WO2020119181A1 - 一种分配管及其加工工艺、和发动机高压油轨总成 - Google Patents

一种分配管及其加工工艺、和发动机高压油轨总成 Download PDF

Info

Publication number
WO2020119181A1
WO2020119181A1 PCT/CN2019/102733 CN2019102733W WO2020119181A1 WO 2020119181 A1 WO2020119181 A1 WO 2020119181A1 CN 2019102733 W CN2019102733 W CN 2019102733W WO 2020119181 A1 WO2020119181 A1 WO 2020119181A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
distribution pipe
inner cavity
processing equipment
raw material
Prior art date
Application number
PCT/CN2019/102733
Other languages
English (en)
French (fr)
Inventor
肖松
康慧忠
黄陆鑫
哈特曼·亨宁
杨卫国
程水良
Original Assignee
上海威克迈龙川汽车发动机零件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海威克迈龙川汽车发动机零件有限公司 filed Critical 上海威克迈龙川汽车发动机零件有限公司
Publication of WO2020119181A1 publication Critical patent/WO2020119181A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors

Definitions

  • the invention relates to an engine component, in particular to a distribution pipe and its processing technology, and an engine high-pressure fuel rail assembly.
  • the role of the fuel rail Take the gasoline engine as an example.
  • the gasoline engine has multiple cylinders, and each cylinder is independently equipped with an injector to provide gasoline. All the injectors are connected to a common fuel pipe (referred to as fuel common rail). ).
  • the working principle is that the oil pump first transports gasoline from the fuel tank into the fuel rail at a certain pressure. There is a constant working pressure inside the rail to send gasoline to each fuel injector.
  • the fuel injector injects gasoline as required through the electronic control device Enter the cylinder for combustion.
  • the fuel rail is independent of the gasoline engine and remains unchanged throughout the injection combustion process.
  • High-pressure fuel rail Fuel is directly injected into the cylinder, and the high-pressure air flow in the cylinder is used to fully atomize the gasoline to achieve the purpose of full combustion of the gasoline. Since gasoline is fully burned, the economic performance of its fuel is greatly improved, and its carbon dioxide emissions are significantly reduced, which makes the performance of high-pressure fuel engines have excellent performance, and it is currently widely used in international gasoline engine technology.
  • the international high-pressure gasoline engine is launched in order to improve performance while saving energy and reducing consumption.
  • the mainstream method is to continuously improve the working pressure and strength of the entire engine.
  • the performance requirements of the high-pressure fuel rail itself are also increasing, especially for the high-pressure engine
  • the distribution tube of the fuel rail assembly has higher and higher sealing and pressure resistance requirements.
  • the inner cavity 2 of the distribution tube is usually a through hole (see Figure 1, Figure 2 and Figure 3), one end of the through-hole of the inner cavity 2 is open, and the other end of the through-hole of the inner cavity 2 is connected to the inside of the distribution tube body 1 by a split sensor connector 11 and a first oxygen-free copper ring 12, but the split sensor
  • the split sensor There are inevitably gaps between the joint 11 and the inner wall of the distribution pipe body 1 and between the first oxygen-free copper ring 12 and the inner wall of the distribution pipe body 1 (that is, leakage risk point 5). These gaps are likely to cause gasoline leakage under high pressure.
  • reducing the gasoline usage rate may also cause damage to other parts of the car, so how to avoid leakage of gasoline at the sealing end of the distribution pipe (especially in the case of high pressure inside the distribution pipe) has become a problem that needs to be solved.
  • the traditional processing method of the existing distribution pipe manufacturing process for example, hot rolling (extruded seamless steel pipe): round tube billet ⁇ heating ⁇ perforation ⁇ three-roller diagonal lashing, continuous rolling or extrusion ⁇ de-pipe ⁇ sizing (Or diameter reduction) ⁇ cooling ⁇ straightening ⁇ hydraulic test (or flaw detection) ⁇ marking ⁇ storage; or cold drawing (rolling) seamless steel pipe: round tube billet ⁇ heating ⁇ perforation ⁇ heading ⁇ annealing ⁇ pickling ⁇ coating Oil (copper plating) ⁇ multi-pass cold drawing (cold rolling) ⁇ billet tube ⁇ heat treatment ⁇ straightening ⁇ hydraulic test (flaw detection) ⁇ marking ⁇ storage) complex, high energy consumption in the process, poor economy, waste recycling rate Not high, the rate of waste of resources is high, chemical cleaning is also required, and the degree of environmental pollution is high.
  • hot rolling extruded seamless steel pipe
  • the purpose of the present invention is to provide a distribution pipe and its processing technology, and the engine high-pressure rail assembly, which mainly solves the above-mentioned problems in the prior art: how to avoid the separation of the distribution pipe and the sensor joint in the engine high-pressure rail assembly Connecting to form a gap and leaking gasoline (especially in the case of high pressure inside the distribution pipe in the high-pressure fuel rail assembly of the engine) becomes a problem to be solved, and the sealing performance of the distribution pipe in the high-pressure fuel rail assembly of the engine can be further improved by solving the aforementioned problems , The purpose of pressure resistance, reducing parts, reducing assembly processes, and reducing energy consumption in the production process.
  • the present invention can also solve the problem two in the prior art: the split sensor joint of the distribution pipe in the high-pressure fuel rail assembly of the engine is connected separately to form a gap to leak gasoline (especially in the case of high pressure inside the distribution pipe). Solving the foregoing problems can achieve the purpose of further improving the sealing performance and pressure resistance of the distribution pipe and the engine high-pressure fuel rail assembly, reducing parts, reducing assembly procedures, and reducing energy consumption in the production process.
  • the present invention can also solve the problem three of the existing technology: the traditional distribution pipe manufacturing process is complex, the process energy consumption is high, the economy is poor, the waste recycling rate is not high, the resource waste rate is high, and chemical cleaning is required, and the environmental pollution is high
  • the distribution pipe processing technology of the present invention is simple, mature, easy to promote, extremely economical, the structure of the inner cavity is flexible, can meet different needs of users, high recycling rate of waste materials, save resources, and no chemical pollution , Can play a positive role in environmental protection.
  • the technical solution adopted by the present invention is: a distribution pipe, including a distribution pipe body and a sensor connector, the distribution pipe body is provided with an internal cavity, and a first oil hole is provided in the sensor connector, which
  • the utility model is characterized in that one end of the inner cavity is opened, the distribution pipe body at the other end of the inner cavity forms an integrally formed sealing structure with the sensor connector, and the first oil-through hole of the sensor connector connects the inside of the inner cavity and the sensor connector.
  • the distribution pipe body is provided with at least one second oil through hole.
  • the shape of the other end of the inner cavity is cylindrical or conical or spherical or W-shaped or chamfered or rounded or formed by cylindrical, conical, spherical, W-shaped, chamfered or rounded A shape formed by combining at least two shapes.
  • cross-sectional shape of the inner cavity is a circle, square, rectangle, ellipse, trapezoid, regular pentagon, regular hexagon, regular polygon, or irregular polygon.
  • cross-sectional shape formed by the outer edge of the body of the distribution tube is circular, square, rectangular, elliptical, trapezoidal, regular pentagonal, regular hexagonal, regular polygonal, or irregular polygonal.
  • corner at the other end of the inner cavity is an arc transition.
  • the R angle of the arc transition at the folded corner is at least 0.1 mm.
  • the central axis of the distribution pipe body coincides with the central axis of the inner cavity;
  • the blocking member is a blocking cap and a second oxygen-free copper ring, and the blocking cap passes through the second oxygen-free copper ring and the inner cavity One end of the opening is connected to form a blocking structure.
  • the minimum thickness of the distribution pipe body is at least 1 mm; the wall thickness of the sensor joint is at least 1 mm; and the depth of the inner cavity is 1 to 1000 mm.
  • the cross-sectional shape of the connection where the sensor connector and the distribution pipe body are integrally formed is circular, square, rectangular, elliptical, trapezoidal, plum blossom, gear, regular pentagon, regular hexagon, regular polygon, or not A regular polygon or a shape formed by combining at least two shapes of a circle, a square, a rectangle, an ellipse, a trapezoid, a plum blossom, a gear, a regular pentagon, a regular hexagon, a regular polygon, and an irregular polygon.
  • a processing technology of a distribution tube relates to the above-mentioned distribution tube.
  • the specific steps of the processing technology are as follows:
  • the processing tool is a turning tool or a drill or a milling cutter or a boring tool or a grinding wheel or a planer or a combination of at least two of a turning tool, a drill, a milling cutter, a boring tool, a grinding wheel and a planing tool; the tool of the processing tool
  • the head and the cutter bar are integrated with the cutter head and cutter bar or the cutter head and cutter bar are separated.
  • a processing technology of a distribution tube relates to the above-mentioned distribution tube.
  • the specific steps of the processing technology are as follows:
  • the processing tool is a turning tool or a drill or a milling cutter or a boring tool or a grinding wheel or a planer or a combination of at least two of a turning tool, a drill, a milling cutter, a boring tool, a grinding wheel and a planing tool; the tool of the processing tool
  • the head and the cutter bar are integrated with the cutter head and cutter bar or the cutter head and cutter bar are separated.
  • a processing technology of a distribution tube relates to the above-mentioned distribution tube.
  • the specific steps of the processing technology are as follows:
  • the processing tool is a turning tool or a drill or a milling cutter or a boring tool or a grinding wheel or a planer or a combination of at least two of a turning tool, a drill, a milling cutter, a boring tool, a grinding wheel and a planing tool; the tool of the processing tool
  • the head and the cutter bar are integrated with the cutter head and cutter bar or the cutter head and cutter bar are separated.
  • the number of cutting blades on the drill or cutter head is 1 to 100; the cutting speed of the cutting blade is 1 to 10,000 rpm; the infeed cutting amount of the cutting blade is 1 to 1000 mm/min .
  • lubricating cooling oil is used in conjunction with the processing tool during processing.
  • the forming process of the raw material of the distribution pipe is cold drawing or cold rolling or hot extrusion or casting or forging or cold heading or cutting or at least one of cold drawing, cold rolling, hot extrusion, casting, forging, cold heading and cutting Two combined processes.
  • the outer surface processing technology of the raw material of the distribution pipe is turning or milling or planing or pulling or pressing or forging or grinding or cutting or EDM or laser or chemical corrosion or turning, milling, planing, pulling, pressing, forging and grinding , Cutting, EDM, laser, chemical corrosion, at least two combined processes.
  • the roughing process of the inner cavity of the distribution pipe body is deep hole drilling or gun drilling or milling or planing or boring or grinding or electric spark or laser or chemical corrosion or deep hole drilling, gun drilling, milling and planing, At least two combinations of boring, grinding, electric spark, laser, chemical corrosion.
  • finishing process of the inner cavity of the distribution pipe body is deep hole drilling or grinding or milling or planing or boring or EDM or laser or deep hole drilling, grinding, milling, planing, boring, EDM and laser At least two combined processes.
  • the rough machining process of the sensor joint is drilling or turning or milling or planing or boring or grinding or EDM or laser or chemical corrosion or drilling, turning, milling, planing, boring, grinding, EDM, laser, chemical At least two combined processes in corrosion.
  • finishing process of the sensor joint is drilling or turning or milling or planing or boring or grinding or EDM or laser or chemical corrosion or drilling, turning, milling, planing, boring, grinding, EDM, laser, chemical At least two combined processes in corrosion.
  • the processing method of the oil through hole is drilling, milling or grinding, electric spark or laser, or a process of at least two combinations of drilling, milling, grinding, electric spark and laser.
  • An engine high-pressure fuel rail assembly including the above-mentioned distribution pipe, pipe joint, plugging piece, and fuel injection seat mounting bracket block, characterized in that: the distribution pipe body is provided with at least one second oil through hole ; The opening of one end of the inner cavity is blocked by a blocking member; the pipe joint is connected to the main body of the distribution pipe, the mounting bracket block of the injector seat is connected to the main body of the distribution pipe, and the position of the mounting bracket block of the injector seat is The second oil hole corresponds to the position.
  • the mounting bracket block for the injector seat is composed of an injector bracket and a mounting bracket block, and the mounting bracket block for the injector seat is an integrated or split type.
  • An engine high-pressure fuel rail assembly including the above-mentioned distribution pipe, pipe joint, plugging member, and injector seat mounting bracket block, characterized in that: one end of the inner cavity is blocked by the plugging member;
  • the pipe joint is connected to the main body of the distribution pipe, the mounting bracket block of the injector seat is connected to the main body of the distribution pipe, and the position of the mounting bracket block of the injector seat corresponds to the position of the second oil through hole.
  • the mounting bracket block for the injector seat is composed of an injector bracket and a mounting bracket block, and the mounting bracket block for the injector seat is an integrated or split type.
  • An engine high-pressure fuel rail assembly including the above-mentioned distribution pipe, pipe joint, plugging member, and injector seat mounting bracket block, characterized in that: one end of the inner cavity is blocked by the plugging member;
  • the pipe joint is connected to the distribution pipe body, the injector seat mounting bracket block is connected to the distribution pipe body, and the position of the injector seat mounting bracket block corresponds to the position of the second oil through hole.
  • the mounting bracket block for the injector seat is composed of an injector bracket and a mounting bracket block, and the mounting bracket block for the injector seat is an integrated or split type.
  • press fitting or riveting or laser welding or spot welding are used first Or pre-assembled by resistance welding, and then connected by high-temperature brazing or high-frequency induction welding or adhesive bonding.
  • An engine high-pressure fuel rail assembly includes a distribution pipe for distributing fuel to different fuel injection devices, a pipe joint device for implementing fuel from an oil pump into a distribution pipe, and a function for installing an injector and An injector seat mounting device for the connection of the engine, a sensor connector device for implementing the function of installing a pressure sensor, and a plugging device for plugging an opening at one end of the distribution pipe away from the tube coupling device, characterized in that: An inner cavity is provided. One end of the inner cavity is opened and blocked by a blocking device. The distribution tube at the other end of the cavity and the sensor connector device form an integrated seal structure. The sensor connector device communicates with the inner cavity of the distribution tube and the sensor connector; The holder mounting device is connected to the distribution pipe, and the pipe joint device is connected to the distribution pipe.
  • the present invention has the following beneficial effects:
  • a distribution pipe and its processing technology, and a distribution pipe are used in the engine high-pressure fuel rail assembly, which can be applied to gasoline engines, diesel engines, gas engines, other types of fuel engines and other energy engines. These engines It can be used in the engines of large machinery such as motor vehicles, automobiles, ships, and aircrafts.
  • the design of the distribution pipe of the present invention can improve the sealing performance, pressure resistance and mechanical strength of the distribution pipe sealed by the integrated sensor connector in the high-pressure fuel rail assembly of the engine through the design of integrally connecting the distribution pipe body and the sensor connector;
  • the integrated design of the distribution tube sealed by the integrated sensor connector in the high-pressure rail assembly, rather than the split type can reduce the parts required for the product and reduce the assembly process (such as equipment, fixtures, labor and time required for assembly; such as quality Inspection equipment, tools, labor and time required), to reduce energy consumption in the production process
  • the distribution pipe sealed by the integrated sensor joint in the high-pressure fuel rail assembly of the engine can achieve good sealing performance, high pressure resistance, simple structure and The purpose of reliability, practicability, simple processing and high efficiency.
  • a processing technology of a distribution pipe has a simple manufacturing process, is easy to popularize, and has high economical efficiency; the depth of the inner cavity is flexible, which can meet different needs; the recycling rate of waste materials is high, and resources can be saved; no chemical treatment is required.
  • Environmental protection has positive advantages and effects.
  • FIG. 1 is a schematic structural diagram of an engine high-pressure fuel rail assembly in the prior art
  • FIG. 2 is a cross-sectional view of a distribution pipe in an engine high-pressure fuel rail assembly in the prior art
  • FIG. 3 is a schematic structural view of the connection of the pipe joint of the high-pressure fuel rail assembly of the engine, the first oxygen-free copper ring, and the inner cavity of the distribution pipe in the prior art (that is, an enlarged view of part M in FIGS. 1 and 2);
  • Embodiment 4 is a schematic structural view of an engine high-pressure fuel rail assembly in Embodiment 1;
  • FIG. 5 is a schematic structural view of a distribution pipe of an engine high-pressure fuel rail assembly in Embodiment 1;
  • FIG. 6 is a cross-sectional view of a distribution pipe of an engine high-pressure fuel rail assembly in Embodiment 1;
  • FIG. 7 is a schematic structural view of an integrally formed connection between a distribution pipe body and a pipe joint in a distribution pipe of an engine high-pressure fuel rail assembly in Embodiment 1 (that is, an enlarged view of part N in FIG. 6);
  • FIG. 8 is a cross-sectional view 1 (circle) of the A-A part in FIG. 7;
  • FIG. 9 is a cross-sectional view 2 (square) of the A-A site in FIG. 7;
  • FIG. 10 is a cross-sectional view 3 (rectangle) of the A-A site in FIG. 7;
  • FIG. 11 is a cross-sectional view 4 (oval shape) of A-A in FIG. 7;
  • FIG. 12 is a cross-sectional view 5 (pentagon) of A-A in FIG. 7;
  • FIG. 13 is a cross-sectional view 6 (plum-shaped) of A-A in FIG. 7;
  • FIG. 14 is a cross-sectional view 7 (gear shape) of A-A in FIG. 7;
  • FIG. 15 is a schematic structural view of a connection between a distribution pipe of an engine high-pressure fuel rail assembly, a second oxygen-free copper ring, and a blocking cover in Embodiment 1;
  • FIG. 16 is a schematic structural view of a distribution tube of an engine high-pressure fuel rail assembly, a second oxygen-free copper ring, a blocking cover, and an injection seat mounting bracket block in Embodiment 1 before connection;
  • FIG. 17 is a schematic structural view of a distribution tube of an engine high-pressure fuel rail assembly, a second oxygen-free copper ring, a blocking cover, and an injection seat mounting bracket block in Embodiment 1 after connection;
  • FIG. 18 is a schematic structural view of an integrated structure of an injector seat mounting bracket block of an engine high-pressure fuel rail assembly in Embodiment 1;
  • FIG. 19 is a schematic structural view of an upper and lower split type of an injector seat mounting bracket block of an engine high-pressure fuel rail assembly in Embodiment 1;
  • FIG. 20 is a schematic structural view of the left and right split type of an injector seat mounting bracket block of an engine high-pressure fuel rail assembly in Embodiment 1;
  • FIG. 21 is a schematic structural view of a cutter (integrated cutter head and shank) in a processing technique of a distribution pipe in Embodiment 1;
  • FIG. 22 is a schematic structural diagram of a cutter (split head and arbor split type) in a processing technique of a distribution pipe in Embodiment 1;
  • Example 23 is a schematic diagram of raw material body processing in a processing technique of a distribution pipe in Example 1;
  • 24 is a schematic view of a roughing process of the inner cavity of the distribution tube in the processing technology of a distribution tube in Example 1;
  • FIG. 25 is a schematic diagram of the finishing process of the inner cavity of the distribution tube in the processing technology of a distribution tube in Embodiment 1;
  • 26 is a schematic diagram of a rough machining process of a sensor connector integrally formed with a distribution pipe in a processing technique of a distribution pipe in Embodiment 1;
  • FIG. 27 is a schematic view of a precision processing of a sensor joint integrally formed with a distribution pipe in a processing technique of a distribution pipe in Embodiment 1;
  • FIG. 28 is a schematic diagram of processing of the second oil through hole in the distribution pipe body in the processing technique of a distribution pipe in Embodiment 1;
  • Example 29 is a flowchart of a processing technology of a distribution pipe in Example 1.
  • FIG. 30 is a schematic structural view of the bottom of the inner cavity of the distribution pipe of an engine high-pressure fuel rail assembly in Embodiment 2;
  • FIG. 31 is a schematic structural view of the bottom of the inner cavity of the distribution pipe of the high-pressure fuel rail assembly of the engine in Embodiment 3;
  • FIG. 33 is a schematic structural view of the bottom of the inner cavity of the distribution pipe of an engine high-pressure fuel rail assembly in Embodiment 5.
  • FIG. 33 is a schematic structural view of the bottom of the inner cavity of the distribution pipe of an engine high-pressure fuel rail assembly in Embodiment 5.
  • 1 is the distribution pipe body in the prior art
  • 1-1 is the oil hole in the distribution pipe body in the prior art
  • 2 is the inner cavity of the distribution pipe in the prior art
  • 3 is the distribution pipe used in the prior art
  • 4 is the second oxygen-free copper ring used in the distribution pipe in the prior art
  • 5 is the leakage risk point of the distribution pipe in the prior art
  • 6 is the distribution pipe body
  • 6-1 is the distribution pipe body
  • the second oil hole 7 is the inner cavity of the distribution tube
  • 7-1 is the bottom of the inner cavity of the distribution tube
  • 7-2 is the rough processing of the inner cavity of the distribution tube
  • 7-3 is the finished cavity of the distribution tube
  • 8 is the pipe joint
  • 9 is At the corner
  • 10 is the sensor connector
  • 10-1 is the first oil hole of the sensor connector
  • 10-2 is the interior of the sensor connector
  • 11 is the split sensor connector in the prior art
  • 12 is the distribution tube used in the prior art
  • 13 is the injector bracket mounting
  • a distribution pipe provided by the present invention includes a distribution pipe body 6 and a sensor connector 10, and a first oil through hole 10-1 is provided in the sensor connector 10, which is characterized by:
  • the piping body 6 is provided with an inner cavity 7 with an opening at one end.
  • the opening is a process opening formed by processing a distribution tube sealed by an integrated pipe joint, and the sealing cap 3 and the second oxygen-free copper ring 4 pair can be used
  • the opening of the inner cavity 7 is blocked, and the distribution tube body 6 at the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) and the sensor connector 10 form an integrated seal structure (that is, the sensor connector 10 and the distribution tube body 6 are integrated Type seal, no gap, there is no risk of leakage here, that is, the inner cavity 7 of the distribution tube is a non-through hole, which improves the sealing performance and pressure resistance of the product of the invention), this structure makes the sensor connector 10 and the distribution tube body 6.
  • the integrally formed and seamlessly connected integrated plugging structure can effectively avoid the risk of leakage at the connection between the sensor joint 10 and the distribution pipe body 6, thereby improving the sealing performance, pressure resistance performance and mechanical strength of the distribution pipe, saving Parts, reduce assembly and inspection procedures, and reduce energy consumption in the production process.
  • the first oil hole 10-1 of the sensor connector 10 communicates with the interior of the inner cavity 7 and the interior 10-2 of the sensor connector, that is, the sensor monitors the fuel inside the inner cavity 7 of the distribution pipe through the first oil hole 10-1 of the sensor connector (such as Gasoline, diesel, etc.) pressure.
  • the distribution pipe body 6 is provided with at least one second oil through hole 6-1 (which may be one or two or more than three or more than three, and is distributed on the distribution pipe body 6 according to the actual situation, such as a straight line It is distributed and the straight line is parallel to the axis of the distribution pipe body 6, and may also be distributed irregularly).
  • the distribution pipe is used to distribute gasoline to different injectors.
  • the oil passage 6-1 enters the interior of the injector seat mounting bracket block 13, and then the gasoline (or other fuel) is injected into the cylinder through the injector seat mounting bracket block 13 by using the high pressure of the inner cavity 7 of the distribution pipe body.
  • the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity, that is, the bottom of the inner cavity of the distribution tube near the end of the sensor connector 10, the bottom 7-1 of the inner cavity communicates with the sensor connector 10 through the first oil hole 10-1 of the sensor connector 10
  • the shape of the inner and distribution tube lumen 7) is conical (a case of conical shape), which can effectively improve the stress concentration of the bottom 7-1 of the lumen.
  • the corner 9 at the other end of the distribution tube lumen 7 is an arc transition (such as the R or C angle).
  • the arc transition can help effectively reduce the concentration of stress. Effective protection is performed to prolong the service life of the distribution pipe; the R angle of the arc transition at the corner 9 is at least 0.1 mm, and the R angle of the arc transition at the corner 9 in the first embodiment is 2 mm.
  • the cross-sectional shape of the inner cavity 7 is circular, or it can be designed as a square, rectangle, ellipse, trapezoid, regular pentagon, regular hexagon, regular polygon, or irregular polygon, and at least two of the aforementioned shapes according to the actual situation. Combination to meet the needs of different situations.
  • the cross-sectional shape formed by the outer edge of the distribution pipe body 6 is circular, and can also be designed as square, rectangular, elliptical, trapezoidal, regular pentagonal, regular hexagonal, regular polygonal, or irregular polygonal according to the actual situation, and the aforementioned A combination of at least two shapes to meet the needs of different situations.
  • the central axis of the distribution tube body 6 coincides with the central axis of the internal cavity 7, which can help the internal cavity 7 to be at the center of the distribution tube body and has a reasonable structure to ensure that all parts of the distribution tube body 6 can withstand the pressure in the internal cavity 7.
  • the minimum thickness of the distribution tube body 6 is at least 1 mm
  • the wall thickness of the sensor connector 10 is at least 1 mm
  • the depth of the inner cavity 7 is 1 to 1000 mm. Since the cross-sectional shape of the inner cavity 7 is circular and the cross-sectional shape formed by the outer edge of the distribution tube body 6 is circular, the thickness of the distribution tube body in this embodiment 1 is 4.5 mm, and the wall thickness of the sensor connector 10 is 9 mm. The depth of the lumen is 329 mm.
  • the cross-sectional shape of the joint where the sensor connector 10 and the distribution pipe body 6 are integrally formed is round (see FIG. 8), and can be designed and processed into a square (see FIG. 9) or a rectangle in addition to the circle (See Figure 10) or ellipse (see Figure 11) or trapezoid or plum shape (see Figure 13) or gear shape (see Figure 14) or regular pentagon (see Figure 12), regular hexagon or regular polygon or not A regular polygon or a shape formed by combining at least two shapes of a circle, a square, a rectangle, an ellipse, a trapezoid, a plum blossom, a gear, a regular pentagon, a regular hexagon, a regular polygon, and an irregular polygon.
  • the design facilitates the assembly and disassembly of other parts on the pipe joint.
  • the material of the distribution pipe body 6 can be selected from the following types of stainless steel plates, which are made by cold rolling and/or hot extrusion and/or casting and/or forging and/or cold heading and other processes for manufacturing blanks:
  • KS-STS304 South Korea KS-STS304, STS304L, STS316L, STS321, STS201, STS202, STS301, STS304N1, STS304N2, STS304LN, STS305, STS309S, STS310S, STS316, STS316N, STS316LN, STS316J1, STS317L, STS347.
  • the hardness of the distribution pipe parts (that is, the distribution pipe body, pipe joint, and sensor joint) of the present invention is tested (Vickers hardness HV). Distribute the parts of the distribution pipe into 10 test samples and put them into the hardness tester for testing. Comparing the hardness data with the hardness of the traditional seamless pipe, the hardness of the distribution pipe of the present invention is slightly better than that of the traditional distribution pipe.
  • the microscopic grain size of the distribution pipe of the present invention is checked (100x, 500x). Cut the parts of the distribution pipe and use the instrument to detect the outer surface and the inner surface, and use 100x and 500x grades to check. Comparing the microscopic grain size of the imaging picture with the traditional seamless tube, the grain size of the distribution tube of the present invention is finer and denser, with higher metal strength and hardness, and better plasticity and willfulness.
  • the distribution pipe of the present invention For the test and comparison of the pressure pulsation test of the distribution pipe in the present invention, see the following figure, and perform the pressure pulsation test on the distribution pipe of the present invention. Install the distribution pipe parts on the pressure pulsation equipment, and use 2 levels of pressure for testing. Comparing the data with the data of the traditional seamless pipe, the distribution pipe of the present invention has better pressure resistance and fatigue resistance.
  • the present invention provides a processing technique for a distribution pipe, which relates to the distribution pipe described above.
  • the specific steps of the processing technique are as follows:
  • the processing equipment has the function of simultaneously processing multiple raw materials 16 at the same time, and can ensure the processing effect and improve the processing efficiency. For example, one, two, three, four, five, six, seven, eight, nine, ten or even more than ten.
  • the specified shape means that the cross-sectional shape of the lumen is circular, square, rectangular, ellipse, trapezoid, regular pentagon, regular hexagon, regular polygon, or irregular polygon, in this embodiment 1
  • the cross-sectional shape of the inner cavity of the distribution tube is circular;
  • the processing tool of the processing equipment that is, the cutter 18 for finishing the inner cavity of the distribution tube
  • the bottom of the cavity 7-1 which forms the finished cavity 7-3 of the distribution tube
  • the shape of the other end of the cavity that is, the bottom of the cavity 7-1 is cylindrical or conical or spherical or chamfered or inverted Rounded corners or a combination of at least two shapes of cylindrical, conical, spherical, right-angled, and rounded corners.
  • the other end of the inner cavity of the distribution tube ie, the bottom of the inner cavity 7-1)
  • the shape is processed into a conical shape.
  • the machining depth of both must be less than the length of the distribution tube body 6 to ensure that the distribution tube body 6 at the other end of the inner cavity (ie, the bottom of the inner cavity 7-1) It is used for processing the sensor connector 10 into an integral molding, and at the same time, the sensor connector 10 must meet the minimum thickness requirement to ensure the sealing performance of the distribution pipe.
  • a plurality of second oil through holes 6-1 are processed on the distribution pipe body 6 by using a processing tool of the processing equipment (that is, a tool 19 suitable for the processing of the second oil through holes).
  • the number of the second oil hole 6-1 can be determined according to the actual request (for example, four, six, eight, etc.), generally arranged in a straight line, and the straight line is parallel to the central axis of the distribution pipe.
  • the advantages are simple structure, regularity, better performance, convenient processing, and strong applicability; at the same time, the equipment used for processing the second oil hole 6-1 is simple, low cost, and easy to promote.
  • the above processing steps (2) to (7) can adjust the processing order according to the actual situation, that is, the roughing and finishing of the inner cavity 7 of the distribution pipe, the roughing and finishing of the sensor joint 10 can be processed on the outer surface of the raw material 16 of the distribution pipe Before, it can also be after the oil hole 6-1 is processed, etc., various adjustments of the processing order do not affect the final distribution pipe product formed by the processing technology of the present invention, so various adjusted processing technologies of the processing sequence also belong to Within the protection scope of the present invention.
  • the processing equipment mentioned in the present invention may be a whole system, or may be corresponding specific equipment (including but not limited to processing tools and various processes mentioned in the present invention) that are composed of various devices and/or components to complete their respective functions It is necessary and existing equipment or devices in the prior art, so it will not be repeated), as long as it can meet the production of the distribution pipe in the present invention (that is, the process used in each step or link in the production process of the distribution pipe is completed and the score is reached (Pipe production purpose).
  • Processing tools 14 is turning tool or drill bit or milling cutter or boring tool or grinding wheel or planer or a combination of at least two of turning tool, drill bit, milling cutter, boring tool, grinding wheel and planing tool;
  • the cutter head 14-2 and the cutter bar 14-3 are integrated with the cutter head 14-2 and the cutter bar 14-3.
  • the advantages of the integral type are that the force is stronger, the cutting speed is higher, and the efficiency when processing parts is high; or the cutter head 14-2 cutter bar 14-3 split type, the advantage of split type is that only the cutting blade 14-1 and the cutter head 14-2 need to be disassembled, which is convenient for maintenance and maintenance of the processing tool 14 and low cost.
  • the number of cutting blades 14-1 on the drill or cutter head 14-2 is 1-100; the cutting speed of the cutting blade 14-1 is 1 ⁇ 10000 rpm; the cutting amount of the cutting blade 14-1 is 1 ⁇ 1000 mm/min.
  • the material of the drill bit and the blade for processing the inner cavity is preferably cemented carbide steel; the material of the cutter bar is preferably high-speed alloy steel.
  • a variety of machining tools (including but not limited to machining tools 14, roughing tools for distribution tube lumen 17, tools for finishing the tube lumen finishing, tools for the second oil hole 19, sensor connector roughing tools 20 ,
  • the sensor joint finishing tool 21) is used to process the outer surface of the raw material 16 of the distribution tube, roughing and finishing the inner cavity 7 of the distribution tube body 6, and the other end of the inner cavity of the distribution tube (that is, the bottom 7-1 of the inner cavity)
  • a plurality of second oil through holes 6-1 are formed by processing and processing the main body 6 of the distribution pipe.
  • the outer surface of the distribution pipe raw material 16 is processed by turning, the inner cavity 7 of the distribution pipe body 6 is roughed by deep hole drilling, and the inner cavity 7 of the distribution pipe body 6 is finished by deep hole drilling.
  • the other end (that is, the bottom 7-1 of the inner cavity) is processed with a deep hole drill , and a plurality of second oil through holes 6-1 are processed on the distribution pipe body 6 by drilling.
  • Lubricating cooling oil 15 is used in conjunction with machining.
  • lubricating cooling oil 15 is used to cool and lubricate cutting tools and machined parts (that is, the raw material of the distribution pipe, the other end of the inner cavity of the distribution pipe (that is, the bottom of the inner cavity 7-1 ), the distribution pipe body 6), that is, the lubricating cooling oil 15 is used together with the processing tools in the cutting and grinding processes (including but not limited to the raw material 16 outer surface processing, the distribution tube inner cavity 7 roughing and finishing, the pipe joint 8 Rough machining and finishing, rough machining and finishing of the sensor joint 10, machining of the second oil passage 6-1 of the distribution pipe body).
  • Lubricating and cooling oil grades are preferred but not limited to: 15#, 20#, 22#, 30#, 32#, 40#, 46#, 60#, 68#, 100#, 50#, 70#, 90#, 150# , 120#, 220#, 250#, 320#, 350#, 460#, 680#.
  • Distribution pipe raw material 16 The forming process is cold drawing or cold rolling or hot extrusion or casting or forging or cold heading or cutting or at least two combinations of cold drawing, cold rolling, hot extrusion, casting, forging, cold heading and cutting
  • the forming process of the distribution pipe raw material 16 is cold drawing.
  • the outer surface processing technology is turning or milling or planing or pulling or pressing or forging or grinding or cutting or EDM or laser or chemical corrosion or turning, milling, planing, pulling, pressing, forging, grinding, cutting, At least two combinations of electric spark, laser, and chemical corrosion; in this embodiment 1, the outer surface processing technology of the raw material 16 of the distribution pipe is lathe processing.
  • the inner cavity 7 of the distribution pipe body 6 is subjected to rough machining processes such as deep hole drilling or gun drilling or milling or planing or boring or grinding or electric spark or laser or chemical corrosion or deep hole drilling, gun drilling, milling, planing, boring, At least two combinations of grinding, EDM, laser, and chemical etching; in this embodiment 1, the inner cavity 7 of the distribution pipe body 6 is subjected to a rough machining process for deep hole drilling.
  • rough machining processes such as deep hole drilling or gun drilling or milling or planing or boring or grinding or electric spark or laser or chemical corrosion or deep hole drilling, gun drilling, milling, planing, boring, At least two combinations of grinding, EDM, laser, and chemical etching; in this embodiment 1, the inner cavity 7 of the distribution pipe body 6 is subjected to a rough machining process for deep hole drilling.
  • the inner cavity 7 of the distribution pipe body 6 is subjected to a finishing process of grinding or milling or planing or boring or EDM or laser or deep hole drilling or grinding or milling or planing or boring or EDM or laser or deep hole drilling, At least two combinations of grinding, milling, planing, boring, EDM, and laser; in this embodiment 1, the inner cavity 7 of the distribution pipe body 6 is subjected to a finishing process by deep hole drilling.
  • the rough machining process of the sensor connector 10 is drilling or turning or milling or planing or boring or grinding or EDM or laser or chemical corrosion or at least among drilling, turning, milling, planing, boring, grinding, electric spark, laser and chemical corrosion. Two combined processes.
  • the finishing process of the sensor joint 10 is drilling or turning or milling or planing or boring or grinding or EDM or laser or chemical corrosion or at least among drilling, turning, milling, planing, boring, grinding, electric spark, laser and chemical corrosion. Two combined processes.
  • the processing technology of the second oil passage 6-1 is drilling or milling or grinding or electric spark or laser or a process of at least two combinations of drilling, milling, grinding, electric spark and laser; in this embodiment 1, the second The processing technology of oil hole 6-1 is drilling.
  • an engine high-pressure fuel rail assembly provided by the present invention includes the above-mentioned distribution pipe (that is, distribution pipe main body 6), a blocking member (that is, blocking cap 3 and second oxygen-free copper) Ring 4), pipe joint 8, mounting bracket block 13 for the injector seat, characterized in that the opening of one end of the inner cavity 7 is blocked by a blocking member, and the sensor joint 10 integrally formed with the distribution pipe body 6 is used to implement the installation of a pressure sensor Function.
  • distribution pipe that is, distribution pipe main body 6
  • a blocking member that is, blocking cap 3 and second oxygen-free copper) Ring 4
  • pipe joint 8 mounting bracket block 13 for the injector seat
  • the pipe joint 8 is connected to the distribution pipe body 6 for gasoline (or other fuel) to enter the distribution pipe inner cavity 7 (that is, gasoline or other fuel oil enters the distribution pipe inner cavity 7 from the pipe joint 8), and the second oxygen-free copper ring 4 is used For welding materials (that is, the plugging cap 3 is used to block one end of the inner cavity).
  • the injector seat mounting bracket block 13 is connected to the distribution pipe body 6, the position of the injector seat mounting bracket block 13 corresponds to the position of the second oil through hole 6-1, and the injector seat mounting bracket block 13 is used to realize the installation of gasoline The function of the fuel injector and its connection with the gasoline engine.
  • the injector seat mounting bracket block 13 is composed of an injector seat 13-3 and a mounting bracket block 13-2.
  • the injector seat mounting bracket block 13 is integral or split, that is, the injector seat mounting bracket block 13 includes It is used to connect the distribution pipe body 6, mounting bracket block 13-2, and injector block 13-3 to the fixed block 13-1, which is used to lock the product (that is, the engine high-pressure rail assembly or contains the engine high-pressure rail assembly) Mounting bracket block 13-2 fixed on the engine, the injector seat 13-3 for installing the injector, the through hole 13- on the fixing block 13-1 for the hole for screwing 4.
  • the integral connection method of the mounting bracket block 13 of the injector seat is that the mounting bracket block 13-2 and the injector seat 13-3 can be integrally fixedly connected with the fixing block 13-1, and the structural strength is very good , Commonly used in products with high performance requirements, but its processing is also difficult and costly;
  • the upper and lower split connection method of the mounting bracket block 13 of the injector seat is that the mounting bracket block 13-2 and the fixing block 13-1 can be connected separately, and the injector seat 13-3 can be fixedly connected with the fixing block 13-1.
  • This kind of structure is used for products with conventional requirements, and the structure of single parts is simple;
  • the split connection of the mounting bracket block 13 of the injector seat is the split of the fixed block 13-1, which is divided into two (you can also split three or more than three according to the situation) to form the split of the fixed block 13-1
  • the first part 13-1-1 after the split and the second part 13-1-2 after the split of the fixed block 13-1, the through hole 13-4 on the fixed block 13-1 is located after the split of the fixed block 13-1
  • the first part 13-1-1, and the first part 13-1-1 after the fixed block 13-1 is split is fixedly connected to the mounting bracket block 13-2, and the injector seat 13-3 is removed from the fixed block 13-1
  • the divided second part 13-1-2 is fixedly connected.
  • pre-installation methods include but not Limited to press-fitting and/or riveting and/or laser welding and/or spot welding and/or resistance welding, followed by profile welding.
  • Profile welding methods include but are not limited to high temperature brazing and/or high frequency induction welding, such as: Copper paste and high temperature brazing process.
  • the second oxygen-free copper ring 4 and the sealing cap 3 are pre-installed in a designated position by press fitting; on the distribution pipe body 6, by welding Pre-install the mounting bracket block 13 and the pipe joint 8 of the fuel injector seat in the designated position in other ways; by using copper paste and high temperature brazing technology at each assembly joint, the parts are firmly connected together.
  • the assembly environment of each component in an engine high-pressure oil rail assembly is preferably from 1000 degrees Celsius to 1200 degrees Celsius.
  • the copper paste in this temperature range is completely liquid, and its flow and adsorption performance are excellent.
  • Gasoline enters the distribution pipe from the oil pump through the pipe joint 8, the pressure in the distribution pipe rises, and the bottom of the distribution pipe (that is, the bottom of the distribution pipe inner cavity 7-1 and the sensor joint 10 are integrally formed to form a sealed structure) is seamless, there is no leakage At risk, gasoline reduces losses.
  • the gasoline pressure in the inner cavity 7 of the distribution pipe is known, and the speed of the gasoline flow into the inner cavity 7 of the distribution pipe is controlled to control the gasoline pressure in the inner chamber 7 of the distribution pipe; the gasoline in the inner chamber 7 of the distribution pipe passes through the distribution pipe under the pressure
  • the second oil through hole 6-1 enters the injector seat mounting bracket block 13 and the injector, and then the gasoline is injected into the gasoline engine through the injector.
  • Embodiment 2 a distribution tube provided by the present invention, Embodiment 2 is basically the same as Embodiment 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is Cylindrical; the corner 9 at the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is an arc transition (such as the R angle or C angle).
  • the arc transition can help effectively reduce the concentration of stress.
  • -1 Effectively protect and extend the service life of the distribution pipe;
  • the R angle of the arc transition at the corner 9 is at least 0.1 mm, and the R angle of the arc transition at the corner 9 in the second embodiment is 2 mm.
  • the cross-sectional shape of the joint where the sensor connector 10 and the distribution pipe body 6 are integrally formed is circular (see FIG. 8), and can be designed and processed into a square (see FIG. 9) or Rectangular (see Fig. 10) or elliptical (see Fig. 11) or trapezoidal or plum blossom (see Fig. 13) or gear (see Fig. 14) or regular pentagon (see Fig. 12), regular hexagon or regular polygon or Irregular polygon or a combination of at least two shapes of circle, square, rectangle, ellipse, trapezoid, plum blossom, gear, regular pentagon, regular hexagon, regular polygon, and irregular polygon.
  • the design facilitates the assembly and disassembly of other parts on the pipe joint.
  • the processing technology of the above-mentioned distribution pipe is basically the same as that in Embodiment 1, except that different processing tools are selected to process the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) into a cylindrical shape and do it at the corner
  • the arc transition treatment can effectively improve the stress concentration of 7-1 at the bottom of the inner cavity.
  • An engine high-pressure fuel rail assembly including the above-mentioned distribution pipe is basically the same as that in Embodiment 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is cylindrical, which can be effectively improved Stress concentration at the bottom 7-1 of the inner cavity.
  • Embodiment 3 a distribution pipe provided by the present invention, Embodiment 3 is basically the same as Embodiment 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is The spherical shape can effectively improve the stress concentration of 7-1 at the bottom of the inner cavity.
  • the cross-sectional shape of the joint where the sensor joint 10 and the distribution pipe body 6 are integrally formed is circular (see FIG. 8), and in addition to the circular shape, it can also be designed and processed into a square (see FIG. 9) or Rectangular (see Fig. 10) or elliptical (see Fig. 11) or trapezoidal or plum blossom (see Fig. 13) or gear (see Fig. 14) or regular pentagon (see Fig.
  • the design facilitates the assembly and disassembly of other parts on the pipe joint.
  • the processing technology of the above-mentioned distribution pipe is basically the same as that in Embodiment 1, except that different processing tools are selected to process the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) into a spherical shape.
  • An engine high-pressure fuel rail assembly including the above-mentioned distribution pipe is basically the same as that in Embodiment 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is spherical, which can be effectively improved Stress concentration at the bottom 7-1 of the inner cavity.
  • Example 4 a distribution tube provided by the present invention, Example 4 is basically the same as Example 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is The W shape (that is, the cross-sectional shape of the bottom of the inner cavity over the central axis of the distribution pipe body 6, or the structure of the bottom 7-1 of the inner cavity is W-shaped) can more effectively improve the stress concentration of the bottom 7-1 of the inner cavity.
  • the corner 9 at the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is an arc transition.
  • the arc transition can help effectively reduce the concentration of stress, effectively protect the bottom 7-1 of the inner cavity, and extend the distribution pipe.
  • Service life; the R angle of the arc transition at the corner 9 is at least 0.1 mm, and the R angle of the arc transition at the corner 9 in this embodiment 2 is 2 mm.
  • the cross-sectional shape of the joint where the sensor connector 10 and the distribution pipe body 6 are integrally formed is circular (see FIG. 8), and in addition to the circular shape, it can be designed and processed into a square (see FIG. 9) or Rectangular (see Fig. 10) or elliptical (see Fig. 11) or trapezoidal or plum blossom (see Fig. 13) or gear (see Fig. 14) or regular pentagon (see Fig.
  • the design facilitates the assembly and disassembly of other parts on the pipe joint.
  • the processing technology of the above-mentioned distribution tube is basically the same as that in Embodiment 1, except that different processing tools are used to process the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) into a W shape (that is, the bottom of the inner cavity)
  • the cross-sectional shape of the central axis of the distribution pipe body 6 or the structure of the bottom 7-1 of the inner cavity is W-shaped) and the arc transition treatment is performed at the corner, which can effectively improve the stress concentration of the bottom 7-1 of the inner cavity.
  • An engine high-pressure fuel rail assembly containing the above-mentioned distribution pipe is basically the same as that in Embodiment 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is W-shaped (that is, the bottom of the inner cavity)
  • the cross-sectional shape of the central axis of the distribution pipe body 6 or the structure of the bottom 7-1 of the inner cavity is W-shaped), which can effectively improve the stress concentration of the bottom 7-1 of the inner cavity.
  • Example 5 a distribution tube provided by the present invention
  • Example 5 is basically the same as Example 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is Combined inner cavity 7 structure (that is, a shape that can be combined and connected by at least two shapes of cylindrical, conical, spherical, straight chamfer, and round chamfer).
  • cylindrical and The spherical shape is combined into the structure of the inner cavity 7, and the spherical shape is located at the top of the cylinder and closer to the sensor joint 10, which can effectively improve the stress concentration at the bottom 7-1 of the inner cavity.
  • the corner 9 at the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is an arc transition.
  • the arc transition can help effectively reduce the concentration of stress, effectively protect the bottom 7-1 of the inner cavity, and extend the distribution pipe.
  • Service life; the R angle of the arc transition at the corner 9 is at least 0.1 mm, and the R angle of the arc transition at the corner 9 in this embodiment 2 is 2 mm.
  • the cross-sectional shape of the joint where the sensor connector 10 and the distribution pipe body 6 are integrally formed is circular (see FIG. 8), and in addition to the circular shape, it can be designed and processed into a square (see FIG. 9) or Oblong (see Figure 10) or ellipse (see Figure 11) or trapezoid or plum blossom (see Figure 13) or gear (see Figure 14) or regular pentagon (see Figure 12), regular hexagon or regular polygon or Irregular polygon or a combination of at least two shapes of circle, square, rectangle, ellipse, trapezoid, plum blossom, gear, regular pentagon, regular hexagon, regular polygon, and irregular polygon.
  • the design facilitates the assembly and disassembly of other parts on the pipe joint.
  • the processing technology of the above-mentioned distribution pipe is basically the same as that of Embodiment 1, except that different processing tools are selected to process the shape of the other end of the inner cavity 7 (ie, the bottom 7-1 of the inner cavity) into a combined inner cavity 7 structure (That is, the combination of the cylindrical and spherical types is used to form the inner cavity 7 structure.
  • the spherical shape is located at the top of the cylinder and closer to the sensor connector 10) and arc transition treatment is performed at the corner.
  • An engine high-pressure fuel rail assembly including the above-mentioned distribution pipe is basically the same as that in Embodiment 1, except that the shape of the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is a combined inner cavity 7 structure (That is, the cylindrical and spherical types are combined to form the structure of the inner cavity 7, and the spherical shape is located at the top of the cylinder and closer to the sensor connector 10), the corner 9 at the other end of the inner cavity 7 (that is, the bottom 7-1 of the inner cavity) is Arc transition, which can help to effectively reduce the concentration of stress, effectively protect the bottom 7-1 of the inner cavity, and extend the service life of the distribution tube; the R angle of the arc transition at the corner 9 is at least 0.1 mm. In Example 2, the R angle of the arc transition at the corner 9 is 2 mm.
  • a distribution pipe and an engine high-pressure fuel rail assembly including the distribution pipe can be applied to gasoline engines, diesel engines, gas engines, other types of fuel engines, and other energy engines. These transmitters can It is used in the engines of large machinery such as motor vehicles, automobiles, ships, and aircrafts.
  • the processing technology of the distribution pipe in the present invention is mainly divided into processing the outer surface of the raw material (including roughing and finishing), roughing the inner cavity of the distribution pipe body, finishing the inner cavity of the distribution pipe body, and processing the sensor Rough machining the joints, finishing the sensor joints, and processing a number of second oil holes on the body of the distribution pipe.
  • the processing steps can be adjusted according to actual production needs, as long as the distribution pipe (including the second A distribution pipe with an oil through hole and/or a distribution pipe without a second oil through hole may be sufficient, that is, fall within the protection scope of the present invention.
  • the specific processing steps also include but are not limited to the following solutions:
  • Option 1 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 2 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 3 (1) Select the appropriate raw materials for the distribution pipe, and clamp at least one raw material in the processing equipment;
  • Option 4 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 5 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 6 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 7 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 8 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 9 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan ten (1) Select the appropriate raw materials for the distribution pipe, and clamp at least one raw material in the processing equipment;
  • Plan eleven (1) Select the appropriate raw materials for the distribution pipe, and clamp at least one raw material in the processing equipment;
  • Plan twelve (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Scheme 13 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 14 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 15 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Scheme 16 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan XVII (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 18 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 19 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Option 20 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 21 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 22 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 23 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 24 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;
  • Plan 25 (1) Select the appropriate raw materials for the distribution pipe and clamp at least one raw material in the processing equipment;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Turning (AREA)

Abstract

一种分配管,包括分配管本体(6),分配管本体(6)内设有内腔(7),传感器接头(10)内设有第一通油孔(10-1),内腔(7)一端开口,内腔(7)另一端的分配管本体(6)与传感器接头(10)形成一体成型的密封结构,传感器接头(10)的第一通油孔(10-1)连通内腔(7)内部和传感器接头(10)内部。该分配管解决了现有技术中所存在的分配管与传感器接头分体式连接所形成缝隙泄露汽油的问题,进一步提升了分配管的密封性能、耐压性能;减少了零件和装配工序、降低了生产过程中的能耗。还提供了该分配管的加工工艺、以及具有该分配管的发动机高压油轨总成。

Description

一种分配管及其加工工艺、和发动机高压油轨总成 技术领域
本发明涉及一种发动机的部件,尤其涉及一种分配管及其加工工艺、和发动机高压油轨总成。
背景技术
油轨的作用:以汽油发动机为例,汽油发动机有多个气缸,且每个气缸都独立装有喷油器以提供汽油,所有喷油器连接在一根公用的油管上(简称燃油共轨)。工作原理是先由油泵将汽油按一定的压力从油箱输送进入油轨,油轨内部有一个恒定的工作压力将汽油送入每个喷油器,喷油器通过电控装置将汽油按要求喷射进入气缸内进行燃烧。油轨独立与汽油发动机之外,在整个喷射燃烧过程中保持不变。
高压油轨:将燃油直接喷射入气缸内,利用气缸内的高压气流使汽油充分雾化达到汽油充分燃烧的目的。由于汽油被充分燃烧,所以其燃油的经济性能大大的提高,其二氧化碳排放明显降低,使得高压燃油发动机的性能有着极佳的表现,是目前国际上广泛采用的汽油发动机技术。
目前国际上的高压汽油发动为了在提升性能的同时节能降耗,主流方法是不断提高整个发动机的工作压力和强度,对于高压油轨本身的性能要求也越来越高,尤其对于用于发动机高压油轨总成的分配管的密封性及耐压性要求也越来越高,现有发动机高压油轨总成中分配管内部的内腔2通常为通孔(详见图1、图2和图3),内腔2通孔一端为开口,内腔2通孔另一端以分 体式传感器接头11配合第一无氧铜环12在分配管本体1内部进行分体式连接,但是在分体式传感器接头11与分配管本体1内壁之间、第一无氧铜环12与分配管本体1内壁之间均不可避免地存在缝隙(即泄露风险点5),这些缝隙在高压情况下易产生汽油泄露,减低汽油使用率的同时还可能造成汽车其他部件损害,因此如何避免分配管的密封端面泄露汽油(尤其是在分配管内部高压的情况下)成为需要解决的问题。
另外,目前现有分配管的传统加工方法制作工艺(比如,热轧(挤压无缝钢管):圆管坯→加热→穿孔→三棍斜扎、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库;或冷拔(轧)无缝钢管:圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库)复杂、过程耗能高、经济性差,废料回收利用率不高,资源浪费率高,同时还需要化学清洗,环境污染度高。
发明内容
本发明的目的在于提供一种分配管及其加工工艺、和发动机高压油轨总成,主要解决上述现有技术所存在问题一:如何避免发动机高压油轨总成中分配管与传感器接头分体连接形成缝隙泄露汽油(尤其是在发动机高压油轨总成中的分配管内部高压的情况下)成为需要解决的问题,通过解决前述问题达到进一步提升发动机高压油轨总成中分配管的密封性能、耐压性能、减少零件、减少装配工序、降低生产过程中的能耗的目的。
本发明还能解决现有技术存在的问题二:发动机高压油轨总成中分配管 的分体式传感器接头分体连接形成缝隙泄露汽油(尤其是在分配管内部高压的情况下)的问题,通过解决前述问题能够达到进一步提升分配管及发动机高压油轨总成的密封性能、耐压性能、减少零件、减少装配工序、降低生产过程中的能耗的目的。
本发明还能解决现有技术存在的问题三:传统分配管制作工艺复杂、过程耗能高、经济性差,废料回收利用率不高,资源浪费率高,同时还需要化学清洗,环境污染度高的问题,本发明的分配管加工工艺制作工艺简单、成熟、易推广,经济性极高,内腔的结构灵活,可以满足用户不同的需求,废料回收利用率高,节约资源,且无化学污染,能够对环境保护起到积极作用。
为了实现上述目的,本发明所采用的技术方案是:一种分配管,包括分配管本体、传感器接头,所述分配管本体内设有内腔,传感器接头内设有第一通油孔,其特征在于:所述内腔一端开口,内腔另一端的分配管本体与传感器接头形成一体成型的密封结构,传感器接头的第一通油孔连通内腔内部和传感器接头内部。
进一步,所述分配管本体上设有至少一个第二通油孔。
进一步,所述内腔另一端的形状为圆柱形或锥形或球面形或W形或倒直角或倒圆角或由圆柱形、锥形、球面形、W形、倒直角、倒圆角中至少两个形状组合而成的形状。
进一步,所述内腔的截面形状为圆形或正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形。
进一步,所述分配管本体外边缘形成的横截面形状为圆形或正方形或长 方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形。
进一步,所述内腔另一端的折角处为圆弧过渡。
进一步,所述折角处的圆弧过渡的R角至少为0.1毫米。
进一步,所述分配管本体的中轴线和内腔的中轴线重合;所述封堵件为封堵盖和第二无氧铜环,封堵盖穿过第二无氧铜环后与内腔开口一端连接形成封堵结构。
进一步,所述分配管本体最小厚度为至少1毫米;所述传感器接头的壁厚为至少1毫米;所述内腔的深度为1~1000毫米。
进一步,所述传感器接头与分配管本体一体成型的连接处的截面形状为圆形或正方形或长方形或椭圆形或梯形或梅花形或齿轮形或正五边形、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。
一种分配管的加工工艺,涉及上述的一种分配管,加工工艺具体步骤如下:
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;
(4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;
(6)、利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工 具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接 头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部。
进一步,所述加工工具为车刀或钻头或铣刀或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;所述加工工具的刀头和刀杆为刀头刀杆一体式或刀头刀杆分体式。
一种分配管的加工工艺,涉及上述的一种分配管,加工工艺具体步骤如下:
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管本体的内腔进行粗加工,将分配管内腔初步加工成指定形状;
(4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;
(6)、利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔。
(7)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;或
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接 头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状。
进一步,所述加工工具为车刀或钻头或铣刀或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;所述加工工具的刀头和刀杆为刀头刀杆一体式或刀头刀杆分体式。
一种分配管的加工工艺,涉及上述的一种分配管,加工工艺具体步骤如下:
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;
(4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;
(6)、利用加工设备的加工工具对传感器接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(7)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体 内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配 管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工 具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状。
进一步,所述加工工具为车刀或钻头或铣刀或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;所述加工工具的刀头和刀杆为刀头刀杆一体式或刀头刀杆分体式。
进一步,所述钻头或刀头上的切削刀片数量为1~100个;所述切削刀片的切削转速为1~10000转/分钟;所述切削刀片的进刀切削量为1~1000毫米/分钟。
进一步,所述加工工具进行加工时配合使用润滑冷却油。
进一步,所述分配管原材料成型工艺为冷拔或冷轧或热挤压或浇铸或锻造或冷镦或切割或为冷拔、冷轧、热挤压、浇铸、锻造、冷镦、切割中至少两种组合的工艺。
进一步,所述分配管原材料外表面加工工艺为车或铣或刨或拉或压或锻或磨或切割或电火花或激光或化学腐蚀或为车、铣、刨、拉、压、锻、磨、切割、电火花、激光、化学腐蚀中至少两种组合的工艺。
进一步,所述分配管本体的内腔进行粗加工工艺为深孔钻或枪钻或铣或刨或镗或磨或电火花或激光或化学腐蚀或为深孔钻、枪钻、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
进一步,所述分配管本体的内腔进行精加工工艺为为深孔钻或磨或铣或刨或镗或电火花或激光或为深孔钻、磨、铣、刨、镗、电火花、激光中至少两种组合的工艺。
进一步,所述传感器接头的粗加工工艺为钻或车或铣或刨或镗或磨或电火花或激光或化学腐蚀或为钻、车、铣、刨、镗、磨、电火花、激光、化学 腐蚀中至少两种组合的工艺。
进一步,所述传感器接头的精加工工艺为钻或车或铣或刨或镗或磨或电火花或激光或化学腐蚀或为钻、车、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
进一步,所述通油孔加工工艺为钻或铣或磨或电火花或激光或为钻、铣、磨、电火花、激光中至少两种组合的工艺。
一种发动机高压油轨总成,包含上述的一种分配管、管接头、封堵件、喷油器座安装支架块,其特征在于:所述分配管主体设有至少一个第二通油孔;所述内腔一端开口由封堵件封堵;所述管接头连接在分配管主体上,所述喷油器座安装支架块连接在分配管主体上,喷油器座安装支架块位置与第二通油孔位置对应。
进一步,所述喷油器座安装支架块由喷油器座和安装支架块组成,喷油器座安装支架块为一体式或分体式。
一种发动机高压油轨总成,包含上述的一种分配管、管接头、封堵件、喷油器座安装支架块,其特征在于:所述内腔一端开口由封堵件封堵;所述管接头连接在分配管主体上,所述喷油器座安装支架块连接在分配管主体上,喷油器座安装支架块位置与第二通油孔位置对应。
进一步,所述喷油器座安装支架块由喷油器座和安装支架块组成,喷油器座安装支架块为一体式或分体式。
一种发动机高压油轨总成,包含上述的一种分配管、管接头、封堵件、喷油器座安装支架块,其特征在于:所述内腔一端开口由封堵件封堵;所述 管接头连接在分配管本体上,所述喷油器座安装支架块连接在分配管本体上,喷油器座安装支架块位置与第二通油孔位置对应。
进一步,所述喷油器座安装支架块由喷油器座和安装支架块组成,喷油器座安装支架块为一体式或分体式。
进一步,所述分配管本体和封堵盖之间、分配管本体和管接头之间、分配管本体和喷油器座安装支架块之间均先采用压装或铆接或激光焊或点固焊或电阻焊进行预装,然后再通过高温钎焊或高频感应焊或连接剂粘连进行连接。
一种发动机高压油轨总成,包括用于将燃料分配到不同喷油装置中的分配管,用于实现燃料从油泵进入分配管的管接头装置,用于实现安装喷油器的功能及与发动机的连接的喷油器座安装装置,用于实现安装压力传感器功能的传感器接头装置,用于封堵分配管上远离管接装置的一端开口的封堵装置,其特征在于:所述分配管内设有内腔,内腔一端开口且由封堵装置封堵,内腔另一端的分配管与传感器接头装置形成一体成型的密封结构,传感器接头装置连通分配管内腔和传感器接头;所述喷油器座安装装置与分配管连接,所述管接头装置与分配管连接。
鉴于上述技术特征,本发明具有如下有益效果:
本发明中,一种分配管及其加工工艺、一种分配管用于发动机高压油轨总成,可以适用于汽油发动机、柴油发动机、燃气发动、其它类型的燃料发动机及其它能源的发动机,这些发动机可以运用于机动车、汽车、船舶、飞机等大型机械的发动机中。
本发明的分配管,通过分配管本体与传感器接头一体成型连接的设计,能够提高发动机高压油轨总成中一体式传感器接头密封的分配管的密封性能、耐压性能、机械强度;同时因为发动机高压油轨总成中一体式传感器接头密封的分配管的一体式设计,而非分体式,能够减少产品所需零件、减少装配工序(如装配所需要的设备、夹具、人工和时间;如质量检验所需要的设备、工具、人工和时间)、降低生产过程中的能耗,发动机高压油轨总成中一体式传感器接头密封的分配管能够实现密封性能好、耐压性能高、结构简单且可靠、实用性强、加工简单且效率高的目的。
本发明中,一种分配管的加工工艺具有制作工艺简单、易推广,经济性较高;内腔深度灵活,可满足不同的需求;废料回收利用率高,可节约资源;无需化学处理,对环境保护有积极作用优点和效果。
本发明提供的技术方案,可根据实际情况设计不同的尺寸,以满足不同发动机对高压油轨总成的需求。
附图说明
图1是现有技术中发动机高压油轨总成的结构示意图;
图2是现有技术中发动机高压油轨总成中分配管的剖面图;
图3是现有技术中发动机高压油轨总成的管接头、第一无氧铜环、分配管内腔连接的结构示意图(即图1和图2中M部位的放大图);
图4是实施例1中一种发动机高压油轨总成的结构示意图;
图5是实施例1中一种发动机高压油轨总成的分配管的结构示意图;
图6是实施例1中一种发动机高压油轨总成的分配管的剖面图;
图7是实施例1中一种发动机高压油轨总成的分配管中分配管本体与管接头一体成型连接的结构示意图(即图6中N部位的放大图);
图8是图7中A-A部位的剖面图1(圆形);
图9是图7中A-A部位的剖面图2(正方形);
图10是图7中A-A部位的剖面图3(长方形);
图11是图7中A-A部位的剖面图4(椭圆形);
图12是图7中A-A部位的剖面图5(五边形);
图13是图7中A-A部位的剖面图6(梅花形);
图14是图7中A-A部位的剖面图7(齿轮形);
图15是实施例1中一种发动机高压油轨总成的分配管和第二无氧铜环、封堵盖连接的结构示意图;
图16是实施例1中一种发动机高压油轨总成的分配管和第二无氧铜环、封堵盖、喷油器座安装支架块在连接前的结构示意图;
图17是实施例1中一种发动机高压油轨总成的分配管和第二无氧铜环、封堵盖、喷油器座安装支架块在连接后的结构示意图;
图18是实施例1中一种发动机高压油轨总成的喷油器座安装支架块的一体式的结构示意图;
图19是实施例1中一种发动机高压油轨总成的喷油器座安装支架块的上下分体式的结构示意图;
图20是实施例1中一种发动机高压油轨总成的喷油器座安装支架块的左右分体式的结构示意图;
图21是实施例1中一种分配管的加工工艺中刀具(刀头刀杆一体式)的结构示意图;
图22是实施例1中一种分配管的加工工艺中刀具(刀头刀杆分体式)的结构示意图;
图23是实施例1中一种分配管的加工工艺中原材料本体加工示意图;
图24是实施例1中一种分配管的加工工艺中分配管内腔粗加工的加工示意图;
图25是实施例1中一种分配管的加工工艺中分配管内腔精加工的加工示意图;
图26是实施例1中一种分配管的加工工艺中与分配管一体成型的传感器接头粗加工的加工示意图;
图27是实施例1中一种分配管的加工工艺中与分配管一体成型的传感器接头精加工的加工示意图;
图28是实施例1中一种分配管的加工工艺中分配管本体上第二通油孔的加工示意图;
图29是实施例1中一种分配管的加工工艺的流程图;
图30是实施例2中一种发动机高压油轨总成的分配管内腔底部的结构示意图;
图31是实施例3中一种发动机高压油轨总成的分配管内腔底部的结构示意图;
图32是实施例4中一种发动机高压油轨总成的分配管内腔底部的结构示 意图;
图33是实施例5中一种发动机高压油轨总成的分配管内腔底部的结构示意图。
图中:1为现有技术中分配管本体,1-1为现有技术中分配管本体上的通油孔,2为现有技术中分配管内腔,3为用于现有技术中分配管的封堵盖,4为用于现有技术中分配管的第二无氧铜环,5为现有技术中分配管的泄露风险点,6为分配管本体,6-1为分配管本体的第二通油孔,7为分配管内腔,7-1为分配管内腔底部,7-2为粗加工的分配管内腔,7-3为精加工的分配管内腔,8为管接头,9为折角处,10为传感器接头,10-1为传感器接头的第一通油孔,10-2为传感器接头内部,11为现有技术中分体式传感器接头,12为用于现有技术中分配管的第一无氧铜环,13为喷油器座安装支架块;13-1为固定块,13-1-1为固定块拆分后的第一部分,13-1-2固定块拆分后的第二部分,13-2为安装支架块,13-3为喷油器座,13-4为固定块上的贯穿孔,14为加工工具,14-1为切削刀片,14-2为刀头,14-3为刀杆,15为润滑冷却油,16为原材料,16-1为原材料的左端面,16-2为原材料的右端面,16-3为原材料的外表面,17为分配管内腔粗加工的刀具,18为分配管内腔精加工的刀具,19为第二通油孔加工的刀具,20为传感器接头粗加工刀具,21为传感器接头精加工刀具,M为现有技术中分配管上对应分配管内腔底部的位置,N为分配管上对应分配管内腔底部的位置(即分配管内腔靠近传感器接头一端的底部)。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
参见图4至图29,实施例1,本发明提供的一种分配管,包括分配管本体6和传感器接头10,传感器接头10内设有第一通油孔10-1,其特征在于:分配管本体6内设有内腔7,内腔7一端开口,,该开口是由一体式管接头密封的分配管加工后形成的工艺开口,可用封堵盖3和第二无氧铜环4对内腔7的这个开口进行封堵,内腔7另一端(即内腔底部7-1)的分配管本体6与传感器接头10形成一体成型的密封结构(即传感器接头10与分配管本体6一体式密封,无缝隙,此处也就不存在泄露风险点,即分配管内腔7为非通孔,提升了本发明产品的密封性能和耐压性能),该结构使得传感器接头10与分配管本体6一体成型、无缝连接的一体式封堵结构,能够有效避免在传感器接头10与分配管本体6的连接处发生泄露风险点,进而提升分配管的密封性能、耐压性能及机械强度,节省了零件、减少装配及检验工序、降低生产过程中的能耗。传感器接头10的第一通油孔10-1连通内腔7内部和传感器接头的内部10-2,即传感器通过传感器接头的第一通油孔10-1监控分配管内腔7内部的燃料(如汽油、柴油等)压力。分配管本体6上设有至少一个第二通油孔6-1(可以为一个或二个或三个或三个以上的多个,按照实际情况分布在分配管本体6上,比如可以呈直线分布且该直线与分配管本体6轴线平行,也可以呈不规则地分布),分配管用于将汽油分配到不同喷油器中。 本实施例1中第二通油孔6-1为四个,连接内腔7和喷油器座安装支架块13,用于将分配管主体内腔7的汽油(或其他燃油)通过第二通油孔6-1进入喷油器座安装支架块13内部,再利用分配管主体内腔7的高压通过喷油器座安装支架块13将汽油(或其他燃油)喷射入气缸内。
内腔7另一端(即内腔底部7-1,也就是分配管内腔靠近传感器接头10一端的底部,内腔底部7-1通过传感器接头10的第一通油孔10-1连通传感器接头10内部和分配管内腔7)的形状为圆锥形(属于锥形的一种情况),更能有效改善内腔底部7-1的应力集中情况,也可以根据实际情况,设计为圆柱形或球面形或W形或倒直角或倒圆角或由圆柱形、锥形、球面形、W形、倒直角、倒圆角中至少两个形状组合而成的形状,以及前述至少两种形状的组合,满足不同情况所需。分配管内腔7另一端(即内腔底部7-1)的折角处9为圆弧过渡(例如R角或C角),圆弧过渡能够帮助有效减少应力的集中,对内腔底部7-1进行有效的保护,延长分配管的使用寿命;折角处9的圆弧过渡的R角至少为0.1毫米,本实施例1中折角处9的圆弧过渡的R角为2毫米。
内腔7的截面形状为圆形,也可以根据实际情况,设计为正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形,以及前述至少两种形状的组合,满足不同情况所需。
分配管本体6外边缘形成的横截面形状为圆形,也可以根据实际情况,设计为正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形,以及前述至少两种形状的组合,满足不同情况所需。
分配管本体6的中轴线和内腔7的中轴线重合,能够帮助内腔7处于分配管本体中心位置,结构合理,确保分配管本体6的各部位均能够承受内腔7中压力。
分配管本体6最小厚度为至少1毫米,传感器接头10的壁厚为至少1毫米;内腔7的深度为1~1000毫米。鉴于内腔7的截面形状为圆形且分配管本体6外边缘形成的横截面形状为圆形,因此本实施例1中分配管本体厚度为4.5毫米,传感器接头10的壁厚为9毫米,内腔深度为329毫米。
传感器接头10与分配管本体6一体成型的连接处(即图7中A-A部位)的截面形状为圆形(见图8),除圆形以外还可以设计加工为正方形(见图9)或长方形(见图10)或椭圆形(见图11)或梯形或梅花形(见图13)或齿轮形(见图14)或正五边形(见图12)、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。该设计便于管接头上装配、拆卸其他零件。
分配管本体6采用材料可以选用以下型号的不锈钢板,通过冷轧和/或热挤压和/或浇铸和/或锻造和/或冷镦及其它用于制造毛坯料的工艺制成:
中国GB--06Cr19Ni10、022Cr19Ni10、Y12Cr18Ni9、022Cr17Ni12Mo2、06Cr18Ni11Ti、12Cr17Mn6Ni5N、12Cr18Mn9Ni5N、12Cr17Ni7、06Cr19Ni10N、06Cr19Ni9NbN、022Cr19Ni10N、10Cr18Ni12、06C23Ni13、06Cr25Ni20、06Cr17Ni12Mo2、06Cr17Ni12Mo2Ti、06Cr17Ni12Mo2N、022Cr17Ni13Mo2N、06Cr18Ni12MoCu2、022Cr18Ni14Mo2Cu2、06Cr19Ni13Mo3、022Cr19Ni13Mo3、 06Cr18Ni11Nb、Y12、Y15、Y12、Y15、Y20、Y30、Y35、Y40Mn、Y45CaS、Y100Pb、Y100Bi。
日本JIS--SUS304、SUS304L、SUS316、SUS316L、SUS321、SUS201、SUS202、SUS301、SUS304N1、SUS304N2、SUS304LN、SUS305、SUS309S、SUS310、SUS310S、SUS316Ti、SUS316N、SUS316J1、SUS316J1L、SUS317、SUS317L、SUS347。
美国ASTM--304、304L、316、316L、321、201、202、301、304N、XM21、304LN、305、306、309S、310S、316Ti、316N、316LN、317、317L、347。
美国UNS—S30400、S30403、S31603、S32100、S20100、S20200、S30100、S30451、S30452、S30453、S30500、S30908、S31008、S31600、S31635、S31651、S31653、S31700、S31703、S34700。
欧洲EN—1.4301、1.4302、1.4303、1.4304、1.4305、1.4306、1.4307、1.4308、1.4309、1.4310、1.4401、1.4402、1.4403、1.4404、1.4405、1.4406、1.4407、1.4408、1.4409、1.4410、1.4372、1.4373、1.4319、1.4315、1.4833、1.4845、1.4571、1.4429、1.4438、1.4541、1.455。
德国DIN—X5CrNi18-10、X2CrNi19-11、X2CrNiMo17-12-2、X6CrNiTi18-10、X12CrMnNiN17-8-5、X12CrMnNiN18-9-5、X5rNi17-7、X5CrNiN19-9、X2CrNiN18-10、X4CrNi18-12、X12CrNi23-13、X8CrNi25-21、X5CrNiMo17-12-2、X6CrNiMoTi17-12-2、X2CrNiMoN17-13-3、X2CrNiMo18-15-4、X6CrNiNb18-10。
韩国KS—STS304、STS304L、STS316L、STS321、STS201、STS202、STS301、STS304N1、STS304N2、STS304LN、STS305、STS309S、STS310S、STS316、STS316N、STS316LN、STS316J1、STS317L、STS347。
本发明产品(即一种分配管)对的具体优势体现如下:
Figure PCTCN2019102733-appb-000001
(上表中,Y表示为是;N表示为否)
Figure PCTCN2019102733-appb-000002
(上表中,MPa为兆帕;cc/min为毫升每分钟)
Figure PCTCN2019102733-appb-000003
(上表中,MPa为兆帕)
本发明中分配管的硬度测试及对比,见下图,对本发明的分配管零件(即分配管本体、管接头、传感器接头)进行硬度检测(维氏硬度HV)。将分配管零件等份切割为10段检测样件,放入硬度仪进行检测。将硬度数据与传统无缝管的硬度进行对比,本发明的分配管硬度略优于传统分配管的硬度。
Figure PCTCN2019102733-appb-000004
本发明中分配管的材料晶粒度的检测及对比,见下图,对本发明的分配管进行微观晶粒度的检查(100x、500x)。将分配管零件切割开,分别用仪器检测外表面、内表面,均用100x、500x的等级检查。将成像图片与传统无缝管的微观晶粒度进行对比,本发明的分配管的晶粒度更细小、更致密,其金属强度、硬度更高,塑性、任性更好。
Figure PCTCN2019102733-appb-000005
本发明中分配管的压力脉动试验的测试及对比,见下图,对本发明的分配管进行压力脉动测试。将分配管零件装在压力脉动设备上,使用2个等级的压力分别进行测试。将数据与传统无缝管的数据进行对比,本发明的分配管耐压性能、抗疲劳性能更优秀。
Figure PCTCN2019102733-appb-000006
参见图21至29,本发明提供一种分配管的加工工艺,涉及上述的一种分配管,加工工艺具体步骤如下:
(1)、选择合适的分配管原材料16,将至少一根原材料16装夹在加工设备中;加工设备具有同时同步加工多个原材料16的功能,且能保证加工效果,提升加工效率。比如一根,两根,三根,四根,五根,六根,七根,八根,九根,十根乃至十根以上多根。
(2)、利用加工设备的加工工具14将分配管原材料16外表面加工成指定形状(即分配管本体外边缘形成的横截面形状为圆形或正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形),本实施 例1中将分配管原材料16外表面加工成圆形;
(3)、利用加工设备的加工工具(即分配管内腔粗加工的刀具17)对分配管本体6的内腔7进行粗加工,将分配管内腔7初步加工成指定形状(即形成粗加工的分配管内腔7-2),该指定形状是指内腔的截面形状为圆形或正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形,本实施例1中将分配管内腔的截面形状为圆形;
(4)、利用加工设备的加工工具(即分配管内腔精加工的刀具18)对分配管本体6的内腔7进行精加工,将分配管内腔7加工成符合要求的内腔7壁、内腔底部7-1,即形成精加工的分配管内腔7-3;此时,内腔另一端(即内腔底部7-1)的形状为圆柱形或锥形或球面形或倒直角或倒圆角或由圆柱形、锥形、球面形、倒直角、倒圆角中至少两个形状组合而成的形状,本实施例1中将分配管内腔另一端(即内腔底部7-1)的形状加工成为圆锥形。
上述第(3)步骤的粗加工和第(4)步骤的精加工,两者加工深度需小于分配管本体6长度,确保内腔另一端(即内腔底部7-1)的分配管本体6用于加工成一体成型的传感器接头10,同时还要使得传感器接头10满足最小厚度的要求,确保分配管的密封性能。
(5)、利用加工设备的加工工具(即传感器接头粗加工的刀具20)对分配管原材料16的另一端进行传感器接头10的粗加工,将传感器接头10初步加工成指定形状(即圆锥形),同时将传感器接头10与分配管本体6连接处(即图7中A-A部位)形状加工成指定形状(即圆形);
(6)、利用加工设备的加工工具(即传感器接头精加工的刀具21)对传 感器接头10进行精加工,在传感器接头10内部加工出符合要求的第一通油孔10-1和传感器接头内部10-2;
(7)、利用加工设备的加工工具(即适合第二通油孔加工的刀具19)在分配管本体6上加工出若干第二通油孔6-1。第二通油孔6-1可以根据实际请款确定数量(比如四个,六个,八个等多个),一般呈直线均匀排列,且该直线与分配管中轴线平行,该排列方式的优点是结构简单、有规则,性能更好、加工方便、适用性强;同时第二通油孔6-1加工所用的设备简单、成本低、易推广。
上述加工工艺步骤(2)至(7)可以根据实际情况调整先后加工次序,即分配管内腔7的粗加工和精加工、传感器接头10的粗加工和精加工可以在分配管原材料16外表面加工之前,也可以在通油孔6-1加工之后等等,加工次序的各种调整并不影响本发明加工工艺的形成最后的分配管产品,因此加工次序的各种调整后的加工工艺也属于本发明的保护范围之内。
本发明中提及的加工设备可以是一个整体***,也可以是由各个装置和/部件组成的完成各自功能的对应具体设备(包括但不限于加工工具、实现本发明提及的各种工艺所需且现有技术中存在的设备或装置等,故不再赘述),只要能够满足本发明中分配管的制作即可(即完成分配管制作过程中各个步骤或环节所使用的工艺并达到分配管制作目的)。
加工工具14(包括但不限于加工原材料的加工工具,分配管内腔粗加工的刀具17,为分配管内腔精加工的刀具18,为第二通油孔加工的刀具19,传感器接头粗加工刀具20,传感器接头精加工刀具21)为车刀或钻头或铣刀 或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;加工工具14的刀头14-2和刀杆14-3为刀头14-2刀杆14-3一体式,一体式的优点在于受力更强,切削转速更高,加工零件时的效率高;或刀头14-2刀杆14-3分体式,分体式的优点在于只需要拆装切削刀片14-1和刀头14-2,便于维护、保养加工工具14且成本低。
钻头或刀头14-2上的切削刀片14-1数量为1~100个;切削刀片14-1的切削转速为1~10000转/分钟;切削刀片14-1的进刀切削量为1~1000毫米/分钟。其中加工内腔的钻头、刀片材料优选为硬质合金钢;刀杆的材料优选为高速合金钢。
多种加工工具(包括但不限于为加工刀具14、分配管内腔粗加工的刀具17,为分配管内腔精加工的刀具18,为第二通油孔加工的刀具19,传感器接头粗加工刀具20,传感器接头精加工刀具21)用于分配管原材料16外表面进行加工、对分配管本体6的内腔7进行粗加工和精加工、对分配管内腔另一端(即内腔底部7-1)进行加工、对分配管本体6上进行加工而成若干第二通油孔6-1。其中对分配管原材料16外表面加工采用车加工,对分配管本体6的内腔7进行粗加工采用深孔钻,对分配管本体6的内腔7进行精加工采用深孔钻,对内腔另一端(即内腔底部7-1)进行加工采用深孔钻 对分配管本体6上进行加工而成若干第二通油孔6-1时采用钻孔。
各种加工工具(包括但不限于为加工刀具14、粗加工的刀具17,为精加工的刀具18,为通油孔加工的刀具19,传感器接头粗加工刀具20,传感器接头精加工刀具21)进行加工时配合使用润滑冷却油15,在切削、磨加工过 程中,润滑冷却油15用来冷却和润滑刀具和加工件(即分配管原材料、分配管内腔另一端(即内腔底部7-1)、分配管本体6),即润滑冷却油15配合加工工具在切削、磨加工过程中同时使用(包括但不限于原材料16外表面加工、分配管内腔7粗加工和精加工、管接头8的粗加工和精加工、传感器接头10的粗加工和精加工、分配管本体的第二通油孔6-1的加工)。润滑冷却油牌号优选但不限于:15#、20#、22#、30#、32#、40#、46#、60#、68#、100#、50#、70#、90#、150#、120#、220#、250#、320#、350#、460#、680#。
分配管原材料16成型工艺为冷拔或冷轧或热挤压或浇铸或锻造或冷镦或切割或为冷拔、冷轧、热挤压、浇铸、锻造、冷镦、切割中至少两种组合的工艺;本实施例1中,分配管原材料16成型工艺为冷拔。
分配管原材料16外表面加工工艺为车或铣或刨或拉或压或锻或磨或切割或电火花或激光或化学腐蚀或为车、铣、刨、拉、压、锻、磨、切割、电火花、激光、化学腐蚀中至少两种组合的工艺;本实施例1中,分配管原材料16外表面加工工艺为车加工。
分配管本体6的内腔7进行粗加工工艺为深孔钻或枪钻或铣或刨或镗或磨或电火花或激光或化学腐蚀或为深孔钻、枪钻、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺;本实施例1中,分配管本体6的内腔7进行粗加工工艺为深孔钻。
分配管本体6的内腔7进行精加工工艺为磨或铣或刨或镗或电火花或激光或为为深孔钻或磨或铣或刨或镗或电火花或激光或为深孔钻、磨、铣、刨、镗、电火花、激光中至少两种组合的工艺;本实施例1中,分配管本体6的 内腔7进行精加工工艺为深孔钻。
传感器接头10的粗加工工艺为钻或车或铣或刨或镗或磨或电火花或激光或化学腐蚀或为钻、车、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
传感器接头10的精加工工艺为钻或车或铣或刨或镗或磨或电火花或激光或化学腐蚀或为钻、车、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
第二通油孔6-1加工工艺为钻或铣或磨或电火花或激光或为钻、铣、磨、电火花、激光中至少两种组合的工艺;本实施例1中,第二通油孔6-1加工工艺为钻孔。
参见图4至图16,本发明提供的一种发动机高压油轨总成,包含上述的一种分配管(即分配管主体6),封堵件(即封堵盖3和第二无氧铜环4)、管接头8、喷油器座安装支架块13,其特征在于:内腔7一端开口由封堵件封堵,与分配管本体6一体成型的传感器接头10用于实现安装压力传感器的功能。管接头8连接在分配管本体6上,用于汽油(或其他燃油)的进入分配管内腔7(即汽油或其他燃油从管接头8进入分配管内腔7),第二无氧铜环4用于焊接材料(即用封堵盖3对内腔一端开口进行封堵)。喷油器座安装支架块13连接在分配管本体6上,喷油器座安装支架块13位置与第二通油孔6-1位置对应,喷油器座安装支架块13用于实现安装汽油喷油器的功能及与汽油发动机的连接。
喷油器座安装支架块13由喷油器座13-3和安装支架块13-2组成,喷油 器座安装支架块13一体式或分体式,即喷油器座安装支架块13包括用于连接分配管主体6、安装支架块13-2、喷油器座13-3的固定块13-1,用于通过锁螺丝将产品(即发动机高压油轨总成或包含发动机高压油轨总成的油轨)固定在发动机上的安装支架块13-2,用于安装喷油器的喷油器座13-3,用于穿螺丝的孔的固定块13-1上的贯穿孔13-4,其中,喷油器座安装支架块13一体式连接方式为安装支架块13-2和喷油器座13-3均能够与固定块13-1一体式固定连接,该种结构强度很好,常用于性能要求高的产品,但其加工难度也高,成本高;
喷油器座安装支架块13上下分体式连接方式为安装支架块13-2与固定块13-1可分体地连接,喷油器座13-3均能够与固定块13-1固定连接,该种结构用于常规要求的产品,单个零件结构简单;
喷油器座安装支架块13左右分体式连接方式为固定块13-1进行拆分,一分为二(也可以根据情况进行三个甚至三个以上拆分)形成固定块13-1拆分后的第一部分13-1-1和固定块13-1拆分后的第二部分13-1-2,固定块13-1上的贯穿孔13-4位于固定块13-1拆分后的第一部分13-1-1上,且固定块13-1拆分后的第一部分13-1-1与安装支架块13-2固定连接,喷油器座13-3与固定块13-1拆分后的第二部分13-1-2固定连接,该种结构用于常规要求的产品,单个零件结构简单;
分配管本体6和封堵盖3之间、分配管本体6和管接头8之间、分配管本体6和喷油器座安装支架块13之间均先进行预装,预装方式包括但不限于压装和/或铆接和/或激光焊和/或点固焊和/或电阻焊,然后再进行成型焊接, 成型焊接方式包括但不限于高温钎焊和/或高频感应焊接,例如:铜膏及高温钎焊工艺。本实施例1中,在分配管主体6的内腔7开口端,通过压装方式将第二无氧铜环4、封堵盖3预装在指定位置;在分配管主体6上,通过焊接等方式将喷油器座安装支架块13、管接头8预装在指定位置;通过在各装配接缝处使用铜膏及高温钎焊工艺,将各零件牢固的连接在一起。一种发动机高压油轨总成中各部件的装配环境优选1000摄氏度至1200摄氏度,该温度区间铜膏完全呈液态,其流淌、吸附性能优秀。
汽油(或其他燃油)通过管接头8由油泵进入分配管,分配管中压力上升,分配管底部(即分配管内腔底部7-1与传感器接头10一体成型形成密封结构)无缝隙,不存在泄露风险点,汽油减少损耗。通过传感器与传感器接头10知悉分配管内腔7的汽油压力,并控制分配管内腔7流入汽油速度来控制分配管内腔7内部汽油压力;分配管内腔7的汽油在压力的作用下,通过分配管上的第二通油孔6-1进入喷油器座安装支架块13和喷油器,进而通过喷油器将汽油喷射入汽油发动机内。
参见图30,实施例2,本发明提供的一种分配管,本实施例2与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为圆柱形;内腔7另一端(即内腔底部7-1)的折角处9为圆弧过渡(例如R角或C角),圆弧过渡能够帮助有效减少应力的集中,对内腔底部7-1进行有效的保护,延长分配管的使用寿命;折角处9的圆弧过渡的R角至少为0.1毫米,本实施例2中折角处9的圆弧过渡的R角为2毫米。
同时传感器接头10与分配管本体6一体成型的连接处(即图30中B-B 部位)的截面形状为圆形(见图8),除圆形以外还可以设计加工为正方形(见图9)或长方形(见图10)或椭圆形(见图11)或梯形或梅花形(见图13)或齿轮形(见图14)或正五边形(见图12)、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。该设计便于管接头上装配、拆卸其他零件。
上述一种分配管的加工工艺,与实施例1基本相同,不同之处在于选择不同加工工具将内腔7另一端(即内腔底部7-1)的形状加工为圆柱形并在折角处做圆弧过渡处理,更能有效改善内腔底部7-1的应力集中情况。
包含上述分配管的一种发动机高压油轨总成,与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为圆柱形,更能有效改善内腔底部7-1的应力集中情况。
参见图31,实施例3,本发明提供的一种分配管,本实施例3与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为球面形,更能有效改善内腔底部7-1的应力集中情况。
同时传感器接头10与分配管本体6一体成型的连接处(即图31中C-C部位)的截面形状为圆形(见图8),除圆形以外还可以设计加工为正方形(见图9)或长方形(见图10)或椭圆形(见图11)或梯形或梅花形(见图13)或齿轮形(见图14)或正五边形(见图12)、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。 该设计便于管接头上装配、拆卸其他零件。
上述一种分配管的加工工艺,与实施例1基本相同,不同之处在于选择不同加工工具将内腔7另一端(即内腔底部7-1)的形状加工为球面形。
包含上述分配管的一种发动机高压油轨总成,与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为球面形,更能有效改善内腔底部7-1的应力集中情况。
参见图32,实施例4,本发明提供的一种分配管,本实施例4与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为W形(即内腔底部的过分配管本体6中轴线的截面形状,或为内腔底部7-1的结构为W形),更能有效改善内腔底部7-1的应力集中情况。内腔7另一端(即内腔底部7-1)的折角处9为圆弧过渡,圆弧过渡能够帮助有效减少应力的集中,对内腔底部7-1进行有效的保护,延长分配管的使用寿命;折角处9的圆弧过渡的R角至少为0.1毫米,本实施例2中折角处9的圆弧过渡的R角为2毫米。
同时传感器接头10与分配管本体6一体成型的连接处(即图32中D-D部位)的截面形状为圆形(见图8),除圆形以外还可以设计加工为正方形(见图9)或长方形(见图10)或椭圆形(见图11)或梯形或梅花形(见图13)或齿轮形(见图14)或正五边形(见图12)、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。该设计便于管接头上装配、拆卸其他零件。
上述一种分配管的加工工艺,与实施例1基本相同,不同之处在于选择不同加工工具将内腔7另一端(即内腔底部7-1)的形状加工为W形(即内腔底部的过分配管本体6中轴线的截面形状,或为内腔底部7-1的结构为W形)并在折角处做圆弧过渡处理,更能有效改善内腔底部7-1的应力集中情况。
包含上述分配管的一种发动机高压油轨总成,与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为W形(即内腔底部的过分配管本体6中轴线的截面形状,或为内腔底部7-1的结构为W形),更能有效改善内腔底部7-1的应力集中情况。
参见图33,实施例5,本发明提供的一种分配管,本实施例5与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为组合式的内腔7结构(即可以由圆柱形、锥形、球面形、直倒角、圆倒角中至少两个形状组合而成且相通的形状),本实施例5中采用圆柱形和球面型组合成为内腔7结构,此时球面形位于圆柱形顶部且更靠近传感器接头10,更能有效改善内腔底部7-1的应力集中情况。内腔7另一端(即内腔底部7-1)的折角处9为圆弧过渡,圆弧过渡能够帮助有效减少应力的集中,对内腔底部7-1进行有效的保护,延长分配管的使用寿命;折角处9的圆弧过渡的R角至少为0.1毫米,本实施例2中折角处9的圆弧过渡的R角为2毫米。
同时传感器接头10与分配管本体6一体成型的连接处(即图33中E-E部位)的截面形状为圆形(见图8),除圆形以外还可以设计加工为正方形(见图9)或长方形(见图10)或椭圆形(见图11)或梯形或梅花形(见图13) 或齿轮形(见图14)或正五边形(见图12)、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。该设计便于管接头上装配、拆卸其他零件。
上述一种分配管的加工工艺,与实施例1基本相同,不同之处在于选择不同加工工具将内腔7另一端(即内腔底部7-1)的形状加工为组合式的内腔7结构(即采用圆柱形和球面型组合成为内腔7结构,此时球面形位于圆柱形顶部且更靠近传感器接头10)并在折角处做圆弧过渡处理。
包含上述分配管的一种发动机高压油轨总成,与实施例1基本相同,不同之处在于:内腔7另一端(即内腔底部7-1)的形状为组合式的内腔7结构(即采用圆柱形和球面型组合成为内腔7结构,此时球面形位于圆柱形顶部且更靠近传感器接头10),内腔7另一端(即内腔底部7-1)的折角处9为圆弧过渡,圆弧过渡能够帮助有效减少应力的集中,对内腔底部7-1进行有效的保护,延长分配管的使用寿命;折角处9的圆弧过渡的R角至少为0.1毫米,本实施例2中折角处9的圆弧过渡的R角为2毫米。
本发明中一种分配管、和包含该分配管的一种发动机高压油轨总成均可以适用于汽油发动机、柴油发动机、燃气发动、其它类型的燃料发动机及其它能源的发动机,这些发送机可以运用于机动车、汽车、船舶、飞机等大型机械的发动机中。
本发明中分配管的加工工艺主要分为对原材料外表面进行加工(包括粗加工和精加工)、对分配管本体的内腔进行粗加工、对分配管本体的内腔进 行精加工,对传感器接头进行粗加工,对传感器接头进行精加工,对分配管本体上加工出若干第二通油孔,加工步骤可以按照实际生产需要进行调整,只要能够制成本发明中分配管(包括有第二通油孔的分配管和/或无第二通油孔的分配管)即可,即属于本发明的保护范围。具体加工工艺步骤还包括但不限于以下几种方案:
方案一:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;
(4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;
(6)、利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
方案二:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、 内腔底部;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
方案三:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
方案四:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
方案五:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
方案六:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体 内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部。
方案七:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管本体的内腔进行粗加工,将分配管内腔初步加工成指定形状;
(4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;
(6)、利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔。
(7)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案八:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案九:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案十:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具 对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案十一:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案十二:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具 对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案十三:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
方案十四:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
方案十五:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
方案十六:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状。
方案十七:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案十八:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案十九:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工 具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案二十:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案二十一:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
方案二十二:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
方案二十三:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
方案二十四:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
(5)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
方案二十五:(1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
(2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
(3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
(4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
(5)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (33)

  1. 一种分配管,包括分配管本体、传感器接头,所述分配管本体内设有内腔,传感器接头内设有第一通油孔,其特征在于:所述内腔一端开口,内腔另一端的分配管本体与传感器接头形成一体成型的密封结构,传感器接头的第一通油孔连通内腔内部和传感器接头内部。
  2. 根据权利要求1所述的一种分配管,其特征在于:所述分配管本体上设有至少一个第二通油孔。
  3. 根据权利要求2所述的一种分配管,其特征在于:所述内腔另一端的形状为圆柱形或锥形或球面形或W形或倒直角或倒圆角或由圆柱形、锥形、球面形、W形、倒直角、倒圆角中至少两个形状组合而成的形状。
  4. 根据权利要求3所述的一种分配管,其特征在于:所述内腔的截面形状为圆形或正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形。
  5. 根据权利要求4所述的一种分配管,其特征在于:所述分配管本体外边缘形成的横截面形状为圆形或正方形或长方形或椭圆形或梯形或正五边形、正六边形或正多边形或不规则多边形。
  6. 根据权利要求5所述的一种分配管,其特征在于:所述内腔另一端的折角处为圆弧过渡。
  7. 根据权利要求6所述的一种分配管,其特征在于:所述折角处的圆弧过渡的R角至少为0.1毫米。
  8. 根据权利要求7所述的一种分配管,其特征在于:所述分配管本体的 中轴线和内腔的中轴线重合;所述封堵件为封堵盖和第二无氧铜环,封堵盖穿过第二无氧铜环后与内腔开口一端连接形成封堵结构。
  9. 根据权利要求8所述的一种分配管,其特征在于:所述分配管本体最小厚度为至少1毫米;所述传感器接头的壁厚为至少1毫米;所述内腔的深度为1~1000毫米。
  10. 根据权利要求1至9任意一项所述的一种分配管,其特征在于:所述传感器接头与分配管本体一体成型的连接处的截面形状为圆形或正方形或长方形或椭圆形或梯形或梅花形或齿轮形或正五边形、正六边形或正多边形或不规则多边形或由圆形、正方形、长方形、椭圆形、梯形、梅花形、齿轮形、正五边形、正六边形、正多边形、不规则多边形中至少两个形状组合而成的形状。
  11. 一种分配管的加工工艺,涉及权利要求1所述的一种分配管,加工工艺具体步骤如下:
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;
    (4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;
    (6)、利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部。
  12. 根据权利要求11所述的一种分配管的加工工艺,其特征在于:所述加工工具为车刀或钻头或铣刀或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;所述加工工具的刀头和刀杆为刀头刀杆一体式或刀头刀杆分体式。
  13. 一种分配管的加工工艺,涉及权利要求2至9任意一项所述的一种分配管,加工工艺具体步骤如下:
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (3)、利用加工设备的加工工具对分配管本体的内腔进行粗加工,将分配管内腔初步加工成指定形状;
    (4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分 配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;
    (6)、利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (7)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具 对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体 内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状。
  14. 根据权利要求13所述的一种分配管的加工工艺,其特征在于:所述加工工具为车刀或钻头或铣刀或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;所述加工工具的刀头和刀杆为刀头刀杆一体式或刀头刀杆分体式。
  15. 一种分配管的加工工艺,涉及权利要求10所述的一种分配管,加工工艺具体步骤如下:
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;
    (4)、利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;
    (6)、利用加工设备的加工工具对传感器接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (7)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体 内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配 管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工 具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状;
    (5)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (1)、选择合适的分配管原材料,将至少一根原材料装夹在加工设备中;
    (2)、利用加工设备的加工工具在分配管本体上加工出若干第二通油孔;
    (3)、利用加工设备的加工工具对分配管原材料的另一端进行传感器接头的粗加工,将传感器接头初步加工成指定形状,同时将传感器接头与分配管本体连接处形状加工成指定形状;利用加工设备的加工工具对管接头进行精加工,在传感器接头内部加工出符合要求的第一通油孔;
    (4)、利用加工设备的加工工具对分配管原材料的一端进行分配管本体内腔的粗加工,将分配管内腔初步加工成指定形状;利用加工设备的加工工具对分配管本体的内腔进行精加工,将分配管内腔加工成符合要求的内腔壁、内腔底部;
    (5)、利用加工设备的加工工具将分配管原材料外表面加工成指定形状。
  16. 根据权利要求15所述的一种分配管的加工工艺,其特征在于:所述加工工具为车刀或钻头或铣刀或镗刀或砂轮或刨刀或为车刀、钻头、铣刀、镗刀、砂轮、刨刀中至少两种的组合;所述加工工具的刀头和刀杆为刀头刀杆一体式或刀头刀杆分体式。
  17. 根据权利要求12或14或16所述的一种分配管的加工工艺,其特征在于:所述钻头或刀头上的切削刀片数量为1~100个;所述切削刀片的切削转速为1~10000转/分钟;所述切削刀片的进刀切削量为1~1000毫米/分钟。
  18. 根据权利要求17所述的一种分配管的加工工艺,其特征在于:所述加工工具进行加工时配合使用润滑冷却油。
  19. 根据权利要求18所述的一种分配管的加工工艺,其特征在于:所述分配管原材料成型工艺为冷拔或冷轧或热挤压或浇铸或锻造或冷镦或切割或为冷拔、冷轧、热挤压、浇铸、锻造、冷镦、切割中至少两种组合的工艺。
  20. 根据权利要求19所述的一种分配管的加工工艺,其特征在于:所述分配管原材料外表面加工工艺为车或铣或刨或拉或压或锻或磨或切割或电火花或激光或化学腐蚀或为车、铣、刨、拉、压、锻、磨、切割、电火花、激光、化学腐蚀中至少两种组合的工艺。
  21. 根据权利要求20所述的一种分配管的加工工艺,其特征在于:所述分配管本体的内腔进行粗加工工艺为深孔钻或枪钻或铣或刨或镗或磨或电火花或激光或化学腐蚀或为深孔钻、枪钻、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
  22. 根据权利要求21所述的一种分配管的加工工艺,其特征在于:所述 分配管本体的内腔进行精加工工艺为为深孔钻或磨或铣或刨或镗或电火花或激光或为深孔钻、磨、铣、刨、镗、电火花、激光中至少两种组合的工艺。
  23. 根据权利要求22所述的一种分配管的加工工艺,其特征在于:所述传感器接头的粗加工工艺为钻或车或铣或刨或镗或磨或电火花或激光或化学腐蚀或为钻、车、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
  24. 根据权利要求23所述的一种分配管的加工工艺,其特征在于:所述传感器接头的精加工工艺为钻或车或铣或刨或镗或磨或电火花或激光或化学腐蚀或为钻、车、铣、刨、镗、磨、电火花、激光、化学腐蚀中至少两种组合的工艺。
  25. 根据权利要求24所述的一种分配管的加工工艺,其特征在于:所述通油孔加工工艺为钻或铣或磨或电火花或激光或为钻、铣、磨、电火花、激光中至少两种组合的工艺。
  26. 一种发动机高压油轨总成,包含权利要求1所述的一种分配管、管接头、封堵件、喷油器座安装支架块,其特征在于:所述分配管主体设有至少一个第二通油孔;所述内腔一端开口由封堵件封堵;所述管接头连接在分配管主体上,所述喷油器座安装支架块连接在分配管主体上,喷油器座安装支架块位置与第二通油孔位置对应。
  27. 根据权利要求26所述的一种发动机高压油轨总成,其特征在于:所述喷油器座安装支架块由喷油器座和安装支架块组成,喷油器座安装支架块为一体式或分体式。
  28. 一种发动机高压油轨总成,包含权利要求2至9任意一项所述的一种分配管、管接头、封堵件、喷油器座安装支架块,其特征在于:所述内腔一端开口由封堵件封堵;所述管接头连接在分配管主体上,所述喷油器座安装支架块连接在分配管主体上,喷油器座安装支架块位置与第二通油孔位置对应。
  29. 根据权利要求28所述的一种发动机高压油轨总成,其特征在于:所述喷油器座安装支架块由喷油器座和安装支架块组成,喷油器座安装支架块为一体式或分体式。
  30. 一种发动机高压油轨总成,包含权利要求10所述的一种分配管、管接头、封堵件、喷油器座安装支架块,其特征在于:所述内腔一端开口由封堵件封堵;所述管接头连接在分配管本体上,所述喷油器座安装支架块连接在分配管本体上,喷油器座安装支架块位置与第二通油孔位置对应。
  31. 根据权利要求30所述的一种发动机高压油轨总成,其特征在于:所述喷油器座安装支架块由喷油器座和安装支架块组成,喷油器座安装支架块为一体式或分体式。
  32. 根据权利要求27或29或31所述的一种发动机高压油轨总成,其特征在于:所述分配管本体和封堵盖之间、分配管本体和管接头之间、分配管本体和喷油器座安装支架块之间均先采用压装或铆接或激光焊或点固焊或电阻焊进行预装,然后再通过高温钎焊或高频感应焊或连接剂粘连进行连接。
  33. 一种发动机高压油轨总成,包括用于将燃料分配到不同喷油装置中的分配管,用于实现燃料从油泵进入分配管的管接头装置,用于实现安装喷油 器的功能及与发动机的连接的喷油器座安装装置,用于实现安装压力传感器功能的传感器接头装置,用于封堵分配管上远离管接装置的一端开口的封堵装置,其特征在于:所述分配管内设有内腔,内腔一端开口且由封堵装置封堵,内腔另一端的分配管与传感器接头装置形成一体成型的密封结构,传感器接头装置连通分配管内腔和传感器接头;所述喷油器座安装装置与分配管连接,所述管接头装置与分配管连接。
PCT/CN2019/102733 2018-12-11 2019-08-27 一种分配管及其加工工艺、和发动机高压油轨总成 WO2020119181A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811508355.6 2018-12-11
CN201811508355 2018-12-11
CN201910297966.9A CN109869253A (zh) 2018-12-11 2019-04-15 一种分配管及其加工工艺、和发动机高压油轨总成
CN201920502242.9U CN209942991U (zh) 2018-12-11 2019-04-15 一种一体式传感器接头密封的分配管
CN201920502122.9 2019-04-15
CN201920502242.9 2019-04-15
CN201920502122.9U CN210141178U (zh) 2018-12-11 2019-04-15 一种发动机高压油轨总成
CN201910297966.9 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020119181A1 true WO2020119181A1 (zh) 2020-06-18

Family

ID=66922556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102733 WO2020119181A1 (zh) 2018-12-11 2019-08-27 一种分配管及其加工工艺、和发动机高压油轨总成

Country Status (2)

Country Link
CN (3) CN109869253A (zh)
WO (1) WO2020119181A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109869253A (zh) * 2018-12-11 2019-06-11 上海威克迈龙川汽车发动机零件有限公司 一种分配管及其加工工艺、和发动机高压油轨总成

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203717204U (zh) * 2014-01-10 2014-07-16 中山职业技术学院 一种高压共轨管
CN104863769A (zh) * 2015-05-28 2015-08-26 上海臼井发动机零部件有限公司 一种缸内直喷汽油机高压燃油分配管的制造方法
DE102015120962A1 (de) * 2015-12-02 2017-06-08 Benteler Automobiltechnik Gmbh Kraftstoffverteiler und Verfahren zur Herstellung eines Kraftstoffverteilers
CN107223164A (zh) * 2015-02-06 2017-09-29 德尔福国际业务卢森堡公司 制造共轨的方法
DE102016210385A1 (de) * 2016-06-13 2017-12-14 Robert Bosch Gmbh Drucksensor für einen Hochdruckspeicher und Hochdruckspeicher
CN108397324A (zh) * 2018-04-27 2018-08-14 上海众源燃油分配器制造有限公司 一种汽油高压油轨及其加工工艺
CN109869253A (zh) * 2018-12-11 2019-06-11 上海威克迈龙川汽车发动机零件有限公司 一种分配管及其加工工艺、和发动机高压油轨总成

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030523A (ja) * 1996-07-12 1998-02-03 Keihin Seiki Mfg Co Ltd 燃料噴射装置における合成樹脂製の燃料分配管
CN104863770A (zh) * 2015-05-28 2015-08-26 上海臼井发动机零部件有限公司 用于缸内直喷汽油机的高压燃油分配管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203717204U (zh) * 2014-01-10 2014-07-16 中山职业技术学院 一种高压共轨管
CN107223164A (zh) * 2015-02-06 2017-09-29 德尔福国际业务卢森堡公司 制造共轨的方法
CN104863769A (zh) * 2015-05-28 2015-08-26 上海臼井发动机零部件有限公司 一种缸内直喷汽油机高压燃油分配管的制造方法
DE102015120962A1 (de) * 2015-12-02 2017-06-08 Benteler Automobiltechnik Gmbh Kraftstoffverteiler und Verfahren zur Herstellung eines Kraftstoffverteilers
DE102016210385A1 (de) * 2016-06-13 2017-12-14 Robert Bosch Gmbh Drucksensor für einen Hochdruckspeicher und Hochdruckspeicher
CN108397324A (zh) * 2018-04-27 2018-08-14 上海众源燃油分配器制造有限公司 一种汽油高压油轨及其加工工艺
CN109869253A (zh) * 2018-12-11 2019-06-11 上海威克迈龙川汽车发动机零件有限公司 一种分配管及其加工工艺、和发动机高压油轨总成

Also Published As

Publication number Publication date
CN209942991U (zh) 2020-01-14
CN109869253A (zh) 2019-06-11
CN210141178U (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2020119178A1 (zh) 一种分配管及其加工工艺、和发动机高压油轨总成
WO2020119180A1 (zh) 一种分配管及其加工工艺、和发动机高压油轨总成
CN107335969B (zh) 一种缸盖生产加工***及方法
WO2020119181A1 (zh) 一种分配管及其加工工艺、和发动机高压油轨总成
CN109759611B (zh) 适于含能材料机械加工的一体式涡流冷却刀具
CN204818104U (zh) 一种数控车床的车刀冷却装置
CN104863769A (zh) 一种缸内直喷汽油机高压燃油分配管的制造方法
CN105033580A (zh) 鼓形管接头加工方法
CN102094969A (zh) 一种弹性密封环的加工工艺
CN105855790A (zh) 一种结构件连接孔的摩擦挤压强化工具和方法
CN113145714B (zh) 一种铝合金曲母线构件超低温旋压成形方法及装置
CN212615119U (zh) 一种轨道内燃机车高压油管
CN114932304A (zh) 一种零件孔侧壁掉块缺陷的搅拌摩擦焊修复方法
CN113028154A (zh) 一种管端内衬层加厚的机械式双金属复合管及其制备方法
CN108436150B (zh) 一种气缸盖斜孔加工工装
CN209026349U (zh) 一种高压油管的安装装置
CN113714607A (zh) 燃气轮机主燃料管的加工方法
CN206169567U (zh) 一种大口径低温过滤器
CN212928835U (zh) 一种防回火球阀
CN219977703U (zh) 焊缝质量检测工装
CN206881685U (zh) 气液分离器进口分布器
CN112207378B (zh) 喷油器座定位孔的制造方法及高压燃油分配管
CN211343047U (zh) 一种汽车涡轮增压发动机排气门座圈
CN211203613U (zh) 一种新型机床直通接头
CN214199702U (zh) 工业炉窑及其冷却壁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896099

Country of ref document: EP

Kind code of ref document: A1