WO2020116298A1 - 6-wheel automobile - Google Patents

6-wheel automobile Download PDF

Info

Publication number
WO2020116298A1
WO2020116298A1 PCT/JP2019/046517 JP2019046517W WO2020116298A1 WO 2020116298 A1 WO2020116298 A1 WO 2020116298A1 JP 2019046517 W JP2019046517 W JP 2019046517W WO 2020116298 A1 WO2020116298 A1 WO 2020116298A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
load
load mode
wheeled vehicle
center
Prior art date
Application number
PCT/JP2019/046517
Other languages
French (fr)
Japanese (ja)
Inventor
清水 浩
廣道 河村
Original Assignee
株式会社e-Gle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社e-Gle filed Critical 株式会社e-Gle
Publication of WO2020116298A1 publication Critical patent/WO2020116298A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/12Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with variable number of ground engaging wheels, e.g. with some wheels arranged higher than others, or with retractable wheels

Definitions

  • the present invention relates to a six-wheeled vehicle.
  • the current 6-wheeled vehicle is used, for example, in racing cars to reduce air resistance.
  • six-wheeled vehicles support the vehicle body with six-wheeled tires to increase the ground contact area and lower the ground contact pressure. By lowering the ground contact pressure, strong traction is also obtained on mud and snow. It is used to enable stable running.
  • Patent Document 1 a vehicle having a tire lifting structure has been proposed.
  • the purpose of floating the tires from the road surface is to reduce the wear of the tires by reducing the number of tires to be in contact with the ground, improve fuel efficiency, or reduce the toll on the highway.
  • the purpose is to reduce the amount, not to improve the movement performance of the vehicle.
  • the present invention has been made in view of these circumstances, and an object thereof is to provide a six-wheeled vehicle with improved athletic performance.
  • a first technical means of the present invention is a six-wheeled vehicle having a front wheel, a center wheel, and a rear wheel, each of which has two tires on the left and right sides of the vehicle body.
  • a load control device is provided between the front wheel and the central wheel, and a load control device for controlling a vertical load is provided to the central wheel and the rear wheel.
  • a second technical means of the present invention is the first technical means according to the first technical means, wherein a load mode for supporting the vehicle body is a first load mode of a long wheel base in which the load of the central wheel is zero, and a rear wheel of the rear wheel. It is characterized by having a second load mode of a short wheel base in which the vertical load is zero.
  • a third technical means of the present invention is the second technical means, further comprising, as the load mode, a third load mode in which a vertical load is applied to all of the front wheel, the center wheel, and the rear wheel. It is characterized by.
  • a fourth technical means of the present invention in the third technical means, has a switch capable of switching between the first load mode, the second load mode, and the third load mode. To do.
  • a fifth technical means of the present invention is characterized in that, in the second or third technical means, a control unit is provided according to a traveling state or a traveling environment of the vehicle.
  • a sixth technical means of the present invention is the fifth technical means, characterized in that the control section switches between the first load mode and the second load mode in accordance with a vehicle speed. ..
  • a seventh technical means of the present invention is characterized in that, in the fifth technical means, the control section switches between the first load mode and the second load mode in accordance with a steering angle. is there.
  • An eighth technical means of the present invention is characterized in that, in the fifth technical means, when the control unit determines that the vehicle is traveling on a highway, the first load mode is selected. Is.
  • a ninth technical means of the present invention is characterized in that, in the first to eighth technical means, the load control device comprises an air spring or a hydropneumatic spring.
  • a tenth technical means of the present invention is characterized in that, in the first to ninth technical means, at least each of the tires of the central wheel and the rear wheel is driven by an in-wheel motor.
  • the wheel base can be made variable by controlling the wheel load (vertical load) of a six-wheeled vehicle, and high exercise performance is realized in various situations from a curved road to a high-speed straight road. You can get a six-wheeled vehicle.
  • FIG. 1 is a side view of a 6-wheel vehicle according to an embodiment of the present invention. It is a side view at the time of making the load of the center wheel zero in the 6-wheel vehicle shown in Drawing 1A.
  • FIG. 1B is a side view of the 6-wheel vehicle shown in FIG. 1A when the load on the rear wheels is zero. It is a figure which shows typically the relationship of the axle of a 6-wheeled vehicle and frame which concerns on one Embodiment of this invention.
  • It is a block diagram showing an example of a load control device of a six-wheeled vehicle concerning one embodiment of the present invention. It is a flowchart which shows an example at the time of switching a 1st load mode and a 2nd load mode according to a vehicle speed.
  • FIG. 1A is a side view of a six-wheeled vehicle according to an embodiment of the present invention.
  • 1B is a side view of the six-wheel vehicle shown in FIG. 1A when the load on the center wheel is zero
  • FIG. 1C is the six-wheel vehicle shown in FIG. It is a side view at the time of doing.
  • FIG. 2 is a diagram schematically showing the relationship between the axle and the frame of the six-wheeled vehicle according to the embodiment of the present invention. Although FIG. 2 shows the relationship between the axle of the central wheel 12 and the frame, the relationship between the axle of the rear wheel 13 and the frame has the same configuration.
  • the six-wheeled vehicle 100 has front wheels 11, center wheels 12, and rear wheels 13 each having tires on the left and right sides of a vehicle body 102, and a driver seat 101 is located between the front wheels 11 and the center wheels 12.
  • Tires mounted on at least the center wheel 12 and the rear wheel 13 are driven by an in-wheel motor 40 mounted in the wheel of each tire.
  • a center wheel air spring 31 is provided between the axle 21 of the center wheel 12 and the frame 20.
  • a rear wheel air spring 32 (see FIG. 3) is also provided between the axle of the rear wheel 13 and the frame.
  • the six-wheeled vehicle has a load control device, and the vertical load control device adjusts the air pressures in the central wheel air spring 31 and the rear wheel air springs 32 so as to adjust the central wheel 12 and the rear wheel.
  • the vertical load applied to the wheel 13 is controlled.
  • the axle 21 is shown as one axle 21 connected to the left and right wheels, but the axle 21 may be provided independently for each wheel.
  • a pair of left and right center wheel air springs 31 are provided on the axle 21, but when the wheel axles 21 are provided independently for each wheel, the center wheel air spring 31 is provided for each wheel. Be done.
  • the vertical load on the center wheel 12 can be zero, and in this case, the center wheel 12 is lifted from the road surface G.
  • the six-wheeled vehicle 100 is a four-wheeled vehicle in which the front wheels 11 and the rear wheels 13 are in contact with the road surface G, and the wheel base has a long wheel base distance LWB between the axes of the front wheels 11 and the rear wheels 13.
  • the state in which the vertical load on the center wheel 12 is zero is the first load mode.
  • the vertical load on the rear wheel 13 can be set to zero, and in this case, the rear wheel 13 floats up from the road surface G.
  • the six-wheeled vehicle 100 is a four-wheeled vehicle in which the front wheels 11 and the center wheels 12 are in contact with the road surface G, and the wheel base is a short wheel base distance SWB between the axes of the front wheels 11 and the center wheels 12.
  • the state in which the vertical load on the rear wheel 13 is zero is the second load mode.
  • the front wheel 11, the center wheel 12, and the rear wheel 13 are all in contact with the road surface G, and a vertical load is applied to all the tires.
  • the vertical load applied to each tire can be controlled by adjusting the air pressure in the center wheel air spring 31 and the rear wheel air spring 32.
  • a state in which a vertical load is applied to all of the front wheel 11, the center wheel 12, and the rear wheel 13 is called a third load mode.
  • the wheel base in the third load mode virtually assumes a value between the short wheel base distance SWB and the long wheel base distance LWB.
  • the vertical load of the six-wheeled vehicle 100 is 1050 kg
  • the distance SWB between the front wheel 11 axis and the center wheel 12 axis is 2600 mm
  • the distance LWB between the front wheel 11 axis and the rear wheel 13 axis is 3400 mm
  • the center wheel is
  • the first load mode in which the vertical load of 12 is zero the vertical load of the front wheels 11 is 477 kg and the vertical load of the rear wheels 13 is 573 kg.
  • the vertical load on the front wheel 11 is 313 kg and the vertical load on the central wheel 12 is 737 kg.
  • the front wheel 11 has a vertical load of 350 kg
  • the center wheel 12 has a vertical load of 350 kg
  • the rear wheel 13 has a vertical load of 350 kg.
  • the load distribution between the front wheels 11 and the rear wheels 13 is approximately 45:55
  • the load distribution between the front wheels 11 and the center wheel 12 is approximately. It will be 30:70.
  • the load distribution among the front wheels 11, the center wheels 12, and the rear wheels 13 is approximately 33:33:33.
  • a vehicle with a long wheelbase has less vertical movement due to unevenness of the road surface G, so it has a good riding comfort, and has the advantage of excellent straight running stability and steering stability.
  • the minimum turning radius becomes large, there is a disadvantage that it is difficult to make a small turn.
  • the minimum turning radius is small, so there are merits that a small turn is effective and operability is improved in a narrow alley, but there is a demerit in terms of steering stability.
  • a long wheelbase is suitable for traveling on highways and straight roads where the vehicle speed is fast, and a short wheelbase is desirable in the city and on mountain roads with many corners.
  • the in-wheel motor 40 when the in-wheel motor 40 is mounted in the wheels of the tires of the front wheel 11, the center wheel 12, and the rear wheel 13, in order to maximize the output of the in-wheel motor 40 to obtain propulsive force. It is desirable that the vertical load be applied to all six wheels so that the vertical load on each tire is even.
  • the load control device 110 for controlling the vertical load is provided on the center wheel 12 and the rear wheel 13, the wheel base can be changed.
  • the present invention can enjoy the advantages of the long wheelbase, the short wheelbase, and the advantages of driving six wheels.
  • FIG. 3 is a block diagram showing an example of a load control device for a six-wheeled vehicle according to an embodiment of the present invention.
  • the load control device 110 includes a mode selection switch 51, a GPS (Global Positioning System) 52, a vehicle speed sensor 53, a steering angle sensor 54, a load sensor 55, a control unit 60, a central wheel air spring 31, a rear wheel air spring 32, and a compressor 71. , An air tank 72, a control valve 73, a valve drive unit 74, and a battery 80 that supplies necessary electric power to each unit.
  • the battery 80 is connected via a converter from a power source that drives the in-wheel motor 40.
  • the control unit 60 is for controlling the entire load control device 110.
  • the control unit 60 stores various control programs 64 for controlling the load control device 110 in a program storage area and operates the control program 64. By doing so, various controls are performed.
  • the control unit 60 includes a CPU (Central Processing Unit) 61 or an MPU (Micro Processing Unit), a RAM (Random Access Memory) 62 as a work area, the control program 64, and a memory 63 storing various setting contents. Control device. Data such as map information 65 is also stored in the memory 63.
  • a flash ROM Read Only Memory
  • EEPROM Electrical Erasable and Programmable ROM
  • HDD Hard Disk Drive
  • the control unit 60 receives signals from the mode selection switch 51, the GPS 52, the vehicle speed sensor 53, the steering angle sensor 54, and the load sensor 55, and operates the control program 64 to cause the central wheel air spring 31 and the rear wheel air springs to operate.
  • the vertical load applied to the center wheel 12 and the rear wheel 13 is controlled.
  • the vertical load applied to the front wheel 11, the center wheel 12, and the rear wheel 13 can be obtained by, for example, a load sensor 55 provided on each shaft.
  • a load sensor 55 for example, a known technique such as one in which a thin film sensor is provided on the axle (see Japanese Patent Laid-Open No. 2008-298583) or one using a possibly force load cell can be used.
  • the valve drive unit 74 controls the control valve 73 so that the pressurized air from the air tank 72 stored by the compressor 71 is fed into the central wheel air spring 31 or the rear wheel air spring 32. By supplying, the central wheel air spring 31 or the rear wheel air spring 32 is extended. Further, the valve drive unit 74 causes the control valve 73 to discharge air from the center wheel air spring 31 or the rear wheel air spring 32 to contract the center wheel air spring 31 or the rear wheel air spring 32.
  • the first to third load modes can be switched manually.
  • the mode selection switch 51 of the load control device 110 is a switch for selecting the first to third load modes. For example, when the first load mode serving as the long wheel base is selected in the state of the third load mode in which loads are applied to all the tires, the control unit 60 controls the mode selection switch 51 In response to the signal, a control signal for driving the control valve 73 to reduce the air in the central wheel air spring 31 is output to the valve driving unit 74 so that the vertical load on the central wheel 12 becomes zero. As a result, the central wheel air spring 31 contracts and the tire of the central wheel 12 floats up from the road surface G.
  • the control unit 60 drives the control valve 73 to discharge the air from the center wheel air spring 31 until the detected value from the load sensor 55 provided on the center wheel 12 reaches a predetermined value.
  • the center wheel air spring 31 may be controlled to be in the shortest contracted state.
  • the state in which the vertical load on the central wheel 12 is zero is synonymous with the state in which the tire of the central wheel 12 is not in contact with the road surface G.
  • the state in which the vertical load on the rear wheels 13 is zero is also synonymous with the state in which the tires of the rear wheels 13 are not in contact with the road surface G, as with the central wheel 12.
  • the control unit 60 controls the mode selection switch 51 Upon receiving the signal, a control signal is output to the valve drive unit 74, and the control valve 73 is driven to reduce the air in the rear wheel air spring 32 so that the vertical load on the rear wheel 13 becomes zero. As a result, the rear wheel air spring 32 contracts, and the tire of the rear wheel 13 floats up from the road surface G.
  • the control unit 60 causes the rear wheel 13 to operate. Until the detected value from the load sensor 55 provided in the above is within a predetermined value range, a control signal is sent to the valve drive section 74, and the control valve 73 is operated so as to supply air from the air tank 72 to the rear wheel air spring 32. Drive it. Alternatively, a control signal is sent to the valve drive unit 74 to supply air from the air tank 72 to the rear wheel air spring 32 until the detected value from the load sensor 55 provided on the central wheel 12 falls within a predetermined value range. To drive the control valve 73.
  • the detection values from the load sensor 55 provided on the center wheel 12 and the load sensor 55 provided on the rear wheel 13 are within a predetermined range, and are perpendicular to the front wheel 11, and the center wheel 12 and the rear wheel 13. It will be loaded.
  • the control unit 60 controls only the front wheels 11 and the rear wheels 13. After the second load mode in which the front wheel 11, the center wheel 12, and the rear wheel 13 are all in contact with the road surface G, the front wheel 11, the center wheel 12, and the center wheel 12 are temporarily passed through a third load mode in which all the front wheels 11, the center wheel 12, and the rear wheel 13 are in contact with the road surface G.
  • the control valve 73 is controlled so that only the second load mode is in contact with the road surface G.
  • the control unit 60 sends a control signal to the valve drive unit 74 until the detected value from the load sensor 55 provided on the center wheel 12 falls within a predetermined value range.
  • the control valve 73 is driven so as to supply air to the central wheel air spring 31 from the air tank 72.
  • the control unit 60 outputs a control signal to the valve drive unit 74 so that the detection value of the load sensor 55 provided on the rear wheel 13 reaches a predetermined value.
  • the control valve 73 is driven to reduce the air in the rear wheel air spring 32 so that the vertical load on the rear wheel 13 becomes zero.
  • the central wheel air spring 31 may be discharged to the shortest contracted state.
  • the second load mode in order to secure a sufficient distance between the vehicle body 102 and the road surface G, air is supplied until the central wheel air spring 31 reaches the longest stretched state, and further the rear wheel. In order to ensure a sufficient clearance between the tire 13 and the road surface G, the rear wheel air spring 32 may be exhausted to the shortest contracted state.
  • the load mode may be switched according to the running state or running environment of the vehicle.
  • 4 to 6 are flow charts showing examples of automatically switching between the first load mode and the second load mode, respectively.
  • FIG. 4 is a flow chart showing an example of switching between the first load mode and the second load mode according to the vehicle speed, which is one parameter indicating the running state of a six-wheel vehicle.
  • the control unit 60 receives the detected value of the speed of the six-wheeled vehicle 100 from the vehicle speed sensor 53, and determines whether the received detected value of the speed is equal to or higher than a predetermined speed (step S11). And the control part 60 selects the 1st load mode used as a long wheel base, when the detected value of the received speed is more than a predetermined speed (step S12), and the detected value of the received speed is a predetermined speed. If it is less than the above, the second load mode serving as the short wheel base is selected (step S13). As a result, when the vehicle speed is equal to or higher than the predetermined value, the vehicle can automatically travel on the long wheel base, so that the running stability at high speed can be increased.
  • the speed V1 at the time of switching from the first load mode to the second load mode and the speed V2 at the time of switching from the second load mode to the first load mode are different speeds (V1>V2). Therefore, hysteresis may be provided to prevent frequent switching between the first load mode and the second load mode. Furthermore, the switching between the first load mode and the second load mode may be performed based on the average vehicle speed within a predetermined time, instead of using the vehicle speed at every moment as a reference.
  • FIG. 5 is a flow chart showing an example of switching between the first load mode and the second load mode according to the traveling environment.
  • the control unit 60 receives the position information of the six-wheel vehicle 100 from the GPS 52. Then, by comparing with the map information 65 stored in the memory 63, it is determined whether or not the six-wheeled vehicle 100 is traveling on a highway (step S21). Then, when it is determined that the vehicle is traveling on the highway, the first load mode that is the long wheel base is selected (step S22), and when it is determined that the vehicle is not traveling on the highway, the vehicle is the short wheel base. The second load mode is selected (step S23). As a result, when the six-wheeled vehicle 100 enters a highway capable of high-speed driving, the first load mode, which is the long wheelbase, is automatically selected, so that running stability during high-speed driving can be increased. it can.
  • Priority should be set in the judgment conditions when switching the load mode depending on the driving environment and driving conditions. For example, in the case where both the load mode is switched according to the traveling on the highway and the load mode is switched according to the vehicle speed, the selection of the first load mode is to determine the traveling on the highway. If it is determined that the vehicle is not traveling on the highway, the first load mode and the second load mode may be switched according to the vehicle speed. Accordingly, when it is determined that the six-wheeled vehicle 100 is traveling on the highway, the first load mode is selected, and when it is determined that the six-wheeled vehicle 100 is not traveling on the highway, the first load mode is selected according to the vehicle speed. And the second load mode are switched.
  • FIG. 6 is a flow chart showing an example of switching between the first load mode and the second load mode according to the steering angle, which is one parameter indicating the running state of a six-wheel vehicle.
  • the control unit 60 receives the steering angle detection value of the steering wheel of the six-wheel vehicle 100 from the steering angle sensor, and determines whether the received steering angle detection value is equal to or greater than a predetermined steering angle (step S31). And the control part 60 selects the 2nd load mode used as a short wheel base, when the detected value of the received steering angle is more than a predetermined steering angle (step S32), and the detected value of the received steering angle is If the steering angle is less than the predetermined steering angle, the first load mode for the long wheel base is selected (step S33).
  • the control angle detection value of the steering wheel of the six-wheel vehicle 100 from the steering angle sensor, and determines whether the received steering angle detection value is equal to or greater than a predetermined steering angle (step S31).
  • the control part 60 selects the 2nd load mode used as a short
  • the steering angle sensor 54 uses, as the steering angle detection value of the steering wheel, the peak value of the angle at which the steering wheel is turned when the steering wheel is turned clockwise or counterclockwise from the straight-ahead position. Is configured to detect as.
  • the second load mode is immediately selected when the steering angle equal to or larger than the predetermined steering angle is detected, and the first wheel serving as the long wheel base is selected.
  • the first load mode may be selected after the state of less than the predetermined steering angle has passed a predetermined time.
  • FIG. 7 is a diagram schematically showing a relationship between an axle and a frame of a six-wheeled vehicle according to another embodiment of the present invention.
  • the center wheel 12 is shown in FIG. 7, the rear wheel 13 also has the same structure as the center wheel 12.
  • the frame 20 of the six-wheeled vehicle 100 is provided with a column 22, and an arm 23 that is swingable about a shaft 24 is provided at the tip of the column 22.
  • a central wheel air spring 31 is provided between the frame 20 and the arm 23 on one side of the arm 23 with the shaft 24 interposed therebetween, and an axle 21 of the central wheel 12 is provided on the other side. ..
  • the center wheel 12 is driven by an in-wheel motor 40 mounted on an axle 21 inside the wheel of the tire.
  • the central wheel 12 and the central wheel air spring 31 are provided on the opposite side of the arm 23 pivotally supported by the shaft 24, when the central wheel air spring 31 is extended, the central wheel 12 rises. Then, when the central wheel air spring 31 is contracted, the central wheel 12 descends.
  • the center wheel air spring 31 when the vertical load on the center wheel 12 is set to zero, the center wheel air spring 31 is contracted by discharging air from the center wheel air spring 31.
  • the center wheel air spring 31 when the vertical load on the center wheel 12 is zero, the center wheel air spring 31 is extended by supplying pressurized air to the center wheel air spring 31.
  • the rear wheel air spring 32 As described above, in the second embodiment, the relationship between the air supplied to and discharged from the central wheel air spring 31 or the rear wheel air spring 32 is the reverse of the relationship of the first embodiment, but the load control device 110. Since the other control flows are the same as those in the first embodiment, the description thereof will be omitted.
  • the present invention makes it possible to change the wheel base between the long wheel base and the short wheel base, so that various road surface conditions from a curved road to a high-speed straight road can be achieved. Achieve high exercise performance.
  • the configuration for switching the load mode that involves switching of the driving wheels is provided as compared with an automobile that needs a transmission mechanism from the engine. It will be easy.
  • the device for controlling the vertical load the example in which the expansion and contraction of the air spring is used has been described, but another suspension device may be used as long as the device can lift the tire from the road surface.
  • a hydropneumatic spring having a gas chamber and a liquid chamber may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A 6-wheel automobile 100 has front wheels 11, center wheels 12, and rear wheels 13, each set provided with two tires, on the left and right sides of a vehicle body 102. A driver seat 101 is located between the front wheels 11 and the center wheels 12, and load control devices that control vertical load are provided to the center wheels 12 and the rear wheels 13. Load modes for supporting the vehicle body 102 can be switched among a first load mode for a long-wheel base where vertical load on the center wheels 12 is zero, a second load mode for a short-wheel base where vertical load on the rear wheels 13 is zero, and a third load mode where vertical load is applied to all of the front wheels 11, the center wheels 12, and the rear wheels 13.

Description

6輪自動車Six-wheeled vehicle
 本発明は、6輪自動車に関する。 The present invention relates to a six-wheeled vehicle.
 現行の6輪自動車は、例えば、レーシングカーなどで空気抵抗の低減を目的として用いられている。また、トラックやバスでは、6輪自動車は、6輪のタイヤで車体を支えることによって接地面積を広げて接地圧を下げ、接地圧を下げることによって、泥濘地や雪面でも強いトラクションを得て安定した走行を可能とするために用いられている。また、6輪以上のタイヤを有する大型の貨物車両では、特許文献1に開示されているように、タイヤ昇降構造を備えたものが提案されている。 The current 6-wheeled vehicle is used, for example, in racing cars to reduce air resistance. In trucks and buses, six-wheeled vehicles support the vehicle body with six-wheeled tires to increase the ground contact area and lower the ground contact pressure. By lowering the ground contact pressure, strong traction is also obtained on mud and snow. It is used to enable stable running. Further, as a large-sized freight vehicle having six or more tires, as disclosed in Patent Document 1, a vehicle having a tire lifting structure has been proposed.
特開2002-205524号公報Japanese Patent Laid-Open No. 2002-205524
 特許文献1に開示されている貨物車両において、タイヤを路面から浮かせる目的は、接地するタイヤ数を減らすことにより、タイヤの摩耗を減少させること、燃費を向上させること、あるいは、高速道路の料金を軽減することを目的としたものであり、車両の運動性能の向上を目的にしたものではない。 In the freight vehicle disclosed in Patent Document 1, the purpose of floating the tires from the road surface is to reduce the wear of the tires by reducing the number of tires to be in contact with the ground, improve fuel efficiency, or reduce the toll on the highway. The purpose is to reduce the amount, not to improve the movement performance of the vehicle.
 本発明は、これらの実情に鑑みてなされたものであり、運動性能の向上した6輪自動車を提供することをその目的とする。 The present invention has been made in view of these circumstances, and an object thereof is to provide a six-wheeled vehicle with improved athletic performance.
 上記課題を解決するために、本発明の第1の技術手段は、車体の左右にそれぞれ2つのタイヤを備えた前輪、中央輪、および、後輪を有する6輪自動車であって、運転座席が前記前輪と前記中央輪との間にあり、前記中央輪と前記後輪とに垂直荷重を制御する荷重制御装置が設けられていることを特徴とするものである。 In order to solve the above problems, a first technical means of the present invention is a six-wheeled vehicle having a front wheel, a center wheel, and a rear wheel, each of which has two tires on the left and right sides of the vehicle body. A load control device is provided between the front wheel and the central wheel, and a load control device for controlling a vertical load is provided to the central wheel and the rear wheel.
 本発明の第2の技術手段は、第1の技術手段において、前記車体を支持する荷重モードとして、前記中央輪の荷重をゼロとしたロングホイールベースの第1の荷重モードと、前記後輪の垂直荷重をゼロとしたショートホイールベースの第2の荷重モードとを有することを特徴とするものである。 A second technical means of the present invention is the first technical means according to the first technical means, wherein a load mode for supporting the vehicle body is a first load mode of a long wheel base in which the load of the central wheel is zero, and a rear wheel of the rear wheel. It is characterized by having a second load mode of a short wheel base in which the vertical load is zero.
 本発明の第3の技術手段は、第2の技術手段において、前記荷重モードとして、前記前輪、前記中央輪、および、前記後輪の全てに垂直荷重が加わる第3の荷重モードをさらに有することを特徴とするものである。 A third technical means of the present invention is the second technical means, further comprising, as the load mode, a third load mode in which a vertical load is applied to all of the front wheel, the center wheel, and the rear wheel. It is characterized by.
 本発明の第4の技術手段は、第3の技術手段において、前記第1の荷重モード、前記第2の荷重モード、および、前記第3の荷重モードを切り替え可能なスイッチを有することを特徴とするものである。 A fourth technical means of the present invention, in the third technical means, has a switch capable of switching between the first load mode, the second load mode, and the third load mode. To do.
 本発明の第5の技術手段は、第2または第3の技術手段において、車両の走行状態または走行環境に応じて制御部を有することを特徴とするものである。 A fifth technical means of the present invention is characterized in that, in the second or third technical means, a control unit is provided according to a traveling state or a traveling environment of the vehicle.
 本発明の第6の技術手段は、第5の技術手段において、前記制御部が、車速に応じて、前記第1の荷重モードと前記第2の荷重モードを切り替えることを特徴とするものである。 A sixth technical means of the present invention is the fifth technical means, characterized in that the control section switches between the first load mode and the second load mode in accordance with a vehicle speed. ..
 本発明の第7の技術手段は、第5の技術手段において、前記制御部が、舵角に応じて、前記第1の荷重モードと前記第2の荷重モードを切り替えることを特徴とするものである。 A seventh technical means of the present invention is characterized in that, in the fifth technical means, the control section switches between the first load mode and the second load mode in accordance with a steering angle. is there.
 本発明の第8の技術手段は、第5の技術手段において、前記制御部が、高速道路を走行していると判定した場合に、前記第1の荷重モードを選択することを特徴とするものである。 An eighth technical means of the present invention is characterized in that, in the fifth technical means, when the control unit determines that the vehicle is traveling on a highway, the first load mode is selected. Is.
 本発明の第9の技術手段は、第1から第8の技術手段において、前記荷重制御装置が空気バネまたはハイドロニューマチックバネを備えることを特徴とするものである。 A ninth technical means of the present invention is characterized in that, in the first to eighth technical means, the load control device comprises an air spring or a hydropneumatic spring.
 本発明の第10の技術手段は、第1から第9の技術手段において、少なくとも前記中央輪および前記後輪の各前記タイヤが、インホイールモータによって駆動されることを特徴とするものである。 A tenth technical means of the present invention is characterized in that, in the first to ninth technical means, at least each of the tires of the central wheel and the rear wheel is driven by an in-wheel motor.
 本発明によれば、6輪自動車の輪荷重(垂直荷重)を制御することによって、ホイールベースを可変とすることができ、屈曲路から高速直線路までの様々な状況において高い運動性能を実現した6輪自動車を得ることができる。 According to the present invention, the wheel base can be made variable by controlling the wheel load (vertical load) of a six-wheeled vehicle, and high exercise performance is realized in various situations from a curved road to a high-speed straight road. You can get a six-wheeled vehicle.
本発明の一実施形態に係る6輪自動車の側面図である。1 is a side view of a 6-wheel vehicle according to an embodiment of the present invention. 図1Aに示す6輪自動車において、中央輪の荷重をゼロにした際の側面図である。It is a side view at the time of making the load of the center wheel zero in the 6-wheel vehicle shown in Drawing 1A. 図1Aに示す6輪自動車において、後輪の荷重をゼロにした際の側面図である。FIG. 1B is a side view of the 6-wheel vehicle shown in FIG. 1A when the load on the rear wheels is zero. 本発明の一実施形態に係る6輪自動車の車軸とフレームの関係を模式的に示す図である。It is a figure which shows typically the relationship of the axle of a 6-wheeled vehicle and frame which concerns on one Embodiment of this invention. 本発明の一実施形態に係る6輪自動車の荷重制御装置の一例を示すブロック図である。It is a block diagram showing an example of a load control device of a six-wheeled vehicle concerning one embodiment of the present invention. 車速に応じて、第1の荷重モードと第2の荷重モードを切り替える際の一例を示すフロー図である。It is a flowchart which shows an example at the time of switching a 1st load mode and a 2nd load mode according to a vehicle speed. 走行環境に応じて、第1の荷重モードと第2の荷重モードを切り替える際の一例を示すフロー図である。It is a flowchart which shows an example at the time of switching a 1st load mode and a 2nd load mode according to driving environment. 舵角に応じて、第1の荷重モードと第2の荷重モードを切り替える際の一例を示すフロー図である。It is a flowchart which shows an example at the time of switching a 1st load mode and a 2nd load mode according to a steering angle. 本発明の他の実施形態に係る6輪自動車の車軸とフレームの関係を模式的に示す図である。It is a figure which shows typically the relationship of the axle of a 6-wheeled vehicle and frame of other embodiment of this invention.
 以下、図面を参照しながら、本発明の6輪自動車に係る好適な実施形態について説明する。以下の説明において、異なる図面においても同じ符号を付した構成は同様のものであるとして、その説明を省略する場合がある。なお、本発明はこれらの実施形態での例示に限定されるものではなく、請求の範囲に記載された事項の範囲内および均等の範囲内におけるすべての変更を含む。また、複数の実施形態について組み合わせが可能である限り、本発明は任意の実施形態を組み合わせたものを含む。 A preferred embodiment of a six-wheeled vehicle according to the present invention will be described below with reference to the drawings. In the following description, the same reference numerals are used in different drawings, and the description may be omitted. The present invention is not limited to the examples in these embodiments, and includes all modifications within the scope of the items described in the claims and within the scope of equivalents. Further, the present invention includes a combination of arbitrary embodiments as long as a plurality of embodiments can be combined.
(第1の実施形態)
 図1Aは、本発明の一実施形態に係る6輪自動車の側面図である。また、図1Bは、図1Aに示す6輪自動車において、中央輪の荷重をゼロにした際の側面図であり、図1Cは、図1Aに示す6輪自動車において、後輪の荷重をゼロにした際の側面図である。また、図2は、本発明の一実施形態に係る6輪自動車の車軸とフレームの関係を模式的に示す図である。図2では、中央輪12における車軸とフレームの関係を示しているが、後輪13における車軸とフレームの関係も同様の構成をしている。
(First embodiment)
FIG. 1A is a side view of a six-wheeled vehicle according to an embodiment of the present invention. 1B is a side view of the six-wheel vehicle shown in FIG. 1A when the load on the center wheel is zero, and FIG. 1C is the six-wheel vehicle shown in FIG. It is a side view at the time of doing. Further, FIG. 2 is a diagram schematically showing the relationship between the axle and the frame of the six-wheeled vehicle according to the embodiment of the present invention. Although FIG. 2 shows the relationship between the axle of the central wheel 12 and the frame, the relationship between the axle of the rear wheel 13 and the frame has the same configuration.
 6輪自動車100は、車体102の左右にそれぞれタイヤを備えた前輪11、中央輪12、および、後輪13を有しており、運転座席101が前輪11と中央輪12との間にある。少なくとも中央輪12および後輪13に装着されたタイヤは、各タイヤのホイール内に搭載されたインホイールモータ40によって駆動される。図2に示すように、例えば、中央輪12の車軸21とフレーム20との間には、中央輪空気バネ31が設けられている。また、同様に、後輪13の車軸とフレームとの間にも後輪空気バネ32(図3参照)が設けられている。そして、後述するように、6輪自動車は荷重制御装置を有しており、垂直荷重制御装置によって、中央輪空気バネ31内と後輪空気バネ32内の空気圧を調節し、中央輪12と後輪13とにかかる垂直荷重を制御している。なお、車軸21は簡略化のため、左右のホイールに連結する1本の車軸21を示しているが、車軸21は各ホイールに独立して設けてもよい。また、図2では、左右に一対の中央輪空気バネ31を車軸21に設けているが、車軸21をホイールごとに独立して設ける際は、それぞれのホイールに対して中央輪空気バネ31が設けられる。 The six-wheeled vehicle 100 has front wheels 11, center wheels 12, and rear wheels 13 each having tires on the left and right sides of a vehicle body 102, and a driver seat 101 is located between the front wheels 11 and the center wheels 12. Tires mounted on at least the center wheel 12 and the rear wheel 13 are driven by an in-wheel motor 40 mounted in the wheel of each tire. As shown in FIG. 2, for example, a center wheel air spring 31 is provided between the axle 21 of the center wheel 12 and the frame 20. Similarly, a rear wheel air spring 32 (see FIG. 3) is also provided between the axle of the rear wheel 13 and the frame. Then, as will be described later, the six-wheeled vehicle has a load control device, and the vertical load control device adjusts the air pressures in the central wheel air spring 31 and the rear wheel air springs 32 so as to adjust the central wheel 12 and the rear wheel. The vertical load applied to the wheel 13 is controlled. For the sake of simplification, the axle 21 is shown as one axle 21 connected to the left and right wheels, but the axle 21 may be provided independently for each wheel. Further, in FIG. 2, a pair of left and right center wheel air springs 31 are provided on the axle 21, but when the wheel axles 21 are provided independently for each wheel, the center wheel air spring 31 is provided for each wheel. Be done.
 図1Bに示すように、6輪自動車100は、中央輪12の垂直荷重をゼロとすることが可能であり、この場合、中央輪12は路面Gから浮き上がる。6輪自動車100は、前輪11と後輪13とが路面Gに接する4輪車となり、ホイールベースは前輪11の軸と後輪13の軸とのロングホイールベースの距離LWBとなる。本発明では、中央輪12の垂直荷重をゼロとした状態が第1の荷重モードとなる。また、図1Cに示すように、6輪自動車100は、後輪13の垂直荷重をゼロとすることが可能であり、この場合、後輪13は路面Gから浮き上がる。6輪自動車100は、前輪11と中央輪12とが路面Gに接する4輪車となり、ホイールベースは前輪11の軸と中央輪12の軸とのショートホイールベースの距離SWBとなる。本発明では、後輪13の垂直荷重をゼロとした状態が第2の荷重モードとなる。 As shown in FIG. 1B, in the six-wheeled vehicle 100, the vertical load on the center wheel 12 can be zero, and in this case, the center wheel 12 is lifted from the road surface G. The six-wheeled vehicle 100 is a four-wheeled vehicle in which the front wheels 11 and the rear wheels 13 are in contact with the road surface G, and the wheel base has a long wheel base distance LWB between the axes of the front wheels 11 and the rear wheels 13. In the present invention, the state in which the vertical load on the center wheel 12 is zero is the first load mode. Further, as shown in FIG. 1C, in the six-wheeled vehicle 100, the vertical load on the rear wheel 13 can be set to zero, and in this case, the rear wheel 13 floats up from the road surface G. The six-wheeled vehicle 100 is a four-wheeled vehicle in which the front wheels 11 and the center wheels 12 are in contact with the road surface G, and the wheel base is a short wheel base distance SWB between the axes of the front wheels 11 and the center wheels 12. In the present invention, the state in which the vertical load on the rear wheel 13 is zero is the second load mode.
 図1Aに示す状態では、前輪11、中央輪12、および、後輪13の全てが路面Gに接しており、全てのタイヤに垂直荷重が加わっている。各タイヤに加わる垂直荷重は、中央輪空気バネ31内と後輪空気バネ32内の空気圧を調節することによって制御可能である。本発明では、前輪11、中央輪12、および、後輪13の全てに垂直荷重が加わる状態を第3の荷重モードと呼ぶ。第3の荷重モードにおけるホイールベースは、仮想的にショートホイールベースの距離SWBとロングホイールベースの距離LWBとの間の値をとることになる。 In the state shown in FIG. 1A, the front wheel 11, the center wheel 12, and the rear wheel 13 are all in contact with the road surface G, and a vertical load is applied to all the tires. The vertical load applied to each tire can be controlled by adjusting the air pressure in the center wheel air spring 31 and the rear wheel air spring 32. In the present invention, a state in which a vertical load is applied to all of the front wheel 11, the center wheel 12, and the rear wheel 13 is called a third load mode. The wheel base in the third load mode virtually assumes a value between the short wheel base distance SWB and the long wheel base distance LWB.
 例えば、6輪自動車100の垂直荷重が1050kg、前輪11の軸と中央輪12の軸との距離SWBが2600mm、前輪11の軸と後輪13の軸との距離LWBが3400mmであり、中央輪12の垂直荷重がゼロとなる第1の荷重モードにおいて、前輪11の垂直荷重が477kg、後輪13の垂直荷重が573kgであるとする。この場合に、後輪13の垂直荷重がゼロとなる第2の荷重モードでは、前輪11の垂直荷重が313kgとなり、中央輪12の垂直荷重が737kgとなる。第3の荷重モードでは、前輪11の垂直荷重が350kg、中央輪12の垂直荷重が350kg、後輪13の垂直荷重が350kgである。そして、第1の荷重モードでは、前輪11と後輪13との荷重配分は略45:55となるのに対して、第2の荷重モードでは、前輪11と中央輪12との荷重配分は略30:70となる。第3の荷重モードでは、前輪11と中央輪12と後輪13の荷重配分は略33:33:33となる。 For example, the vertical load of the six-wheeled vehicle 100 is 1050 kg, the distance SWB between the front wheel 11 axis and the center wheel 12 axis is 2600 mm, the distance LWB between the front wheel 11 axis and the rear wheel 13 axis is 3400 mm, and the center wheel is In the first load mode in which the vertical load of 12 is zero, the vertical load of the front wheels 11 is 477 kg and the vertical load of the rear wheels 13 is 573 kg. In this case, in the second load mode in which the vertical load on the rear wheel 13 is zero, the vertical load on the front wheel 11 is 313 kg and the vertical load on the central wheel 12 is 737 kg. In the third load mode, the front wheel 11 has a vertical load of 350 kg, the center wheel 12 has a vertical load of 350 kg, and the rear wheel 13 has a vertical load of 350 kg. Then, in the first load mode, the load distribution between the front wheels 11 and the rear wheels 13 is approximately 45:55, whereas in the second load mode, the load distribution between the front wheels 11 and the center wheel 12 is approximately. It will be 30:70. In the third load mode, the load distribution among the front wheels 11, the center wheels 12, and the rear wheels 13 is approximately 33:33:33.
 一般的には、ロングホイールベースの車両では、路面Gの凹凸による上下動が少ないため、乗り心地がよく、また、直進安定性と操縦安定性に優れるというメリットがある。しかし、最小回転半径が大きくなるため、小回りが難しいというデメリットを有している。一方、ショートホイールベースの車両では、最小回転半径が小さいため、小回りが利き、狭い路地などでの操作性がよくなるというメリットがあるが、操縦安定性の点でデメリットある。このため、車速が早い高速道路や直進路の走行はロングホイールベースが適しており、街中や曲がり角の多い山道ではショートホイールベースが望ましい。さらに、前輪11、中央輪12、および、後輪13のそれぞれのタイヤのホイール内にインホイールモータ40を搭載した場合、インホイールモータ40の出力を最大限に利用して推進力を得るためには、6輪のすべてに垂直荷重がかかる状態にして、各タイヤへの垂直荷重が均等になるようにすることが望ましい。 Generally, a vehicle with a long wheelbase has less vertical movement due to unevenness of the road surface G, so it has a good riding comfort, and has the advantage of excellent straight running stability and steering stability. However, since the minimum turning radius becomes large, there is a disadvantage that it is difficult to make a small turn. On the other hand, in a vehicle with a short wheel base, the minimum turning radius is small, so there are merits that a small turn is effective and operability is improved in a narrow alley, but there is a demerit in terms of steering stability. For this reason, a long wheelbase is suitable for traveling on highways and straight roads where the vehicle speed is fast, and a short wheelbase is desirable in the city and on mountain roads with many corners. Furthermore, when the in-wheel motor 40 is mounted in the wheels of the tires of the front wheel 11, the center wheel 12, and the rear wheel 13, in order to maximize the output of the in-wheel motor 40 to obtain propulsive force. It is desirable that the vertical load be applied to all six wheels so that the vertical load on each tire is even.
 本発明は、中央輪12と後輪13とに垂直荷重を制御する荷重制御装置110が設けられているため、ホイールベースが変更可能となっている。これにより、本発明は、ロングホイールベースの利点とショートホイールベースの利点、および、6輪を駆動する場合の利点を享受できる。 In the present invention, since the load control device 110 for controlling the vertical load is provided on the center wheel 12 and the rear wheel 13, the wheel base can be changed. As a result, the present invention can enjoy the advantages of the long wheelbase, the short wheelbase, and the advantages of driving six wheels.
 次に、本発明における荷重制御装置110について説明する。図3は、本発明の一実施形態に係る6輪自動車の荷重制御装置の一例を示すブロック図である。荷重制御装置110は、モード選択スイッチ51、GPS(Global Positioning System)52、車速センサ53、舵角センサ54、荷重センサ55、制御部60、中央輪空気バネ31、後輪空気バネ32、コンプレッサ71、エアータンク72、制御弁73、弁駆動部74、および、各部に必要な電力を供給するバッテリ80を備えている。バッテリ80は、インホイールモータ40を駆動する電源からコンバータを介して接続されている。 Next, the load control device 110 according to the present invention will be described. FIG. 3 is a block diagram showing an example of a load control device for a six-wheeled vehicle according to an embodiment of the present invention. The load control device 110 includes a mode selection switch 51, a GPS (Global Positioning System) 52, a vehicle speed sensor 53, a steering angle sensor 54, a load sensor 55, a control unit 60, a central wheel air spring 31, a rear wheel air spring 32, and a compressor 71. , An air tank 72, a control valve 73, a valve drive unit 74, and a battery 80 that supplies necessary electric power to each unit. The battery 80 is connected via a converter from a power source that drives the in-wheel motor 40.
 制御部60は、荷重制御装置110の全体を制御するためのものであり、例えば、プログラム保存領域に荷重制御装置110を制御するための各種の制御プログラム64を格納し、その制御プログラム64を動作させることで各種制御を行う。例えば制御部60は、CPU(Central Processing Unit)61またはMPU(Micro Processing Unit)、作業領域としてのRAM(Random Access Memory)62、および、上記の制御プログラム64や各種設定内容を記憶したメモリ63などの制御デバイスで構成することができる。メモリ63内には、地図情報65などのデータも保存されている。メモリ63としては、例えば、フラッシュROM(Read Only Memory)、EEPROM(Electrically Erasable and Programmable ROM)、HDD(Hard Disk Drive)等を用いることができる。 The control unit 60 is for controlling the entire load control device 110. For example, the control unit 60 stores various control programs 64 for controlling the load control device 110 in a program storage area and operates the control program 64. By doing so, various controls are performed. For example, the control unit 60 includes a CPU (Central Processing Unit) 61 or an MPU (Micro Processing Unit), a RAM (Random Access Memory) 62 as a work area, the control program 64, and a memory 63 storing various setting contents. Control device. Data such as map information 65 is also stored in the memory 63. As the memory 63, for example, a flash ROM (Read Only Memory), an EEPROM (Electrically Erasable and Programmable ROM), an HDD (Hard Disk Drive), or the like can be used.
 制御部60は、モード選択スイッチ51、GPS52、車速センサ53、舵角センサ54、荷重センサ55からの信号を受けて、制御プログラム64を動作させることによって、中央輪空気バネ31と後輪空気バネ32内のエアー圧を調整することにより、中央輪12と後輪13とにかかる垂直荷重を制御している。前輪11、中央輪12、および、後輪13にかかる垂直荷重は、例えば、それぞれの軸に設けた荷重センサ55によって得ることができる。荷重センサ55としては、例えば、薄膜センサを車軸に設けたもの(特開2008-298583号公報参照)や多分力ロードセルを利用したものなど、既知の技術が利用可能である。 The control unit 60 receives signals from the mode selection switch 51, the GPS 52, the vehicle speed sensor 53, the steering angle sensor 54, and the load sensor 55, and operates the control program 64 to cause the central wheel air spring 31 and the rear wheel air springs to operate. By adjusting the air pressure in 32, the vertical load applied to the center wheel 12 and the rear wheel 13 is controlled. The vertical load applied to the front wheel 11, the center wheel 12, and the rear wheel 13 can be obtained by, for example, a load sensor 55 provided on each shaft. As the load sensor 55, for example, a known technique such as one in which a thin film sensor is provided on the axle (see Japanese Patent Laid-Open No. 2008-298583) or one using a possibly force load cell can be used.
 制御部60からの制御信号によって、弁駆動部74は制御弁73を制御し、コンプレッサ71によって蓄えられたエアータンク72からの加圧エアーを、中央輪空気バネ31あるいは後輪空気バネ32内に供給することによって、中央輪空気バネ31あるいは後輪空気バネ32を伸長させる。また、弁駆動部74は、制御弁73によって中央輪空気バネ31内あるいは後輪空気バネ32内からエアーを排出させ、中央輪空気バネ31あるいは後輪空気バネ32を収縮させる。 In response to a control signal from the control unit 60, the valve drive unit 74 controls the control valve 73 so that the pressurized air from the air tank 72 stored by the compressor 71 is fed into the central wheel air spring 31 or the rear wheel air spring 32. By supplying, the central wheel air spring 31 or the rear wheel air spring 32 is extended. Further, the valve drive unit 74 causes the control valve 73 to discharge air from the center wheel air spring 31 or the rear wheel air spring 32 to contract the center wheel air spring 31 or the rear wheel air spring 32.
 第1から第3の荷重モードは、手動によって切り替えることができる。荷重制御装置110のモード選択スイッチ51は、第1から第3の荷重モードを選択するためのスイッチである。例えば、全てのタイヤに荷重がかかっている第3の荷重モードの状態にあるときに、ロングホイールベースとなる第1の荷重モードが選択された場合、制御部60は、モード選択スイッチ51からの信号を受けて、中央輪12の垂直荷重がゼロとなるように、制御弁73を駆動して中央輪空気バネ31のエアーを減少させる制御信号を弁駆動部74に出力する。これにより、中央輪空気バネ31が収縮し、中央輪12のタイヤが路面Gから浮き上がる。 The first to third load modes can be switched manually. The mode selection switch 51 of the load control device 110 is a switch for selecting the first to third load modes. For example, when the first load mode serving as the long wheel base is selected in the state of the third load mode in which loads are applied to all the tires, the control unit 60 controls the mode selection switch 51 In response to the signal, a control signal for driving the control valve 73 to reduce the air in the central wheel air spring 31 is output to the valve driving unit 74 so that the vertical load on the central wheel 12 becomes zero. As a result, the central wheel air spring 31 contracts and the tire of the central wheel 12 floats up from the road surface G.
 中央輪12のタイヤが路面Gから浮いた状態では、中央輪12に設けた荷重センサ55の値が所定値となる。このため、制御部60は中央輪12に設けた荷重センサ55からの検出値が所定値になるまで、中央輪空気バネ31からのエアーを排出するように制御弁73を駆動させる。その際、中央輪12のタイヤと路面Gとのクリアランスを十分にとるために、中央輪空気バネ31が最短の収縮状態になるように制御してもよい。なお、本発明において、中央輪12の垂直荷重がゼロになる状態とは、中央輪12のタイヤが路面Gに接していない状態と同義に用いている。後輪13の垂直荷重がゼロになる状態も、中央輪12と同様に、後輪13のタイヤが路面Gに接していない状態と同義である。 When the tire of the center wheel 12 is floating from the road surface G, the value of the load sensor 55 provided on the center wheel 12 becomes a predetermined value. Therefore, the control unit 60 drives the control valve 73 to discharge the air from the center wheel air spring 31 until the detected value from the load sensor 55 provided on the center wheel 12 reaches a predetermined value. At that time, in order to ensure a sufficient clearance between the tire of the center wheel 12 and the road surface G, the center wheel air spring 31 may be controlled to be in the shortest contracted state. In the present invention, the state in which the vertical load on the central wheel 12 is zero is synonymous with the state in which the tire of the central wheel 12 is not in contact with the road surface G. The state in which the vertical load on the rear wheels 13 is zero is also synonymous with the state in which the tires of the rear wheels 13 are not in contact with the road surface G, as with the central wheel 12.
 また、全てのタイヤに荷重がかかっている第3の荷重モードの状態にあるときに、ショートホイールベースとなる第2の荷重モードが選択された場合、制御部60は、モード選択スイッチ51からの信号を受けて弁駆動部74に制御信号を出力し、後輪13の垂直荷重がゼロとなるように、制御弁73を駆動して後輪空気バネ32のエアーを減少させる。これにより、後輪空気バネ32が収縮し、後輪13のタイヤが路面Gから浮き上がる。 Further, when the second load mode which is the short wheel base is selected in the state of the third load mode in which loads are applied to all the tires, the control unit 60 controls the mode selection switch 51 Upon receiving the signal, a control signal is output to the valve drive unit 74, and the control valve 73 is driven to reduce the air in the rear wheel air spring 32 so that the vertical load on the rear wheel 13 becomes zero. As a result, the rear wheel air spring 32 contracts, and the tire of the rear wheel 13 floats up from the road surface G.
 次に、ショートホイールベースとなる第2の荷重モードにあるときに、モード選択スイッチ51によって全てのタイヤが垂直荷重を受ける第3の荷重モードが選択された場合、制御部60は、後輪13に設けた荷重センサ55からの検出値が所定値の範囲内になるまで、弁駆動部74に制御信号を送り、エアータンク72から後輪空気バネ32にエアーを供給するように制御弁73を駆動させる。あるいは、中央輪12に設けた荷重センサ55からの検出値が所定値の範囲内になるまで、弁駆動部74に制御信号を送り、エアータンク72から後輪空気バネ32にエアーを供給するように制御弁73を駆動させる。これにより、中央輪12に設けた荷重センサ55と後輪13に設けた荷重センサ55からの検出値は所定の範囲内の値となり、前輪11、および、中央輪12と後輪13とに垂直荷重がかかることになる。 Next, when the third load mode in which all the tires receive the vertical load is selected by the mode selection switch 51 in the second load mode that serves as the short wheel base, the control unit 60 causes the rear wheel 13 to operate. Until the detected value from the load sensor 55 provided in the above is within a predetermined value range, a control signal is sent to the valve drive section 74, and the control valve 73 is operated so as to supply air from the air tank 72 to the rear wheel air spring 32. Drive it. Alternatively, a control signal is sent to the valve drive unit 74 to supply air from the air tank 72 to the rear wheel air spring 32 until the detected value from the load sensor 55 provided on the central wheel 12 falls within a predetermined value range. To drive the control valve 73. As a result, the detection values from the load sensor 55 provided on the center wheel 12 and the load sensor 55 provided on the rear wheel 13 are within a predetermined range, and are perpendicular to the front wheel 11, and the center wheel 12 and the rear wheel 13. It will be loaded.
 また、ロングホイールベースとなる第1の荷重モードの状態から、モード選択スイッチ51によってショートホイールベースとなる第2の荷重モードが選択された場合、制御部60は、前輪11と後輪13のみが路面Gに接する第2の荷重モードの状態から、前輪11、中央輪12、および、後輪13のすべてが路面Gに接する第3の荷重モードを一時的に経た後、前輪11と中央輪12のみが路面Gに接する第2の荷重モードとなるように、制御弁73を制御する。 When the second load mode of the short wheel base is selected by the mode selection switch 51 from the state of the first load mode of the long wheel base, the control unit 60 controls only the front wheels 11 and the rear wheels 13. After the second load mode in which the front wheel 11, the center wheel 12, and the rear wheel 13 are all in contact with the road surface G, the front wheel 11, the center wheel 12, and the center wheel 12 are temporarily passed through a third load mode in which all the front wheels 11, the center wheel 12, and the rear wheel 13 are in contact with the road surface G. The control valve 73 is controlled so that only the second load mode is in contact with the road surface G.
 より詳細には、第1の荷重モードの状態から、制御部60は、中央輪12に設けた荷重センサ55からの検出値が所定値の範囲内になるまで、弁駆動部74に制御信号を送り、エアータンク72から中央輪空気バネ31にエアーを供給するように制御弁73を駆動させる。そして、中央輪12の垂直荷重が所定値になった後、制御部60は、弁駆動部74に制御信号を出力し、後輪13に設けた荷重センサ55の検出値が所定値となるように、すなわち、後輪13の垂直荷重がゼロとなるように、制御弁73を駆動して後輪空気バネ32のエアーを減少させる。このように、第1の荷重モードから第2の荷重モードへ移る際は、一時的に第3の荷重モードを経た制御を行うことが望ましい。同様に、第2の荷重モードから第1の荷重モードへ移る際も、一時的に第3の荷重モードを経た制御を行うことが望ましい。 More specifically, from the state of the first load mode, the control unit 60 sends a control signal to the valve drive unit 74 until the detected value from the load sensor 55 provided on the center wheel 12 falls within a predetermined value range. The control valve 73 is driven so as to supply air to the central wheel air spring 31 from the air tank 72. Then, after the vertical load on the center wheel 12 reaches a predetermined value, the control unit 60 outputs a control signal to the valve drive unit 74 so that the detection value of the load sensor 55 provided on the rear wheel 13 reaches a predetermined value. In other words, the control valve 73 is driven to reduce the air in the rear wheel air spring 32 so that the vertical load on the rear wheel 13 becomes zero. As described above, when shifting from the first load mode to the second load mode, it is desirable to temporarily perform control through the third load mode. Similarly, when shifting from the second load mode to the first load mode, it is desirable to temporarily perform control through the third load mode.
 なお、第1の荷重モードの場合は、車体102と路面Gとの距離を十分に確保するために、後輪空気バネ32が最長の伸長状態になるまでエアーを供給し、さらに、中央輪12のタイヤと路面Gとのクリアランスを十分にとるために、中央輪空気バネ31を最短の収縮状態になるまでエアーを排出するようにしてもよい。同様に、第2の荷重モードの場合は、車体102と路面Gとの距離を十分に確保するために、中央輪空気バネ31が最長の伸長状態になるまでエアーを供給し、さらに、後輪13のタイヤと路面Gとのクリアランスを十分にとるために、後輪空気バネ32を最短の収縮状態になるまでエアーを排出するようにしてもよい。 In the case of the first load mode, in order to secure a sufficient distance between the vehicle body 102 and the road surface G, air is supplied until the rear wheel air spring 32 reaches the longest stretched state, and further the central wheel 12 is used. In order to ensure a sufficient clearance between the tire and the road surface G, the central wheel air spring 31 may be discharged to the shortest contracted state. Similarly, in the case of the second load mode, in order to secure a sufficient distance between the vehicle body 102 and the road surface G, air is supplied until the central wheel air spring 31 reaches the longest stretched state, and further the rear wheel. In order to ensure a sufficient clearance between the tire 13 and the road surface G, the rear wheel air spring 32 may be exhausted to the shortest contracted state.
 以上、手動で荷重モードを変更する場合について説明したが、荷重モードは、車両の走行状態または走行環境に応じて切り替えてもよい。また、図4から図6は、それぞれ、第1の荷重モードと第2の荷重モードを自動で切り替える例を示すフロー図である。 Although the case where the load mode is changed manually has been described above, the load mode may be switched according to the running state or running environment of the vehicle. 4 to 6 are flow charts showing examples of automatically switching between the first load mode and the second load mode, respectively.
 図4は、6輪自動車の走行状態を示す1つのパラメータである車速に応じて、第1の荷重モードと第2の荷重モードを切り替える際の一例を示すフロー図である。制御部60は、車速センサ53から6輪自動車100の速度の検出値を受信し、受信した速度の検出値が所定の速度以上か否かを判定する(ステップS11)。そして、制御部60は、受信した速度の検出値が所定の速度以上の場合に、ロングホイールベースとなる第1の荷重モードを選択し(ステップS12)、受信した速度の検出値が所定の速度未満の場合には、ショートホイールベースとなる第2の荷重モードを選択し(ステップS13)。これにより、車速が所定以上の場合は、自動的にロングホイールベースでの走行が可能となるため、高速での走行安定性を増すことができる。 FIG. 4 is a flow chart showing an example of switching between the first load mode and the second load mode according to the vehicle speed, which is one parameter indicating the running state of a six-wheel vehicle. The control unit 60 receives the detected value of the speed of the six-wheeled vehicle 100 from the vehicle speed sensor 53, and determines whether the received detected value of the speed is equal to or higher than a predetermined speed (step S11). And the control part 60 selects the 1st load mode used as a long wheel base, when the detected value of the received speed is more than a predetermined speed (step S12), and the detected value of the received speed is a predetermined speed. If it is less than the above, the second load mode serving as the short wheel base is selected (step S13). As a result, when the vehicle speed is equal to or higher than the predetermined value, the vehicle can automatically travel on the long wheel base, so that the running stability at high speed can be increased.
 なお、所定の速度を跨いで車速の変更が頻繁に起こると、その都度、第1の荷重モードと第2の荷重モードが切り替わるため、運転者が煩わしいと感じる場合がある。このため、第1の荷重モードから第2の荷重モードへ切り替わる際の速度V1と、第2の荷重モードから第1の荷重モードへ切り替わる際の速度V2とを異なる速度(V1>V2)とすることによりヒステリシスを設けて、第1の荷重モードと第2の荷重モードとが頻繁に切り替わるのを防止するようにしてもよい。さらに、第1の荷重モードと第2の荷重モードとの切り替えは、時々刻々の車速を基準とする代わりに、所定時間内の平均車速を基準に行ってもよい。 Note that if the vehicle speed changes frequently over a predetermined speed, the first load mode and the second load mode switch each time, and the driver may find it annoying. Therefore, the speed V1 at the time of switching from the first load mode to the second load mode and the speed V2 at the time of switching from the second load mode to the first load mode are different speeds (V1>V2). Therefore, hysteresis may be provided to prevent frequent switching between the first load mode and the second load mode. Furthermore, the switching between the first load mode and the second load mode may be performed based on the average vehicle speed within a predetermined time, instead of using the vehicle speed at every moment as a reference.
 図5は、走行環境に応じて、第1の荷重モードと第2の荷重モードを切り替える際の一例を示すフロー図である。制御部60は、GPS52から6輪自動車100の位置情報を受信する。そして、メモリ63に保存した地図情報65と照らし合わせることによって、6輪自動車100が高速道路を走行中か否かを判定する(ステップS21)。そして、高速道路を走行中であると判定した場合は、ロングホイールベースとなる第1の荷重モードを選択し(ステップS22)、高速道路を走行中でないと判定した場合は、ショートホイールベースとなる第2の荷重モードを選択する(ステップS23)。これにより、6輪自動車100が高速運転可能な高速道路に入った場合は、自動的にロングホイールベースとなる第1の荷重モードが選択されるため、高速運転時の走行安定性を増すことができる。 FIG. 5 is a flow chart showing an example of switching between the first load mode and the second load mode according to the traveling environment. The control unit 60 receives the position information of the six-wheel vehicle 100 from the GPS 52. Then, by comparing with the map information 65 stored in the memory 63, it is determined whether or not the six-wheeled vehicle 100 is traveling on a highway (step S21). Then, when it is determined that the vehicle is traveling on the highway, the first load mode that is the long wheel base is selected (step S22), and when it is determined that the vehicle is not traveling on the highway, the vehicle is the short wheel base. The second load mode is selected (step S23). As a result, when the six-wheeled vehicle 100 enters a highway capable of high-speed driving, the first load mode, which is the long wheelbase, is automatically selected, so that running stability during high-speed driving can be increased. it can.
 走行環境および走行状態によって荷重モードを切り替える際は、判定条件に優先順位を設けておけばよい。例えば、高速道路での走行に応じて荷重モードを切り替えることと、車速に応じて荷重モードを切り替えることの両者を行う場合は、第1の荷重モードの選択は、高速道路での走行の判定を優先させ、高速道路での走行でないと判定した場合に、車速に応じて第1の荷重モードと第2の荷重モードとを切り替えるようにしてもよい。これにより、6輪自動車100が高速道路を走行中であると判定された場合は、第1の荷重モードが選択され、高速道路を走行中でないと判定された場合は、車速に応じて第1の荷重モードと第2の荷重モードとが切り替わる。 Priority should be set in the judgment conditions when switching the load mode depending on the driving environment and driving conditions. For example, in the case where both the load mode is switched according to the traveling on the highway and the load mode is switched according to the vehicle speed, the selection of the first load mode is to determine the traveling on the highway. If it is determined that the vehicle is not traveling on the highway, the first load mode and the second load mode may be switched according to the vehicle speed. Accordingly, when it is determined that the six-wheeled vehicle 100 is traveling on the highway, the first load mode is selected, and when it is determined that the six-wheeled vehicle 100 is not traveling on the highway, the first load mode is selected according to the vehicle speed. And the second load mode are switched.
 図6は、6輪自動車の走行状態を示す1つのパラメータである舵角に応じて、第1の荷重モードと第2の荷重モードを切り替える際の一例を示すフロー図である。制御部60は、舵角センサから6輪自動車100のハンドルの舵角の検出値を受信し、受信した舵角の検出値が所定の舵角以上か否かを判定する(ステップS31)。そして、制御部60は、受信した舵角の検出値が所定の舵角以上の場合に、ショートホイールベースとなる第2の荷重モードを選択し(ステップS32)、受信した舵角の検出値が所定の舵角未満の場合には、ロングホイールベースとなる第1の荷重モードを選択する(ステップS33)。これにより、街中や曲がり角の多い山道などを走行する際は、自動的にショートホイールベースでの走行が可能となり、操舵性がよくなる。 FIG. 6 is a flow chart showing an example of switching between the first load mode and the second load mode according to the steering angle, which is one parameter indicating the running state of a six-wheel vehicle. The control unit 60 receives the steering angle detection value of the steering wheel of the six-wheel vehicle 100 from the steering angle sensor, and determines whether the received steering angle detection value is equal to or greater than a predetermined steering angle (step S31). And the control part 60 selects the 2nd load mode used as a short wheel base, when the detected value of the received steering angle is more than a predetermined steering angle (step S32), and the detected value of the received steering angle is If the steering angle is less than the predetermined steering angle, the first load mode for the long wheel base is selected (step S33). As a result, when traveling in the city or on a mountain road with many turns, it is possible to automatically travel on a short wheel base, and the steering performance is improved.
 なお、ハンドル操作によって舵角が変化する。車体102の走行方向を変えるために、ハンドルが所定方向に回された後、ハンドルは反対方向に回されることになる。このため、舵角センサ54は、ハンドルの舵角の検出値として、直進時の位置からハンドルが時計方向あるいは反時計方向に回された際の、ハンドルが回された角度のピーク値を舵角として検出するように構成される。そして、舵角に応じて荷重モードを切り替える場合は、所定の舵角以上の舵角が検出された場合に、即座に第2の荷重モードが選択されるようにし、ロングホイールベースとなる第1の荷重モードを選択する場合は、所定の舵角未満の状態が所定時間経過した後に、第1の荷重モードが選択されるようにしてもよい。 Note that the steering angle changes depending on the steering wheel operation. In order to change the traveling direction of the vehicle body 102, after the handle is turned in a predetermined direction, the handle is turned in the opposite direction. Therefore, the steering angle sensor 54 uses, as the steering angle detection value of the steering wheel, the peak value of the angle at which the steering wheel is turned when the steering wheel is turned clockwise or counterclockwise from the straight-ahead position. Is configured to detect as. When the load mode is switched according to the steering angle, the second load mode is immediately selected when the steering angle equal to or larger than the predetermined steering angle is detected, and the first wheel serving as the long wheel base is selected. When the load mode of No. 1 is selected, the first load mode may be selected after the state of less than the predetermined steering angle has passed a predetermined time.
(第2の実施形態)
 図7は、本発明の他の実施形態に係る6輪自動車の車軸とフレームの関係を模式的に示す図である。図7では、中央輪12について記載しているが、後輪13も中央輪12と同様の構成を有している。6輪自動車100のフレーム20には支柱22が設けられており、この支柱22の先端に軸24を中心に揺動可能なアーム23が設けられている。そして、軸24を挟んでアーム23の一方側には中央輪空気バネ31がフレーム20とアーム23との間に設けられており、他方側には、中央輪12の車軸21が設けられている。中央輪12は、タイヤのホイール内の車軸21に搭載されたインホイールモータ40によって駆動される。
(Second embodiment)
FIG. 7 is a diagram schematically showing a relationship between an axle and a frame of a six-wheeled vehicle according to another embodiment of the present invention. Although the center wheel 12 is shown in FIG. 7, the rear wheel 13 also has the same structure as the center wheel 12. The frame 20 of the six-wheeled vehicle 100 is provided with a column 22, and an arm 23 that is swingable about a shaft 24 is provided at the tip of the column 22. A central wheel air spring 31 is provided between the frame 20 and the arm 23 on one side of the arm 23 with the shaft 24 interposed therebetween, and an axle 21 of the central wheel 12 is provided on the other side. .. The center wheel 12 is driven by an in-wheel motor 40 mounted on an axle 21 inside the wheel of the tire.
 第2の実施形態では、第1の実施形態と同様に、6輪自動車100は、中央輪12の荷重をゼロとしたロングホイールベースの第1の荷重モードと、後輪13の垂直荷重をゼロとしたショートホイールベースの第2の荷重モードと、前輪11、中央輪12、および、後輪13の全てに垂直荷重が加わる第3の荷重モードを選択することが可能である。ただし、中央輪12と中央輪空気バネ31とは、軸24に軸支されたアーム23の反対側に設けられているため、中央輪空気バネ31を伸張させた場合に、中央輪12は上昇し、中央輪空気バネ31を収縮させた場合に、中央輪12は下降する。 In the second embodiment, as in the first embodiment, in the six-wheeled vehicle 100, the first load mode of the long wheel base in which the load of the center wheel 12 is zero and the vertical load of the rear wheel 13 is zero. It is possible to select the second load mode of the short wheel base and the third load mode in which the vertical load is applied to all of the front wheels 11, the center wheels 12, and the rear wheels 13. However, since the central wheel 12 and the central wheel air spring 31 are provided on the opposite side of the arm 23 pivotally supported by the shaft 24, when the central wheel air spring 31 is extended, the central wheel 12 rises. Then, when the central wheel air spring 31 is contracted, the central wheel 12 descends.
 このため、例えば、第1の実施形態では、中央輪12の垂直荷重をゼロとする場合に、中央輪空気バネ31からエアーを排出させることによって、中央輪空気バネ31を収縮させているが、第2の実施形態では、中央輪12の垂直荷重をゼロとする場合に、中央輪空気バネ31に加圧エアーを供給することによって、中央輪空気バネ31を伸張させている。この点は、後輪空気バネ32についても同様である。このように、第2の実施形態では、中央輪空気バネ31あるいは後輪空気バネ32に供給と排出するエアーの関係は、第1の実施形態とは逆の関係となるが、荷重制御装置110の他の制御フローについては、第1の実施形態と同様であるので、その説明を省略する。 Therefore, for example, in the first embodiment, when the vertical load on the center wheel 12 is set to zero, the center wheel air spring 31 is contracted by discharging air from the center wheel air spring 31. In the second embodiment, when the vertical load on the center wheel 12 is zero, the center wheel air spring 31 is extended by supplying pressurized air to the center wheel air spring 31. This also applies to the rear wheel air spring 32. As described above, in the second embodiment, the relationship between the air supplied to and discharged from the central wheel air spring 31 or the rear wheel air spring 32 is the reverse of the relationship of the first embodiment, but the load control device 110. Since the other control flows are the same as those in the first embodiment, the description thereof will be omitted.
 以上、本発明の実施形態について説明したが、本発明は、ロングホイールベースとショートホイールベースの間で、ホイールベースを可変とすることで、屈曲路から高速直線路までの、様々な路面状況で高い運動性能を実現する。また、中央輪12および後輪13の各タイヤが、インホイールモータによって駆動されるため、エンジンからの伝達機構が必要な自動車に比べて、駆動輪の切り替えを伴う荷重モードの切り替えのため構成が簡単になる。また、垂直荷重を制御する装置として、空気バネの伸縮を利用した例を説明したが、タイヤを路面から浮かせることができる装置であれば、他の懸架装置を用いても構わない。例えば、空気バネの代わりに、気体室と液体室を有するハイドロニューマチックバネを用いてもよい。 The embodiments of the present invention have been described above. However, the present invention makes it possible to change the wheel base between the long wheel base and the short wheel base, so that various road surface conditions from a curved road to a high-speed straight road can be achieved. Achieve high exercise performance. Further, since the respective tires of the center wheel 12 and the rear wheel 13 are driven by the in-wheel motor, the configuration for switching the load mode that involves switching of the driving wheels is provided as compared with an automobile that needs a transmission mechanism from the engine. It will be easy. Further, as the device for controlling the vertical load, the example in which the expansion and contraction of the air spring is used has been described, but another suspension device may be used as long as the device can lift the tire from the road surface. For example, instead of the air spring, a hydropneumatic spring having a gas chamber and a liquid chamber may be used.
11…前輪、12…中央輪、13…後輪、20…フレーム、21…車軸、22…支柱、23…アーム、24…軸、31…中央輪空気バネ、32…後輪空気バネ、40…インホイールモータ、51…モード選択スイッチ、52…GPS、53…車速センサ、54…舵角センサ、55…荷重センサ、60…制御部、63…メモリ、64…制御プログラム、65…地図情報、71…コンプレッサ、72…エアータンク、73…制御弁、74…弁駆動部、80…バッテリ、100…6輪自動車、101…運転座席、102…車体、110…荷重制御装置。 11... Front wheel, 12... Central wheel, 13... Rear wheel, 20... Frame, 21... Axle, 22... Strut, 23... Arm, 24... Shaft, 31... Central wheel air spring, 32... Rear wheel air spring, 40... In-wheel motor, 51... Mode selection switch, 52... GPS, 53... Vehicle speed sensor, 54... Steering angle sensor, 55... Load sensor, 60... Control unit, 63... Memory, 64... Control program, 65... Map information, 71 ... Compressor, 72... Air tank, 73... Control valve, 74... Valve drive unit, 80... Battery, 100... Six-wheeled vehicle, 101... Driving seat, 102... Car body, 110... Load control device.

Claims (10)

  1.  車体の左右にそれぞれ2つのタイヤを備えた前輪、中央輪、および、後輪を有する6輪自動車であって、
     運転座席が前記前輪と前記中央輪との間にあり、
     前記中央輪と前記後輪とに垂直荷重を制御する荷重制御装置が設けられていることを特徴とする、6輪自動車。
    A six-wheeled vehicle having a front wheel, a center wheel, and a rear wheel each having two tires on the left and right sides of the vehicle body,
    A driver's seat is between the front wheel and the center wheel,
    A six-wheel vehicle, wherein a load control device for controlling a vertical load is provided on the center wheel and the rear wheel.
  2.  前記車体を支持する荷重モードとして、前記中央輪の垂直荷重をゼロとしたロングホイールベースの第1の荷重モードと、前記後輪の垂直荷重をゼロとしたショートホイールベースの第2の荷重モードとを有することを特徴とする、請求項1に記載の6輪自動車。 As a load mode for supporting the vehicle body, a first load mode of a long wheel base in which a vertical load of the central wheel is zero, and a second load mode of a short wheel base in which a vertical load of the rear wheel is zero. The six-wheeled vehicle according to claim 1, wherein the six-wheeled vehicle comprises:
  3.  前記荷重モードとして、前記前輪、前記中央輪、および、前記後輪の全てに垂直荷重が加わる第3の荷重モードをさらに有することを特徴とする、請求項2に記載の6輪自動車。 The six-wheel vehicle according to claim 2, further comprising, as the load mode, a third load mode in which a vertical load is applied to all of the front wheel, the center wheel, and the rear wheel.
  4.  前記第1の荷重モード、前記第2の荷重モード、および、前記第3の荷重モードを切り替え可能なスイッチを有することを特徴とする、請求項3に記載の6輪自動車。 The six-wheeled vehicle according to claim 3, further comprising a switch capable of switching between the first load mode, the second load mode, and the third load mode.
  5.  車両の走行状態または走行環境に応じて、前記第1の荷重モードと前記第2の荷重モードを切り替える制御部を有することを特徴とする、請求項2に記載の6輪自動車。 The six-wheeled vehicle according to claim 2, further comprising a control unit that switches between the first load mode and the second load mode according to a running state or a running environment of the vehicle.
  6.  前記制御部が、車速に応じて、前記第1の荷重モードと前記第2の荷重モードを切り替える、請求項5に記載の6輪自動車。 The six-wheeled vehicle according to claim 5, wherein the control unit switches between the first load mode and the second load mode according to a vehicle speed.
  7.  前記制御部が、舵角に応じて、前記第1の荷重モードと前記第2の荷重モードを切り替える、請求項5に記載の6輪自動車。 The six-wheeled vehicle according to claim 5, wherein the control unit switches between the first load mode and the second load mode according to a steering angle.
  8.  前記制御部が、高速道路を走行していると判定した場合に、前記第1の荷重モードを選択することを特徴とする、請求項5に記載の6輪自動車。 The six-wheeled vehicle according to claim 5, wherein the control unit selects the first load mode when it is determined that the control unit is traveling on a highway.
  9.  前記荷重制御装置が空気バネまたはハイドロニューマチックバネを備えることを特徴とする、請求項1~8のいずれか1に記載の6輪自動車。 The six-wheeled vehicle according to any one of claims 1 to 8, wherein the load control device comprises an air spring or a hydropneumatic spring.
  10.  少なくとも前記中央輪および前記後輪の各タイヤが、インホイールモータによって駆動される、請求項1~9のいずれか1に記載の6輪自動車。 The six-wheeled vehicle according to any one of claims 1 to 9, wherein at least the tires of the central wheel and the rear wheels are driven by an in-wheel motor.
PCT/JP2019/046517 2018-12-06 2019-11-28 6-wheel automobile WO2020116298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-228946 2018-12-06
JP2018228946A JP2020090211A (en) 2018-12-06 2018-12-06 Six-wheeled vehicle

Publications (1)

Publication Number Publication Date
WO2020116298A1 true WO2020116298A1 (en) 2020-06-11

Family

ID=70975037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046517 WO2020116298A1 (en) 2018-12-06 2019-11-28 6-wheel automobile

Country Status (3)

Country Link
JP (1) JP2020090211A (en)
TW (1) TW202023853A (en)
WO (1) WO2020116298A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220363327A1 (en) * 2021-05-13 2022-11-17 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle selectively convertible to a dually configuration
US11752822B1 (en) * 2022-04-25 2023-09-12 Ford Global Technologies, Llc Bolt on suspension kit for increasing vehicle payload

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4512885B1 (en) * 1966-03-21 1970-05-11
JPS62146708A (en) * 1985-12-20 1987-06-30 Maruyama Seisakusho:Kk Trunnion type traveling vehicle
JPH0237013A (en) * 1988-07-27 1990-02-07 Maruyama Mfg Co Ltd Wheel control device for agricultural vehicle
JP2002186119A (en) * 2000-12-18 2002-06-28 Japan Science & Technology Corp Electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4512885B1 (en) * 1966-03-21 1970-05-11
JPS62146708A (en) * 1985-12-20 1987-06-30 Maruyama Seisakusho:Kk Trunnion type traveling vehicle
JPH0237013A (en) * 1988-07-27 1990-02-07 Maruyama Mfg Co Ltd Wheel control device for agricultural vehicle
JP2002186119A (en) * 2000-12-18 2002-06-28 Japan Science & Technology Corp Electric vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220363327A1 (en) * 2021-05-13 2022-11-17 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle selectively convertible to a dually configuration
US11530009B2 (en) * 2021-05-13 2022-12-20 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle selectively convertible to a dually configuration
US11752822B1 (en) * 2022-04-25 2023-09-12 Ford Global Technologies, Llc Bolt on suspension kit for increasing vehicle payload

Also Published As

Publication number Publication date
JP2020090211A (en) 2020-06-11
TW202023853A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
CN102897260B (en) Coaxial two-wheel vehicle and method for controlling same
JP4063334B2 (en) Driving mode ride height adjustment
US20120221196A1 (en) Active tire controller device
US20070151777A1 (en) Wheel Arrangement For A Four-Wheeled Vehicle
US20010035617A1 (en) Variable camber suspension system
WO2020116298A1 (en) 6-wheel automobile
US20020149161A1 (en) System and method for reducing risk of vehicle rollover
CN104853941A (en) Method for combined determining of a momentary roll angle of a motor vehicle and a momentary roadway cross slope of a curved roadway section traveled by the motor vehicle
MXPA02002597A (en) Vehicle axle.
CN104010921A (en) Device for a motor vehicle having a rear axle steering system and method for operating a motor vehicle
US7690471B2 (en) Hydraulic-drive work vehicle
JP2023540180A (en) Method of controlling steering of vehicle equipment
JP2003259549A (en) Vehicle
JP5652339B2 (en) Vehicle motion control system
JP2004358988A (en) Vehicle with vehicle height adjusting function
JPH09109645A (en) Axle load distributing device of air suspension vehicle
JPS6223808A (en) Attitude control device in multiple axle running vehicle
JP2002293122A (en) Speed sensitive type vehicle height adjusting mechanism and controlling method therefor
WO2023126439A1 (en) Tire orientation and pressure adjustment to balance traction and range
JP2018193009A (en) vehicle
JP3057852B2 (en) Suspension device
JP3166577B2 (en) Trunnion type suspension
JPH061132A (en) Camber angle control device for vehicle
WO2014120110A1 (en) Rolling resistance reduction from improved wheel systems
KR200354369Y1 (en) A baiancing equipment for car's body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893296

Country of ref document: EP

Kind code of ref document: A1