WO2020096343A1 - 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 - Google Patents

겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2020096343A1
WO2020096343A1 PCT/KR2019/014965 KR2019014965W WO2020096343A1 WO 2020096343 A1 WO2020096343 A1 WO 2020096343A1 KR 2019014965 W KR2019014965 W KR 2019014965W WO 2020096343 A1 WO2020096343 A1 WO 2020096343A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
polymer electrolyte
Prior art date
Application number
PCT/KR2019/014965
Other languages
English (en)
French (fr)
Inventor
안경호
이정훈
신원경
이재원
김민정
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980070448.1A priority Critical patent/CN113544893B/zh
Priority to EP19883207.3A priority patent/EP3863099A4/en
Priority to US17/291,263 priority patent/US11967679B2/en
Publication of WO2020096343A1 publication Critical patent/WO2020096343A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery comprising a composition for a gel polymer electrolyte and a gel polymer electrolyte formed therefrom.
  • the lithium secondary battery can be divided into a lithium ion battery using a liquid electrolyte and a lithium polymer battery using a polymer electrolyte according to the applied electrolyte.
  • Lithium ion batteries have the advantage of high capacity, but there is a risk of leakage and explosion due to the use of a liquid electrolyte containing lithium salt, and there is a disadvantage in that the battery design is complicated due to countermeasures.
  • a secondary battery to which a gel polymer electrolyte is applied can be manufactured by the following two methods.
  • an electrolyte composition is prepared by mixing a polymerization initiator and a polymerizable monomer or oligomer in an organic solvent in which an electrolyte salt is dissolved, and then pouring it into a battery case in which the electrode assembly is stored, and gelling (crosslinking) by adding an appropriate temperature. Can be produced.
  • the method requires a process for maintaining the temperature required for gelation, and thus there is a time and economic loss.
  • pre-gelation occurs at room temperature before pouring the composition inside the battery, and it is not easy to perform the pouring process, as well as A problem in that the overall performance of the battery is lowered due to a decrease in wetting properties may occur.
  • the electrolyte composition is coated on one or both surfaces of one of the electrodes and the separator, and cured (gelled) using heat or UV to prepare a gel polymer electrolyte, and then the electrode on which the gel polymer electrolyte is formed and / or
  • the electrode assembly prepared by winding or laminating the separator may be inserted into a battery case and re-injected with an existing liquid electrolyte.
  • composition for a gel polymer electrolyte comprising a polymerizable oligomer comprising a polycarbonate group as a repeating unit.
  • the present invention is to provide a gel polymer electrolyte having improved oxidation stability by polymerizing the composition for a gel polymer electrolyte.
  • the gel polymer electrolyte by including the gel polymer electrolyte, it is intended to provide a lithium secondary battery with improved high-temperature storage stability.
  • Lithium salt, non-aqueous organic solvent, polymerization initiator, and oligomer Lithium salt, non-aqueous organic solvent, polymerization initiator, and oligomer
  • the oligomer provides a composition for a gel polymer electrolyte comprising at least one selected from the group consisting of oligomers represented by the following Chemical Formula 1 and Chemical Formula 2.
  • R 'and R' ' are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R 1 is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a substituted or unsubstituted carbon number 2 To 20 heterocycloalkylene groups, -CO-OR- (where R is an alkylene group having 1 to 10 carbon atoms), -R o -CO- (where R o is an alkylene group having 1 to 10 carbon atoms) or- R i -O-R ' i- (wherein R i and R' i are each independently a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms),
  • R 2 is -CO-OR 3 -O- (where R 3 is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 arylene groups, substituted or unsubstituted heterocycloalkylene groups having 2 to 20 carbon atoms, -CO-OR- (where R is an alkylene group having 1 to 10 carbon atoms), -R j -CO- (where , R j is an alkylene group having 1 to 10 carbon atoms) or -R k -O-R ' k- (where R k and R' k are each independently substituted or unsubstituted alkylene group having 1 to 10 carbon atoms)) Or -R 4 -CO-O- (R 4 is substituted or unsubstituted alkylene group having 1 to 10
  • R a , R b , R c and R d are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • n and m are the number of repeat units
  • n is an integer from 1 to 100
  • n 1 to 100
  • a and c are each independently an integer of 0 to 2
  • b and d are each independently an integer of 1 to 3.
  • R 5 , R 6 , R 7 and R 8 are each independently substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, substituted or unsubstituted carbon number 6 to An arylene group of 20, a substituted or unsubstituted heterocycloalkylene group having 2 to 20 carbon atoms, -CO-OR m- (where R m is an alkylene group having 1 to 10 carbon atoms), -R n -CO- (where, R n is an alkylene group having 1 to 10 carbon atoms) or -R 12 -OR 13- (where R 12 and R 13 are each independently a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms),
  • R 9 , R 10 and R 11 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R e , R f , R g and R h are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • o, p and q are repeat units
  • o is an integer from 1 to 100
  • p is an integer from 1 to 100
  • q is an integer from 1 to 100
  • a1 and c1 are each independently an integer from 0 to 2
  • b1 and d1 are each independently an integer of 1 to 3.
  • another embodiment of the present invention provides a gel polymer electrolyte prepared by polymerizing the composition for a gel polymer electrolyte of the present invention.
  • another embodiment of the present invention provides a lithium secondary battery comprising the gel polymer electrolyte of the present invention.
  • the oligomer contained in the composition for a gel polymer electrolyte of the present invention includes an acrylate group and a urethane group of a hydrophilic group in a structure, and at the same time, a polycarbonate group as a repeating unit can improve the wettability of the composition for a gel polymer electrolyte, and the anode at high temperature.
  • a stable film can be formed on the surface.
  • the composition for a gel polymer electrolyte containing the oligomer it is possible to prepare a gel polymer electrolyte with improved oxidation stability by suppressing side reactions between the positive electrode and the electrolyte. In addition, by including this, it is possible to manufacture a lithium secondary battery with improved high-temperature storage stability.
  • alkylene group means a branched or unbranched divalent unsaturated hydrocarbon group.
  • the alkylene group may be substituted or unsubstituted.
  • the alkylene group includes, but is not limited to, methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, tert-butylene group, pentylene group, 3-pentylene group, etc. It can be optionally substituted in other embodiments.
  • an alkylene group having 1 to 5 carbon atoms means an alkylene group containing 1 to 5 carbon atoms, ie -CH 2- , -CH 2 CH 2- , -CH 2 CH 2 CH 2- , -CH 2 (CH 2 ) CH-, -CH (CH 2 ) CH 2 -and -CH (CH 2 ) CH 2 CH 2- .
  • substitution means that at least one hydrogen bonded to carbon is substituted with an element other than hydrogen, unless otherwise defined, for example, an alkyl group having 1 to 5 carbon atoms or a fluorine element. Means substituted with.
  • composition for a gel polymer electrolyte is provided.
  • the composition for the gel polymer electrolyte includes a lithium salt, a non-aqueous organic solvent, a polymerization initiator, and an oligomer, and the oligomer includes at least one selected from the group consisting of oligomers represented by Formula 1 and Formula 2 below.
  • R 'and R' ' are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R 1 is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a substituted or unsubstituted carbon number 2 To 20 heterocycloalkylene groups, -CO-OR- (where R is an alkylene group having 1 to 10 carbon atoms), -R o -CO- (where R o is an alkylene group having 1 to 10 carbon atoms) or- R i -O-R ' i- (wherein R i and R' i are each independently a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms),
  • R 2 is -CO-OR 3 -O- (where R 3 is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 arylene groups, substituted or unsubstituted heterocycloalkylene groups having 2 to 20 carbon atoms, -CO-OR- (where R is an alkylene group having 1 to 10 carbon atoms), -R j -CO- (where , R j is an alkylene group having 1 to 10 carbon atoms) or -R k -O-R ' k- (where R k and R' k are each independently substituted or unsubstituted alkylene group having 1 to 10 carbon atoms)) Or -R 4 -CO-O- (R 4 is substituted or unsubstituted alkylene group having 1 to 10
  • R a , R b , R c and R d are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • n and m are the number of repeating units
  • n is an integer from 1 to 100
  • n 1 to 100
  • a and c are each independently an integer of 0 to 2
  • b and d are each independently an integer of 1 to 3.
  • R 5 , R 6 , R 7 and R 8 are each independently substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, substituted or unsubstituted carbon number 6 to An arylene group of 20, a substituted or unsubstituted heterocycloalkylene group having 2 to 20 carbon atoms, -CO-OR m- (where R m is an alkylene group having 1 to 10 carbon atoms), -R n -CO- (where, R n is an alkylene group having 1 to 10 carbon atoms) or -R 12 -OR 13- (where R 12 and R 13 are each independently substituted or unsubstituted alkylene group having 1 to 10 carbon atoms),
  • R 9 , R 10 and R 11 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R e , R f , R g and R h are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • o, p and q are repeat units
  • o is an integer from 1 to 100
  • p is an integer from 1 to 100
  • q is an integer from 1 to 100
  • a1 and c1 are each independently an integer from 0 to 2
  • b1 and d1 are each independently an integer of 1 to 3.
  • the lithium salt is used as an electrolyte salt in a lithium secondary battery, and is used as a medium for transferring ions.
  • the lithium salt is in, and anions including Li + as the cation F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, ClO 4 -, BF 4 -, AlO 4 - , AlCl 4 -, PF 6 - , SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, ( CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N
  • the lithium salt may be used alone or in combination of two or more, if necessary.
  • the lithium salt can be appropriately changed within a range that can be normally used, but in order to obtain an optimal anti-corrosion film formation effect on the electrode surface, it is included in the gel polymer electrolyte composition at a concentration of 1.0M to 5M, specifically 1.5M to 4M. Can be.
  • the composition for a gel polymer electrolyte of the present invention can reduce the resistance due to depletion of lithium ions during high rate charging and discharging by including an electrolyte salt of 1.5M or more. Moreover, when the concentration of the electrolyte salt in the composition for a gel polymer electrolyte of the present invention satisfies the above range, the ion transfer properties of the high lithium cation (Li + ) due to the increase in the lithium cation present in the composition for the gel polymer electrolyte (ie , It is possible to secure the cation transport rate (transference number), it is possible to achieve the effect of reducing the diffusion resistance of lithium ions to improve the cycle capacity characteristics.
  • the concentration of the electrolyte salt is 5M or less, while securing the movement speed of lithium ions, it is possible to prevent an increase in the viscosity of the electrolyte. If, when the maximum concentration of the electrolyte salt exceeds 5M, since the viscosity of the composition for the gel polymer electrolyte is excessively increased, the wettability of the electrolyte decreases, the overall performance of the secondary battery may deteriorate.
  • the non-aqueous organic solvent is not limited as long as decomposition by an oxidation reaction or the like during charging and discharging of the secondary battery can be minimized and the desired properties can be exhibited together with the additive.
  • carbonate-based organic solvents, ether-based organic solvents, or ester-based organic solvents may be used alone or in combination of two or more.
  • the carbonate-based organic solvent may include at least one of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent is ethylene carbonate (ethylene carbonate, EC), propylene carbonate (propylene carbonate, PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene It may include at least one selected from the group consisting of carbonate, 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate (FEC), and is specifically compared to ethylene carbonate and ethylene carbonate having high dielectric constants. It may include a mixed solvent of propylene carbonate having a low melting point.
  • the linear carbonate-based organic solvent is a solvent having a low viscosity and a low dielectric constant, dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl It may include at least one selected from the group consisting of propyl carbonate and ethylpropyl carbonate, and more specifically, may include dimethyl carbonate.
  • the ether-based organic solvent may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more of them, but is not limited thereto. It does not work.
  • the ester-based organic solvent may include at least one selected from the group consisting of a linear ester-based organic solvent and a cyclic ester-based organic solvent.
  • the linear ester-based organic solvent may be any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate, or specific examples thereof. Mixtures of two or more types may be used, but are not limited thereto.
  • cyclic ester-based organic solvent examples include any one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone, or two of them.
  • the above mixture may be used, but is not limited thereto.
  • the non-aqueous organic solvent has a high dielectric constant and may use a high-viscosity cyclic carbonate-based organic solvent that dissociates lithium salts in the electrolyte well.
  • a high-viscosity cyclic carbonate-based organic solvent that dissociates lithium salts in the electrolyte well.
  • at least one of low viscosity, low dielectric constant linear carbonate-based compounds and linear ester-based compounds, such as dimethyl carbonate and diethyl carbonate, together with the environmental carbonate-based organic solvent is prepared. It can be used by mixing in an appropriate ratio.
  • the organic solvent has a concentration of solids composed of a lithium salt and an oligomer based on the total weight of the composition for a gel polymer electrolyte of 70% by weight or less, specifically 50% by weight or less, more Specifically, it may be included to be 10% by weight or less.
  • composition for a gel polymer electrolyte of the present invention may include one or more oligomers.
  • the oligomer is a compound having a crosslinkable substituent capable of forming a polymer matrix, which is a basic skeleton of a gel polymer electrolyte, while being oxidized by a polymerization reaction when the temperature rises, specifically, Formula 1 and one or more acrylate groups at the ends. It may include at least one or more of the oligomer represented by the formula (2).
  • R 'and R' ' may be aliphatic hydrocarbon groups.
  • the aliphatic hydrocarbon group may include at least one selected from the group consisting of alicyclic hydrocarbon groups and linear hydrocarbon groups.
  • the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkenylene group having 4 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted heterocycloalkylene group having 2 to 20 carbon atoms.
  • the linear hydrocarbon group is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; A substituted or unsubstituted alkoxyl group having 1 to 20 carbon atoms; A substituted or unsubstituted alkenylene group having 2 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted alkynylene group having 2 to 20 carbon atoms.
  • R 'and R' ' may be aromatic hydrocarbon groups.
  • the aromatic hydrocarbon group is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted heteroarylene group having 4 to 20 carbon atoms.
  • R 1 is a substituted or unsubstituted alkylene group having 2 to 8 carbon atoms, a substituted or unsubstituted cycloalkylene group having 4 to 10 carbon atoms, a substituted or unsubstituted carbon number 6 to 15 Arylene group, a substituted or unsubstituted heterocycloalkylene group having 2 to 10 carbon atoms, -CO-OR- (where R is an alkylene group having 2 to 8 carbon atoms), -R o -CO- (where R o is Alkylene group having 2 to 8 carbon atoms) and -R i -O-R ' i- (where R i and R' i are each independently substituted or unsubstituted alkylene group having 1 to 8 carbon atoms) It can be at least one.
  • R 2 is -CO-OR 3 -O- (where R 3 is a substituted or unsubstituted alkylene group having 2 to 8 carbon atoms, a substituted or unsubstituted carbon number 4 to 10 Of cycloalkylene group, substituted or unsubstituted arylene group having 6 to 15 carbon atoms, substituted or unsubstituted heterocycloalkylene group having 2 to 10 carbon atoms, -CO-OR- (where R is an alkylene group having 1 to 10 carbon atoms Is), -R j -CO- (where R j is an alkylene group having 2 to 8 carbon atoms), or -R k -O-R ' k- (where R k and R' k are each independently substituted or unsubstituted) Substituted alkylene group having 1 to 8 carbon atoms) or -R 4 -CO-O- (where R 4 is
  • R 1 is a propylene group, butylene group, pentylene group, hexylene group, cyclopentylene group, cyclohexylene group, -CO-O- (CH 2 ) 5- , -(CH 2 CH 2 OCH 2 CH 2 ) r- (where r is an integer from 1 to 10) and-(CH 2 ) 5 -CO- is at least one selected from the group consisting of, R 2 is -CO- OR 3 -O- (At this time, R 3 is a propylene group, butylene group, pentylene group, hexylene group, cyclopentylene group, cyclohexylene group,-(CH 2 CH 2 OCH 2 CH 2 ) r1- (where r1 Is an integer from 1 to 10)) and-(CH 2 ) 5 -CO-O- may be at least one selected from the group consisting of at least one selected from the group
  • the molar ratio of the number of repeating units n: m may be 1: 0.01 to 1: 100, specifically 1: 0.1 to 50.
  • the oligomer represented by Formula 1 may be at least one selected from the group consisting of compounds represented by the following Formulas 1a to 1c.
  • n1 is an integer from 1 to 100
  • n1 is an integer from 1 to 100.
  • n2 is an integer from 1 to 100
  • n2 is an integer from 1 to 100.
  • n3 is an integer from 1 to 100
  • n3 is an integer from 1 to 100.
  • R 9 , R 10 and R 11 may be an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may include at least one selected from the group consisting of alicyclic hydrocarbon groups and linear hydrocarbon groups.
  • the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkenylene group having 4 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted heterocycloalkylene group having 2 to 20 carbon atoms.
  • the linear hydrocarbon group is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; A substituted or unsubstituted alkoxyl group having 1 to 20 carbon atoms; A substituted or unsubstituted alkenylene group having 2 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted alkynylene group having 2 to 20 carbon atoms.
  • R 9 , R 10 and R 11 may be aromatic hydrocarbon groups.
  • the aromatic hydrocarbon group is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted heteroarylene group having 4 to 20 carbon atoms.
  • R 5 , R 6 , R 7 and R 8 are each independently substituted or unsubstituted alkylene group having 2 to 8 carbon atoms, substituted or unsubstituted cyclo having 4 to 10 carbon atoms.
  • Alkylene group a substituted or unsubstituted arylene group having 6 to 15 carbon atoms, a substituted or unsubstituted heterocycloalkylene group having 2 to 10 carbon atoms, -CO-OR m- (where R m is an alkylene group having 2 to 8 carbon atoms) ), -R n -CO- (where R n is an alkylene group having 2 to 8 carbon atoms) or -R 12 -OR 13- (where R 12 and R 13 are each independently substituted or unsubstituted carbon atoms 1 to 8).
  • R 5 , R 6 , R 7 and R 8 are each independently a propylene group, butylene group, pentylene group, hexylene group, cyclopentylene group, cyclohexylene group,- CO-O- (CH 2 ) 5 -,-(CH 2 CH 2 OCH 2 CH 2 ) r2- (where r2 is an integer from 1 to 10) and-(CH 2 ) 5 -CO- It may be at least one selected, wherein R 5 , R 6 , R 7 and R 8 may be the same as or different from each other.
  • the molar ratio of the number of repeating units (p + q): o may be 1: 0.01 to 1: 100, specifically 1: 0.1 to 50.
  • the molar ratio of the number of repeating units q: p may be 1: 0.11 to 1: 9, specifically 1: 0.5 to 8.
  • the efficiency of dissociating the Li salt decreases and ion conductivity may decrease and the number of repeating units (p + q)
  • the molar ratio of o which is the number of repeating units, per 1 mole exceeds 100
  • the contact characteristics with respect to the electrode are deteriorated, and the interface resistance may be greatly increased during cell construction.
  • the molar ratio of p the number of repeating units to q 1 mol
  • the number of repeating units exceeds 9, the polymerization reaction rate may be lowered.
  • the oligomer represented by Chemical Formula 2 may be a compound represented by Chemical Formula 2a.
  • o1 is an integer from 1 to 100
  • p1 is an integer from 1 to 100
  • q1 is an integer from 1 to 100.
  • the oligomer includes oligomers represented by Chemical Formula 1: oligomers represented by Chemical Formula 2 in a weight ratio of 1:99 to 100: 0, specifically 50:50 to 100: 0. Can be.
  • the oligomer represented by the formula (1) or formula (2) of the present invention has a hydrophilic part acrylate group and a urethane group in the structure, and thus acts as a surfactant in the composition for a gel polymer electrolyte to lower the surface tension with the electrode. Interfacial resistance can be improved. Therefore, it is possible to bring the effect of improving the wettability of the composition for a gel polymer electrolyte to the electrode and the separator.
  • the oligomer of the present invention exhibits a balance of affinity in the hydrophilic part (anode, separator (SRS layer)) and hydrophobic part (cathode, separator fabric) inside the cell by including a polycarbonate group in the structure as a repeating unit. It is possible to form a stable film at a high temperature on the surface. That is, while oxygen of the polycarbonate group is adsorbed on the surface of the anode where oxygen is lost, a stable film is formed on the surface of the anode at high temperature, thereby preventing exposure to the electrolyte.
  • a side reaction between the positive electrode and the electrolyte can be suppressed to form a gel polymer electrolyte with improved oxidation stability.
  • a robust and stable SEI film is formed on the negative electrode surface, thereby improving durability and high temperature storage characteristics of the battery. Therefore, in the present invention, a lithium secondary battery having improved performance such as stability during high temperature storage can be implemented.
  • the oligomer may be included in an amount of 0.1% to 35% by weight, specifically 0.5 to 30% by weight, more specifically 1 to 30% by weight, and preferably 1 to 20% by weight based on the total weight of the composition for gel polymer electrolyte. have.
  • the content of the oligomer represented by Chemical Formula 1 is included in the above range, that is, 0.1% by weight, particularly 0.5% by weight or more, a polymer matrix by the oligomer can be easily formed, and a polymer network having excellent mechanical strength can be formed.
  • the content of the oligomer is 35% by weight or less, specifically 30% by weight or less, and particularly 20% by weight or less, disadvantages such as increased resistance due to the addition of an excess amount of oligomer and restriction of movement of lithium ions, for example, reduced ion conductivity It is possible to prevent and improve the wettability of the gel polymer electrolyte while ensuring an appropriate viscosity.
  • the capacity characteristics may be lowered as the interface resistance increases.
  • the weight average molecular weight (Mw) of the oligomer represented by the formula (1) can be adjusted by the number of repeating units, about 1,000 g / mol to 1,500,000 g / mol, specifically 1,000 g / mol to 500,000 g / mol , More specifically 1,000 g / mol to 100,000 g / mol, and more specifically 5,000 g / mol to 50,000 g / mol.
  • Mw weight average molecular weight
  • the weight average molecular weight of the oligomer represented by Formula 1 is less than 1,000 g / mol, proper mechanical strength cannot be expected, and more polymerization initiators are required to form numerous crosslinking bonds, or a demanding additional polymerization process is required. As a result, the gel polymer electrolyte formation process is complicated. On the other hand, if the weight average molecular weight exceeds 1,500,000 g / mol, the oligomer properties themselves become rigid, and the affinity with the electrolyte solvent is low, so dissolution becomes difficult, and thus it is not possible to expect uniform and excellent gel polymer electrolyte formation.
  • the weight average molecular weight can be measured using a gel permeation chromatography (Gel Permeation Chromatography: GPC) device, unless specifically defined otherwise, the molecular weight may mean the weight average molecular weight.
  • GPC Gel Permeation Chromatography
  • a GPC condition is measured using Agilent's 1200 series, and the column used may be a Agilent's PL mixed B column, and THF may be used as a solvent.
  • composition for a gel polymer electrolyte of the present invention may include a polymerization initiator in order to perform a radical reaction required when preparing a gel polymer electrolyte.
  • the polymerization initiator may be a conventional thermal or photo polymerization initiator known in the art.
  • the polymerization initiator may be decomposed by heat to form radicals, and may react with an oligomer represented by Chemical Formula 1 or 2 by free radical polymerization to form a gel polymer electrolyte.
  • non-limiting examples of the polymerization initiator include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, and di-tert-butyl peroxide.
  • organics such as butyl peroxide, t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, and hydrogen peroxide Peroxides or hydroperoxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), 2,2'-azobis (isobutyronitrile) ( AIBN; 2,2'-Azobis (iso-butyronitrile)) and 2,2'-azobisdimethyl-valeronitrile (AMVN; 2,2'-Azobisdimethyl-Valeronitrile). And the like, but is not limited thereto.
  • the polymerization initiator is decomposed by heat in a battery, for example, without limitation, from 30 ° C to 100 ° C, or decomposed at room temperature (5 ° C to 30 ° C) to form radicals, and polymerizable oligomers are acrylated by free radical polymerization. It can react with a system-based compound to form a gel polymer electrolyte.
  • the polymerization initiator may be included in an amount of 0.01 to 20 parts by weight, specifically 0.1 to 10 parts by weight based on 100 parts by weight of the oligomer.
  • the gel polymer conversion rate can be increased to secure gel polymer electrolyte properties, prevent a pre-gel reaction, and improve the wettability of the gel polymer electrolyte composition for the electrode. Can be.
  • composition for a gel polymer electrolyte of the present invention prevents the cathodic collapse from being decomposed in a high-power environment when producing a gel polymer electrolyte, or prevents low-temperature high-rate discharge characteristics, high temperature stability, overcharge prevention, swelling improvement effect at high temperature storage, etc.
  • it may further include additional additives capable of forming a more stable ion conductive film on the electrode surface, if necessary.
  • the additional additives include, for example, sulfone-based compounds, sulfite-based compounds, sulfone-based compounds, sulfate-based compounds, halogen-substituted carbonate-based compounds, nitrile-based compounds, cyclic carbonate-based compounds, phosphate-based compounds, and borate-based compounds.
  • the compound, and one or more first additives selected from the group consisting of lithium salt-based compounds may be included.
  • the sultone-based compounds include 1,3-propane sultone (PS), 1,4-butane sultone, ethene sultone, 1,3-propene sultone (PRS), 1,4-butene sultone, and 1-methyl-1, And at least one compound selected from the group consisting of 3-propene sultone, which may be included in an amount of 0.3% to 5% by weight, specifically 1% to 5% by weight, based on the total weight of the composition for gel polymer electrolyte. have.
  • the content of the sultone-based compound in the composition for the gel polymer electrolyte exceeds 5% by weight, an excessively thick film may be formed on the electrode surface, resulting in increased resistance and output deterioration, due to excessive additives in the composition for the gel polymer electrolyte.
  • the resistance is increased, and output characteristics may be deteriorated.
  • the sulfite-based compounds include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, and 4,5-dimethyl propylene At least one selected from the group consisting of sulfite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, and 1,3-butylene glycol sulfite Compounds may be included, and may be included in 3% by weight or less based on the total weight of the composition for gel polymer electrolyte.
  • the sulfone-based compound may include one or more compounds selected from the group consisting of divinyl sulfone, dimethyl sulfone, diethyl sulfone, methylethyl sulfone, and methylvinyl sulfone, based on the total weight of the composition for gel polymer electrolyte 3 It may be included in weight% or less.
  • the sulfate-based compound may include ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS), based on the total weight of the composition for gel polymer electrolyte It may be included as 3% by weight or less.
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the halogen-substituted carbonate-based compound may include fluoroethylene carbonate (FEC), and may contain 5% by weight or less based on the total weight of the composition for the gel polymer electrolyte.
  • FEC fluoroethylene carbonate
  • the content of the halogen-substituted carbonate-based compound in the composition for gel polymer electrolyte exceeds 5% by weight, cell swelling performance may be deteriorated.
  • the nitrile-based compound is succinonitrile, adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, In the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile And at least one compound selected.
  • the cyclic carbonate-based compound may include vinylene carbonate (VC) or vinyl ethylene carbonate, and may contain 3% by weight or less based on the total weight of the composition for the gel polymer electrolyte.
  • VC vinylene carbonate
  • the cyclic carbonate-based compound may contain 3% by weight or less based on the total weight of the composition for the gel polymer electrolyte.
  • the phosphate-based compounds include lithium difluoro (bisoxalato) phosphate, lithium difluorophosphate, tetramethyl trimethyl silyl phosphate, trimethyl silyl phosphite, tris (2,2,2-trifluoroethyl) phosphate and tris (Trifluoroethyl) one or more compounds selected from the group consisting of phosphite, and may be included in an amount of 3% by weight or less based on the total weight of the composition for the gel polymer electrolyte.
  • the borate-based compound may include lithium oxalyl difluoroborate, and may be included in an amount of 3% by weight or less based on the total weight of the composition for the gel polymer electrolyte.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the composition for the gel polymer electrolyte, consisting of LiPO 2 F 2 , LiODFB, LiBOB (lithium bisoxalate borate (LiB (C 2 O 4 ) 2 ) and LiBF 4 And one or more compounds selected from the group, and may contain 3% by weight or less based on the total weight of the composition for gel polymer electrolyte.
  • the additional additives may be included in a mixture of two or more kinds of 20% by weight or less, specifically 0.1% to 10% by weight based on the total weight of the composition for the gel polymer electrolyte.
  • the content of the additive is less than 0.01% by weight, the effect of improving the low temperature output of the battery and improving the high temperature storage characteristic and the high temperature life characteristic is negligible, and when the content of the additional additive exceeds 20% by weight, the battery is charged and discharged.
  • side reactions in the composition for the gel polymer electrolyte will occur excessively. In particular, it is not sufficiently decomposed at high temperature, and may remain unreacted or precipitated in the composition for gel polymer electrolyte at room temperature. Accordingly, side reactions may occur in which the life or resistance characteristics of the secondary battery are deteriorated.
  • the present invention can provide a gel polymer electrolyte prepared by polymerization of the composition for a gel polymer electrolyte using a polymerization method known in the art.
  • the gelation method for preparing the gel polymer electrolyte of the present invention is not particularly limited, and may be performed according to a conventional method known in the art.
  • a composition for a gel polymer electrolyte containing at least one oligomer of a lithium salt, an organic solvent, and oligomers represented by Chemical Formulas 1 and 2 is prepared, and then injected into a battery and subjected to polymerization to obtain a polymer matrix.
  • a gel polymer electrolyte containing can be prepared.
  • a polymer matrix may be formed by performing the polymerization reaction, and then may be prepared by further impregnating a non-aqueous electrolyte solution containing an electrolyte salt and an organic solvent.
  • the polymerization reaction can be carried out through conventional heat, e-beam and gamma ray processes. If the polymerization reaction is thermal polymerization, it takes about 1 hour to 8 hours, and the temperature can be performed within a range of 50 to 100 ° C.
  • conventional gelation has a hassle of blocking oxygen in the atmosphere, which is a radical dissipating agent, by performing a radical polymerization reaction under an inert condition.
  • the oxygen removal agent is included in the gel polymer electrolyte composition, there is an advantage that a polymerization reaction for producing the gel polymer electrolyte can be performed even in the presence of general air or oxygen. That is, since the oxygen scavenger reduces the influence of oxygen during the polymerization reaction, and improves the reactivity of the oligomers, it is possible to increase the extent of the polymerization reaction (extent of reaction) to the extent that there is little large amount of unreacted monomer.
  • the oxygen scavenger may further impart a flame retardant enhancing effect of the gel polymer electrolyte by containing a flame retardant functional group.
  • a lithium secondary battery including the above-described gel polymer electrolyte may be provided, and the lithium secondary battery may be provided between a positive electrode including a positive electrode active material, a negative electrode containing a negative electrode active material, and a positive electrode and a negative electrode. It may include a separator and the gel polymer electrolyte described above.
  • the lithium secondary battery of the present invention can be manufactured according to a conventional method known in the art.
  • a porous separator may be inserted between the positive electrode and the negative electrode, and an electrolyte in which a lithium salt is dissolved may be introduced to prepare it.
  • the positive electrode, the negative electrode, and the separator forming the electrode assembly may be all those commonly used in manufacturing lithium secondary batteries.
  • the positive electrode may be prepared by forming a positive electrode mixture layer on a positive electrode current collector.
  • the positive electrode material mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Surface treatment with nickel, titanium, silver, and the like can be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (Eg, LiNiO 2, etc.), lithium-nickel-manganese oxide (eg, LiNi 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( Here, 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt oxide (for example, LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt Based oxides (
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1) in that the capacity characteristics and stability of the battery can be improved. / 3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
  • the positive electrode active material may be included in 80% to 99% by weight based on the total weight of solids in the positive electrode slurry.
  • the binder is a component that assists in bonding the active material and the conductive material and the like to the current collector, and is usually added at 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene monomer
  • EPDM ethylene-propylene-diene monomer
  • sulfonated EPDM styrene-but
  • the conductive material is usually added at 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • the conductive material is not particularly limited as long as it does not cause chemical changes in the battery and has conductivity, for example, carbon black, acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, Or carbon powder such as thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content concentration in the slurry containing the positive electrode active material, and optionally the binder and the conductive material may be included to be 50% to 95% by weight, preferably 70% to 90% by weight.
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on a negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, etc. on the surface, aluminum-cadmium alloy, or the like can be used.
  • it is also possible to form fine irregularities on the surface to enhance the bonding force of the negative electrode active material and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode active material is a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and capable of doping and dedoping lithium Material, and at least one selected from the group consisting of transition metal oxides.
  • a carbon-based negative electrode active material generally used in lithium ion secondary batteries can be used without particular limitation, and typical examples thereof include crystalline carbon, Amorphous carbon or these can be used together.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake-like, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). Or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • the metal composite oxide includes PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1-x Me ' y O z (Me: Mn, Fe , Pb, Ge; Me ': Al, B, P, Si, Group 1, 2, 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Any one selected from the group can be used.
  • Materials capable of doping and dedoping the lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloys (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, Rare earth elements and elements selected from the group consisting of a combination thereof, not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) Element, and an element selected from the group consisting of a combination of these, not Sn), and the like, and may be used by mixing at least one of them and SiO 2 .
  • the elements Y are Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added at 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • the conductive material may be the same as or different from the conductive material used in the manufacture of the positive electrode, for example, carbon black, acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, or thermal black.
  • Carbon powders such as; Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include water or an organic solvent such as NMP and alcohol, and may be used in an amount that becomes a desirable viscosity when the negative active material and optionally a binder and a conductive material are included.
  • the solid content concentration in the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be included to be 50% to 95% by weight, preferably 70% to 90% by weight.
  • the separator serves to block the internal short circuit of both electrodes and impregnate the electrolyte.
  • a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the coated separator composition is directly coated on the electrode and dried. After forming a separator film or casting and drying the separator composition on a support, the separator film peeled from the support may be formed by lamination on the electrode.
  • the separator is a porous polymer film that is commonly used, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer.
  • the polymer film may be used alone or by laminating them, or a conventional porous non-woven fabric, for example, a high-melting-point glass fiber, a polyethylene terephthalate fiber, or the like, may be used, but is not limited thereto.
  • the pore diameter of the porous separator is generally 0.01 to 50 ⁇ m, porosity may be 5 to 95%.
  • the thickness of the porous separator may generally range from 5 to 300 ⁇ m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape or a coin shape using a can.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a gel polymer electrolyte composition was prepared by adding 1.5 g and AIBN 0.04 g as a polymerization initiator (see Table 1 below).
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a composition for a gel polymer electrolyte was prepared by adding 3 g of trimethylolpropane ethoxylate triacrylate and 0.04 g of AIBN as a polymerization initiator to 96.96 g of the non-aqueous organic solvent (see Table 1 below).
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a composition for a gel polymer electrolyte was prepared by adding 3 g of trimethylolpropane propoxylate triacrylate and 0.04 g of AIBN as a polymerization initiator to 96.96 g of the non-aqueous organic solvent (see Table 1 below).
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a composition for a gel polymer electrolyte was prepared by adding 3 g of dipentaerythritol pentaacrylate and 0.04 g of AIBN as a polymerization initiator to 96.96 g of the non-aqueous organic solvent (see Table 1 below).
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M.
  • a composition for a gel polymer electrolyte was prepared by adding 3 g of diethylene glycol diacrylate and 0.04 g of AIBN as a polymerization initiator to 96.96 g of the non-aqueous organic solvent (see Table 1 below).
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethyl carbonate (DMC) to 2.0M (see Table 1 below).
  • Non-aqueous organic solvent content (g) Oligomer Polymerization initiator addition amount (g) Chemical formula Weight average molecular weight (Mw) Addition amount (g)
  • Example 8 79
  • the measurement was performed using a potentiostat (EG & G, model 270A) under a three-electrode system (work electrode: platinum disc, counter electrode: platinum, reference electrode: lithium metal), and the measurement temperature was 60 ° C.
  • the results are shown in Table 2 below.
  • Specimens were prepared using the composition for gel polymer electrolytes prepared in Examples 1, 3, 5, 7 and Example 14 and the composition for gel polymer electrolytes prepared in Comparative Examples 1 to 4. The specimens were prepared in bulk through ASTM standard D638 (Type V specimens).
  • a gold (Au) electrode on the specimen was coated using a sputter method in a circular shape with a diameter of 1 mm.
  • the ion conductivity was measured in the VMP3 measurement equipment and precision impedance analyzer (4294A) in the frequency band 100MHz to 0.1Hz, and the results of each measurement are shown in Table 3 below.
  • the specimens prepared using the composition for gel polymer electrolytes prepared in Examples 1, 3, 5 and 7 have an ion conductivity at 0 ° C of 5.2 mS / cm or more, and an ion conductivity at 25 ° C. It can be confirmed that is 9.5 mS / cm or more.
  • the specimen prepared using the composition for a gel polymer electrolyte prepared in Example 14 in which the oligomer is contained in excess is a case where only the content of the oligomer is increased under the same conditions, and the motion characteristics of the solvent are greatly reduced due to the increase in the polymer content. It can be seen that the ion conductivity is greatly reduced to 0.6 mS / cm at 25 ° C.
  • a cathode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; NCM
  • NMP N-methyl-2-pyrrolidone
  • carbon black carbon black
  • PVDF polyvinylidene fluorine as a binder Ride
  • a negative electrode mixture slurry was prepared by adding graphite as a negative electrode active material, PVDF as a binder, and carbon black as a conductive material to NMP as a solvent in water in a weight ratio of 96: 3: 1.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then subjected to roll press to prepare a negative electrode.
  • Cu copper
  • a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) is sequentially stacked between the positive electrode and the negative electrode to prepare an electrode assembly, and then the assembled electrode assembly is housed in a battery case.
  • Each lithium secondary battery is fully charged with a constant current-constant voltage of 0.33C / 4.2V in a voltage driving range of 3.0V to 4.2V, discharged for 10 seconds at 2.5C at SOC 50%, and charges the initial capacity when discharged, PNE-0506 Measurement was performed using a discharger (manufacturer: PNE solution, 5V, 6A), and the results are shown in Table 4 below.
  • the initial capacity of the lithium secondary battery having a composition for a gel polymer electrolyte prepared in Examples 1, 3, 5, 7, 10 to 13 of the present invention is about 29.1 mAh or more, while Comparative Examples 1 to The initial capacity of the lithium secondary battery having the composition for gel polymer electrolyte prepared in 4 is about 28.4 mAh or less, and the lithium secondary having the composition for gel polymer electrolyte prepared in Examples 1, 3, 5, 7, 10 to 13 It can be seen that the battery is inferior.
  • the resistance value of the lithium secondary battery provided with the composition for gel polymer electrolytes prepared in Examples 1, 3, 5, 7, 10 to 13 of the present invention is less than about 103.5%
  • the comparative examples 1 to 4 The resistance value of the lithium secondary battery having a composition for a gel polymer electrolyte is about 115% or more, which is a significant increase compared to a lithium secondary battery having a composition for a gel polymer electrolyte prepared in Examples 1, 3, 5, 7, 10 to 13. Able to know.
  • Secondary batteries provided with compositions for gel polymer electrolytes of Examples 1, 3, 5, 7, 8 and 10 to 13 prepared in Experimental Example 3 and secondary batteries provided with compositions for gel polymer electrolytes of Comparative Examples 1 to 4 And Comparative Example 5, the secondary battery having the composition for the gel polymer electrolyte was fully charged under SOC 100% condition, and then the secondary battery was introduced into a 150 ° C chamber and stored for 4 hours while storing MMC equipment (Multiple Module Calorimeter, NETZSCH, MMC274 MMC 274) was used to measure the calorific value of the cell. Table 5 shows the results.
  • MMC equipment Multiple Module Calorimeter, NETZSCH, MMC274 MMC 274
  • the calorific value of the lithium secondary battery provided with the composition for gel polymer electrolyte of Example 8 containing 20% by weight of oligomer was greatly improved to 20 J / g.
  • the calorific value of the secondary battery provided with the composition for gel polymer electrolyte of Comparative Example 5 exceeds 200 J / g, and lithium with the composition for gel polymer electrolyte prepared in Examples 1, 3, 5, 7 and 8 It can be seen that the contrast of the secondary battery is greatly inferior.

Abstract

본 발명은 리튬염, 비수계 유기용매, 중합개시제, 및 폴리카보네이트계 반복단위를 함유하는 올리고머를 포함하는 겔 폴리머 전해질용 조성물과, 상기 겔 폴리머 전해질용 조성물을 중합하여 기계적 강도와 이온전달능력이 향상된 겔 폴리머 전해질 및 이를 포함함으로써, 외부 충격 및 고온 저장 시에 안정성이 향상된 리튬 이차전지에 관한 것이다.

Description

겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2018년 11월 06일자 한국 특허 출원 제2018-0134836호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지에 관한 것이다.
최근 전기, 전자, 통신 및 컴퓨터 산업이 급속히 발전함에 따라 고성능, 고안정성 이차전지에 대한 수요가 점차 증가하고 있다. 특히, 이들 전자 및 통신 기기의 소형화 및 경량화 추세에 따라, 이 분야의 핵심부품인 리튬 이차전지의 박막화 및 소형화가 요구되고 있다.
리튬 이차전지는 적용되는 전해질에 따라 액체 전해질을 사용하는 리튬 이온전지와 폴리머 전해질을 사용하는 리튬 폴리머 전지로 나눌 수 있다.
리튬 이온전지는, 고용량이라는 장점이 있으나 리튬염을 함유한 액체 전해질을 이용하기 때문에 누액 및 폭발의 위험성이 있고, 이에 대한 대비책으로 인해 전지 설계가 복잡해지는 단점이 있다.
반면에, 리튬 폴리머 전지의 경우에는 전해질로 고체 폴리머 전해질이나 전해액이 함유된 겔 폴리머 전해질을 사용하기 때문에 안정성 향상과 동시에 유연성을 가지므로, 소형 또는 박막형 등 다양한 형태로 개발할 수 있다. 특히 겔 폴리머 전해질을 사용할 경우 전극 표면과 전해질 간의 부반응을 억제할 수 있고, 리튬 이차전지의 고온 내구성 및 안정성 등을 확보하기 위해 필요한 부품 및 소재의 수를 감소시킬 수 있으므로 비용절감 효과도 기대할 수 있다.
겔 폴리머 전해질을 적용한 이차전지는 다음과 같은 2 가지 방법에 의해 제조될 수 있다.
우선, 전해질염을 용해된 유기용매에 중합개시제와 중합 가능한 단량체 또는 올리고머를 혼합하여 전해액 조성물을 제조한 다음, 이를 전극 조립체가 수납된 전지 케이스에 주액하고, 적절한 온도를 부가하여 겔화(가교)시켜 제조할 수 있다.
하지만, 상기 방법은 겔화(gelation)에 필요한 온도를 유지하기 위한 공정이 요구되어, 이에 따른 시간 및 경제적 손실이 있다. 또한, 중합개시제와 중합성 단량체 또는 올리고머의 조성에 따라 간혹 전지 내부에 조성물을 주액하기 전에 상온에서 프리-겔화(pre-gel)가 일어나, 주액 공정을 실시하기가 수월하지 않을 뿐만 아니라, 전지의 웨팅성(wetting)이 저하되어 전지의 제반 성능이 저하되는 문제가 야기될 수 있다.
또 다른 방법으로는, 상기 전해액 조성물을 전극 및 분리막 중 하나의 일면 또는 양면에 코팅하고, 열이나 UV를 이용하여 경화(겔화)시켜 겔 폴리머 전해질을 제조한 다음, 겔 폴리머 전해질이 형성된 전극 및/또는 분리막을 권취 또는 적층하여 제조한 전극 조립체를 전지 케이스에 삽입하고, 기존 액체 전해액을 재주액하여 제조할 수도 있다.
한편, 최근 전기 자동차용 이차전지와 같이 고출력 및 고용량을 갖는 이차전지에 대한 요구가 증대하면서, 고온 등의 가혹한 환경하에서 전극과 전해액의 부반응을 억제하거나, 높은 열적 및 화학적 안정성을 확보하여 발화 또는 폭발 등을 개선할 수 있는 전해질을 구비한 리튬 이차전지에 대한 개발이 필요한 실정이다.
선행기술문헌
한국 특허공개공보 제2012-0000399호
한국 특허공개공보 제2016-0077962호
본 발명에서는 폴리카보네이트기를 반복단위로 포함하는 중합성 올리고머를 포함하는 겔 폴리머 전해질용 조성물을 제공하고자 한다.
또한, 본 발명에서는 상기 겔 폴리머 전해질용 조성물을 중합하여 제조된 산화 안전성이 향상된 겔 폴리머 전해질을 제공하고자 하다.
또한, 본 발명에서는 상기 겔 폴리머 전해질을 포함함으로써, 고온 저장 안정성이 향상된 리튬 이차전지를 제공하고자 한다.
구체적으로, 본 발명의 일 실시예에서는
리튬염, 비수계 유기용매, 중합개시제, 및 올리고머를 포함하고,
상기 올리고머는 하기 화학식 1 및 화학식 2로 표시되는 올리고머로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함하는 것인 겔 폴리머 전해질용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2019014965-appb-I000001
상기 화학식 1에서,
R' 및 R''는 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R1은 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-R- (이때 R은 탄소수 1 내지 10의 알킬렌기이다), -Ro-CO- (이때, Ro는 탄소수 1 내지 10의 알킬렌기이다) 또는 -Ri-O-R'i- (이때, Ri 및 R'i는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)이며,
R2는 -CO-O-R3-O- (이때, R3는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-R- (이때, R은 탄소수 1 내지 10의 알킬렌기이다), -Rj-CO- (이때, Rj는 탄소수 1 내지 10의 알킬렌기이다) 또는 -Rk-O-R'k- (이때, Rk 및 R'k는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)) 또는 -R4-CO-O- (R4는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기이다)이고,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
n 및 m은 반복 단위 수로서,
n은 1 내지 100 중 어느 하나의 정수이고,
m은 1 내지 100 중 어느 하나의 정수이며,
a 및 c는 각각 독립적으로 0 내지 2 중 어느 하나의 정수고,
b 및 d는 각각 독립적으로 1 내지 3 중 어느 하나의 정수이다.
[화학식 2]
Figure PCTKR2019014965-appb-I000002
상기 화학식 2에서,
R5, R6, R7 및 R8은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-Rm- (이때 Rm은 탄소수 1 내지 10의 알킬렌기이다), -Rn-CO- (이때, Rn은 탄소수 1 내지 10의 알킬렌기이다) 또는 -R12-O-R13- (이때, R12 및 R13은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)이고,
R9, R10 및 R11은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이며,
Re, Rf, Rg 및 Rh는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
o, p 및 q는 반복 단위수로서,
o는 1 내지 100 중 어느 하나의 정수이고,
p는 1 내지 100 중 어느 하나의 정수이며,
q는 1 내지 100 중 어느 하나의 정수이고,
a1 및 c1는 각각 독립적으로 0 내지 2 중 어느 하나의 정수이고,
b1 및 d1는 각각 독립적으로 1 내지 3 중 어느 하나의 정수이다.
또한, 본 발명의 다른 일 실시예에서는 본 발명의 겔 폴리머 전해질용 조성물을 중합하여 제조된 겔 폴리머 전해질을 제공한다.
또한, 본 발명의 또 다른 일 실시예에서는 본 발명의 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명의 겔 폴리머 전해질용 조성물에 포함되는 올리고머는 구조 내에 친수성기의 아크릴레이트기와 우레탄기를 포함하는 동시에 반복 단위로 폴리카보네이트기를 포함함으로써, 겔 폴리머 전해질용 조성물의 젖음성을 향상시킬 수 있고, 고온에서 양극 표면에 안정적인 피막을 형성할 수 있다.
따라서, 상기 올리고머를 포함하는 겔 폴리머 전해질용 조성물을 이용하는 경우, 양극과 전해액과의 부반응을 억제하여 산화 안정성이 향상된 겔 폴리머 전해질을 제조할 수 있다. 또한, 이를 포함함으로써 고온 저장 안정성이 향상된 리튬 이차전지를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 발명을 설명하기에 앞서, 명세서에서, "알킬렌기"라는 용어는 분지된 또는 분지되지 않은 2가의 불포화 탄화수소기를 의미한다. 일 구현예에서, 상기 알킬렌기는 치환 또는 비치환될 수 있다. 상기 알킬렌기는 메틸렌기, 에틸렌기, 프로필렌기, 이소프로필렌기, 부틸렌기, 이소부틸렌기, tert-부틸렌기, 펜틸렌기, 3-펜틸렌기 등을 포함하나, 이들로 한정되지 않으며, 이들 각각은 다른 구현예에서 선택적으로 치환될 수 있다.
또한, 본 발명의 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 5의 알킬렌기"는 1 내지 5개의 탄소 원자를 포함하는 알킬렌기, 즉 -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2(CH2)CH-, -CH(CH2)CH2- 및 -CH(CH2)CH2CH2- 등을 의미한다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 불소 원소로 치환된 것을 의미한다.
또한, 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
겔 폴리머 전해질용 조성물
본 명세서에서는 겔 폴리머 전해질용 조성물이 제공한다.
상기 겔 폴리머 전해질용 조성물은 리튬염, 비수계 유기용매, 중합개시제 및 올리고머를 포함하고, 상기 올리고머는 하기 화학식 1 및 화학식 2로 표시되는 올리고머로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함한다.
[화학식 1]
Figure PCTKR2019014965-appb-I000003
상기 화학식 1에서,
R' 및 R''는 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R1은 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-R- (이때 R은 탄소수 1 내지 10의 알킬렌기이다), -Ro-CO- (이때, Ro는 탄소수 1 내지 10의 알킬렌기이다) 또는 -Ri-O-R'i- (이때, Ri 및 R'i는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)이며,
R2는 -CO-O-R3-O- (이때, R3는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-R- (이때, R은 탄소수 1 내지 10의 알킬렌기이다), -Rj-CO- (이때, Rj는 탄소수 1 내지 10의 알킬렌기이다) 또는 -Rk-O-R'k- (이때, Rk 및 R'k는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)) 또는 -R4-CO-O- (R4는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기이다)이고,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
n 및 m은 반복 단위수로서,
n은 1 내지 100 중 어느 하나의 정수이고,
m은 1 내지 100 중 어느 하나의 정수이며,
a 및 c는 각각 독립적으로 0 내지 2 중 어느 하나의 정수고,
b 및 d는 각각 독립적으로 1 내지 3 중 어느 하나의 정수이다.
[화학식 2]
Figure PCTKR2019014965-appb-I000004
상기 화학식 2에서,
R5, R6, R7 및 R8은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-Rm- (이때 Rm은 탄소수 1 내지 10의 알킬렌기이다), -Rn-CO- (이때, Rn는 탄소수 1 내지 10의 알킬렌기이다) 또는 -R12-O-R13- (이때, R12 및 R13은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)이고,
R9, R10 및 R11은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이며,
Re, Rf, Rg 및 Rh는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
o, p 및 q는 반복 단위수로서,
o는 1 내지 100 중 어느 하나의 정수이고,
p는 1 내지 100 중 어느 하나의 정수이며,
q는 1 내지 100 중 어느 하나의 정수이고,
a1 및 c1는 각각 독립적으로 0 내지 2 중 어느 하나의 정수이고,
b1 및 d1는 각각 독립적으로 1 내지 3 중 어느 하나의 정수이다.
이하, 본 발명의 본 발명의 겔 폴리머 전해질용 조성물의 구성을 설명한다.
(1) 리튬염
먼저, 본 발명에 따른 겔 폴리머 전해질용 조성물에서, 상기 리튬염은 리튬 이차 전지 내에서 전해질 염으로서 사용되는 것으로서, 이온을 전달하기 위한 매개체로서 사용되는 것이다. 통상적으로, 리튬염은 양이온으로 Li+를 포함하고, 음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, ClO4 -, BF4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 - , (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 겔 폴리머 전해질용 조성물 내에 1.0M 내지 5M, 구체적으로 1.5M 내지 4M 농도로 포함될 수 있다.
본 발명의 겔 폴리머 전해질용 조성물은 1.5M 이상의 전해질염을 포함함으로써, 고율 충방전 시 리튬 이온의 고갈에 의한 저항을 감소시킬 수 있다. 더욱이, 본 발명의 겔 폴리머 전해질용 조성물에서 상기 전해질염의 농도가 상기 범위를 만족하는 경우, 겔 폴리머 전해질용 조성물 중에 존재하는 리튬 양이온의 증가로 인해 높은 리튬 양이온 (Li+)의 이온전달 특성 (즉, 양이온 수송률 (transference number))을 확보할 수 있고, 리튬 이온의 확산 저항 감소 효과를 달성하여 사이클 용량 특성 향상 효과를 구현할 수 있다. 이때, 전해질염의 농도가 5M 이하인 경우 리튬 이온의 이동 속도를 확보하면서, 전해질의 점도의 상승을 방지할 수 있다. 만약, 전해질염의 최대 농도가 5M을 초과하는 경우, 겔 폴리머 전해질용 조성물의 점도가 과도하게 증가하여 전해질 젖음 특성이 저하되기 때문에, 이차전지의 제반 성능이 저하될 수 있다.
(2) 비수계 유기용매
상기 비수계 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다. 예를 들면 카보네이트계 유기용매, 에테르계 유기용매 또는 에스테르계 유기용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중 카보네이트계 유기용매는 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매 중 적어도 하나 이상을 포함할 수 있다. 구체적으로, 상기 환형 카보네이트계 유기용매는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트(FEC)로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 구체적으로 고유전율을 가지는 에틸렌 카보네이트와 에틸렌 카보네이트에 비하여 상대적으로 저융점을 가지는 프로필렌 카보네이트의 혼합 용매를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 보다 구체적으로 디메틸 카보네이트를 포함할 수 있다.
상기 에테르계 유기용매는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 에스테르계 유기용매는 선형 에스테르계 유기용매 및 환형 에스테르계 유기용매로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 선형 에스테르계 유기용매는 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르계 유기용매는 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 비수계 유기용매는 유전율이 높아 전해질 내의 리튬염을 잘 해리시키는 고점도의 환형 카보네이트계 유기용매를 사용할 수 있다. 또한, 더욱 높은 전기 전도율을 갖는 전해질을 제조하기 위하여, 상기 환경 카보네이트계 유기용매와 함께, 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물 중 적어도 하나 이상을 적당한 비율로 혼합하여 사용할 수 있다.
한편, 본 발명의 겔 폴리머 전해질용 조성물에 있어서, 상기 유기용매는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 리튬염 및 올리고머로 이루어진 고형분의 농도가 70 중량% 이하, 구체적으로 50 중량% 이하, 보다 구체적으로 10 중량% 이하가 되도록 포함될 수 있다.
(3) 올리고머
또한, 본 발명의 겔 폴리머 전해질용 조성물은 하나 이상의 올리고머를 포함할 수 있다.
상기 올리고머는 온도 상승 시 중합 반응에 의해 산화되면서 겔 폴리머 전해질의 기본 골격인 고분자 매트릭스를 형성할 수 있는 가교 결합 가능한 치환기를 가진 화합물로서, 구체적으로 말단에 하나 이상의 아크릴레이트기를 함유하는 상기 화학식 1 및 화학식 2로 표시되는 올리고머 중 적어도 하나 이상을 포함할 수 있다.
구체적으로, 상기 화학식 1로 표시되는 올리고머에서, R' 및 R''는 지방족 탄화수소기일 수 있다. 상기 지방족 탄화수소기는 지환족 탄화수소기 및 선형 탄화수소기로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 지환족 탄화소수기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다. 또한, 상기 선형 탄화수소기는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머에서, R' 및 R''은 방향족 탄화수소기일 수 있다. 상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 및 치환 또는 비치환된 탄소수 4 내지 20의 헤테로아릴렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머에서, R1은 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기, -CO-O-R- (이때 R은 탄소수 2 내지 8의 알킬렌기이다), -Ro-CO- (이때, Ro는 탄소수 2 내지 8의 알킬렌기이다) 및 -Ri-O-R'i- (이때, Ri 및 R'i는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬렌기이다)으로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머에서, R2는 -CO-O-R3-O- (이때, R3는 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기, -CO-O-R- (이때, R은 탄소수 1 내지 10의 알킬렌기이다), -Rj-CO- (이때, Rj는 탄소수 2 내지 8의 알킬렌기이다), 또는 -Rk-O-R'k- (이때, Rk 및 R'k는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬렌기이다)) 또는 -R4-CO-O- (이때, R4는 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기이다)일 수 있다.
보다 구체적으로, 상기 화학식 1로 표시되는 올리고머에서, R1는 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 시클로펜틸렌기, 시클로헥실렌기, -CO-O-(CH2)5-, -(CH2CH2OCH2CH2)r- (이때, r은 1 내지 10의 정수이다) 및 -(CH2)5-CO-로 이루어진 군으로부터 선택된 적어도 하나이고, R2는 -CO-O-R3-O- (이때, R3는 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 시클로펜틸렌기, 시클로헥실렌기, -(CH2CH2OCH2CH2)r1- (이때, r1은 1 내지 10의 정수이다)) 및 -(CH2)5-CO-O-로 이루어진 군으로부터 선택된 적어도 하나로 이루어진 군으로부터 선택된 적어도 하나일 수 있고, 이때 R1 및 R2는 서로 동일하거나 상이한 것일 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머에서, 상기 반복단위 수인 n:m의 몰비는 1:0.01 내지 1:100, 구체적으로 1:0.1 내지 50일 수 있다.
이때, 반복단위 수인 n 1몰에 대하여 반복단위 수인 m의 몰비가 0.01 미만인 경우, Li 염을 해리시키는 효율이 저하되어 이온전도도가 낮아지는 현상이 발생할 수 있으며, 반복단위 수인 n 1 몰에 대하여 반복단위 수인 m의 몰비가 100을 초과하는 경우, 전극에 대한 접촉 특성이 저하되어, 셀 구성시 계면저항이 크게 증가할 수 있다.
보다 구체적으로, 상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있다.
[화학식 1a]
Figure PCTKR2019014965-appb-I000005
상기 화학식 1a에서,
n1은 1 내지 100중 어느 하나의 정수이고,
m1은 1 내지 100중 어느 하나의 정수이다.
[화학식 1b]
Figure PCTKR2019014965-appb-I000006
상기 화학식 1b에서,
n2는 1 내지 100중 어느 하나의 정수이고,
m2는 1 내지 100중 어느 하나의 정수이다.
[화학식 1c]
Figure PCTKR2019014965-appb-I000007
상기 화학식 1c에서,
n3는 1 내지 100중 어느 하나의 정수이고,
m3는 1 내지 100중 어느 하나의 정수이다.
또한, 상기 화학식 2로 표시되는 올리고머에서, R9, R10 및 R11은 지방족 탄화수소기일 수 있다. 상기 지방족 탄화수소기는 지환족 탄화수소기 및 선형 탄화수소기로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 지환족 탄화소수기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다. 또한, 상기 선형 탄화수소기는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
또한, 상기 화학식 2로 표시되는 올리고머에서, R9, R10 및 R11은 방향족 탄화수소기일 수 있다. 상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 및 치환 또는 비치환된 탄소수 4 내지 20의 헤테로아릴렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
또한, 상기 화학식 2로 표시되는 올리고머에서, R5, R6, R7 및 R8은 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기, -CO-O-Rm- (이때 Rm은 탄소수 2 내지 8의 알킬렌기이다), -Rn-CO- (이때, Rn은 탄소수 2 내지 8의 알킬렌기이다) 또는 -R12-O-R13- (이때 R12 및 R13는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬렌기이다)일 수 있다.
구체적으로, 상기 화학식 2로 표시되는 올리고머에서, R5, R6, R7 및 R8은 각각 독립적으로 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 시클로펜틸렌기, 시클로헥실렌기, -CO-O-(CH2)5-, -(CH2CH2OCH2CH2)r2- (이때, r2는 1 내지 10의 정수이다) 및 -(CH2)5-CO-으로 이루어진 군으로부터 선택된 적어도 하나일 수 있고, 이때 R5, R6, R7 및 R8은 서로 동일하거나 또는 상이한 것 일 수 있다.
또한, 상기 화학식 2로 표시되는 올리고머에서, 상기 반복단위 수인 (p+q):o의 몰비는 1:0.01 내지 1:100, 구체적으로 1:0.1 내지 50일 수 있다.
또한, 반복단위 수인 q:p의 몰비는 1:0.11 내지 1:9, 구체적으로 1:0.5 내지 8일 수 있다.
이때, 반복단위 수인 (p+q) 1몰에 대하여 반복단위 수인 o의 몰비가 0.01 미만인 경우, Li 염을 해리시키는 효율이 저하되어 이온전도도가 낮아지는 현상이 발생할 수 있으며, 반복단위 수인 (p+q) 1 몰에 대하여 반복단위 수인 o의 몰비가 100을 초과하는 경우, 전극에 대한 접촉 특성이 저하되어, 셀 구성시 계면저항이 크게 증가할 수 있다. 또한, 반복단위 수인 q 1 몰에 대한 반복단위 수인 p의 몰비가 9를 초과하면, 중합 반응 반응 속도가 낮아질 수 있다.
구체적으로, 상기 화학식 2로 표시되는 올리고머는 하기 화학식 2a로 표시되는 화합물일 수 있다.
[화학식 2a]
Figure PCTKR2019014965-appb-I000008
상기 화학식 2a에서,
o1은 1 내지 100중 어느 하나의 정수이고,
p1은 1 내지 100중 어느 하나의 정수이며,
q1은 1 내지 100중 어느 하나의 정수이다.
또한, 본 발명의 겔 폴리머 전해질에 있어서, 상기 올리고머는 화학식 1로 표시되는 올리고머:화학식 2로 표시되는 올리고머가 1:99 내지 100:0 중량비, 구체적으로 50:50 내지 100:0 중량비로 포함할 수 있다.
종래 겔 폴리머 전해질 제조 시 사용된 알킬렌 옥사이드 골격을 가지는 폴리머의 경우, 산화안정성이 낮아 초기 충전시에 양극 표면에 고온에서 쉽게 파괴되는 피막을 형성한다. 이러한 피막은 부반응을 야기하여 전극과 전해질 사이의 계면 저항을 증가시킬 뿐만 아니라, 고온 저장 시 가스 발생 및 셀 팽윤 현상이 야기되어 발열 또는 폭발의 위험성이 높다는 단점이 있다.
반면에, 본 발명의 화학식 1 또는 화학식 2로 표시되는 올리고머는 구조 내에 친수성 부분인 아크릴레이트기와 우레탄기가 함께 존재하기 때문에, 겔 폴리머 전해질용 조성물 내에서 계면활성제로서 작용하여 전극과의 표면 장력을 낮춰 계면 저항을 개선할 수 있다. 따라서, 전극 및 분리막에 대한 겔 폴리머 전해질용 조성물의 젖음성 향상 효과를 가져올 수 있다.
특히, 본 발명의 올리고머는 구조 내에 폴리카보네이트기를 반복 단위로 포함함으로써, 전지 내부의 친수성 부분(양극, 분리막(SRS층))과 소수성 부분(음극, 분리막 원단)에서 균형적으로 친화성을 나타내어 전극 표면에 고온에서 안정한 피막을 형성할 수 있다. 즉, 산소가 유실된 양극 표면에 상기 폴리카보네이트기의 산소가 흡착하면서, 고온에서 양극 표면에 안정한 피막을 형성하여, 전해질에 대한 노출을 방지할 수 있다.
따라서, 본 발명의 화학식 1 또는 화학식 2로 표시되는 올리고머를 포함하는 겔 폴리머 전해질용 조성물을 이용하면, 양극과 전해질간의 부반응을 억제하여 산화안정성이 개선된 겔 폴리머 전해질을 형성할 수 있다. 또한, 상기 겔 폴리머 전해질은 전지 구동시 환원되면서, 음극 표면에 견고하고 안정한 SEI 막을 형성하므로, 전지의 내구성 향상 및 고온 저장 특성을 향상시킬 수 있다. 따라서, 본 발명에서는 고온 저장 시 안정성 등의 제반 성능이 향상된 리튬 이차전지를 구현할 수 있다.
한편, 상기 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.1 중량% 내지 35 중량%, 구체적으로 0.5 내지 30 중량%, 더욱 구체적으로 1 내지 30 중량%, 바람직하게 1 내지 20 중량%로 포함될 수 있다.
상기 화학식 1로 표시되는 올리고머의 함량이 상기 범위, 즉 0.1 중량%, 특히 0.5 중량% 이상 포함되면 올리고머에 의한 고분자 매트릭스가 용이하게 형성될 수 있고, 기계적 강도가 우수한 고분자 네트워크를 형성할 수 있다. 또한, 올리고머의 함량이 35 중량% 이하, 구체적으로 30 중량% 이하, 특히 20 중량% 이하이면, 과량의 올리고머 첨가에 따른 저항 증가 및 리튬 이온의 이동 제한, 예를 들면 이온전도도 감소와 같은 단점을 방지할 수 있고, 적절한 점도를 확보하면서 겔 폴리머 전해질의 웨팅성을 개선할 수 있다.
만약, 상기 올리고머의 함량이 35 중량%를 초과하는 경우, 이온전도도가 상대적으로 저하되고, 계면 저항이 증가함에 따라 용량 특성이 저하될 수 있다.
또한, 상기 화학식 1로 표시되는 올리고머의 중량평균분자량(Mw)은 반복 단위의 개수에 의해 조절될 수 있으며, 약 1,000 g/mol 내지 1,500,000 g/mol, 구체적으로 1,000 g/mol 내지 500,000 g/mol, 더욱 구체적으로 1,000 g/mol 내지 100,000 g/mol, 보다 구체적으로 5,000 g/mol 내지 50,000 g/mol일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 겔 폴리머 전해질의 기계적 강도를 효과적으로 개선할 수 있다.
만약, 상기 화학식 1로 표시되는 올리고머의 중량 평균분자량이 1,000 g/mol 미만이면, 적절한 기계적 강도를 기대할 수 없고, 수많은 가교 결합 형성을 위하여 보다 많은 중합개시제 사용이 요구되거나, 까다로운 추가 중합 공정이 요구되어 겔 고분자 전해질 형성 과정이 복잡해지는 단점이 있다. 한편, 중량평균분자량이 1,500,000 g/mol을 초과하면, 올리고머 물성 자체가 경직(rigid)되고, 전해질 용매와 친화성이 낮아져 용해가 어려워지기 때문에 균일하고 우수한 겔 고분자 전해질 형성을 기대할 수 없다.
상기 중량평균분자량은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC) 장치를 이용하여 측정할 수 있고, 특별하게 달리 규정하지 않는 한, 분자량은 중량평균분자량을 의미할 수 있다. 예컨대, 본 발명에서는 GPC 조건으로 Agilent社 1200시리즈를 이용하여 측정하며, 이때 사용된 컬럼은 Agilent社 PL mixed B 컬럼을 이용할 수 있고, 용매는 THF를 사용할 수 있다.
(4) 중합개시제
본 발명의 겔 폴리머 전해질용 조성물은 겔 폴리머 전해질 제조 시 요구되는 라디칼 반응을 수행하기 위하여 중합개시제를 포함할 수 있다.
상기 중합개시제는 당 업계에 알려진 통상적인 열 또는 광 중합개시제가 사용될 수 있다. 예를 들면, 상기 중합개시제는 열에 의해 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 화학식 1 또는 2로 표시되는 올리고머와 반응하여 겔 폴리머 전해질을 형성할 수 있다.
더욱 구체적으로, 상기 중합개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴)(AIBN; 2,2'-Azobis(iso-butyronitrile)) 및 2,2'-아조비스디메틸-발레로니트릴(AMVN; 2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군에서 선택된 1종 이상 아조 화합물류 등이 있으나, 이에 한정하지 않는다.
상기 중합개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 중합성 올리고머가 아크릴레이트계 화합물과 반응하여 겔 폴리머 전해질을 형성할 수 있다.
또한, 상기 중합개시제는 상기 올리고머 100 중량부를 기준으로 하여 0.01 내지 20 중량부, 구체적으로 0.1 내지 10 중량부로 포함될 수 있다.
상기 중합개시제가 0.01 내지 20 중량부 범위 내인 경우, 겔 고분자 전환율을 높여 겔 고분자 전해질 특성이 확보할 수 있고, 프리-겔 반응을 방지하여, 전극에 대한 겔 폴리머 전해질용 조성물의 웨팅성을 향상시킬 수 있다.
(5) 첨가제
또한, 본 발명의 겔 폴리머 전해질용 조성물은 겔 폴리머 전해질 제조 시에 고출력의 환경에서 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 저장 시 팽윤 개선 효과 등을 더욱 향상시키기 위하여, 필요에 따라 전극 표면에 보다 안정한 이온전도성 피막을 형성할 수 있는 부가적 첨가제를 추가로 포함할 수 있다.
구체적으로, 상기 부가적 첨가제는 그 대표적인 예로 설톤계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 카보네이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 및 리튬염계 화합물로 이루어진 군으로부터 선택된 1종 이상의 제1 첨가제를 포함할 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있으며, 이는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.3 중량% 내지 5 중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 상기 겔 폴리머 전해질용 조성물 중에 설톤계 화합물의 함량이 5 중량%를 초과하는 경우, 전극 표면에 지나치게 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있고, 겔 폴리머 전해질용 조성물 중 과량의 첨가제의 의한 저항이 증가되어, 출력 특성이 열화될 수 있다.
상기 설파이트계 화합물로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 및 1,3-부틸렌 글리콜 설파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
상기 설폰계 화합물로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 및 메틸비닐 설폰으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
또한, 상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 5 중량% 이하로 포함할 수 있다. 상기 겔 폴리머 전해질용 조성물 중에 할로겐 치환된 카보네이트계 화합물의 함량이 5 중량%를 초과하는 경우, 셀 팽윤 성능이 열화될 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴, 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함할 수 있다. 상기 겔 폴리머 전해질용 조성물 중에 환형 카보네이트계 화합물의 함량이 3 중량%를 초과하는 경우, 셀 팽윤 억제 성능이 열화될 수 있다.
상기 포스페이트계 화합물은 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트, 트리메틸 실릴 포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 보레이트계 화합물은 리튬 옥살릴디플루오로보레이트를 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
상기 리튬염계 화합물은 상기 겔 폴리머 전해질용 조성물에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiODFB, LiBOB(리튬 비스옥살레이토보레이트(LiB(C2O4)2) 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다.
상기 부가적 첨가제들은 2 종 이상이 혼합되어 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 20 중량% 이하, 구체적으로 0.1 중량% 내지 10 중량%로 포함될 수 있다. 상기 부가적 첨가제의 함량이 0.01 중량% 보다 적으면 전지의 저온 출력 개선 및 고온 저장 특성 및 고온 수명 특성 개선의 효과가 미미하고, 부가적 첨가제들의 함량이 20 중량%를 초과하면 전지의 충방전시 겔 폴리머 전해질용 조성물 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 고온에서 충분히 분해되지 못하여, 상온에서 겔 폴리머 전해질용 조성물 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 이차전지의 수명 또는 저항특성이 저하되는 부반응이 발생될 수 있다.
겔 폴리머 전해질
다음으로, 본 발명에서는 종래에 알려진 중합 방법을 이용하여 상기 겔 폴리머 전해질용 조성물의 중합에 의해 제조된 겔 폴리머 전해질을 제공할 수 있다.
상기 본 발명의 겔 폴리머 전해질을 제조하기 위한 겔화 방법은 특별히 제한되지 않으며, 당 업계에 알려진 통상적인 방법에 따라 수행될 수 있다.
구체적으로, 리튬염, 유기용매, 상기 화학식 1 및 화학식 2로 표시되는 올리고머 중 적어도 하나 이상의 올리고머를 포함하는 겔 폴리머 전해질용 조성물을 제조한 다음, 이를 전지 내에 주액하고 중합 반응을 실시하여 고분자 매트릭스를 포함하는 겔 폴리머 전해질을 제조할 수 있다. 또는, 상기 중합 반응을 실시하여 고분자 매트릭스를 형성한 다음, 전해질염 및 유기용매를 포함하는 비수전해액을 추가로 함침시켜 제조할 수도 있다.
상기 중합 반응은 통상적인 열, e-빔 및 감마선 공정을 통해 실시할 수 있다. 만약, 상기 중합 반응이 열 중합일 경우 대략 1 시간 내지 8시간 정도 소요되며, 온도는 50 내지 100℃ 범위 내에서 수행될 수 있다.
한편, 종래 겔화는 통상적으로 비활성 조건(inert condition) 하에서 라디칼(radical) 중합 반응을 실시하여 라디칼 소멸제인 대기 중의 산소를 차단해야 하는 번거로움이 있다. 본 발명에서는 겔 폴리머 전해질 조성물 내에 산소 제거제를 포함하는 경우, 일반적인 공기 또는 산소 존재하에서도 겔 폴리머 전해질 제조를 위한 중합 반응을 실시할 수 있다는 장점이 있다. 즉, 중합 반응 시에 산소 제거제가 산소의 영향력을 감소시켜, 올리고머들의 반응성을 향상시키므로 다량의 미반응 단량체가 거의 존재하지 않을 정도로 중합 반응 진척도(extent of reaction)를 증대시킬 수 있다. 그 결과, 종래 미반응 단량체가 전지 내부에 잔존하면서 야기되던 충방전 성능 저하와 같은 단점을 개선할 수 있다. 특히, 상기 산소 제거제는 난연성 관능 기를 함유함으로써, 겔 폴리머 전해질의 난연성 강화 효과를 추가로 부여할 수 있다.
리튬 이차전지
또한, 본 발명에 따르면 전술한 겔 폴리머 전해질을 포함하는 리튬 이차전지가 제공될 수 있고, 상기 리튬 이차전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극 및 음극 사이에 게재된 분리막 및 전술한 겔 폴리머 전해질을 포함할 수 있다.
이때, 본 발명의 리튬 이차전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 다공성의 분리막을 넣고 리튬 염이 용해되어 있는 전해질을 투입하여 제조할 수 있다. 이때, 전극조립체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등)일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(2) 음극
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다.  이러한 도전재는 양극 제조 시 사용된 도전재와 동일하거나, 상이한 것을 사용할 수 있으며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(3) 분리막
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한, 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 20,000, n1:m1=1:12.4) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 2.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 79.9g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 20,000, n1:m1=1:12.4) 20g과 중합개시제로서 AIBN 0.1g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 3.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1b로 표시되는 올리고머 (중량평균분자량(Mw) 21,500, n2:m2=1:12.5) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 4.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 79.9g에 화학식 1b로 표시되는 올리고머 (중량평균분자량(Mw) 21,500, n2:m2=1:12.5) 20g과 중합개시제로서 AIBN 0.1g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 5.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1c로 표시되는 올리고머 (중량평균분자량(Mw) 22,000, n3:m3=1:11.5) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 6.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 79.9g에 화학식 1c로 표시되는 올리고머 (중량평균분자량(Mw) 22,000, n3:m3=1:11.5) 20g과 중합개시제로서 AIBN 0.1g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 7.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 20,000, n1:m1=1:12.4) 1.5g과 화학식 1b로 표시되는 올리고머 (중량평균분자량(Mw) 21,500, n2:m2=1:12.5) 1.5g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 8.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 79.9g에 화학식 1b로 표시되는 올리고머 (중량평균분자량(Mw) 27,000, n2:m2=1:18.4) 20g과 중합개시제로서 AIBN 0.1g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 9.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 69.88g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 20,000, n1:m1=1:12.4) 30g과 중합개시제로서 AIBN 0.12g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 10.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 13.000, n1:m1=1:20) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 11.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 18,000, n1:m1=1:30) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 12.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 11,000, n1:m1=1:6.5) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 13.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 99.45g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 20,000, n1:m1=1:12.4) 0.5g과 중합개시제로서 AIBN 0.05g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
실시예 14.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 63g에 화학식 1a로 표시되는 올리고머 (중량평균분자량(Mw) 20,000, n1:m1=1:12.4) 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
비교예 1.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 트리메틸올프로판 에톡시레이트 트리아크릴레이트 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
비교예 2.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 트리메틸올프로판 프로폭시레이트 트리아크릴레이트 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
비교예 3.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 디펜타에리트리톨 펜타아크릴레이트 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
비교예 4.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 96.96g에 디에틸렌글리콜 디아크릴레이트 3g과 중합개시제로서 AIBN 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
비교예 5.
디메틸카보네이트 (DMC)에 LiFSI가 2.0M가 되도록 용해시켜 비수성 유기용매를 제조하였다 (하기 표 1 참조).
비수성 유기용매 함량 (g) 올리고머 중합개시제첨가량(g)
화학식 중량평균분자량 (Mw) 첨가량 (g)
실시예 1 96.96 1a (n1:m1=1:12.4 ) 20,000 3 0.04
실시예 2 79.9 1a (n1:m1=1:12.4 ) 20,000 20 0.1
실시예 3 96.96 1b (n2:m2=1:12.5 ) 21,500 3 0.04
실시예 4 79.9 1b (n2:m2=1:12.5 ) 21,500 20 0.1
실시예 5 96.96 1c (n3:m3=1:11.5 ) 22,000 3 0.04
실시예 6 79.9 1c (n3:m3=1:11.5 ) 22,000 20 0.1
실시예 7 96.96 1a (n1:m1=1:12.4 ) 20,000 1.5 0.04
1b (n2:m2=1:12.5 ) 21,500 1.5
실시예 8 79.9 1b (n2:m2=1:18.4 ) 27,000 20 0.1
실시예 9 69.88 1a (n1:m1=1:12.4 ) 20,000 30 0.12
실시예 10 96.96 1a (n1:m1=1:20 ) 13,000 3 0.04
실시예 11 96.96 1a (n1:m1=1:30 ) 18,000 3 0.04
실시예 12 96.96 1a (n1:m1=1:6.5) 11,000 3 0.04
실시예 13 99.45 1a (n1:m1=1:12.4 ) 20,000 0.5 0.05
실시예 14 63 1a (n1:m1=1:12.4 ) 20,000 36 1
비교예 1 96.96 트리메틸올프로판 에톡시레이트 트리아크릴레이트 - 3g 0.04
비교예 2 96.96 트리메틸올프로판 프로폭시레이트 트리아크릴레이트 - 3g 0.04
비교예 3 96.96 디펜타에리트리톨 펜타아크릴레이트 - 3g 0.04
비교예 4 96.96 디에틸렌 글리콜 디아크릴레이트 - 3 0.04
비교예 5 100 - - - -
실험예 1: 산화 안정성 평가 실험
실시예 1 내지 14에서 제조된 겔 폴리머 전해질용 조성물과 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물에 대하여, 선형 주사 전위법(Linear sweep voltammetry, LSV)에 따른 전기화학적 (산화)안정성을 측정하였다.
측정은 삼전극 시스템 (작업 전극: 백금 디스크, 카운터 전극: 백금, 기준 전극: 리튬 금속)하에서 potentiostat(EG&G사, model 270A)를 사용하였으며, 측정온도는 60℃였다. 그 결과를 하기 표 2에 나타내었다.
산화 안정성(V) @ 60℃
실시예 1 5.65
실시예 2 5.75
실시예 3 5.77
실시예 4 5.80
실시예 5 5.70
실시예 6 5.80
실시예 7 5.75
실시예 8 5.85
실시예 9 5.90
실시예 10 5.62
실시예 11 5.60
실시예 12 5.55
실시예 13 5.30
실시예 14 6.10
비교예 1 5.20
비교예 2 5.00
비교예 3 4.95
비교예 4 4.85
상기 표 2에 나타낸 바와 같이, 본원발명의 실시예 1 내지 14에서 제조된 이차전지는 약 5.60V 이상에서 산화 개시 전압을 보여 우수한 전기화학적 (산화) 안정성을 나타내는 것을 확인하였다.
그에 반하여, 비교예 1 내지 4의 이차전지는 산화 개시 전압이 모두 실시예 1 내지 14의 이차전지 보다 낮은 약 5.20V 미만에서 나타나는 것을 알 수 있다.
실험예 2. 이온전도도 측정
실시예 1, 3, 5, 7 및 실시예 14에서 제조된 겔 폴리머 전해질용 조성물과 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물을 이용하여 시편을 제작하였다. 상기 시편은 ASTM standard D638 (Type V specimens)을 통해 일괄적으로 제작하였다.
이어서, 상기 시편 상부에 금(Au) 전극을 1mm 지름의 원형으로 스퍼터(sputter)법을 사용하여 코팅하였다.
그런 다음, 실시예 1, 3, 5 및 7 및 비교예 1 내지 4의 겔 폴리머 전해질용 조성물을 이용하여 제조된 시편에 대하여 저온(0℃) 및 상온(25℃)에서 교류 임피던스 측정법을 사용하여 이온전도도를 측정하였다. 또한, 실시예 14의 겔 폴리머 전해질용 조성물을 이용하여 제조된 시편에 대하여 상온(25℃)에서 교류 임피던스 측정법을 사용하여 이온전도도를 측정하였다.
상기 이온전도도는 VMP3 측정 장비와 정밀 임피던스 분석기(4294A)를 주파수 대역 100MHz 내지 0.1Hz에서 측정하였으며, 각각의 측정 결과를 하기 표 3에 나타내었다.
0℃, 이온전도도 (mS/cm) 25℃, 이온전도도 (mS/cm)
실시예 1 5.2 9.6
실시예 3 5.3 9.7
실시예 5 5.5 9.5
실시예 7 5.3 9.8
실시예 14 - 0.6
비교예 1 5.1 8.8
비교예 2 4.8 8.7
비교예 3 3.6 8.2
비교예 4 3.4 8.0
상기 표 3을 살펴보면, 실시예 1, 3, 5 및 7에서 제조된 겔 폴리머 전해질용 조성물을 이용하여 제조된 시편은 0℃에서의 이온전도도가 5.2 mS/cm 이상이고, 25℃에서의 이온전도도가 9.5 mS/cm 이상인 것을 확인할 수 있다.
반면에, 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물을 이용하여 제조된 시편의 경우, 중량평균분자량이 작은 고분자를 사용함에 따라 자유 부피 증가 및 리튬 이온과의 상호 작용(interaction)이 낮아 겔 고분자 전해질의 상 안정성이 결여되기 때문에, 0℃ 및 25℃에서의 이온전도도가 실시예 1, 3, 5 및 7에 비하여 현저히 저하되는 것을 알 수 있다.
한편, 올리고머가 과량으로 포함된 실시예 14에서 제조된 겔 폴리머 전해질용 조성물을 이용하여 제조된 시편은 동일 조건하에서 올리고머의 함량만 증가시킨 경우로, 고분자 함량 증가로 인하여 용매의 움직임 특성이 크게 감소하여 이온전도도가 25℃에서의 0.6 mS/cm으로 크게 감소하는 것을 확인할 수 있다.
실험예 3. 저항 평가
N-메틸-2-피롤리돈(NMP)에 양극 활물질 (LiNi1/3Co1/3Mn1/3O2; NCM)과 도전재로 카본 블랙(carbon black) 및 바인더로 폴리비닐리덴 플루오라이드(PVDF)를 94:3:3의 중량비로 첨가하여 양극 혼합물 슬러리 (고형분 함량 50 중량%)를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 그라파이트, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 96:3:1의 중량비로 물에 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극과 음극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 순차적으로 적층하여 전극조립체를 제조한 다음, 전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 실시예 1, 3, 5, 7, 10 내지 13에서 제조된 겔 폴리머 전해질용 조성물과 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물에 첨가제 VC를 2% 추가하여 각각 주액한 후 2일 동안 에이징(aging)하였다. 이후, 이를 70℃에서 5시간 경화(curing)하여 열중합된 겔 폴리머 전해질을 포함하는 파우치형 리튬 이차전지 (4.25V, 30 mAh)를 각각 제조하였다.
각각의 리튬 이차전지를 3.0V 내지 4.2V 전압 구동 범위에서 0.33C/4.2V 정전류-정전압으로 만충전하고, SOC 50%에서 2.5C로 10초간 방전하고, 방전시켰을 때 나타나는 초기 용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정하고, 그 결과를 하기 표 4에 나타내었다.
또한, 상기 방전 시 나타나는 전압 강하를 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정하였다. 얻어진 전압 강하량을 이용해 각각의 이차전지에 대한 초기 저항 대비 증가한 저항을 백분율로 나타내어, 이를 하기 표 4에 기재하였다.
용량 (mAh) 25℃ 2.5C, 10 sec 저항 (%)
실시예 1 29.3 103.5
실시예 3 29.1 102.5
실시예 5 29.4 102.6
실시예 7 29.3 103.0
실시예 10 29.3 103.5
실시예 11 29.3 103.5
실시예 12 29.3 101.5
실시예 13 29.3 100
비교예 1 28.4 115
비교예 2 28 117
비교예 3 26 125
비교예 4 27 130
상기 표 4를 살펴보면, 본 발명의 실시예 1, 3, 5, 7, 10 내지 13에서 제조된 겔 폴리머 전해질용 조성물 구비한 리튬 이차전지의 초기 용량은 약 29.1 mAh 이상인 반면에, 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물을 구비한 리튬 이차전지의 초기 용량은 약 28.4 mAh 이하로, 실시예 1, 3, 5, 7, 10 내지 13에서 제조된 겔 폴리머 전해질용 조성물 구비한 리튬 이차전지 대비 열위한 것을 알 수 있다.
또한, 본 발명의 실시예 1, 3, 5, 7, 10 내지 13에서 제조된 겔 폴리머 전해질용 조성물 구비한 리튬 이차전지의 저항값은 약 103.5% 이하인 반면에, 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물을 구비한 리튬 이차전지의 저항값은 약 115% 이상으로 실시예 1, 3, 5, 7, 10 내지 13에서 제조된 겔 폴리머 전해질용 조성물 구비한 리튬 이차전지 대비 크게 증가한 것을 알 수 있다.
실험예 4. 발열량 평가
상기 실험예 3에서 제조한 실시예 1, 3, 5, 7, 8 및 10 내지 13의 겔 폴리머 전해질용 조성물을 구비한 이차전지와 비교예 1 내지 4의 겔 폴리머 전해질용 조성물을 구비한 이차전지 및 비교예 5의 겔 폴리머 전해질용 조성물을 구비한 이차전지를 각각 SOC 100% 조건으로 만충전을 실시한 다음, 150℃ 챔버에 이차전지를 투입하고, 4 시간 동안 저장하면서 MMC 장비(Multiple Module Calorimeter, NETZSCH사, MMC274 MMC 274 )를 이용하여 셀의 발열량을 측정하였다. 그 결과를 하기 표 5에 기재하였다.
발열량 (J/g)
실시예 1 70
실시예 3 65
실시예 5 72
실시예 7 64
실시예 8 20
실시예 10 70
실시예 11 70
실시예 12 75
실시예 13 160
비교예 1 100
비교예 2 120
비교예 3 150
비교예 4 180
비교예 5 > 200
상기 표 5를 살펴보면, 본 발명의 실시예 1, 3, 5, 7, 8 및 10 내지 12에서 제조된 겔 폴리머 전해질용 조성물 구비한 리튬 이차전지의 발열량은 75 J/g 이하인 반면에, 비교예 1 내지 4에서 제조된 겔 폴리머 전해질용 조성물을 구비한 리튬 이차전지의 발열량은 100 J/g 를 초과하는 것을 알 수 있다.
특히, 올리고머를 20 중량% 포함하는 상기 실시예 8의 겔 폴리머 전해질용 조성물을 구비한 리튬 이차전지의 발열량은 20 J/g 로 크게 개선된 것을 알 수 있다.
반면에, 비교예 5의 겔 폴리머 전해질용 조성물을 구비한 이차전지의 발열량은 200 J/g를 초과하여, 실시예 1, 3, 5, 7 및 8에서 제조된 겔 폴리머 전해질용 조성물 구비한 리튬 이차전지의 대비 크게 열위한 것을 알 수 있다.
한편, 실시예 13의 겔 폴리머 전해질용 조성물을 구비한 리튬 이차전지의 경우, 올리고머의 함량이 상대적으로 낮아짐에 따라 안정성이 저하되어, 실시예 1, 3, 5, 7, 8 및 10 내지 12에서 제조된 겔 폴리머 전해질용 조성물을 구비한 리튬 이차전지에 비해 발열량이 증가한 것을 알 수 있다.
이상에서 설명한 것은 본 발명에 따른 겔 폴리머 전해질 및 이를 포함하는 이차전지를 제조하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상에 포함된다.

Claims (11)

  1. 리튬염, 비수계 유기용매, 중합개시제 및 올리고머를 포함하고,
    상기 올리고머는 하기 화학식 1 및 화학식 2로 표시되는 올리고머로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함하는 것인 겔 폴리머 전해질용 조성물:
    [화학식 1]
    Figure PCTKR2019014965-appb-I000009
    상기 화학식 1에서,
    R' 및 R''는 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
    R1은 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-R- (이때 R은 탄소수 1 내지 10의 알킬렌기이다), -Ro-CO- (이때, Ro는 탄소수 1 내지 10의 알킬렌기이다) 또는 -Ri-O-R'i- (이때, Ri 및 R'i는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)이며,
    R2는 -CO-O-R3-O- (이때, R3는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-R- (이때, R은 탄소수 1 내지 10의 알킬렌기이다), -Rj-CO- (이때, Rj는 탄소수 1 내지 10의 알킬렌기이다) 또는 -Rk-O-R'k- (이때, Rk 및 R'k는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)) 또는 -R4-CO-O- (R4는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기이다)이고,
    Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
    n 및 m은 반복 단위 수로서,
    n은 1 내지 100 중 어느 하나의 정수이고,
    m은 1 내지 100 중 어느 하나의 정수이며,
    a 및 c는 각각 독립적으로 0 내지 2 중 어느 하나의 정수고,
    b 및 d는 각각 독립적으로 1 내지 3 중 어느 하나의 정수이다.
    [화학식 2]
    Figure PCTKR2019014965-appb-I000010
    상기 화학식 2에서,
    R5, R6, R7 및 R8은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기, -CO-O-Rm- (이때 Rm은 탄소수 1 내지 10의 알킬렌기이다), -Rn-CO- (이때, Rn은 탄소수 1 내지 10의 알킬렌기이다) 또는 -R12-O-R13- (이때, R12 및 R13은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다)이고,
    R9, R10 및 R11은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이며,
    Re, Rf, Rg 및 Rh는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
    o, p 및 q는 반복 단위 수로서,
    o는 1 내지 100 중 어느 하나의 정수이고,
    p는 1 내지 100 중 어느 하나의 정수이며,
    q는 1 내지 100 중 어느 하나의 정수이고,
    a1 및 c1는 각각 독립적으로 0 내지 2 중 어느 하나의 정수이고,
    b1 및 d1는 각각 독립적으로 1 내지 3 중 어느 하나의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머에서,
    R' 및 R''는 지방족 탄화수소기이고,
    R1은 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기, -CO-O-R- (이때 R은 탄소수 2 내지 8의 알킬렌기이다), -Ro-CO- (이때, Ro는 탄소수 2 내지 8의 알킬렌기이다) 및 -Ri-O-R'i- (이때, Ri 및 R'i는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬렌기이다)으로 이루어진 군으로부터 선택된 적어도 하나이고,
    R2는 -CO-O-R3-O- (이때, R3는 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기, -CO-O-R- (이때, R은 탄소수 1 내지 10의 알킬렌기이다), -Rj-CO- (이때, Rj는 탄소수 2 내지 8의 알킬렌기이다), 또는 -Rk-O-R'k- (이때, Rk 및 R'k는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬렌기이다)) 또는 -R4-CO-O- (R4는 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기이다)인 것인 겔 폴리머 전해질용 조성물.
  3. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머에서,
    R1는 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 시클로펜틸렌기, 시클로헥실렌기, -CO-O-(CH2)5-, -(CH2CH2OCH2CH2)r- (이때, r은 1 내지 10의 정수이다) 및 -(CH2)5-CO-로 이루어진 군으로부터 선택된 적어도 하나이고,
    R2는 -CO-O-R3-O- (이때, R3는 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 시클로펜틸렌기, 시클로헥실렌기, -(CH2CH2OCH2CH2)r1- (이때, r1은 1 내지 10의 정수이다)) 및 -(CH2)5-CO-O-로 이루어진 군으로부터 선택된 적어도 하나인 것인 겔 폴리머 전해질용 조성물.
  4. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 겔 폴리머 전해질용 조성물.
    [화학식 1a]
    Figure PCTKR2019014965-appb-I000011
    상기 화학식 1a에서,
    n1은 1 내지 100중 어느 하나의 정수이고,
    m1은 1 내지 100중 어느 하나의 정수이다.
    [화학식 1b]
    Figure PCTKR2019014965-appb-I000012
    상기 화학식 1b에서,
    n2는 1 내지 100중 어느 하나의 정수이고,
    m2는 1 내지 100중 어느 하나의 정수이다.
    [화학식 1c]
    Figure PCTKR2019014965-appb-I000013
    상기 화학식 1c에서,
    n3는 1 내지 100중 어느 하나의 정수이고,
    m3는 1 내지 100중 어느 하나의 정수이다.
  5. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 올리고머에서,
    R9, R10 및 R11은 지방족 탄화수소기이고,
    R5, R6, R7 및 R8은 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 8의 알킬렌기, 치환 또는 비치환된 탄소수 4 내지 10의 시클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬렌기, -CO-O-Rm- (이때 Rm은 탄소수 2 내지 8의 알킬렌기이다), -Rn-CO- (이때, Rn는 탄소수 2 내지 8의 알킬렌기이다) 및 -R12-O-R13- (이때 R12 및 R13는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬렌기이다)로 이루어진 군으로부터 선택된 적어도 하나인 것인 겔 폴리머 전해질용 조성물.
  6. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 올리고머에서, R5, R6, R7 및 R8은 각각 독립적으로 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 시클로펜틸렌기, 시클로헥실렌기, -CO-O-(CH2)5-, -(CH2CH2OCH2CH2)r2- (이때, r2는 1 내지 10의 정수이다) 및 -(CH2)5-CO-로 이루어진 군으로부터 선택된 적어도 하나인 것인 겔 폴리머 전해질용 조성물.
  7. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 올리고머는 하기 화학식 2a로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 겔 폴리머 전해질용 조성물.
    [화학식 2a]
    Figure PCTKR2019014965-appb-I000014
    상기 화학식 2a에서,
    o1은 1 내지 100중 어느 하나의 정수이고,
    p1은 1 내지 100중 어느 하나의 정수이며,
    q1은 1 내지 100중 어느 하나의 정수이다.
  8. 청구항 1에 있어서,
    상기 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.1 중량% 내지 35 중량%로 포함되는 것인 겔 폴리머 전해질용 조성물.
  9. 청구항 1에 있어서,
    상기 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.5 내지 30 중량%로 포함되는 것인 겔 폴리머 전해질용 조성물.
  10. 청구항 1의 겔 폴리머 전해질용 조성물을 중합하여 제조된 것인 겔 폴리머 전해질.
  11. 청구항 10의 겔 폴리머 전해질을 포함하는 리튬 이차전지.
PCT/KR2019/014965 2018-11-06 2019-11-06 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 WO2020096343A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980070448.1A CN113544893B (zh) 2018-11-06 2019-11-06 用于凝胶聚合物电解质的组合物和包括由该组合物形成的凝胶聚合物电解质的锂二次电池
EP19883207.3A EP3863099A4 (en) 2018-11-06 2019-11-06 COMPOSITION OF POLYMERIC ELECTROLYTE IN GEL, AND SECONDARY LITHIUM BATTERY INCLUDING A POLYMERIC ELECTROLYTE IN GEL FORMED FROM THE SAID COMPOSITION
US17/291,263 US11967679B2 (en) 2018-11-06 2019-11-06 Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0134836 2018-11-06
KR20180134836 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020096343A1 true WO2020096343A1 (ko) 2020-05-14

Family

ID=70612531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014965 WO2020096343A1 (ko) 2018-11-06 2019-11-06 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US11967679B2 (ko)
EP (1) EP3863099A4 (ko)
KR (1) KR102443849B1 (ko)
CN (1) CN113544893B (ko)
WO (1) WO2020096343A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116057746A (zh) * 2020-12-24 2023-05-02 株式会社Lg新能源 用于锂二次电池的电解质的组合物、凝胶聚合物电解质和包含该凝胶聚合物电解质的锂二次电池
US20230335792A1 (en) * 2020-12-24 2023-10-19 Lg Energy Solution, Ltd. Composition for electrolyte of lithium secondary battery, gel polymer electrolyte, and lithium secondary battery including gel polymer electrolyte
EP4195350A1 (en) * 2020-12-24 2023-06-14 LG Energy Solution, Ltd. Composition for electrolyte of lithium secondary battery, gel polymer electrolyte and lithium secondary battery comprising same
KR20230147564A (ko) * 2022-04-14 2023-10-23 주식회사 엘지에너지솔루션 젤 고분자 전해질 및 이를 포함하는 전기화학소자

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297948A (ja) * 2000-04-13 2001-10-26 Toyo Tire & Rubber Co Ltd ゲル電解質及びその製造方法
JP2011154853A (ja) * 2010-01-27 2011-08-11 Asahi Kasei Chemicals Corp ゲル状イオン導電体及びその用途
KR20120000399A (ko) 2010-06-25 2012-01-02 삼성에스디아이 주식회사 첨가제를 포함하는 리튬 이차 전지용 겔 전해질 및 이를 포함하는 리튬 이차 전지
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20160077962A (ko) 2014-12-24 2016-07-04 솔브레인 주식회사 고분자 전해질 조성물 및 이를 이용한 리튬 이차 전지
KR20180026358A (ko) * 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310071A (ja) 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The 固体電解質及びそれを用いたリチウムポリマー電池
US20140255792A1 (en) * 2011-10-28 2014-09-11 Lubrizol Advanced Materials, Inc. Polyurethane Based Electrolyte Systems For Electrochemical Cells
TW201609957A (zh) 2014-08-22 2016-03-16 Lintec Corp 電解質組合物、二次電池以及二次電池之使用方法
CN107078342B (zh) 2014-10-02 2019-10-15 株式会社Lg化学 凝胶聚合物电解质和包括该凝胶聚合物电解质的锂二次电池
US11658339B2 (en) 2017-11-28 2023-05-23 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte, and gel polymer electrolyte and lithium secondary battery including the same
KR102465821B1 (ko) * 2018-10-05 2022-11-11 주식회사 엘지에너지솔루션 고분자 전해질용 조성물 및 이로부터 제조된 고분자 전해질을 포함하는 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297948A (ja) * 2000-04-13 2001-10-26 Toyo Tire & Rubber Co Ltd ゲル電解質及びその製造方法
JP2011154853A (ja) * 2010-01-27 2011-08-11 Asahi Kasei Chemicals Corp ゲル状イオン導電体及びその用途
KR20120000399A (ko) 2010-06-25 2012-01-02 삼성에스디아이 주식회사 첨가제를 포함하는 리튬 이차 전지용 겔 전해질 및 이를 포함하는 리튬 이차 전지
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20160077962A (ko) 2014-12-24 2016-07-04 솔브레인 주식회사 고분자 전해질 조성물 및 이를 이용한 리튬 이차 전지
KR20180026358A (ko) * 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAO, J. ET AL.: "Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries", JOURNAL OF POWER SOURCES, vol. 389, 1 June 2018 (2018-06-01), pages 84 - 92, XP055700514, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2018.04.020 *
DEVAUX, D. ET AL: "Crosslinked perfluoropolyether solid electrolytes for lithium ion transport", SOLID STATE IONICS, vol. 310, 1 November 2017 (2017-11-01), pages 71 - 80, XP085223279, ISSN: 0167-2738, DOI: 10.1016/j.ssi.2017.08.007 *
ZHANG, Q. ET AL: "Recent advances in solid polymer electrolytes for lithium batteries", NANO RESEARCH, vol. 10, no. 12, 22 August 2017 (2017-08-22), pages 4139 - 4174, XP036437481, ISSN: 1998-0124, DOI: 10.1007/s12274-017-1763-4 *

Also Published As

Publication number Publication date
EP3863099A1 (en) 2021-08-11
KR20200052241A (ko) 2020-05-14
US11967679B2 (en) 2024-04-23
EP3863099A4 (en) 2021-11-03
US20220085410A1 (en) 2022-03-17
CN113544893B (zh) 2023-09-26
CN113544893A (zh) 2021-10-22
KR102443849B1 (ko) 2022-09-19

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020055110A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2021025521A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2020009436A1 (ko) 고온 특성이 향상된 리튬 이차전지
WO2019135624A1 (ko) 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2019108031A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2020060293A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2019088733A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2022055307A1 (ko) 고분자 전해질용 전구체 조성물 및 이로부터 형성된 젤 고분자 전해질
WO2019108024A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2021025535A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019093862A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019883207

Country of ref document: EP

Effective date: 20210505

NENP Non-entry into the national phase

Ref country code: DE