2018-12-10 2019-03-29 耐マイグレーション性を有する光重合増感剤

Country Status (4)

Country Link
US (1) US11958802B2 (ja)
KR (1) KR20210102233A (ja)
CN (1) CN113166036B (ja)
WO (2) WO2020121384A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210116497A (ko) * 2018-02-13 2021-09-27 가와사끼가세이고오교 가부시끼가이샤 다환 방향족 골격을 갖는 화합물 및 그 엔도퍼옥사이드 화합물

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126066A1 (ja) * 2006-04-28 2007-11-08 Kawasaki Kasei Chemicals Ltd. 光重合開始剤及び光硬化性組成物
JP2014031346A (ja) * 2012-08-06 2014-02-20 Kawasaki Kasei Chem Ltd 9,10−ビス(2−アシルオキシアルコキシ)アントラセン化合物、その製造法及びその用途
JP2014101442A (ja) * 2012-11-20 2014-06-05 Kawasaki Kasei Chem Ltd ラジカル重合増感剤。
WO2014109303A1 (ja) * 2013-01-11 2014-07-17 川崎化成工業株式会社 アントラセン化合物及びその光重合増感剤としての用途
CN105037587A (zh) * 2015-06-24 2015-11-11 常州强力先端电子材料有限公司 一种适用于uv-led光固化体系的增感剂
JP2017193523A (ja) * 2016-04-23 2017-10-26 川崎化成工業株式会社 9,10−ビス{2−(置換アミノカルボニルオキシ)アルコキシ}アントラセン化合物、その製造法及びその用途
CN107325237A (zh) * 2016-04-15 2017-11-07 常州强力电子新材料股份有限公司 一种自由基-阳离子混杂型光固化体系及其应用
JP2018002630A (ja) * 2016-06-30 2018-01-11 川崎化成工業株式会社 光重合増感剤
JP2018090537A (ja) * 2016-12-03 2018-06-14 川崎化成工業株式会社 (2−カルボキシ−1,2−ジ置換−エチル)カルボニルオキシ基を有するアントラセン化合物、その製造法及びその用途
JP2018115256A (ja) * 2017-01-18 2018-07-26 川崎化成工業株式会社 耐マイグレーション性を有する光重合増感剤

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465223Y1 (ja) 1968-10-28 1971-02-24
GB9121795D0 (en) 1991-10-14 1991-11-27 Minnesota Mining & Mfg Positive-acting photothermographic materials
JP3449378B2 (ja) 1993-04-13 2003-09-22 株式会社トクヤマ 歯科用充填修復材料及び義歯床用樹脂組成物
JP3452145B2 (ja) 1993-08-23 2003-09-29 大日本インキ化学工業株式会社 粘弾性製品用光重合性組成物及び該組成物を用いた粘弾性製品の製造方法
JPH10195117A (ja) 1996-12-27 1998-07-28 Nippon Soda Co Ltd 光硬化性組成物および硬化方法
JPH11279212A (ja) 1998-02-02 1999-10-12 Nippon Soda Co Ltd 新規ヨードニウム塩化合物を含有する光硬化性組成物
JP2000344704A (ja) 1999-01-29 2000-12-12 Nippon Kayaku Co Ltd 新規なアントラセン化合物、これを含有する樹脂組成物、9,10−ジエーテル化アントラセン誘導体の製造方法
JP2002302507A (ja) 2001-01-31 2002-10-18 Nippon Soda Co Ltd ヨードニウム塩化合物を含有する光硬化性組成物
US8105759B2 (en) 2005-07-05 2012-01-31 Hitachi Chemical Company, Ltd. Photosensitive resin composition, and, photosensitive element, method for forming resist pattern, method for manufacturing printed wiring board and method for manufacturing partition wall for plasma display panel using the composition
JP5041117B2 (ja) * 2006-02-02 2012-10-03 川崎化成工業株式会社 新規なアントラセン化合物及び光重合用増感剤
JP6331121B2 (ja) * 2013-01-11 2018-05-30 川崎化成工業株式会社 光カチオン重合増感剤
JP6686336B2 (ja) * 2015-09-14 2020-04-22 川崎化成工業株式会社 光重合性組成物
JP6695565B2 (ja) * 2015-12-22 2020-05-20 川崎化成工業株式会社 2−置換−9,10−ビス(2−ヒドロキシアルコキシ)アントラセン化合物、その製造法及びその用途
KR20210116497A (ko) * 2018-02-13 2021-09-27 가와사끼가세이고오교 가부시끼가이샤 다환 방향족 골격을 갖는 화합물 및 그 엔도퍼옥사이드 화합물

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126066A1 (ja) * 2006-04-28 2007-11-08 Kawasaki Kasei Chemicals Ltd. 光重合開始剤及び光硬化性組成物
JP2014031346A (ja) * 2012-08-06 2014-02-20 Kawasaki Kasei Chem Ltd 9,10−ビス(2−アシルオキシアルコキシ)アントラセン化合物、その製造法及びその用途
JP2014101442A (ja) * 2012-11-20 2014-06-05 Kawasaki Kasei Chem Ltd ラジカル重合増感剤。
WO2014109303A1 (ja) * 2013-01-11 2014-07-17 川崎化成工業株式会社 アントラセン化合物及びその光重合増感剤としての用途
CN105037587A (zh) * 2015-06-24 2015-11-11 常州强力先端电子材料有限公司 一种适用于uv-led光固化体系的增感剂
CN107325237A (zh) * 2016-04-15 2017-11-07 常州强力电子新材料股份有限公司 一种自由基-阳离子混杂型光固化体系及其应用
JP2017193523A (ja) * 2016-04-23 2017-10-26 川崎化成工業株式会社 9,10−ビス{2−(置換アミノカルボニルオキシ)アルコキシ}アントラセン化合物、その製造法及びその用途
JP2018002630A (ja) * 2016-06-30 2018-01-11 川崎化成工業株式会社 光重合増感剤
JP2018090537A (ja) * 2016-12-03 2018-06-14 川崎化成工業株式会社 (2−カルボキシ−1,2−ジ置換−エチル)カルボニルオキシ基を有するアントラセン化合物、その製造法及びその用途
JP2018115256A (ja) * 2017-01-18 2018-07-26 川崎化成工業株式会社 耐マイグレーション性を有する光重合増感剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEAN HINSCHBERGER, JEAN-PIERRE DESVERGNE, HENRI BOUAS-LAURENT AND PIERRE MARSAU: "Synthesis and Photophysical Properties of Fluorescent Anthracenophanes Incorporating Two Polyoxadioxoalkane Chains", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 2, vol. 2, no. 6, 1 January 1990 (1990-01-01), pages 993 - 1000, XP055694130, ISSN: 0300-9580, DOI: 10.1039/P29900000993 *

Also Published As

Publication number Publication date
CN113166036B (zh) 2023-10-10
CN113166036A (zh) 2021-07-23
KR20210102233A (ko) 2021-08-19
US20220106254A1 (en) 2022-04-07
WO2020121544A1 (ja) 2020-06-18
US11958802B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
JP6032536B2 (ja) 9,10−ビス(2−アシルオキシアルコキシ)アントラセン化合物、その製造法及びその用途
WO2014109303A1 (ja) アントラセン化合物及びその光重合増感剤としての用途
JP6160805B2 (ja) ラジカル重合増感剤。
JP7129006B2 (ja) 耐マイグレーション性を有する光重合増感剤
JP6344640B2 (ja) ラジカル重合増感剤
JP7250256B2 (ja) 高分子光重合増感剤
JP6695567B2 (ja) 9,10−ビス{2−(置換アミノカルボニルオキシ)アルコキシ}アントラセン化合物、その製造法及びその用途
JP2018002630A (ja) 光重合増感剤
WO2020121384A1 (ja) 耐マイグレーション性を有する光重合増感剤
JP6064300B2 (ja) ラジカル重合増感剤
JP2017115113A (ja) 光重合増感剤
JP6695565B2 (ja) 2−置換−9,10−ビス(2−ヒドロキシアルコキシ)アントラセン化合物、その製造法及びその用途
JP5842566B2 (ja) 10−(2−ナフチル)アントラセントリエーテル化合物、その製造法及びその用途
WO2020213442A1 (ja) 光重合性組成物及び該光重合性組成物を含有する塗膜並びにその硬化方法
WO2020054116A1 (ja) 光重合増感剤
WO2020054874A1 (ja) 光重合増感剤
JP7237282B2 (ja) 耐マイグレーション性を有する光重合増感剤
JP7104366B2 (ja) 反応性光重合増感剤
WO2020209209A1 (ja) 光ラジカル硬化酸素阻害低減剤、光ラジカル硬化酸素阻害低減剤を含有する光ラジカル重合性組成物及び光ラジカル硬化酸素阻害低減剤を含有する塗膜並びにその硬化方法
JP2019199405A (ja) 反応性光重合増感剤
JP6660558B2 (ja) 光重合増感剤
JP2017109980A (ja) 5,6,11,12−テトラ(置換オキシ)ジベンゾ[b,h]ビフェニレン化合物、製造法、及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP