WO2020082944A1 - 磷铝分子筛scm-18、其制备方法及应用 - Google Patents

磷铝分子筛scm-18、其制备方法及应用 Download PDF

Info

Publication number
WO2020082944A1
WO2020082944A1 PCT/CN2019/106628 CN2019106628W WO2020082944A1 WO 2020082944 A1 WO2020082944 A1 WO 2020082944A1 CN 2019106628 W CN2019106628 W CN 2019106628W WO 2020082944 A1 WO2020082944 A1 WO 2020082944A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
aluminum
phosphorous
precursor
phosphorus
Prior art date
Application number
PCT/CN2019/106628
Other languages
English (en)
French (fr)
Inventor
杨为民
袁志庆
滕加伟
付文华
刘松霖
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020217015407A priority Critical patent/KR20210077752A/ko
Priority to JP2021523060A priority patent/JP7373561B2/ja
Priority to EP19876975.4A priority patent/EP3872032A4/en
Priority to US17/288,891 priority patent/US11819834B2/en
Priority to CA3117388A priority patent/CA3117388C/en
Priority to SG11202104152VA priority patent/SG11202104152VA/en
Priority to BR112021007662-0A priority patent/BR112021007662A2/pt
Publication of WO2020082944A1 publication Critical patent/WO2020082944A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0292Phosphates of compounds other than those provided for in B01J20/048
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/04Aluminophosphates [APO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the present application relates to the technical field of molecular sieves, and more particularly to a phosphorous aluminum molecular sieve, its preparation method and application.
  • molecular sieves are a type of porous crystalline material. There are more than 250 types of molecular sieves with known structures discovered so far. Most molecular sieves have a large internal specific surface area and open internal space. These internal spaces can be used as a reaction place, and can also be used to accommodate some guest molecules, such as metals, metal oxides, organic molecules, water molecules and so on. Since the molecular sieve has uniform and regular pores, and the pore size is of the same order as the molecule, it is possible to "select" the entry and exit of molecules to obtain the shape selection effect. Because of the above characteristics, molecular sieves are widely used as catalysts, catalyst carriers, adsorbents and detergents. They have been widely used in petrochemical, environmental protection, and adsorption and separation fields.
  • Zeolite framework typically by co-vertex (typically an oxygen atom) are connected by a tetrahedral coordination (TO 4) is made to aluminum phosphate molecular sieves, such sieve skeleton by AlO 4 - tetrahedra and PO 4 + tetrahedra connected
  • TO 4 tetrahedral coordination
  • aluminum or phosphorus in the aluminum phosphate molecular sieve can also be replaced by other elements, the most common of which are silicon (the resulting molecular sieve is called SAPO) and transition metal elements (the resulting molecular sieve is called MAPO)
  • SAPO silicon
  • MAPO transition metal elements
  • US Patent US4310440 uses organic amines or quaternary ammonium compounds as template agents to hydrothermally synthesize a series of aluminum phosphate molecular sieves, including: AlPO 4 -5, AlPO 4 -8, AlPO 4 -9, AlPO 4 -11, AlPO 4 -12, AlPO 4 -14, AlPO 4 -16, AlPO 4 -17, AlPO 4 -18, AlPO 4 -20, AlPO 4 -21, AlPO 4 -22, AlPO 4 -23, AlPO 4 -25, AlPO 4 -26, AlPO 4 -28, AlPO 4 -31, etc.
  • the template used includes tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tripropylene Amine, triethylamine, isopropylamine, butylamine, ethylenediamine, piperidine and its derivative
  • U.S. Patent No. 4,440,871 gives a synthesis method of silicon-containing phosphoroaluminum molecular sieves, which include SAPO-5, SAPO-11, SAPO-16, SAPO-17, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-37, SAPO-40, SAPO-41, SAPO-42 and SAPO-44 and so on.
  • U.S. Patent No. 4,754,651 gives a series of synthetic methods of metal-containing silicoaluminozeolites, including TiAPSO containing titanium, MgAPSO containing magnesium, MnAPSO containing manganese, CoAPSO containing cobalt, ZnAPSO containing zinc and FeAPSO containing iron and many more.
  • organic templating agent For the synthesis of phosphoaluminum molecular sieves, the type of organic templating agent is the most important factor in determining its structure. New templating agents tend to be easier to obtain new molecular sieves. So far, organic amines and quaternary ammonium type organic compounds are synthesized by phosphorous aluminum sieve The most widely used template agent.
  • the phosphoroaluminum molecular sieve has a unique X-ray diffraction pattern and can be used as an adsorbent, a catalyst, or a catalyst carrier.
  • the present application provides a phosphorous-aluminum molecular sieve having a schematic chemical composition of Al 2 O 3 .nP 2 O 5 , where n represents a phosphorus-aluminum molar ratio and is between about 0.8 and about 1.2 Within the range of X, the molecular sieve X-ray diffraction pattern shows the relative intensity characteristics shown in the following table:
  • the present application provides a method for preparing phosphorous aluminum molecular sieve, including the following steps:
  • the step i) further includes:
  • organic substance R is ammonium hydroxide having the following structural formula:
  • the groups R1-R12 may be the same or different, and are independently selected from H and C 1-6 alkyl groups, preferably selected from H and C 1-3 alkyl groups, more preferably H; and
  • the groups R13 and R14 may be the same or different, and are independently selected from C 1-6 alkyl, preferably C 1-3 alkyl, more preferably methyl.
  • the present application provides phosphoroaluminum molecular sieve obtained by the preparation method disclosed herein.
  • the present application provides a molecular sieve composition comprising a phosphorous aluminum molecular sieve according to the present application or a phosphorous aluminum molecular sieve prepared according to the method of the present application, and a binder.
  • the present application provides the use of the molecular sieve according to the present application, the molecular sieve prepared according to the present application method, or the molecular sieve composition according to the present application as an adsorbent, catalyst, or catalyst carrier.
  • the phosphorous aluminum molecular sieve of the present application has an open pore system, so it can accommodate guest molecules, for example, as an adsorbent for small organic molecules and water molecules, or as a catalyst carrier supporting metals or metal oxides, such as copper oxide, etc. Nitrogen oxide tail gas treatment catalyst.
  • FIG. 1 is an XRD pattern of the phosphor aluminum molecular sieve precursor obtained in Example 1.
  • FIG. 1 is an XRD pattern of the phosphor aluminum molecular sieve precursor obtained in Example 1.
  • FIG. 2 is an XRD pattern of the phosphorous aluminum molecular sieve obtained in Example 1.
  • phosphorus aluminum ratio or “phosphorus aluminum molar ratio” refers to the molar ratio between phosphorus in terms of P 2 O 5 and aluminum in terms of Al 2 O 3 .
  • the term "specific surface area” refers to the total area of the sample per unit mass, including the inner surface area and the outer surface area.
  • Non-porous samples only have external surface areas, such as portland cement, some clay mineral powder, etc .; porous and porous samples have external and internal surface areas, such as asbestos fiber, diatomaceous earth, and molecular sieve.
  • the surface area of pores with pore diameters of less than 2 nm in porous and porous samples is the internal surface area.
  • the surface area after deducting the internal surface area is called the external surface area, and the external surface area per unit mass of the sample is the external specific surface area.
  • pore volume refers to the volume of pores per molecular mass sieve.
  • total pore volume refers to the volume of all pores (generally only including pores with a pore diameter of less than 50 nm) per unit mass of molecular sieve.
  • micropore pore volume refers to the volume of all micropores (generally refers to pores with a channel diameter of less than 2 nm) possessed by a molecular sieve per unit mass.
  • the schematic chemical composition of the molecular sieve and molecular sieve precursor refers to the chemical composition of the skeleton of the molecular sieve / molecular sieve precursor, and the chemical composition only schematically represents the phosphorus in the skeleton of the molecular sieve / molecular sieve precursor (In terms of P 2 O 5 ) and aluminum (in terms of Al 2 O 3 ) molar ratio between elements, and does not strictly limit the specific existence of each element, which can usually adopt inductively coupled plasma atomic emission spectroscopy ( ICP) method.
  • ICP inductively coupled plasma atomic emission spectroscopy
  • XRD X-ray diffraction spectroscopy
  • W, M, S, VS, WM, MS, and S-VS, etc. represent the corresponding diffraction peak calculated based on the diffraction peak area relative to the strongest diffraction peak (i.e. area Relative intensity of the largest diffraction peak) I / I 0 , where I represents the peak area of the corresponding diffraction peak and I 0 represents the peak area of the strongest diffraction peak, W represents weak, M represents medium, S represents strong, and VS represents very Strong, WM stands for weak to medium, MS stands for medium to strong, and S-VS stands for strong to very strong, this representation is well known to those skilled in the art. Generally speaking, W represents less than 20; M represents 20-40; S represents 40-60; VS represents greater than 60, WM represents less than 40, MS represents 20-60, and S-VS represents greater than 40.
  • the term “after calcination”, “after calcination form” or “post-calcination molecular sieve” refers to the state of the molecular sieve after calcination.
  • the post-baking state may be a state in which a synthetic molecular sieve is calcined to further remove organic substances (especially organic template agents) and water that may exist in its pores.
  • the present application provides a phosphorous aluminum molecular sieve having a schematic chemical composition of Al 2 O 3: nP 2 O 5 in a mole meter, where n represents a molar ratio of phosphorous to aluminum, and ranges from about 0.8 to Within the range of about 1.2, the X-ray diffraction pattern of the molecular sieve shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve shows the relative intensity characteristics shown in the following table:
  • the specific surface area of the phosphorous aluminum molecular sieve is about 150-500 square meters / gram, preferably about 200-400 square meters / gram; the pore volume of the micropores is about 0.09-0.25 milliliters / gram, preferably about 0.10-0.20 ml / g.
  • the present application provides a method for preparing phosphoroaluminum molecular sieve, including the following steps:
  • the X-ray diffraction pattern of the molecular sieve precursor shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve precursor shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve precursor shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve precursor shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the molecular sieve precursor shows the relative intensity characteristics shown in the following table:
  • the framework of the phosphorous-aluminum molecular sieve precursor has a schematic chemical composition of Al 2 O 3 .nP 2 O 5 , where n represents the molar ratio of phosphorous to aluminum, and is between about 0.8 to about Within 1.2.
  • step i) further includes:
  • organic substance R is ammonium hydroxide having the following structural formula:
  • the groups R1-R12 may be the same or different, and are independently selected from H and C 1-6 alkyl groups, preferably selected from H and C 1-3 alkyl groups, more preferably H; and
  • the groups R13 and R14 may be the same or different, and are independently selected from C 1-6 alkyl, preferably C 1-3 alkyl, more preferably methyl.
  • the aluminum source is not particularly limited, and may be, for example, those conventionally used for preparing aluminum-containing molecular sieves.
  • the aluminum source is one or more selected from pseudo-boehmite, aluminum isopropoxide, aluminum sol, aluminum hydroxide, aluminum sulfate, aluminum chloride and aluminum oxide, preferably It is selected from pseudoboehmite and aluminum isopropoxide.
  • the phosphorus source in the production method of the present application, there is no particular limitation on the phosphorus source, and for example, it may be those conventionally used for preparing phosphorus-containing molecular sieves.
  • the phosphorus source is one or more selected from phosphoric acid, phosphorous acid and phosphorus pentoxide, preferably phosphoric acid.
  • the aluminum source, the phosphorus source, the organic matter R and the water are calculated according to the aluminum source (calculated as Al 2 O 3 ): phosphorus source (calculated as P 2 O 5 ): R: H 2
  • the molar ratio of O is about 1: (1.0-2.0) :( 2.5-4.8) :( 100-300).
  • the organic substance R is N, N '-(1,4-phenylene bis (methylene)) bis (N-methylpyrrolidine) ammonium hydroxide, and its chemical structural formula is as follows :
  • step ib) is performed under the following conditions: a closed reaction vessel, a crystallization temperature of about 130-200 ° C, and a crystallization time of about 24-150 hours. Further preferably, the crystallization temperature is about 145-185 ° C and the crystallization time is about 48-120 hours.
  • the step ib) further includes washing and drying the obtained phosphorous aluminum molecular sieve precursor.
  • the present application does not particularly limit the washing and drying steps, and can be performed in a conventional manner.
  • the washing may be performed with deionized water, and methods such as suction filtration or centrifugal separation may be used until the washing solution is near neutral; and the drying may be, for example, in an oven at about 100-250 Dry for about 1-48 hours at °C.
  • the molar ratio of phosphorus in P 2 O 5 and aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) in the molecular sieve precursor obtained in step ib) is about It is in the range of 0.8 to about 1.2, and the weight content of organic matter is in the range of about 8% to about 40% by weight of the molecular sieve precursor.
  • the phosphorous aluminum molecular sieve precursor prepared in step ib) of the present application has a stable crystal structure, and can be calcined according to a conventional calcination method, which is not particularly limited in this application.
  • the baking treatment may be performed at about 500-750 ° C in an air atmosphere, and the baking time may be, for example, about 1-10 hours.
  • the roasting may be roasting in an air atmosphere at about 550 ° C for about 6 hours.
  • there may be a certain amount of carbonaceous material remaining in the resulting phosphorous aluminum molecular sieve but such residual carbonaceous material is not counted in the chemical composition of the molecular sieve.
  • the X-ray diffraction pattern of the phosphoroaluminum molecular sieve obtained in step ii) shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the phosphorus aluminum molecular sieve obtained in step ii) shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the phosphorous aluminum molecular sieve obtained in step ii) shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the phosphorus aluminum molecular sieve obtained in step ii) shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the phosphorus aluminum molecular sieve obtained in step ii) shows the relative intensity characteristics shown in the following table:
  • the X-ray diffraction pattern of the phosphorous aluminum molecular sieve obtained in step ii) shows the relative intensity characteristics shown in the following table:
  • the phosphorous aluminum molecular sieve with a specific X-ray diffraction pattern of the present application can be prepared in a directional manner.
  • the present application provides phosphoroaluminum molecular sieves prepared by the method of the present application.
  • the present application provides a molecular sieve composition comprising the phosphorous aluminum molecular sieve according to the present application or the phosphorous aluminum molecular sieve prepared according to the method of the present application, and a binder.
  • the molecular sieve composition can be in any physical form, such as powder, granules, or molded products (such as strips, clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • the binder is not particularly limited, for example, those conventionally used for preparing adsorbents or catalysts can be used, including but not limited to clay, clay, silica, silica gel, alumina, zinc oxide or Its mixture.
  • the present application provides the use of the phosphoroaluminum molecular sieve according to the present application, the phosphoroaluminum molecular sieve prepared according to the present application method, or the molecular sieve composition according to the present application as an adsorbent, catalyst or catalyst support.
  • adsorbent examples include the removal of a small amount of water in organic solvents such as isopropanol, isobutanol, and isobutanone, and for the adsorption and removal of a small amount of water in natural gas.
  • the catalyst it may be mentioned, for example, that Cu is supported on an SCM-18 molecular sieve so that it can be used for catalytic decomposition of nitrogen-containing oxides in automobile exhaust.
  • the present application provides the following technical solutions:
  • Item 1 An SCM-18 molecular sieve, which has a chemical composition of the following molar ratio without calculating moisture: Al 2 O 3: nP 2 O 5 , n is 1.0-3.0, X-ray of the molecular sieve The diffraction pattern shows the relative intensity characteristics shown in the following table:
  • step ib) After washing and drying the product obtained in step ib) above, a precursor of SCM-18 molecular sieve is obtained;
  • SCM-18 molecular sieve can be obtained by roasting the precursor of the above SCM-18 molecular sieve.
  • Item 3 The preparation method of SCM-18 molecular sieve according to item 2, characterized in that the aluminum source, the phosphorus source, the organic matter R and the water are in accordance with Al 2 O 3 : (1.0-2.0) P 2 O 5 : (2.5- 4.8) The ratio of R: (100-300) H 2 O is uniformly mixed to obtain a synthetic mother liquor.
  • Item 4 The preparation method of SCM-18 molecular sieve according to item 2, characterized in that the organic matter R is N, N '-(1,4-phenylene bis (methylene)) bis (N-methylpyrrole Alkane) ammonium hydroxide.
  • Item 5 The preparation method of the SCM-18 molecular sieve according to item 2, characterized in that the crystallization temperature is 130 ° C-200 ° C and the crystallization time is 24-150 hours.
  • Item 6 The preparation method of SCM-18 molecular sieve according to item 2, characterized in that the aluminum source is at least one of pseudo-boehmite, aluminum isopropoxide, aluminum sol, and alumina; the phosphorus source is selected One or more of autophosphoric acid, phosphorous acid, or phosphorus pentoxide.
  • the aluminum source is at least one of pseudo-boehmite, aluminum isopropoxide, aluminum sol, and alumina
  • the phosphorus source is selected One or more of autophosphoric acid, phosphorous acid, or phosphorus pentoxide.
  • Item 7 The preparation method of SCM-18 molecular sieve according to item 2, characterized in that the precursor of SCM-18 molecular sieve has the following X-ray diffraction pattern:
  • Item 8 The preparation method of the SCM-18 molecular sieve according to item 2, characterized in that the precursor of the SCM-18 molecular sieve has the following composition, excluding moisture: m Organic composition: Al2O 3 : P 2 O 5 , where 0.03 ⁇ m ⁇ 0.3.
  • a molecular sieve composition comprising the molecular sieve described in item 1 or the molecular sieve prepared according to the preparation method of any one of items 2-8, and a binder.
  • Item 10 Application of the molecular sieve described in Item 1, the molecular sieve prepared according to the preparation method of any one of Items 2-8, or the molecular sieve composition described in Item 9 as an adsorbent or a catalyst.
  • the raw materials used for N, N '-(1,4-phenylene bis (methylene)) bis (N-methylpyrrolidine) ammonium hydroxide are produced by Sankai Chemical Co., Ltd.
  • the concentration is 20.75% (aqueous solution) chemically pure; pseudoboehmite is produced by Shandong Yinglang Chemical Co., Ltd., with a weight content of 72% based on Al 2 O 3 , chemically pure; phosphoric acid is purchased from Sinopharm Group Chemical Reagent Co., Ltd., quality
  • the concentration is 85% (aqueous solution), analytically pure; aluminum isopropoxide is purchased from Sinopharm Group Chemical Reagent Co., Ltd., and the weight content in terms of Al 2 O 3 is 24.7%, chemically pure.
  • the chemical composition of the molecular sieve was determined by inductively coupled plasma atomic emission spectrometry (ICP) method.
  • the instrument used was Kontron Model S-35.
  • the solid molecular sieve sample was dissolved in HF to make a solution before the test.
  • the specific surface area and pore volume of the molecular sieve are determined by the N 2 physical adsorption and desorption method.
  • the instrument used is the Quadrasorb evo gas adsorption specific surface area and pore volume tester of Kangta Company. The temperature is measured at 77K. Before the test, the sample is placed at 573K Vacuum pretreatment for 6h.
  • the specific surface area is calculated from the BET equation, and the pore volume is calculated using the t-plot method.
  • the content of organic matter in the molecular sieve precursor is determined by thermogravimetric analysis.
  • the instrument used is a NETZSCH STA449F3 thermogravimetric analyzer with an air flow rate of 30 ml / min and a heating rate of 10 ° C / min.
  • the weight loss percentage is taken as the weight percentage content of organic matter.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 175 ° C and the crystallization time is 84 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in terms of P 2 O 5 and aluminum in terms of Al 2 O 3 was 1.0, and the weight content of organic matter was 15.3%. It has the XRD pattern shown in Figure 1 and the XRD pattern data shown in Table 1A.
  • the precursor of the phosphorous aluminum molecular sieve is calcined at 550 ° C for 5 hours to obtain the phosphorous aluminum molecular sieve.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry is Al 2 O 3 ⁇ 1.0P 2 O 5
  • the specific surface area of the molecular sieve of the product obtained is 394 square meters / gram
  • the pore volume of the micropores is 0.17 milliliters / gram
  • the XRD pattern is shown in FIG. 2
  • the corresponding XRD pattern data is shown in Table 1B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 175 ° C and the crystallization time is 84 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.0, and the weight content of organic matter is 17.9%.
  • the XRD pattern data is shown in Table 2A .
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 1.0P 2 O 5.
  • the specific surface area of the product molecular sieve obtained is 363 square meters / gram, and the pore volume is 0.16 Ml / g
  • XRD pattern data is shown in Table 2B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 175 ° C and the crystallization time is 84 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 0.98, and the weight content of organic matter is 14.4%.
  • the XRD pattern data is shown in Table 3A .
  • the precursor of the phosphorous aluminum molecular sieve is calcined at 550 ° C for 5 hours to obtain a phosphorous aluminum molecular sieve.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 0.98P 2 O 5
  • the specific surface area of the molecular sieve of the product obtained is 410 square meters / gram
  • the pore volume of the micropore is 0.18 milliliters / gram
  • the XRD pattern data is shown in Table 3B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 190 ° C and the crystallization time is 60 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.0, and the weight content of organic matter is 20.2%.
  • the XRD pattern data is shown in Table 4A .
  • the precursor of the phosphorous aluminum molecular sieve is calcined at 550 ° C for 5 hours to obtain the phosphorous aluminum molecular sieve.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 1.0P 2 O 5
  • the specific surface area of the molecular sieve of the product obtained is 357 square meters / gram
  • the micropore pore volume is 0.15 milliliters / gram
  • the XRD pattern data is shown in Table 4B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 150 ° C. and the crystallization time is 120 hours.
  • a precursor of a phosphorus aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 0.95, the weight content of organic matter is 19.0%, and the XRD pattern data is shown in Table 5A .
  • the precursor of the phosphorous aluminum molecular sieve is calcined at 550 °C for 5 hours to obtain the phosphorous aluminum molecular sieve.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 0.95P 2 O 5
  • the specific surface area of the molecular sieve of the product obtained is 330 m 2 / g
  • the pore volume of the micropores is 0.15 ml / g.
  • the corresponding XRD pattern data is shown in Table 5B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 175 ° C and the crystallization time is 84 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.0, and the weight content of organic matter is 15.6%.
  • the XRD pattern data is shown in Table 6A .
  • the precursor of the phosphorous aluminum molecular sieve is calcined at 550 ° C for 5 hours to obtain the phosphorous aluminum molecular sieve.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry is Al 2 O 3 ⁇ 1.0P 2 O 5
  • the specific surface area of the molecular sieve of the product obtained is 408 square meters / gram
  • the pore volume of the micropores is 0.19 milliliters / gram
  • the XRD pattern data is shown in Table 6B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 175 ° C and the crystallization time is 84 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.03, the weight content of organic matter is 17.8%, and the XRD pattern data is shown in Table 7A .
  • the precursor of the phosphorous aluminum molecular sieve is calcined at 550 ° C for 5 hours to obtain the phosphorous aluminum molecular sieve.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 1.03P 2 O 5
  • the specific surface area of the molecular sieve of the obtained product is 390 square meters / gram
  • the micropore pore volume is 0.17 milliliters / gram
  • the XRD pattern data is shown in Table 7B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 175 ° C and the crystallization time is 84 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.0, and the weight content of organic matter is 16.4%.
  • the XRD pattern data is shown in Table 8A
  • the phosphorous aluminum molecular sieve can be obtained by roasting the precursor of the phosphorous aluminum molecular sieve at 550 ° C for 5 hours.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 1.0P 2 O 5.
  • the specific surface area of the product molecular sieve obtained is 392 square meters / gram, and the micropore volume is 0.19 Ml / g.
  • the corresponding XRD pattern data is shown in Table 8B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 190 ° C and the crystallization time is 60 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 0.99, the weight content of organic matter is 16.3%, and the XRD pattern data is shown in Table 9A .
  • the phosphorous aluminum molecular sieve can be obtained by roasting the precursor of the phosphorous aluminum molecular sieve at 550 ° C for 5 hours.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 0.99P 2 O 5.
  • the specific surface area of the product molecular sieve obtained is 310 square meters / gram, and the pore volume is 0.15 Ml / g.
  • the corresponding XRD pattern data is shown in Table 9B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 190 ° C and the crystallization time is 60 hours.
  • a precursor of the phosphorous aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.0, the weight content of organic matter is 20.1%, and the XRD pattern data is shown in Table 10A .
  • the phosphorous aluminum molecular sieve can be obtained by roasting the precursor of the phosphorous aluminum molecular sieve at 550 ° C for 5 hours.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) was Al 2 O 3 ⁇ 1.0P 2 O 5.
  • the specific surface area of the product molecular sieve obtained was 345 square meters / gram, and the micropore volume was 0.17. Ml / g.
  • the corresponding XRD pattern data is shown in Table 10B.
  • the above synthetic mother liquor is placed in a closed reaction vessel for crystallization.
  • the crystallization temperature is 150 ° C. and the crystallization time is 120 hours.
  • a precursor of a phosphorus aluminum molecular sieve is obtained.
  • the molar ratio of phosphorus in P 2 O 5 to aluminum in Al 2 O 3 (P 2 O 5 / Al 2 O 3 ) is 1.01, and the weight content of organic matter is 14.7%.
  • the XRD pattern data is shown in Table 11A .
  • the phosphorous aluminum molecular sieve can be obtained by roasting the precursor of the phosphorous aluminum molecular sieve at 550 ° C for 5 hours.
  • the schematic chemical composition of the product molecular sieve measured by inductively coupled plasma atomic emission spectrometry (ICP) is Al 2 O 3 ⁇ 1.01P 2 O 5.
  • the specific surface area of the product molecular sieve obtained is 372 square meters / gram, and the micropore volume is 0.16 Ml / g.
  • the corresponding XRD pattern data is shown in Table 11B.
  • the molecular sieve composition can be used as an adsorbent or catalyst.
  • Adsorption amount (weight of sample after adsorption-initial weight of sample) ⁇ initial weight of sample.
  • the dried AlPO-5, AlPO-11, ZSM-5 molecular sieve and 3A molecular sieve were made into compositions according to the method given in Example 12, and 2 grams were taken out for the adsorption performance test. The results are listed in Table 12. in. In addition, 2 grams of silica gel was also tested for adsorption performance, and the results are also listed in Table 12.
  • Table 12 The adsorption capacity of different adsorbents for different adsorbates
  • the molecular sieve / molecular sieve composition of the present invention can be used as an adsorbent for many small organic molecules and water, and particularly has good adsorption performance for H 2 O.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

提供一种磷铝分子筛SCM-18、其制备方法及应用。该分子筛具有按摩尔比计的示意性化学组成Al 2O 3·nP 2O 5,其中n表示磷铝摩尔比,且在约0.8-1.2范围内。其制备方法包括将铝源、磷源、有机物R和水按比例混合,得到合成母液;对合成母液进行晶化,得到磷铝分子筛前驱体;焙烧该前驱体得到磷铝分子筛。该分子筛具有独特的X射线衍射图谱,可用作吸附剂、催化剂或催化剂载体。

Description

磷铝分子筛SCM-18、其制备方法及应用 技术领域
本申请涉及分子筛的技术领域,更具体地涉及一种磷铝分子筛、其制备方法及应用。
背景技术
分子筛是一类多孔的结晶材料,目前发现的已知结构的分子筛种类已达250多种。大部分分子筛具有大的内比表面积以及开放的内部空间,这些内部空间既可以作为反应的发生场所,也可以用来容纳一些客体分子,如金属、金属氧化物,有机分子,水分子等等。由于分子筛具有均一规则的孔道,且孔道尺寸与分子属于同一量级,因而可以对分子的进出进行“选择”,从而获得择形效果。由于分子筛具有上述特征,因而被广泛用作催化剂、催化剂的载体、吸附剂和洗涤剂等,在石油化工,环保,以及吸附和分离领域获得了广泛应用。
分子筛的骨架通常由配位四面体(TO 4)通过共顶点(一般为氧原子)连接而成,对于磷酸铝分子筛,该类分子筛的骨架通过AlO 4 -四面体和PO 4 +四面体连接而成,因而整个分子筛骨架呈现出电中性。当然,类似于沸石分子筛,磷酸铝分子筛中的铝或者磷也可以被其它的元素所取代,其中最为常见的是硅(所得分子筛称为SAPO)和过渡金属元素(所得分子筛称为MAPO),由于这些元素的引入,赋予了磷酸铝型分子筛新的特性,比如具有固体酸性或者氧化还原性等。相比沸石分子筛,磷酸铝分子筛的人工合成研究比较晚。
1971年,Flanigen等人报道了磷酸铝分子筛的合成【Flanigen E.M.and Grose R.W.,Phosphorus Substitution in Zeolite Frameworks.in Molecular Sieve Zeolites-I,1970,P76-P98,ACS,Washingtom D.C】,其中在水热合成条件下,混合铝,硅和磷的氧化物得到了与analcime,chabazite,phillipsite-harmotome,L型分子筛,A型分子筛和B型分子筛等具有相同晶体结构的硅磷铝分子筛,其中磷的含量为5-25%(以P 2O 5计),但没有发现区别于沸石分子筛的结构。
美国专利US4310440使用有机胺或者季铵类化合物作为模板剂,水热合成出了一系列的磷酸铝分子筛,它们包括:AlPO 4-5,AlPO 4-8, AlPO 4-9,AlPO 4-11,AlPO 4-12,AlPO 4-14,AlPO 4-16,AlPO 4-17,AlPO 4-18,AlPO 4-20,AlPO 4-21,AlPO 4-22,AlPO 4-23,AlPO 4-25,AlPO 4-26,AlPO 4-28,AlPO 4-31等,所使用的模板剂包括四甲基氢氧化铵,四乙基氢氧化铵,四丙基氢氧化铵,四丁基氢氧化铵,三丙基胺,三乙基胺,异丙胺,丁胺,乙二胺,哌啶及其衍生物,环己胺,DABCO,奎宁环等等。
美国专利US4440871给出了含硅的磷铝分子筛的合成方法,这些硅磷铝分子筛包括SAPO-5,SAPO-11,SAPO-16,SAPO-17,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-37,SAPO-40,SAPO-41,SAPO-42和SAPO-44等等。
美国专利US4752651给出了一系列含金属的硅磷铝分子筛的合成方法,其中包括含钛的TiAPSO,含镁的MgAPSO,含锰的MnAPSO,含钴的CoAPSO,含锌的ZnAPSO和含铁的FeAPSO等等。
对于磷铝分子筛的合成,有机模板剂的种类是决定其结构的最主要因素,新的模板剂往往更容易获得新的分子筛,到目前为止,有机胺和季铵型有机化合物是磷铝分子筛合成中应用最为广泛的模板剂。
发明内容
本申请的目的之一提供一种新型的磷铝分子筛,及其制备方法和应用,所述磷铝分子筛具有独特的X射线衍射图谱,可以用作吸附剂、催化剂或者催化剂载体。
一方面,本申请提供了一种磷铝分子筛,所述分子筛具有按摩尔计的示意性化学组成Al 2O 3.nP 2O 5,其中n表示磷铝摩尔比,且在约0.8至约1.2的范围内,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000001
Figure PCTCN2019106628-appb-000002
另一方面,本申请提供了一种磷铝分子筛的制备方法,包括如下步骤:
i)提供磷铝分子筛前驱体,所述前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000003
,以及
ii)对所述磷铝分子筛前驱体进行焙烧,得到所述磷铝分子筛。
优选地,所述步骤i)进一步包括:
ia)将铝源、磷源、有机物R和水按照铝源(以Al 2O 3计)∶磷源(以P 2O 5计)∶R∶H 2O的摩尔比为大约1∶(1.0-3.0)∶(1.5-6.0)∶(50-500)的比例混合,得到合成母液;以及
ib)对所述合成母液进行晶化,得到所述分子筛前驱体,
其中所述有机物R为具有如下结构式的氢氧化铵:
Figure PCTCN2019106628-appb-000004
其中,基团R1-R12可以相同或不同,且相互独立地选自H和C 1-6烷基,优选选自H和C 1-3烷基,更优选H;并且
基团R13和R14可以相同或不同,且相互独立地选自C 1-6烷基,优选C 1-3烷基,更优选甲基。
再一方面,本申请提供了通过本文公开的制备方法得到的磷铝分子筛。
再一方面,本申请提供了一种分子筛组合物,其包含根据本申请的磷铝分子筛或者按照本申请方法制备的磷铝分子筛,以及粘结剂。
又一方面,本申请提供了根据本申请的分子筛、按照本申请方法制备的分子筛、或者根据本申请的分子筛组合物作为吸附剂、催化剂、或者催化剂载体的应用。
本申请的磷铝分子筛具有开放的孔道体系,因此可以容纳客体分子,比如作为小的有机分子和水分子的吸附剂,或者作为催化剂载体负载金属或者金属氧化物,如氧化铜等,用作含氮氧化物尾气处理催化剂。
附图说明
图1为实施例1所得磷铝分子筛前驱体的XRD图谱。
图2为实施例1所得磷铝分子筛的XRD图谱。
下面通过实施例对本发明作进一步的阐述,但并不因此限制本发明的保护范围。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献的全部内容都通过引用方式并入本文。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,所谓“磷铝比”或“磷铝摩尔比”是指以P 2O 5 计的磷和以Al 2O 3计的铝之间的摩尔比例。
在本说明书的上下文中,所谓“比表面积”,是指单位质量样品所具有的总面积,包括内表面积和外表面积。非孔性样品只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔样品具有外表面积和内表面积,如石棉纤维、硅藻土和分子筛等。有孔和多孔样品中孔径小于2nm的孔的表面积是内表面积,扣除内表面积后的表面积称为外表面积,单位质量样品具有的外表面积即外比表面积。
在本说明书的上下文中,所谓“孔容”或“孔体积”,是指单位质量分子筛所具有的孔的容积。所谓“总孔容”,是指单位质量分子筛所具有的全部孔(一般仅计入孔道直径小于50nm的孔)的容积。所谓“微孔孔容”,是指单位质量分子筛所具有的全部微孔(一般指的是孔道直径小于2nm的孔)的容积。
在本说明书的上下文中,所述分子筛和分子筛前驱体的示意性化学组成是指分子筛/分子筛前驱体的骨架的化学组成,并且该化学组成仅示意性地表示分子筛/分子筛前驱体的骨架中磷(以P 2O 5计)和铝(以Al 2O 3计)等元素之间的摩尔比例,而并不严格限定各元素的具体存在形式,其通常可以采用电感耦合等离子体原子发射光谱(ICP)方法测得。
在本说明书的上下文中,分子筛的结构是通过X-射线衍射谱图(XRD)确定的,所述分子筛的X-射线衍射谱图(XRD)采用X-射线粉末衍射仪测定,使用Cu-Kα射线源,Kα1波长λ=1.5405980埃
Figure PCTCN2019106628-appb-000005
采用单色器去除Kα2射线。
在本说明书的上下文中,在分子筛的XRD数据中,W、M、S、VS、W-M、M-S和S-VS等代表基于衍射峰面积计算得到的相应衍射峰相对于最强衍射峰(即面积最大的衍射峰)的相对强度I/I 0,其中I表示代表相应衍射峰的峰面积而I 0表示最强衍射峰的峰面积,W代表弱,M代表中等,S代表强,VS代表非常强,W-M代表弱到中等,M-S代表中等到强,且S-VS代表强到非常强,这种表示方式是本领域技术人员所熟知的。一般而言,W代表小于20;M代表20-40;S代表40-60;VS代表大于60,W-M代表小于40,M-S代表20-60,而S-VS代表大于40。
在本说明书的上下文中,所谓“焙烧后”、“焙烧后形式”或者“焙烧后分子筛”,是指所述分子筛在焙烧之后的状态。作为所述焙烧后状态, 具体举例而言,可以是将合成态分子筛通过焙烧而进一步脱除其孔道中可能存在的有机物(特别是有机模板剂)和水等之后而呈现的状态。
需要特别说明的是,在本说明书的上下文中公开的两个或多个方面(或实施方式)可以彼此任意组合,由此而形成的技术方案(比如方法或***)属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围之内。
在没有相反表示的情况下,本说明书中所提到的所有百分数、份数、比率等都是以摩尔数为基准的,除非以摩尔数为基准时不符合本领域技术人员的常规认识。
在第一方面,本申请提供了一种磷铝分子筛,所述分子筛具有按摩尔计的示意性化学组成Al 2O 3∶nP 2O 5,其中n表示磷铝摩尔比,且在约0.8至约1.2的范围内,其中所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000006
在优选的实施方式中,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000007
Figure PCTCN2019106628-appb-000008
在进一步优选的实施方式中,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000009
在某些优选的实施方式中,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000010
在进一步优选的实施方式中,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000011
在更进一步优选的实施方式中,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000012
在优选的实施方式中,所述磷铝分子筛的比表面积为约150-500平方米/克,优选约200-400平方米/克;微孔孔容为约0.09-0.25毫升/克,优选约0.10-0.20毫升/克。
在第二方面,本申请提供了一种磷铝分子筛的制备方法,包括如下步骤:
i)提供磷铝分子筛前驱体,所述前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000013
,以及
ii)对所述磷铝分子筛前驱体进行焙烧,得到所述磷铝分子筛。
在优选的实施方式中,所述分子筛前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000014
在进一步优选的实施方式中,所述分子筛前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000015
在某些优选的实施方式中,所述分子筛前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000016
在进一步优选的实施方式中,所述分子筛前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000017
在更进一步优选的实施方式中,所述分子筛前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000018
Figure PCTCN2019106628-appb-000019
在某些优选实施方式中,所述磷铝分子筛前驱体的骨架具有按摩尔计的示意性化学组成Al 2O 3.nP 2O 5,其中n表示磷铝摩尔比,且在约0.8至约1.2的范围内。
在优选的实施方式中,所述步骤i)进一步包括:
ia)将铝源、磷源、有机物R和水按照铝源(以Al 2O 3计)∶磷源(以P 2O 5计)∶R∶H 2O的摩尔比为大约1∶(1.0-3.0)∶(1.5-6.0)∶(50-500)的比例均匀混合,得到合成母液;以及
ib)对所述合成母液进行晶化,得到分子筛前驱体;
其中所述有机物R为具有如下结构式的氢氧化铵:
Figure PCTCN2019106628-appb-000020
其中,基团R1-R12可以相同或不同,且相互独立地选自H和C 1-6烷基,优选选自H和C 1-3烷基,更优选H;并且
基团R13和R14可以相同或不同,且相互独立地选自C 1-6烷基,优选C 1-3烷基,更优选甲基。
在本申请的制备方法中,对于所述铝源并没有特别的限制,例如可以是常规用于制备含铝分子筛的那些。在优选的实施方式中,所述铝源为选自拟薄水铝石,异丙醇铝,铝溶胶,氢氧化铝,硫酸铝,氯化铝和氧化铝中的一种或多种,优选选自拟薄水铝石和异丙醇铝。
在本申请的制备方法中,对于所述磷源并没有特别的限制,例如可以是常规用于制备含磷分子筛的那些。在优选的实施方式中,所述磷源为选自磷酸,亚磷酸和五氧化二磷中的一种或多种,优选磷酸。
在优选的实施方式中,在步骤ia)中将铝源、磷源、有机物R和水按照铝源(以Al 2O 3计)∶磷源(以P 2O 5计)∶R∶H 2O的摩尔比为大 约1∶(1.0-2.0)∶(2.5-4.8)∶(100-300)的比例混合。
在特别优选的实施方式中,所述有机物R为N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵,其化学结构式如下:
Figure PCTCN2019106628-appb-000021
在优选的实施方式中,步骤ib)在如下条件下进行:密闭反应容器、晶化温度为约130-200℃,晶化时间为约24-150小时。进一步优选地,晶化温度为约145-185℃,晶化时间为约48-120小时。
进一步优选地,所述步骤ib)还包括对所得磷铝分子筛前驱体进行洗涤和干燥。本申请对于所述洗涤和干燥步骤并没有特别的限制,可以按照常规方式进行。例如,所述洗涤可以用去离子水进行,采用例如抽滤或者离心分离的方法皆可,直至洗涤溶液接近中性时即可;而所述干燥可以,例如,在烘箱中于约100-250℃下烘干约1-48小时。
在某些优选实施方式中,步骤ib)所得的分子筛前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)在约0.8至约1.2的范围内,且以所述分子筛前驱体的重量计,有机物的重量含量在约8%至约40%的范围内。
本申请步骤ib)制得的磷铝分子筛前驱体具有稳定的晶体结构,可以按照常规的焙烧方法进行焙烧处理,本申请对此并没有特别的限制。例如,可以在约500-750℃,空气气氛下进行焙烧处理,焙烧时间可以为例如约1-10小时。特别地,所述焙烧可以为在约550℃、在空气气氛下焙烧约6小时。根据焙烧条件的不同,所得的磷铝分子筛中可能会有一定量的含碳物质的残留,但是这类残留的含碳物质不计入分子筛的化学组成。
在优选的实施方式中,步骤ii)得到的磷铝分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000022
在进一步优选的实施方式中,步骤ii)得到的磷铝分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000023
在更进一步优选的实施方式中,步骤ii)得到的磷铝分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000024
Figure PCTCN2019106628-appb-000025
在某些优选的实施方式中,步骤ii)得到的磷铝分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000026
在进一步优选的实施方式中,步骤ii)得到的磷铝分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000027
在更进一步优选的实施方式中,步骤ii)得到的磷铝分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000028
在本申请的制备方法中,在铝源、磷源和有机物R的共同作用下,通过控制反应原料间的投料比,可以定向制备得到本申请的具有特定X射线衍射图谱的磷铝分子筛。
在第三方面,本申请提供了通过本申请方法制备得到的磷铝分子筛。
在第四方面,本申请提供了一种分子筛组合物,其包含根据本申请的磷铝分子筛或者按照本申请方法制备的磷铝分子筛,以及粘结剂。
所述分子筛组合物可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
在本申请中,对于所述粘结剂并没有特别的限制,例如可以采用常规用于制备吸附剂或催化剂的那些,包括但不限于粘土,白土,氧化硅,硅胶,氧化铝、氧化锌或其混合物。
在第五方面,本申请提供了根据本申请的磷铝分子筛、按照本申请方法制备的磷铝分子筛、或者根据本申请的分子筛组合物作为吸附 剂、催化剂或者催化剂载体的应用。
作为所述吸附剂的例子,可以提及例如用于异丙醇,异丁醇和异丁酮等有机溶剂中少量水分的去除,以及用于天然气中少量水分的吸附和脱除。
作为所述催化剂的例子,可以提及例如将Cu负载在SCM-18分子筛上,从而能够用于汽车尾气中含氮氧化物的催化分解。
在某些优选实施方式中,本申请提供了如下的技术方案:
项目1、一种SCM-18分子筛,所述分子筛在不计算水分的前提下具有如下摩尔比的化学组成:Al 2O 3∶nP 2O 5,n为1.0-3.0,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
Figure PCTCN2019106628-appb-000029
项目2、根据项目1所述的SCM-18分子筛的制备方法,包括如下几个步骤:
a)将铝源,磷源,有机物R和水按照Al 2O 3∶(1.0-3.0)P 2O 5∶(1.5-6.0)R∶(50-500)H 2O的比例均匀混合,得到合成母液;
b)将上述合成母液置于密闭反应容器中进行晶化;
c)上述步骤ib)获得的产物经洗涤和干燥后,得到SCM-18分子筛的前驱体;
d)将上述SCM-18分子筛的前驱体焙烧即可获得SCM-18分子筛。
项目3、根据项目2所述的SCM-18分子筛的制备方法,其特征在 于将铝源,磷源,有机物R和水按照Al 2O 3∶(1.0-2.0)P 2O 5∶(2.5-4.8)R∶(100-300)H 2O的比例均匀混合,得到合成母液。
项目4、根据项目2所述的SCM-18分子筛的制备方法,其特征在于有机物R为N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵。
项目5、根据项目2所述的SCM-18分子筛的制备方法,其特征在于晶化温度为130℃-200℃,晶化时间为24-150小时。
项目6、根据项目2所述的SCM-18分子筛的制备方法,其特征在于铝源至少为拟薄水铝石,异丙醇铝,铝溶胶,氧化铝中的一种;所述磷源选自磷酸,亚磷酸或五氧化二磷中的一种或多种。
项目7、根据项目2所述的SCM-18分子筛的制备方法,其特征在于SCM-18分子筛的前驱体具有如下的X射线衍射图谱:
Figure PCTCN2019106628-appb-000030
项目8、根据项目2所述的SCM-18分子筛的制备方法,其特征在于SCM-18分子筛的前驱体具有如下组成,不计水分:m有机成分:Al2O 3:P 2O 5,其中0.03≤m≤0.3。
项目9、一种分子筛组合物,包含项目1所述的分子筛或者按照项目2-8任一所述分子筛的制备方法制备的分子筛以及,以及粘结剂。
项目10、项目1所述分子筛、按照项目2-8任一所述分子筛的制备方法制备的分子筛、或者项目9所述分子筛组合物作为吸附剂或者 催化剂的应用。
实施例
下面通过实施例对本申请做进一步的说明,但并不因此而限制本发明的范围。
原料
在下述的实施例中,所用的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵原料为三开化学公司生产,质量浓度为20.75%(水溶液)化学纯;拟薄水铝石为山东英朗化学有限公司生产,以Al 2O 3计的重量含量为72%,化学纯;磷酸采购自国药集团化学试剂有限公司,质量浓度为85%(水溶液),分析纯;异丙醇铝采购自国药集团化学试剂有限公司,以Al 2O 3计的重量含量为24.7%,化学纯。
以下实施例中所用的化学试剂未特别注明的,均为市售产品,其规格为化学纯。
分析仪器和方法
在各实施例中,分子筛的XRD图谱采用PANalytical X’Pert PRO X-射线粉末衍射仪测得,使用Cu-Kα射线源,Kα1波长λ=1.5405980埃
Figure PCTCN2019106628-appb-000031
采用Ge(111)单色器去除Kα2射线,操作电流和电压分别为40毫安和40千伏,扫描步长为2theta=0.02°,扫描速率为6°/min。
分子筛的化学组成采用电感耦合等离子体原子发射光谱(ICP)方法测定,所使用的仪器为Kontron的Model S-35型,测试前固体分子筛样品利用HF溶解制成溶液。
分子筛的比表面积和孔容采用N 2物理吸脱附方法测定,所使用的仪器为康塔公司的Quadrasorb evo型气体吸附比表面积和孔容测试仪,测定温度77K,测试前,将样品在573K真空预处理6h。由BET方程计算比表面积,采用t-plot方法计算孔容。
分子筛前驱体中有机物的含量通过热重分析的方法测定,所使用的仪器为耐驰STA449F3型热重分析仪,空气流量为30ml/min,升温速率10℃/min,取250℃至550℃之间的失重百分比作为有机物的重量百分比含量。
【实施例1】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲 基吡咯烷)氢氧化铵(以下简写为R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液(其中Al 2O 3代表以Al 2O 3计的铝源,P 2O 5代表以P 2O 5计的磷源,下同):
1.0Al 2O 3∶2.4P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为175℃,晶化时间为84小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.0,有机物的重量含量为15.3%。它具有如图1所示的XRD图谱以及表1A所示的XRD图谱数据。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛,采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.0P 2O 5,所得产品分子筛的比表面积为394平方米/克,微孔孔容0.17毫升/克,XRD图谱如图2所示,相应的XRD图谱数据如表1B所示。
表1A实施例1所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000032
Figure PCTCN2019106628-appb-000033
表1B实施例1的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000034
【实施例2】
称取8.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶1.5R∶50H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为175℃,晶化时间为84小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.0,有机物的重量含量为17.9%,其XRD图谱数据如表2A所示。采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.0P 2O 5,所得产品分子筛的比表面积为363平方米/克,微孔孔容0.16毫升/克,XRD图谱数据如表2B所 示。
表2A实施例2所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000035
表2B实施例2的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000036
【实施例3】
称取34.5克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶6.0R∶280H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为175℃,晶化时间为84小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为0.98,有机物的重量含量为14.4%,其XRD图谱数据如表3A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛,采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·0.98P 2O 5,所得产品分子筛的比表面积为410平方米/克,微孔孔容0.18毫升/克,XRD图谱数据如表3B所示。
表3A实施例3所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000037
表3B实施例3的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000038
【实施例4】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为190℃,晶化时间为60小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.0,有机物的重量含量为20.2%,其XRD图谱数据如表4A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛,采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.0P 2O 5,所得产品分子筛的比表面积为357平方米/克,微孔孔容0.15毫升/克,XRD图谱数据如表4B所示。
表4A实施例4所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000039
表4B实施例4的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000040
【实施例5】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为150℃,晶化时间为120小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为0.95,有机物的重量含量为19.0%,其XRD图谱数据如表5A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·0.95P 2O 5,所得产品分子筛的比表面积为330平方米/克,微孔孔容0.15毫升/克,相应的XRD图谱数据如表5B所示。
表5A实施例5所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000041
表5B实施例5的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000042
【实施例6】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加1.15克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶1.2P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为175℃,晶化时间为84小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.0,有机物的重量含量为15.6%,其XRD图谱数据如表6A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛,采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.0P 2O 5,所得产品分子筛的比表面积为408平方米/克,微孔孔容0.19毫升/克,XRD图谱数据如表6B所示。
表6A实施例6所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000043
表6B实施例6的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000044
【实施例7】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.88克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶3.0P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为175℃,晶化时间为84小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.03,有机物的重量含量为17.8%,其XRD图谱数据如表7A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛,采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.03P 2O 5,所得产品分子筛的比表面积为390平方米/克,微孔孔容0.17毫升/克,XRD图谱数据如表7B所示。
表7A实施例7所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000045
表7B实施例7的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000046
【实施例8】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,加入23克的水,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶4.8R∶400H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为175℃,晶化时间为84小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.0,有机物的重量含量为16.4%,其XRD图谱数据如表8A所示,将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛。采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.0P 2O 5,所得产品分子筛的比表面积为392平方米/克,微孔孔容0.19毫升/克。相应的XRD图谱数据如表8B所示。
表8A实施例8所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000047
表8B实施例8的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000048
【实施例9】
称取8.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.698克的拟薄水铝石,随后再缓慢滴加1.15克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶1.2P 2O 5∶1.5R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为190℃,晶化时间为60小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为0.99,有机物的重量含量为16.3%,其XRD图谱数据如表9A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛。采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·0.99P 2O 5,所得产品分子筛的比表面积为310平方米/克,微孔孔容0.15毫升/克。相应的XRD图谱数据如表9B所示。
表9A实施例9所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000049
表9B实施例9的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000050
【实施例10】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入84克的异丙醇铝,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为190℃,晶化时间为60小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.0,有机物的重量含量为20.1%,其XRD图谱数据如表10A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛。采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.0P 2O 5,所得产品分子筛的比表面积为345平方米/克,微孔孔容0.17毫升/克。相应的XRD图谱数据如表10B所示。
表10A实施例10所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000051
表10B实施例10的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000052
【实施例11】
称取27.6克浓度为20.75%的N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵(R)溶液,然后一边搅拌一边往其中加入0.84克的异丙醇铝,随后再缓慢滴加2.30克浓度为85%的磷酸溶液,搅拌均匀后即可得到具有下述摩尔比例组成的合成母液:
1.0Al 2O 3∶2.4P 2O 5∶4.8R∶190H 2O
将上述合成母液置于密闭反应容器中进行晶化,晶化温度为150℃,晶化时间为120小时,晶化产物经洗涤和干燥后,得到磷铝分子筛的前驱体,该前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)为1.01,有机物的重量含量为14.7%,其XRD图谱数据如表11A所示。将上述磷铝分子筛的前驱体在550℃下焙烧5小时即可获得磷铝分子筛。采用电感耦合等离子体原子发射光谱(ICP)测得产品分子筛的示意性化学组成为Al 2O 3·1.01P 2O 5,所得产品分子筛的比表面积为372平方米/克,微孔孔容0.16毫升/克。相应的XRD图谱数据如表11B所示。
表11A实施例11所得磷铝分子筛前驱体的XRD图谱数据
Figure PCTCN2019106628-appb-000053
表11B实施例11的磷铝分子筛的XRD图谱数据
Figure PCTCN2019106628-appb-000054
【实施例12】
取2克实施例2合成的粉末样品,与3克氧化铝、0.2克田菁粉充分混合,加入5毫升5重量%硝酸捏合、挤条成型为
Figure PCTCN2019106628-appb-000055
毫米的条状物,然后在110℃烘干,550℃空气氛围焙烧8小时,制备成需要的分子筛组合物。该分子筛组合物可作为吸附剂或催化剂使用。
【实施例13】
取2克实施例12制得的SCM-18分子筛组合物的样品,在室温下分别置于20克不同的液体吸附质中,在搅拌的条件下吸附12小时,然后过滤分离出样品。所得固体样品在40℃流动氮气气氛中干燥2小时之后使用电子天平(精确到0.001g)进行称重,按照如下公式计算吸附量,所得结果列于表12中:
吸附量=(样品吸附后的重量-样品初始重量)÷样品初始重量。
为了进行对比,将干燥的AlPO-5、AlPO-11、ZSM-5分子筛以及3A分子筛分别按照实施12给出的方法制成组合物,并取出2克进行吸附性能的测试,结果列于表12中。此外,还取2克硅胶进行了吸附性能的测试,结果也列于表12中。
表12不同吸附剂对于不同吸附质的吸附量
Figure PCTCN2019106628-appb-000056
从表12可以看出,本发明的分子筛/分子筛组合物可以用作诸多有机小分子和水的吸附剂,特别是对H 2O具有较好的吸附性能。
上文详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明,但这种组合同样落入本发明的范围内。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本申请所公开的内容。

Claims (15)

  1. 一种磷铝分子筛,所述分子筛具有按摩尔计的示意性化学组成Al 2O 3.nP 2O 5,其中n表示磷铝摩尔比,且在约0.8至约1.2的范围内,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
    Figure PCTCN2019106628-appb-100001
  2. 根据权利要求1所述的磷铝分子筛,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
    Figure PCTCN2019106628-appb-100002
  3. 根据权利要求2所述的磷铝分子筛,所述分子筛的X射线衍射图谱显示出如下表所示的相对强度特性:
    Figure PCTCN2019106628-appb-100003
    Figure PCTCN2019106628-appb-100004
  4. 根据权利要求1-3中任一项所述的磷铝分子筛,其中所述分子筛的比表面积为约150-500平方米/克,优选约200-400平方米/克;微孔孔容为约0.9-0.25毫升/克,优选约0.10-0.20毫升/克。
  5. 一种磷铝分子筛的制备方法,包括如下步骤:
    i)提供磷铝分子筛前驱体,所述前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
    Figure PCTCN2019106628-appb-100005
    ,以及
    ii)对所述磷铝分子筛前驱体进行焙烧,得到所述磷铝分子筛。
  6. 根据权利要求5所述的制备方法,其中所述前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
    Figure PCTCN2019106628-appb-100006
    优选地,所述前驱体的X射线衍射图谱显示出如下表所示的相对强度特性:
    Figure PCTCN2019106628-appb-100007
    Figure PCTCN2019106628-appb-100008
  7. 根据权利要求5或6所述的制备方法,其中所述步骤i)进一步包括:
    ia)将铝源、磷源、有机物R和水按照铝源(以Al 2O 3计)∶磷源(以P 2O 5计)∶R∶H 2O的摩尔比为大约1∶(1.0-3.0)∶(1.5-6.0)∶(50-500)的比例混合,得到合成母液;以及
    ib)对所述合成母液进行晶化,得到所述磷铝分子筛前驱体,
    其中所述有机物R为具有如下结构式的氢氧化铵:
    Figure PCTCN2019106628-appb-100009
    其中,基团R1-R12可以相同或不同,且相互独立地选自H和C 1-6烷基,优选选自H和C 1-3烷基,更优选H;并且
    基团R13和R14可以相同或不同,且相互独立地选自C 1-6烷基,优选C 1-3烷基,更优选甲基。
  8. 根据权利要求7所述的制备方法,其中在步骤ia)中将铝源、磷源、有机物R和水按照铝源(以Al 2O 3计)∶磷源(以P 2O 5计)∶R∶H 2O的摩尔比为大约1∶(1.0-2.0)∶(2.5-4.8)∶(100-300)的比例混合。
  9. 根据权利要求7或8所述的制备方法,其中所述有机物R为N,N’-(1,4-亚苯基双(亚甲基))双(N-甲基吡咯烷)氢氧化铵。
  10. 根据权利要求7-9中任一项所述的制备方法,其中步骤ib)在如下条件下进行:
    密闭反应容器,晶化温度为约130-200℃、优选约145-185℃,晶化时间为约24-150小时、优选约48-120小时;以及
    优选地,所述步骤ib)还包括对所得磷铝分子筛前驱体进行洗涤和干燥。
  11. 根据权利要求7-10中任一项所述的制备方法,其中所述铝源为选自拟薄水铝石,异丙醇铝,铝溶胶,氢氧化铝,硫酸铝,氯化铝和氧化铝中的一种或多种,优选选自拟薄水铝石和异丙醇铝;和/或所述磷源为选自磷酸,亚磷酸和五氧化二磷中的一种或多种,优选磷酸。
  12. 根据权利要求5-11中任一项所述的制备方法,其中,所述磷铝分子筛前驱体中以P 2O 5计的磷和以Al 2O 3计的铝的摩尔比例(P 2O 5/Al 2O 3)在约0.8至约1.2的范围内,以及
    任选地,以所述磷铝分子筛前驱体的重量计,所述磷铝分子筛前驱体包含约8重量%至约40重量%的有机物。
  13. 通过权利要求5-12中任一项所述的制备方法得到的磷铝分子筛。
  14. 一种分子筛组合物,包含权利要求1-4和13中任一项所述的磷铝分子筛,以及粘结剂。
  15. 权利要求1-4和13中任一项所述的磷铝分子筛、或权利要求14所述的分子筛组合物作为吸附剂、催化剂或者催化剂载体的应用。
PCT/CN2019/106628 2018-10-25 2019-09-19 磷铝分子筛scm-18、其制备方法及应用 WO2020082944A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217015407A KR20210077752A (ko) 2018-10-25 2019-09-19 Scm-18 알루미노포스페이트 분자체, 이의 제조 방법 및 용도
JP2021523060A JP7373561B2 (ja) 2018-10-25 2019-09-19 アルミノリン酸塩分子篩scm-18、その調製、およびその用途
EP19876975.4A EP3872032A4 (en) 2018-10-25 2019-09-19 MOLECULAR SIEVE OF ALUMINOPHOSPHATE SCM-18, METHOD FOR PREPARATION AND USE
US17/288,891 US11819834B2 (en) 2018-10-25 2019-09-19 Aluminophosphate molecular sieve SCM-18, its preparation and application thereof
CA3117388A CA3117388C (en) 2018-10-25 2019-09-19 Aluminophosphate molecular sieve scm-18, its preparation and application thereof
SG11202104152VA SG11202104152VA (en) 2018-10-25 2019-09-19 Aluminophosphate molecular sieve SCM-18, its preparation and application thereof
BR112021007662-0A BR112021007662A2 (pt) 2018-10-25 2019-09-19 peneira molecular de aluminofosfato scm-18, método para preparação da mesma e uso da mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811250883.6 2018-10-25
CN201811250883.6A CN111099603B (zh) 2018-10-25 2018-10-25 Scm-18分子筛及其制备方法

Publications (1)

Publication Number Publication Date
WO2020082944A1 true WO2020082944A1 (zh) 2020-04-30

Family

ID=70331296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106628 WO2020082944A1 (zh) 2018-10-25 2019-09-19 磷铝分子筛scm-18、其制备方法及应用

Country Status (10)

Country Link
US (1) US11819834B2 (zh)
EP (1) EP3872032A4 (zh)
JP (1) JP7373561B2 (zh)
KR (1) KR20210077752A (zh)
CN (1) CN111099603B (zh)
BR (1) BR112021007662A2 (zh)
CA (1) CA3117388C (zh)
SG (1) SG11202104152VA (zh)
TW (1) TWI819099B (zh)
WO (1) WO2020082944A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112023003730A2 (pt) * 2020-09-14 2023-03-28 China Petroleum & Chem Corp Peneira molecular scm-34, método de preparação e uso da mesma
CN114180597B (zh) * 2020-09-14 2023-06-06 中国石油化工股份有限公司 Scm-34分子筛及其制备方法和应用
CN115504485B (zh) * 2021-06-23 2023-08-29 中国石油化工股份有限公司 一种sapo-17分子筛的制备方法
CN116618002A (zh) * 2023-05-04 2023-08-22 鲁西催化剂有限公司 一种氧化铝基吸附剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4752651A (en) 1986-06-16 1988-06-21 Union Carbide Corporation Production of light olefins
EP0293939A2 (en) * 1987-06-04 1988-12-07 Union Carbide Corporation Crystalline aluminophosphate composition
US20030129128A1 (en) * 1999-11-18 2003-07-10 Strohmaier Karl G Method for the synthesis of molecular sieves
CN105776247A (zh) * 2014-12-17 2016-07-20 中国科学院大连化学物理研究所 一种aei型金属磷酸铝分子筛的离子热合成方法
CN106276943A (zh) * 2016-08-08 2017-01-04 河南师范大学 一种固相合成有序多级孔磷酸铝及金属掺杂磷酸铝分子筛的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851204A (en) * 1987-06-04 1989-07-25 Uop Crystalline aluminophosphate composition
RU2021975C1 (ru) 1987-08-28 1994-10-30 Дзе Дау Кемикал Компани Кристаллическая алюмофосфатная композиция и способ ее получения
DD299288A5 (de) 1989-07-07 1992-04-09 ���������������@����@�������������@�K@����������K@��������@�K@���@�K@���@M�����]k�� Verfahren zur herstellung eines kristallinen molekularsiebes
NO310106B1 (no) 1996-03-13 2001-05-21 Norsk Hydro As Mikroporöse, krystallinske metallofosfatforbindelser, en fremgangsmåte for fremstilling og anvendelse derav
US6951830B2 (en) 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US6835363B1 (en) 2003-08-06 2004-12-28 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves of CHA framework type
US20060147364A1 (en) * 2004-12-30 2006-07-06 Council Of Scientific And Industrial Research Process for synthesising porous crystalline aluminophosphate molecular sieves
CN102092738B (zh) 2011-03-30 2012-03-21 南开大学 水热法无氟合成AlPO4-34
CN103204484B (zh) 2013-04-09 2014-12-17 南开大学 一种有十元环和八元环交叉孔道的微孔亚磷酸铝及制备方法
CN104445244B (zh) 2014-11-28 2017-02-22 天津神能科技有限公司 一种磷酸铝分子筛AlPO4-34及其无氟制备方法
CN104944434B (zh) * 2015-05-19 2017-06-16 郑州大学 一种空心afi型分子筛及其制备方法
EP3383796B1 (en) * 2015-12-04 2020-09-16 ExxonMobil Research and Engineering Company Emm-28, a novel synthetic crystalline material, its preparation and use
CN107777701B (zh) * 2016-08-30 2020-06-09 中国石油化工股份有限公司 Scm-12分子筛及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
EP0043562A1 (en) * 1980-07-07 1982-01-13 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4752651A (en) 1986-06-16 1988-06-21 Union Carbide Corporation Production of light olefins
EP0293939A2 (en) * 1987-06-04 1988-12-07 Union Carbide Corporation Crystalline aluminophosphate composition
US20030129128A1 (en) * 1999-11-18 2003-07-10 Strohmaier Karl G Method for the synthesis of molecular sieves
CN105776247A (zh) * 2014-12-17 2016-07-20 中国科学院大连化学物理研究所 一种aei型金属磷酸铝分子筛的离子热合成方法
CN106276943A (zh) * 2016-08-08 2017-01-04 河南师范大学 一种固相合成有序多级孔磷酸铝及金属掺杂磷酸铝分子筛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FLANIGEN E. M.GROSE R. W.: "Molecular Sieve Zeolites-I", 1970, ACS, article "Phosphorus Substitution in Zeolite Frameworks", pages: 76,98

Also Published As

Publication number Publication date
US20220001365A1 (en) 2022-01-06
US11819834B2 (en) 2023-11-21
JP7373561B2 (ja) 2023-11-02
CN111099603B (zh) 2022-12-09
SG11202104152VA (en) 2021-05-28
CA3117388C (en) 2024-01-02
CN111099603A (zh) 2020-05-05
BR112021007662A2 (pt) 2021-07-27
EP3872032A4 (en) 2022-08-03
CA3117388A1 (en) 2020-04-30
KR20210077752A (ko) 2021-06-25
TW202028117A (zh) 2020-08-01
JP2022505968A (ja) 2022-01-14
EP3872032A1 (en) 2021-09-01
TWI819099B (zh) 2023-10-21

Similar Documents

Publication Publication Date Title
WO2020082944A1 (zh) 磷铝分子筛scm-18、其制备方法及应用
WO2017133301A1 (zh) 一类新型sapo分子筛及其合成方法
JP2008514538A (ja) アルミノホスフェートモレキュラーシーブ、その合成及び使用
JP6076496B2 (ja) ジグリコールアミンをテンプレート剤としたsapo−34分子篩及びその合成方法
Wang et al. Hollow nanocrystals of silicoaluminophosphate molecular sieves synthesized by an aminothermal co-templating strategy
EP3252009A1 (en) Preparation method for metal-modified sapo molecular sieve
Hsu et al. Pinacol rearrangement over metal-substituted aluminophosphate molecular sieves
WO2020082943A1 (zh) 硅磷铝分子筛、其制备方法和应用
WO2018152829A1 (zh) Cu-SAPO分子筛、合成方法及其催化应用
CN109701609B (zh) Aei复合分子筛催化剂、制备方法及其应用
RU2811599C2 (ru) Алюмофосфатное молекулярное сито scm-18, его получение и применение
RU2811839C2 (ru) Силикоалюмофосфатное молекулярное сито, его получение и применение
CN108502900B (zh) Cu-SAPO分子筛、合成方法及其催化应用
CN112624149B (zh) 一种lta骨架结构的磷酸硅铝分子筛材料及其制备方法和应用
CN108502899B (zh) Cu-SAPO分子筛、其合成方法及其在脱硝反应中的应用
Pai et al. Synthesis and characterization of cobalt substituted aluminophosphate molecular sieve: Co-SSZ-51 under microwave-hydrothermal conditions
CN112237942B (zh) 高锌硅比cha型拓扑结构锌硅分子筛催化剂、制备方法及其应用
CN107774297A (zh) Scm‑12分子筛催化剂、制备方法及其应用
CN112209404B (zh) 高锌硅比Zn-SSZ-13/SAPO-11复合结构分子筛及其合成方法
Shamanaeva et al. Rapid and Effective Way to Synthesize Highly Crystalline Nanosized SAPO-34 Particles
CN102452670B (zh) 一种改性磷酸硅铝分子筛
Venkatathri Synthesis of high silica content silicoaluminophosphate-5 (SAPO-5) from non-aqueous medium using hexamethyleneimine template
CN111097502A (zh) Aei/eri复合结构分子筛催化剂、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3117388

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021523060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007662

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217015407

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019876975

Country of ref document: EP

Effective date: 20210525

ENP Entry into the national phase

Ref document number: 112021007662

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210422