WO2020119222A1 - 一种具有固态电解质界面相的集流体及制造方法 - Google Patents

一种具有固态电解质界面相的集流体及制造方法 Download PDF

Info

Publication number
WO2020119222A1
WO2020119222A1 PCT/CN2019/108214 CN2019108214W WO2020119222A1 WO 2020119222 A1 WO2020119222 A1 WO 2020119222A1 CN 2019108214 W CN2019108214 W CN 2019108214W WO 2020119222 A1 WO2020119222 A1 WO 2020119222A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
current collector
solid electrolyte
working electrode
interface phase
Prior art date
Application number
PCT/CN2019/108214
Other languages
English (en)
French (fr)
Inventor
毛秉伟
谷宇
徐洪雨
王卫伟
颜佳伟
董全峰
郑明森
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2020119222A1 publication Critical patent/WO2020119222A1/zh
Priority to US17/343,984 priority Critical patent/US20210305581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of electrochemical technology, and particularly relates to a method and application of a sacrificial thin lithium layer on a current collector to construct a solid electrolyte interface phase.
  • Lithium metal has the characteristics of light weight and low electrode potential. Its negative electrode has a specific capacity of up to 3860mAh/g. It is an ideal negative electrode for next-generation high-specific energy batteries such as lithium-sulfur and lithium-air batteries.
  • lithium anodes tend to grow dendrites, and the deposition-dissolution process accompanied by large volume changes can lead to the fracture of the solid electrolyte interface phase (SEI). The unevenly damaged SEI further promotes the growth of lithium dendrites and leads to the dissolution of lithium
  • SEI solid electrolyte interface phase
  • the formation of "dead lithium” results in low cycle performance of the lithium anode and consumes extra electrolyte, and brings potential battery safety problems, which restricts the practical application of lithium anodes.
  • the first object of the present invention is to provide a current collector having a solid electrolyte interface phase.
  • the second object of the present invention is to provide a method for preparing the current collector.
  • the third object of the present invention is to provide the application of the current collector.
  • the current collector with a solid electrolyte interface phase is at least one of metals such as copper and its alloys, nickel and its alloys, or non-metals such as carbon and silicon; the current collector configuration includes a flat foil and a three-dimensional network , At least one of three-dimensional foam, three-dimensional cylinder, nanostructure.
  • the current collector with a solid electrolyte interface phase is prepared by introducing a sacrificial lithium thin layer through an electrochemical control method; the sacrificial lithium thin layer is formed by electrodeposition or non-electrodeposition method and has a certain thickness Metal lithium.
  • the method of constructing solid electrolyte interface phase by sacrificial lithium thin layer on current collector includes the following steps:
  • Dissolve the sacrificial lithium thin layer apply an anode potential of 0.05V to 1.2V or an anode current of 0.01mA/cm2 to 5mA/cm2 to the working electrode, so that all the remaining lithium layer on the working electrode is dissolved out, which has a stable solid electrolyte interface phase Current collector.
  • the electrolyte salt used in the electrolyte is preferably a lithium imide salt of lithium, a perchlorate salt, an organoboron lithium salt, a lithium salt of a fluorine-containing compound, and the like.
  • electrolyte salts include LiClO4, LiPF6, LiBF4, LiAsF6, LiSbF6, LiCF3SO3, LiCF3CO2, LiC2F4(SO3)2, LiN(C2F5SO2)2, LiC(CF3SO2)3, LiCnF2n+1SO3(n ⁇ 2), LiN(RfOSO2)2 (where Rf is fluoroalkyl), etc.
  • lithium imide salts are particularly preferred.
  • the concentration of the electrolyte lithium salt in the non-aqueous electrolyte is, for example, preferably 0.3M or more, more preferably 0.7M or more, preferably 5M or less, and more preferably 4M or less.
  • concentration of the electrolyte lithium salt is too low, the ion conductivity is too small, and when it is too high, there is a fear that the electrolyte salt that has not been completely dissolved out will precipitate.
  • the non-aqueous solvent (organic solvent) used in the electrolyte includes carbonates, ethers and the like.
  • Carbonates include cyclic carbonates and chain carbonates.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, and sulfur esters (ethylene glycol sulfide and many more.
  • chain carbonate include low-viscosity polar chain carbonates represented by dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, aliphatic branched chain carbonate compounds, and the like.
  • Examples of ethers include dimethyl ether tetraethylene glycol, ethylene glycol dimethyl ether, and 1,3-dioxolane. Ether solvents are particularly preferred.
  • additives that can improve the performance of lithium electrodeposition may also be added to the non-aqueous electrolyte, and are not particularly limited.
  • the above-mentioned current collector can be directly used as a lithium-free negative electrode in a lithium ion battery; it can also be prepared on the lithium thin film negative electrode by means of electrodeposition or melting to introduce lithium in a secondary battery, which includes a lithium ion battery , Lithium-sulfur battery, lithium-oxygen battery.
  • a secondary battery which includes a lithium ion battery , Lithium-sulfur battery, lithium-oxygen battery.
  • positive electrode materials, electrolytes, and separators used in lithium-ion batteries, lithium-sulfur batteries, and lithium-air batteries can be used in the present invention.
  • the sacrificial thin lithium layer is used to construct the solid electrolyte interface phase to achieve the construction of the solid electrolyte interface phase with superior performance on the surface of the copper current collector skeleton, and to provide a stable lithium-electrolyte interface for the subsequent lithium thin film negative electrode or lithium-free negative electrode;
  • the anode dissolution of the thin lithium layer and the reduction of the electrolyte are carried out step by step, which promotes the formation of a lithium-rich, dense inorganic-organic multi-layer structure solid-state electrolyte interface phase film, and the formed solid-electrolyte interface
  • the phase has both soft and hard mechanical properties, which can effectively inhibit the growth of lithium dendrites;
  • the solid electrolyte interface phase obtained from the current collector can fully utilize the surface and active space of the lithium thin film negative electrode or current collector, and exhibit excellent electrochemical performance. They are lithium ion batteries, lithium-sulfur and lithium-air. Batteries, etc. provide close to ideal metal lithium anodes.
  • the present invention can be extended to various current collectors of other alkali metals, other configurations and other materials.
  • FIG. 1 is a scanning electron microscope (SEM) image of lithium deposition morphology on a copper foam current collector and a foamed copper current collector after a solid lithium interface layer is constructed using a sacrificial thin lithium layer according to Example 7.
  • FIG. 2 (a) is the morphology of lithium deposition on a common copper foam current collector, and (b) is the morphology of lithium deposition on a copper foam current collector after using a sacrificial thin lithium layer to construct a solid electrolyte interface phase.
  • FIG. 2 is a performance diagram of a copper foam current collector and a copper foam current collector after using a sacrificial thin lithium layer to construct a solid electrolyte interface phase according to Example 12 as a lithium-free electrode.
  • (a) is a copper-lithium battery composed of a common foam copper current collector and a metal lithium electrode, and the Coulomb efficiency graph is cycled at 4 mA/cm 2 (1 mAh/cm 2 ).
  • FIG. 3 is a performance chart of different lithium-ion batteries.
  • (a) is a performance graph of a lithium ion battery composed of a common copper foil current collector and lithium iron phosphate;
  • (b) is a performance graph of the lithium ion battery prepared according to Example 25.
  • Figure 4 is a performance chart of different lithium-ion batteries.
  • (a) is a performance chart of a lithium ion battery formed by depositing 5 mAh cm-2 lithium on a common copper foil current collector by electrodeposition to form a lithium electrode.
  • the lithium electrode and lithium iron phosphate constitute a lithium ion battery;
  • (b) It is a performance graph of the lithium ion battery prepared according to Example 26.
  • the sacrificial thin lithium layer on the current collector constructs the solid electrolyte interface phase as follows:
  • Step 1) After completion, apply anode potential of 0.2V ⁇ 2.0V or anode current of 100mA/cm2 ⁇ 300mA/cm2 to the working electrode, so that the lithium sacrificial layer on the working electrode will be eluted step by step.
  • the electrolyte is reduced step by step to obtain a lithium-rich, dense, adjustable composition, alternating inorganic-organic multilayer structure solid electrolyte interface phase;
  • Step 2) After completion, apply an anode potential of 0.05V to 1.2V or an anode current of 0.01mA/cm2 to 5mA/cm2 to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • step 1) uses a copper mesh as a working electrode and applies a cathode potential of -0.2V to the working electrode to cause lithium to be electrodeposited on the working electrode to obtain a sacrificial lithium thin layer with a thickness of 5 ⁇ m.
  • Others are the same as in Example 1.
  • step 1) uses a copper mesh as a working electrode and applies a cathode potential of -0.05V to the working electrode to cause lithium to be electrodeposited on the working electrode to obtain a 30- ⁇ m-thick sacrificial lithium thin layer.
  • step 2) uses a copper mesh as a working electrode and applies a cathode potential of -0.05V to the working electrode to cause lithium to be electrodeposited on the working electrode to obtain a 30- ⁇ m-thick sacrificial lithium thin layer.
  • Others are the same as in Example 1.
  • step 1) copper foam is used as the working electrode, and a cathode potential of -0.1 V is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a thin layer of sacrificial lithium with a thickness of 15 ⁇ m.
  • a cathode potential of -0.1 V is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a thin layer of sacrificial lithium with a thickness of 15 ⁇ m.
  • Others are the same as in Example 1.
  • step 1) uses a copper mesh as a working electrode, and applies a cathode current of -2 mA/cm2 to the working electrode to cause electrodeposition of lithium at the working electrode to obtain a sacrificial lithium thin layer with a thickness of 5 ⁇ m .
  • Others are the same as in Example 1.
  • step 1) copper foam is used as the working electrode, and a cathode current of -0.05mA/cm2 is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a 15- ⁇ m-thick sacrificial lithium thin Floor.
  • step 2) copper foam is used as the working electrode, and a cathode current of -0.05mA/cm2 is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a 15- ⁇ m-thick sacrificial lithium thin Floor.
  • step 1) copper foam is used as the working electrode, and a cathode current of -1mA/cm2 is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a 30- ⁇ m-thick sacrificial lithium layer .
  • step 2) copper foam is used as the working electrode, and a cathode current of -1mA/cm2 is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a 30- ⁇ m-thick sacrificial lithium layer .
  • Others are the same as in Example 1.
  • step 1) uses copper foil as the working electrode, heats the metal lithium to melt it, immerses the copper foil in it for a period of time, and then takes it out to cool to room temperature to obtain a thin layer of sacrificial lithium with a thickness of 25 ⁇ m .
  • Others are the same as in Example 1.
  • step 2) uses a copper mesh as the working electrode, and applies an anode potential of 0.2 V to the working electrode, so that the lithium sacrificial layer on the working electrode is eluted and the electrolyte is reduced.
  • Others are the same as one of Examples 1-8.
  • step 2) uses a copper mesh as the working electrode, and applies an anode potential of 2.0V to the working electrode, so that the lithium sacrificial layer on the working electrode is eluted in steps, and the electrolyte is reduced.
  • Others are the same as one of Examples 1-8.
  • step 2) uses a copper mesh as the working electrode, and applies an anode potential of 1.0 V to the working electrode, so that the lithium sacrificial layer on the working electrode is eluted and the electrolyte is reduced.
  • Others are the same as one of Examples 1-8.
  • step 2 uses copper foam as the working electrode, first applying an anode potential of 1.6V, then applying an anode potential of 0.6V, then applying an anode potential of 1.0V, and finally applying 0.6V.
  • step 2 uses copper foam as the working electrode, first applying an anode potential of 1.6V, then applying an anode potential of 0.6V, then applying an anode potential of 1.0V, and finally applying 0.6V.
  • Others are the same as one of Examples 1-8.
  • step 2) uses a copper mesh as the working electrode, and applies an anode current of 100 mA/cm2 to the working electrode to dissolve the lithium sacrificial layer on the working electrode and reduce the electrolyte.
  • Others are the same as one of Examples 1-8.
  • step 2) uses nano-structured copper as the working electrode and applies an anode current of 300 mA/cm2 to the working electrode to elute the lithium sacrificial layer on the working electrode and reduce the electrolyte.
  • Others are the same as one of Examples 1-8.
  • step 2 copper foam is used as the working electrode, 300mA/cm2 anode current is first applied to the working electrode, then 100mA/cm2 anode current is applied, and finally 200mA/cm2 anode current is applied to make the work.
  • 300mA/cm2 anode current is first applied to the working electrode, then 100mA/cm2 anode current is applied, and finally 200mA/cm2 anode current is applied to make the work
  • the lithium sacrificial layer on the electrode is eluted in steps, and the electrolyte is reduced in steps.
  • Others are the same as one of Examples 1-8.
  • step 3 copper foam is used as the working electrode, and an anode potential of 0.05 V is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • Others are the same as one of Examples 1 to 5.
  • step 3 copper foam is used as the working electrode, and an anode potential of 1.2 V is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • Others are the same as one of Examples 1-15.
  • step 3 copper foam is used as the working electrode, and an anode potential of 0.5 V is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • Others are the same as one of Examples 1-15.
  • step 3 a copper mesh is used as a working electrode, and an anode current of 0.01 mA/cm2 is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • anode current of 0.01 mA/cm2 is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • step 3 copper foam is used as the working electrode, and an anode current of 5 mA/cm2 is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • anode current of 5 mA/cm2 is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • step 3 copper foam is used as the working electrode, and an anode current of 1 mA/cm2 is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • anode current of 1 mA/cm2 is applied to the working electrode to dissolve all the remaining lithium layer on the working electrode.
  • step 1) nickel foam is used as the working electrode, and a cathode potential of -0.1V is applied to the working electrode, so that lithium is electrodeposited on the working electrode to obtain a thin layer of sacrificial lithium with a thickness of 15 ⁇ m;
  • step 2) an anode potential of 1.0V is applied to the working electrode, so that the lithium sacrificial layer on the working electrode is eluted, and the electrolyte is reduced; in step 3), an anode current of 0.1mA/cm2 is applied to the working electrode, so that the working electrode The remaining lithium layer is completely eluted.
  • step 1) carbon paper is used as the working electrode, a cathode current of -0.05mA/cm2 is applied to the working electrode, so that lithium is electrodeposited on the working electrode, and a sacrificial lithium thickness of 25 ⁇ m is obtained Layer; in step 2), a 1.0V anode potential is applied to the working electrode, so that the lithium sacrificial layer on the working electrode is eluted, and the electrolyte is reduced; in step 3), a 0.5V anode potential is applied to the working electrode, so that the The remaining lithium layer is completely eluted.
  • Others are the same as in Example 1.
  • the current collector and metallic lithium form a copper ⁇ lithium battery, with 1.0M LiTFSI/DME- DOL (1/1, V/V) is the electrolyte, and Celgard 2400 is the separator. .
  • the current collector and lithium iron phosphate form a lithium ion battery, with 1.0M LiPF6/EC- DMC-EMC (1/1/1, V/V/V) is the electrolyte, and Celgard 2400 is the separator. .
  • Electrodeposition is used to deposit 5 mAh cm-2 lithium on the current collector to make a lithium thin-film electrode
  • the lithium ion battery is composed of the current collector and lithium iron phosphate, with 1.0M LiPF6/EC-DMC-EMC (1/1/1, V/V/V) as the electrolyte, and Celgard 2400 as the separator. .
  • Electrodeposition is used to deposit 5 mAh cm-2 lithium on the current collector to make a lithium thin-film electrode Then, it is combined with the sulfur cathode to form a lithium-sulfur battery, with 1.0M LiTFSI+0.5M LiNO3/DME-DOL (1/1, V/V) as the electrolyte and Celgard 2400 as the separator.
  • FIG. 1 is a scanning electron microscope (SEM) image of lithium deposition morphology on a copper foam current collector and a foamed copper current collector after a solid lithium interface layer is constructed using a sacrificial thin lithium layer according to Example 7.
  • SEM scanning electron microscope
  • the lithium deposition on the ordinary copper foam current collector is very uneven, and the deposited metal lithium blocks the pores of the copper foam; and the lithium on the copper foam current collector after the solid lithium electrolyte interface phase is constructed by sacrificial thin lithium layer
  • the deposition is relatively uniform, and the deposited metal lithium grows close to the foam copper skeleton, and the pores are not blocked.
  • This result shows that the stable solid electrolyte interface phase contributes to the uniform deposition and growth of lithium, and can make full use of the three-dimensional structure surface and active space.
  • Fig. 2 shows a common copper foam current collector and a copper foam current collector after constructing a solid electrolyte interface phase using a sacrificial thin lithium layer according to Example 12 to form a copper
  • (a) is an ordinary copper foam current collector
  • (b) is a copper foam current collector after constructing a solid electrolyte interface phase using a sacrificial thin lithium layer according to Example 11. It can be seen from the figure that the lithium metal on the common copper foam current collector can only circulate for about 50 weeks, and the Coulomb efficiency is only 95%.
  • the copper foam current collector after using the sacrificial thin lithium layer to construct the solid electrolyte interface phase The upper lithium metal can be stably circulated for at least 400 weeks, and the Coulomb efficiency is as high as 97.5%, which shows that the three-dimensional current collector after using the thin lithium layer to construct the solid electrolyte interface phase exhibits significantly improved Coulomb efficiency and significantly longer cycle stability.
  • FIG. 3 is a performance chart of different lithium-ion batteries.
  • (a) is a performance graph of a lithium ion battery composed of a common copper foil current collector and lithium iron phosphate;
  • (b) is a performance graph of the lithium ion battery prepared according to Example 25. As can be seen from FIG. 3, (a) is a performance graph of a lithium ion battery composed of a common copper foil current collector and lithium iron phosphate; (b) is a performance graph of the lithium ion battery prepared according to Example 25. As can be seen from FIG.
  • the battery after using a common copper foil current collector and a lithium iron phosphate to form a lithium ion battery, the battery can only cycle for about 40 weeks, and the Coulomb efficiency is only 93.6%, while the lithium ion battery prepared according to Example 25 It can be stably cycled for at least 100 weeks, and the Coulomb efficiency is as high as ⁇ 100%, which shows that the current collector with a stable solid electrolyte interface phase can be directly used as a negative electrode to improve the performance of lithium ion batteries.
  • FIG. 4 is a performance chart of different lithium-ion batteries.
  • (a) is a performance chart of a lithium ion battery formed by depositing 5 mAh cm-2 lithium on a common copper foil current collector by electrodeposition to form a lithium electrode. The lithium electrode and lithium iron phosphate constitute a lithium ion battery;
  • (b) It is a performance graph of the lithium ion battery prepared according to Example 26. It can be seen from FIG.
  • the battery can only be circulated for about 10 weeks, and the Coulomb efficiency is only ⁇ 90%, and is prepared according to Example 26
  • the lithium ion battery can be stably cycled for at least 100 weeks, and the Coulomb efficiency is as high as ⁇ 97%, which shows that the thin film metal lithium anode prepared by the current collector with a stable solid electrolyte interface phase can improve the performance of the lithium ion battery.
  • the invention realizes the construction of a solid electrolyte interface phase with excellent performance on the surface of the current collector skeleton, and provides a stable lithium-electrolyte interface for the subsequent lithium thin film negative electrode or lithium-free negative electrode; the thin film is introduced on the surface of the current collector by electrodeposition or non-electrodeposition
  • the uniform and quantitatively controllable lithium sacrificial layer; the formation of a lithium-rich, dense inorganic-organic interlayer multilayer structure solid electrolyte interface phase film can effectively inhibit the growth of lithium dendrites and has good industrial practicality.

Abstract

在集流体骨架表面构建性能优越固态电解质界面相,为后续的锂薄膜负极或无锂负极提供稳定的锂-电解液界面;在集流体表面通过电沉积或非电沉积方式引入薄而均匀且定量可控性好的锂牺牲层;形成富锂、致密的无机-有机相间的多层结构固态电解质界面相膜,可有效抑制锂枝晶的生长。

Description

一种具有固态电解质界面相的集流体及制造方法 技术领域
本发明属于电化学技术领域,具体涉及集流体上牺牲薄锂层构建固态电解质界面相的方法及其应用。
背景技术
锂金属具有质量轻而电极电势低的特点,其负极具有高达3860mAh/g的比容量,是锂-硫、锂-空电池等发展迅速的下一代高比能电池的理想负极。然而,锂负极易长枝晶,沉积-溶出过程伴随大的体积变化可导致固态电解质界面相(SEI)的破裂,破损不均匀的SEI进一步助长锂枝晶的生长,并在锂溶出时导致“死锂”形成,造成锂负极循环性能低下且消耗额外的电解液,并带来潜在的电池安全性问题,制约了锂负极的实际应用。鉴于锂金属负极的重要性,早在上世纪60年代首个锂电池诞生以来,人们便对锂金属负极的枝晶生长和SEI形成机理和作用开展研究,构建紧密、稳定和刚柔兼具的理想SEI也成为锂负极研究中极为重要和经典的科学问题。
近年来,随着高比能电池的发展需求和表征技术的发展,锂负极的研究又进入复兴期。目前,研究工作大多集中于运用人工SEI膜策略对锂表面进行保护,但循环效率和寿命问题远未达到实用要求,而从源头上构建理想SEI膜并抑制枝晶生长的方法还很少。另一方面,在集流体上,尤其是三维集流体上制备锂薄膜负极乃至无锂负极可大幅减少锂的使用量,降低真实循环过程的电流密度,也是提高安全性和可操作性的策略。然而,目前针对集流体的研究,大都注重比表面积的提升,却忽 视了优质SEI膜的构建,导致无法充分发挥三维集流体的高比表面和内部空间的作用,锂负极的循环换定性和库仑效率依然亟待提高。
因此,若能在集流体上构建紧密、稳定和刚柔兼具的理想SEI,则可抑制锂枝晶生长,充分利用三维集流体的高比表面并形成有效的内部电活性空间,从而提高锂负极循环稳定性,并使锂负极走向实用。因此,亟待发展方法,指导制备稳定、高效的锂金属负极,并以此带动锂-硫、锂-空电池的发展。
参考文献:
Dingchang Lin,Yayuan Liu and Yi Cui,“Reviving the lithium metal anodefor high-energy batteries”,Nature Nanotechnology,2017,12,194–206。
发明内容
本发明的第一目的在于提供一种具有固态电解质界面相的集流体。
本发明的第二目的在于提供上述集流体的制备方法。
本发明的第三目的在于提供上述集流体的应用。
所述具有固体电解质界面相的集流体,集流体材质为铜及其合金、镍及其合金等金属或碳、硅等非金属中的至少一种;集流体构型包括平面箔、三维网状、三维泡沫状、三维圆柱、纳米结构中的至少一种。
所述具有固体电解质界面相的集流体,是通过引入牺牲锂薄层后通过电化学调控的方法制备而成的;所述牺牲锂薄层是采用电沉积或非电沉积方法形成的具有一定厚度的金属锂。
集流体上牺牲锂薄层构建固态电解质界面相的方法包括以下步骤:
1)引入牺牲锂薄层:在电化学池内放入集流体和金属锂片分别作为工作电极和对电极,向电解池内注入电解液,对工作电极施加-0.2V~-0.05V阴极电位或-0.1mA/cm2~-0.05mA/cm2阴极电流,使锂在工作电极发生电沉积,获得厚度为5μm~30μm的牺牲锂薄层;或加热金属锂使其熔融,将集流体浸入其中一段时间后取出冷却至室温,获得厚度为5μm~30μm的牺牲锂薄层;
2)构建固态电解质界面相:对上述工作电极施加0.2V~2.0V阳极电位或100mA/cm2~300mA/cm2阳极电流,使工作电极上的锂牺牲层发生分步溶出,同时电解液发生分步还原,获得富锂、致密、组成可调的无机-有机交替排列的多层结构固态电解质界面相;
3)溶解牺牲锂薄层:对工作电极施加0.05V~1.2V阳极电位或0.01mA/cm2~5mA/cm2阳极电流,使工作电极上的剩余锂层全部溶出,即得具有稳定固态电解质界面相的集流体。
在上述步骤1)至3)中,所述电解液中使用的电解质盐,优选锂的锂酰亚胺盐、高氯酸盐、有机硼锂盐、含氟化合物的锂盐等。作为这样的电解质盐的例子,例如,可以举出LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiCF3CO2、LiC2F4(SO3)2、LiN(C2F5SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≥2)、LiN(RfOSO2)2(式中,Rf为氟烷基)等。在这些锂盐中,锂酰亚胺盐是特别优选的。电解质锂盐在非水电解液中的浓度,例如,0.3M以上是优选的,更优选0.7M以上,优选5M以下,更优选4M以下。当电解质锂盐的浓度过低时,离子传导度过小,过高时,担心未能溶解完全的电解质盐析出。
在上述步骤1)至3)中,所述电解液中使用的非水溶剂(有机溶剂)包括碳酸酯类、醚类等。碳酸酯类包括环状碳酸酯和链状碳酸酯,,环状碳酸酯可以举出碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、γ-丁内酯、硫类酯(乙二醇硫化物等)等。链状碳酸酯可以举出碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯等为代表的低粘度的极性链状碳酸酯、脂肪族支链型碳酸酯类化合物等。醚类可以举出二甲醚四甘醇,乙二醇二甲醚,1,3-二氧戊烷等。醚类溶剂是特别优选的。
另外,在非水电解液中,也可以添加能提高锂电沉积性能的各种添加剂,未作特别限定。
上述集流体可直接作为无锂负极在锂离子电池中使用;也可以在其上利用电沉积或熔融引锂的方式制备成锂薄膜负极在二次电池中使用,该二次电池包括锂离子电池、锂-硫电池、锂-氧电池。通常锂离子电池、锂-硫电池、锂-空电池使用的正极材料、电解液、隔膜都可以在本发明中使用。
本发明具有以下突出的技术效果:
1、运用牺牲薄锂层构建固态电解质界面相,实现在铜集流体骨架表面性能优越固态电解质界面相的构建,为后续的锂薄膜负极或无锂负极提供稳定的锂-电解液界面;
2、在集流体表面通过电沉积或非电沉积方式引入薄而均匀且定量可控性好的锂牺牲层,结合后续电化学调控,获得均匀、紧贴集流体骨架的固态电解质界面相膜,有利于保持锂-电解液界面的循环稳定性;
3、通过电化学调控,使薄锂层的阳极溶出和电解液的还原分步进行, 促使形成富锂、致密的无机-有机相间的多层结构固态电解质界面相膜,所形成的固态电解质界面相具有软-硬兼具的力学性质,可有效抑制锂枝晶的生长;
4、在集流体制备所得的固态电解质界面相,可使锂薄膜负极或集流体的表面和活性空间得以充分利用,展现出优越的电化学性能,为锂离子电池、锂-硫和锂-空电池等提供接近理想的金属锂负极。
5、本发明可推广到其它碱金属、其它构型和其它材质的各种集流体。
附图说明
图1为在普通泡沫铜集流体和根据实施例7利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体上锂沉积形貌的扫描电镜(SEM)图。在图2中,(a)为普通泡沫铜集流体上锂沉积形貌,(b)为根据实施例7利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体上锂沉积形貌。
图2为普通泡沫铜集流体和根据实施例12利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体直接作为无锂电极使用的性能图。在图2中,(a)为普通泡沫铜集流体与金属锂电极组成的铜-锂电池,在4mA/cm2(1mAh/cm2)下循环库伦效率图。(b)为根据实施例11利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体与与金属锂电极组成的铜-锂电池在4mA cm-2(1mAh cm-2)下循环库仑效率图。。
图3为不同锂离子电池的性能图。在图3中,(a)为普通铜箔集流体与磷酸铁锂组成锂离子电池的性能图;(b)为根据实施例25制备的锂离子电池的性能图。
图4为不同锂离子电池的性能图。在图4中,(a)为采用电沉积方式 在普通铜箔集流体上沉积5mAh cm-2锂制成锂电极后,该锂电极与磷酸铁锂组成锂离子电池的性能图;(b)为根据实施例26制备的锂离子电池的性能图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。本发明技术方案不局限于以下所举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
集流体上牺牲薄锂层构建固态电解质界面相按如下方式进行:
1)引入牺牲锂薄层:在电解池内放入集流体和金属锂片分别作为工作电极和对电极;向电解池内注入电解液,对工作电极施加-0.2V~-0.05V阴极电位或-2mA/cm2~-0.05mA/cm2阴极电流,使锂在工作电极发生电沉积,获得厚度为5μm~30μm的牺牲锂薄层;或加热金属锂使其熔融,将集流体浸入其中一段时间后取出冷却至室温,获得厚度为5μm~30μm的牺牲锂薄层;
2)构建固态电解质界面相:步骤1)完成后,对工作电极施加0.2V~2.0V阳极电位或100mA/cm2~300mA/cm2阳极电流,使工作电极上的锂牺牲层发生分步溶出,同时电解液发生分步还原,获得富锂、致密、组成可调的、无机-有机交替排列的多层结构固态电解质界面相;
3)溶解牺牲锂薄层:步骤2)完成后,对工作电极施加0.05V~1.2V阳极电位或0.01mA/cm2~5mA/cm2阳极电流,使工作电极上的剩余锂层全部溶出,即得具有稳定固态电解质界面相的集流体。
实施例2
本实施例与实施例1不同的是步骤1)中以铜网为工作电极,对工作电极施加-0.2V阴极电位,使锂在工作电极发生电沉积,获得厚度为5μm的牺牲锂薄层。其它与实施例1相同。
实施例3
本实施例与实施例1不同的是步骤1)中以铜网为工作电极,对工作电极施加-0.05V阴极电位,使锂在工作电极发生电沉积,获得厚度为30μm的牺牲锂薄层。其它与实施例1相同。
实施例4
本实施例与实施例1不同的是步骤1)中以泡沫铜为工作电极,对工作电极施加-0.1V阴极电位,使锂在工作电极发生电沉积,获得厚度为15μm的牺牲锂薄层。其它与实施例1相同。
实施例5
本实施例与实施例1不同的是步骤1)中以铜网为工作电极,对工作电极施加-2mA/cm2阴极电流,使锂在工作电极发生电沉积,获得厚度为5μm的牺牲锂薄层。其它与实施例1相同。
实施例6
本实施例与实施例1不同的是步骤1)中以泡沫铜为工作电极,对工作电极施加-0.05mA/cm2阴极电流,使锂在工作电极发生电沉积,获得厚度为15μm的牺牲锂薄层。其它与实施例1相同。
实施例7
本实施例与实施例1不同的是步骤1)中以泡沫铜为工作电极,对工作电极施加-1mA/cm2阴极电流,使锂在工作电极发生电沉积,获得厚度 为30μm的牺牲锂薄层。其它与实施例1相同。
实施例8
本实施例与实施例1不同的是步骤1)中以铜箔为工作电极,加热金属锂使其熔融,将铜箔浸入其中一段时间后取出冷却至室温,获得厚度为25μm的牺牲锂薄层。其它与实施例1相同。
实施例9
本实施例与实施例1不同的是步骤2)中以铜网为工作电极,对工作电极施加0.2V阳极电位,使工作电极上的锂牺牲层发生溶出,同时电解液发生还原。其它与实施例1~8之一相同。
实施例10
本实施例与实施例1不同的是步骤2)中以铜网为工作电极,对工作电极施加2.0V阳极电位,使工作电极上的锂牺牲层发生分步溶出,同时电解液发生还原。其它与实施例1~8之一相同。
实施例11
本实施例与实施例1不同的是步骤2)中以铜网为工作电极,对工作电极施加1.0V阳极电位,使工作电极上的锂牺牲层发生溶出,同时电解液发生还原。其它与实施例1~8之一相同。
实施例12
本实施例与实施例1不同的是步骤2)中以泡沫铜为工作电极,对工作电极先施加1.6V阳极电位,再施加0.6V阳极电位,再施加1.0V阳极电位,最后施加0.6V,使工作电极上的锂牺牲层发生分步溶出,同时电解液发生分步还原。其它与实施例1~8之一相同。
实施例13
本实施例与实施例1不同的是步骤2)中以铜网为工作电极,对工作电极施加100mA/cm2阳极电流,使工作电极上的锂牺牲层发生溶出,同时电解液发生还原。其它与实施例1~8之一相同。
实施例14
本实施例与实施例1不同的是步骤2)中以纳米结构铜为工作电极,对工作电极施加300mA/cm2阳极电流,使工作电极上的锂牺牲层发生溶出,同时电解液发生还原。其它与实施例1~8之一相同。
实施例15
本实施例与实施例1不同的是步骤2)中以泡沫铜为工作电极,对工作电极先施加300mA/cm2阳极电流,再施加100mA/cm2阳极电流,最后施加200mA/cm2阳极电流,使工作电极上的锂牺牲层发生分步溶出,同时电解液发生分步还原。其它与实施例1~8之一相同。
实施例16
本实施例与实施例1不同的是步骤3)中以泡沫铜为工作电极,对工作电极施加0.05V阳极电位,使工作电极上的剩余锂层全部溶出。其它与实施例1~5之一相同。
实施例17
本实施例与实施例1不同的是步骤3)中以泡沫铜为工作电极,对工作电极施加1.2V阳极电位,使工作电极上的剩余锂层全部溶出。其它与实施例1~15之一相同。
实施例18
本实施例与实施例1不同的是步骤3)中以泡沫铜为工作电极,对工作电极施加0.5V阳极电位,使工作电极上的剩余锂层全部溶出。其它与实施例1~15之一相同。
实施例19
本实施例与实施例1不同的是步骤3)中以铜网为工作电极,对工作电极施加0.01mA/cm2阳极电流,使工作电极上的剩余锂层全部溶出。其它与实施例1~15之一相同。
实施例20
本实施例与实施例1不同的是步骤3)中以泡沫铜为工作电极,对工作电极施加5mA/cm2阳极电流,使工作电极上的剩余锂层全部溶出。其它与实施例1~15之一相同。
实施例21
本实施例与实施例1不同的是步骤3)中以泡沫铜为工作电极,对工作电极施加1mA/cm2阳极电流,使工作电极上的剩余锂层全部溶出。其它与实施例1~15之一相同。
实施例22
本实施例与实施例1不同的是步骤1)中以泡沫镍为工作电极,对工作电极施加-0.1V阴极电位,使锂在工作电极发生电沉积,获得厚度为15μm的牺牲锂薄层;步骤2)中对工作电极施加1.0V阳极电位,使工作电极上的锂牺牲层发生溶出,同时电解液发生还原;步骤3)中对工作电极施加0.1mA/cm2阳极电流,使工作电极上的剩余锂层全部溶出。其它与实施例1相同。
实施例23
本实施例与实施例1不同的是步骤1)中以碳纸为工作电极,对工作电极施加-0.05mA/cm2阴极电流,使锂在工作电极发生电沉积,获得厚度为25μm的牺牲锂薄层;步骤2)中对工作电极施加1.0V阳极电位,使工作电极上的锂牺牲层发生溶出,同时电解液发生还原;步骤3)中对工作电极施加0.5V阳极电位,使工作电极上的剩余锂层全部溶出。其它与实施例1相同。
实施例24
利用实施例1~23或其它实施方式的任意组合在集流体上利用牺牲锂薄层形成稳定固态电解质界面相后,将该集流体与金属锂组成铜‖锂电池,以1.0M LiTFSI/DME-DOL(1/1,V/V)为电解液,Celgard 2400为隔膜。。
实施例25
利用实施例1~23或其它实施方式的任意组合在集流体上利用牺牲锂薄层形成稳定固态电解质界面相后,将该集流体与磷酸铁锂组成锂离子电池,以1.0M LiPF6/EC-DMC-EMC(1/1/1,V/V/V)为电解液,Celgard 2400为隔膜。。
实施例26
利用实施例1~23或其它实施方式的任意组合在集流体上利用牺牲锂薄层形成稳定固态电解质界面相后,采用电沉积方式在该集流体上沉积5mAh cm-2锂制成锂薄膜电极,将该集流体与磷酸铁锂组成锂离子电池,以1.0M LiPF6/EC-DMC-EMC(1/1/1,V/V/V)为电解液,Celgard 2400 为隔膜。。
实施例27
利用实施例1~23或其它实施方式的任意组合在集流体上利用牺牲锂薄层形成稳定固态电解质界面相后,采用电沉积方式在该集流体上沉积5mAh cm-2锂制成锂薄膜电极,然后将其与硫正极组成锂-硫电池,以1.0M LiTFSI+0.5M LiNO3/DME-DOL(1/1,V/V)为电解液为电解液,Celgard 2400为隔膜。
实施例28
利用实施例1~23或其它实施方式的任意组合在集流体上利用牺牲锂薄层形成稳定固态电解质界面相后,采用熔融引锂的方式在该集流体上引入5mAh cm-2锂制成锂薄膜电极,然后将其与Super P正极组成锂-氧电池,以含有饱和氧的1.0M LiTFSI+0.5M LiNO3/DME-DOL(1/1,V/V)为电解液为电解液,Celgard 2400为隔膜。
上述实施例的测试结果分析:
图1为在普通泡沫铜集流体和根据实施例7利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体上锂沉积形貌的扫描电镜(SEM)图。在图1中,(a)为普通泡沫铜集流体上锂沉积形貌,(b)为根据实施例7利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体上锂沉积形貌。从图中可以看出,普通泡沫铜集流体上锂沉积十分不均匀,且沉积的金属锂将泡沫铜的孔道堵塞;而利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体上锂沉积相对均匀,且沉积的金属锂紧贴泡沫铜骨架生长,孔道无堵塞现象。这一结果表明,稳定的固态电解质界面相有助于 锂的均匀沉积和生长,可使三维结构表面和活性空间得以充分利用。
图2为普通泡沫铜集流体和根据实施例12利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体分别与金属锂组成铜‖锂电池,在4mA/cm2(1mAh/cm2)下循环的性能图。在图2中,(a)为普通泡沫铜集流体,(b)为根据实施例11利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体。从图中可以看出,普通泡沫铜集流体上金属锂仅能循环约50周、库伦效率仅为95%,而根据实施例11利用牺牲薄锂层构建固态电解质界面相后的泡沫铜集流体上金属锂可稳定循环至少400周、库伦效率高达97.5%,这说明利用牺牲薄锂层构建固态电解质界面相后的三维集流体展现出了显著提高的库伦效率和明显加长的循环稳定性。
图3为不同锂离子电池的性能图。在图3中,(a)为普通铜箔集流体与磷酸铁锂组成锂离子电池的性能图;(b)为根据实施例25制备的锂离子电池的性能图。从图3中可以看出,利用普通铜箔集流体与磷酸铁锂组成锂离子电池后,该电池仅能循环约40周、库伦效率仅为93.6%,而根据实施例25制备的锂离子电池可稳定循环至少100周、库伦效率高达~100%,这说明具有稳定固体电解质界面相的集流体可直接作为负极使用,提升锂离子电池的性能。
图4为不同锂离子电池的性能图。在图4中,(a)为采用电沉积方式在普通铜箔集流体上沉积5mAh cm-2锂制成锂电极后,该锂电极与磷酸铁锂组成锂离子电池的性能图;(b)为根据实施例26制备的锂离子电池的性能图。从图4中可以看出,利用普通铜箔集流体制备锂电极与磷酸铁锂组成锂离子电池后,该电池仅能循环约10周、库伦效率仅为~90%, 而根据实施例26制备的锂离子电池可稳定循环至少100周、库伦效率高达~97%,这说明具有稳定固体电解质界面相的集流体制备的薄膜金属锂负极可提升锂离子电池的性能。
工业实用性
本发明实现在集流体骨架表面性能优越固态电解质界面相的构建,为后续的锂薄膜负极或无锂负极提供稳定的锂-电解液界面;在集流体表面通过电沉积或非电沉积方式引入薄而均匀且定量可控性好的锂牺牲层;形成富锂、致密的无机-有机相间的多层结构固态电解质界面相膜,可有效抑制锂枝晶的生长,具有良好的工业实用性。

Claims (15)

  1. 一种集流体,其特征在于所述集流体表面具有固态电解质界面相。
  2. 根据权利要求1所述的一种集流体,其特征在于所述的固态电解质界面相多层结构。
  3. 根据权利要求2所述的一种集流体,其特征在于所述的固态电解质界面相为无机-有机交替排列的多层结构。
  4. 根据权利要求1或2或3所述的一种集流体,其特征在于所述集流体为金属铜或其合金、金属镍或其合金或其它金属,或碳、硅或其它非金属中的一种或多种。
  5. 如权利要求1或2或3所述集流体,其特征在于集流体构型包括平面箔、三维网状、三维泡沫状、三维圆柱、纳米结构中的至少一种。
  6. 如权利要求1或2或3所述集流体,其特征在于在集流体上引入牺牲锂薄层,再将集流体作为工作电极上的锂牺牲层发生分步溶出,获得固态电解质界面相。
  7. 如权利要求1至6所述具有固态电解质界面相的集流体作为无锂负极在锂离子电池,或在电沉积或熔融引锂的方式制备成锂薄膜负极在二次电池中用途。
  8. 如权利要求7所述用途,其特征在于所述二次电池包括锂离子电池、锂-硫电池、锂-氧电池中的一种,通常锂离子电池、锂-硫电池、锂-空电池使用的正极材料、电解液、隔膜的应用。
  9. 一种具有固态电解质界面相的集流体制备方法,其特征在于:在该集流体上引入牺牲锂薄层,按如下步骤进行:
    1)引入牺牲锂薄层:在电化学池内放入集流体和金属锂片分别作为工作电极和对电极;向电解池内注入电解液,对工作电极施加阴极电位或阴极电流,使锂在工作电极发生电沉积,获得牺牲锂薄层;或加热金属锂使其熔融,将集流体浸入其中一段时间后取出冷却至室温,获得牺牲锂薄层;
    2)构建固态电解质界面相:步骤1)完成后,对工作电极施加阳极电位或阳极电流,使工作电极上的锂牺牲层发生分步溶出,电解液发生分步还原,获得固态电解质界面相。
  10. 如权利要求9所述具有固态电解质界面相的集流体制备方法,其特征在于还包括:
    3)溶解牺牲锂薄层:步骤2)完成后,对工作电极施加阳极电位或阳极电流,使工作电极上的剩余锂层全部溶出,即得具有稳定固态电解质界面相的集流体。
  11. 如权利要求9或10所述具有固态电解质界面相的集流体制备方法,其特征在于所述牺牲锂薄层是采用电沉积或非电沉积方法形成的5μm~30μm的金属锂。
  12. 如权利要求9或10所述具有固态电解质界面相的集流体制备方法,其特征在于步骤1)中,所述阴极电位为-0.2V~-0.05V、阴极电流为-2mA/cm2~-0.05mA/cm2。
  13. 如权利要求9或10所述具有固态电解质界面相的集流体制备方法,其特征在于步骤2)中,所述阳极电位为0.2V~2.0V、阳极电流为100mA/cm2~300mA/cm2。
  14. 如权利要求10所述具有固态电解质界面相的集流体制备方法,其特征在于步骤3)中,所述阳极电位为0.05V~1.2V、阳极电流为0.01mA/cm2~5mA/cm2。
  15. 如权利要求10所述具有固态电解质界面相的集流体制备方法,其特征在于步骤1)至3)中所述电解液中使用的电解质盐为锂酰亚胺盐、高氯酸盐、有机硼锂盐、含氟化合物的锂盐中的至少一种;电解质锂盐在非水电解液中的浓度为0.3M~4M;所述电解液中使用的非水溶剂为碳酸酯类、醚类中的至少一种。
PCT/CN2019/108214 2018-12-11 2019-09-26 一种具有固态电解质界面相的集流体及制造方法 WO2020119222A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/343,984 US20210305581A1 (en) 2018-12-11 2021-06-10 Current collector with solid electrolyte interphase and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811511263.3 2018-12-11
CN201811511263.3A CN109786750A (zh) 2018-12-11 2018-12-11 一种具有固态电解质界面相的集流体及制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/343,984 Continuation US20210305581A1 (en) 2018-12-11 2021-06-10 Current collector with solid electrolyte interphase and method thereof

Publications (1)

Publication Number Publication Date
WO2020119222A1 true WO2020119222A1 (zh) 2020-06-18

Family

ID=66496778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108214 WO2020119222A1 (zh) 2018-12-11 2019-09-26 一种具有固态电解质界面相的集流体及制造方法

Country Status (3)

Country Link
US (1) US20210305581A1 (zh)
CN (1) CN109786750A (zh)
WO (1) WO2020119222A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786750A (zh) * 2018-12-11 2019-05-21 厦门大学 一种具有固态电解质界面相的集流体及制造方法
CN110702751B (zh) * 2019-09-18 2021-02-19 清华大学 锂离子电池参比电极制备方法及锂离子电池参比电极
KR20220069150A (ko) * 2020-11-19 2022-05-27 삼성전자주식회사 전고체 전지 및 그 제조방법
CN113363456B (zh) * 2021-08-09 2021-11-12 天津中能锂业有限公司 超薄锂膜复合体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610774A (zh) * 2012-03-31 2012-07-25 宁德新能源科技有限公司 锂离子电池阳极sei膜及其制备方法
CN106207191A (zh) * 2015-05-08 2016-12-07 清华大学 一种用于提高锂金属电池循环寿命的高效负极结构
US20170062832A1 (en) * 2015-08-28 2017-03-02 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium deposition with multilayer nanomembrane
CN109786750A (zh) * 2018-12-11 2019-05-21 厦门大学 一种具有固态电解质界面相的集流体及制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913338B1 (ko) * 2016-10-28 2018-10-30 한국과학기술연구원 랭뮤어-블로지트 박막층을 포함하는 리튬금속 음극, 이를 포함하는 리튬금속 전지, 및 이의 제조방법
CN107785586A (zh) * 2017-09-19 2018-03-09 天津大学 用于二次金属锂电池负极的三维多孔铜/石墨烯复合集流体
CN108550859B (zh) * 2018-05-21 2021-04-06 珠海冠宇电池股份有限公司 多孔集流体及其制备方法和锂电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610774A (zh) * 2012-03-31 2012-07-25 宁德新能源科技有限公司 锂离子电池阳极sei膜及其制备方法
CN106207191A (zh) * 2015-05-08 2016-12-07 清华大学 一种用于提高锂金属电池循环寿命的高效负极结构
US20170062832A1 (en) * 2015-08-28 2017-03-02 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium deposition with multilayer nanomembrane
CN109786750A (zh) * 2018-12-11 2019-05-21 厦门大学 一种具有固态电解质界面相的集流体及制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU, YU ET AL.: "Designable Ultra-smooth Ultra-thin Solid-electrolyte Interphases of Three Alkali Metal Anodes", NATURE COMMUNICATIONS, vol. 9, no. 1, 9 April 2018 (2018-04-09), pages 1339, XP055712259, ISSN: 2041-1723 *

Also Published As

Publication number Publication date
CN109786750A (zh) 2019-05-21
US20210305581A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020119222A1 (zh) 一种具有固态电解质界面相的集流体及制造方法
Umh et al. Lithium metal anode on a copper dendritic superstructure
CN108461715B (zh) 一种固态电池锂负极的制备方法
US9484595B2 (en) Li/metal battery with composite solid electrolyte
CN110190243A (zh) 一种具有复合膜的锂金属负极的制备及应用
CN113629236B (zh) 一种复合金属锂负极及其制备方法和应用
CN108550858A (zh) 一种抑制锂枝晶的铜锌合金集流体
CN111900333B (zh) 一种碳纳米管膜直接复合熔融锂金属的无锂枝晶阳极及其制备方法
CN105280886A (zh) 金属锂负极表面原位处理方法与应用
WO2018121751A1 (zh) 一种石墨烯花的制备方法及其在锂硫电池中的应用
WO2020114050A1 (zh) 金属锂支撑体及其制备方法与应用
WO2018191843A1 (zh) 一种预锂化的硅基阳极及其制备方法
CN112467147B (zh) 一种抑制枝晶生长的锂金属电池负极集流体及其改性方法
CN108417843A (zh) 一种抑制钠枝晶的多孔铝集流体
CN110600677A (zh) 锂金属负极及其制备方法和锂金属、锂硫、锂空气电池
CN108199003A (zh) 一种三维大/介孔锑负极、制备方法及其应用
CN111193031A (zh) 一种锂金属电池负极及其改性方法
CN108321432A (zh) 一种用于抑制锂枝晶生长的碳氮聚合物基准固态电解质及其制备方法和应用
CN114171716A (zh) 一种兼具高电子/离子传输特性的固态复合金属锂负极及其制备方法和应用
CN109244370B (zh) 一种二次锂金属电池负极蒸汽保护膜的制备方法
Zhang et al. In situ constructing lithiophilic and Ion/Electron Dual-Regulated current collector for highly stable lithium metal batteries
Ding et al. Superstable potassium metal batteries with a controllable internal electric field
Chen et al. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes
CN111710841A (zh) 一种锂电池用电沉积锂-碳-银复合负极材料及其制备方法
CN113451547B (zh) 一种复合金属锂负极及包括该复合金属锂负极的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895447

Country of ref document: EP

Kind code of ref document: A1