WO2020066921A1 - 冷媒充填方法 - Google Patents

冷媒充填方法 Download PDF

Info

Publication number
WO2020066921A1
WO2020066921A1 PCT/JP2019/037048 JP2019037048W WO2020066921A1 WO 2020066921 A1 WO2020066921 A1 WO 2020066921A1 JP 2019037048 W JP2019037048 W JP 2019037048W WO 2020066921 A1 WO2020066921 A1 WO 2020066921A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat source
source unit
refrigeration cycle
weight
Prior art date
Application number
PCT/JP2019/037048
Other languages
English (en)
French (fr)
Inventor
山田 拓郎
吉見 敦史
熊倉 英二
岩田 育弘
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP19865862.7A priority Critical patent/EP3859241B1/en
Priority to CN201980063430.9A priority patent/CN112752936B/zh
Priority to US17/280,806 priority patent/US20220003470A1/en
Priority to JP2020549147A priority patent/JP7164822B2/ja
Priority to AU2019345581A priority patent/AU2019345581B2/en
Publication of WO2020066921A1 publication Critical patent/WO2020066921A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/007Details for charging or discharging refrigerants; Service stations therefor characterised by the weighing of refrigerant or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • a refrigeration cycle device including a refrigerant circuit for performing a refrigeration cycle is applied to an air conditioner, a water heater, and the like.
  • the refrigeration cycle apparatus may use an existing pipe when filling the refrigeration cycle apparatus with a refrigerant.
  • the liquid refrigerant is collected and collected in an outdoor heat exchanger of a heat source unit by a pump-down operation.
  • the refrigerant recovered from the refrigerant cycle device is transported to a factory for disposal, or is transported to a factory for regeneration.
  • a refrigerant charging method recovers a refrigerant of a first heat source unit of an existing refrigeration cycle apparatus that performs a refrigeration cycle with a circulating refrigerant so as to fill the second heat source unit and fills the second heat source unit. (A) transferring the refrigerant from the first heat source unit to the second heat source unit, and (b) measuring the weight of the refrigerant transferred from the first heat source unit to the second heat source unit. , Is provided.
  • the second heat source unit can be recharged with the refrigerant from the first heat source unit.
  • the weight of the recovered refrigerant is known. It is possible to accurately know the weight of the refrigerant lacking in the second heat source unit, and to fill the second heat source unit with an appropriate amount of the refrigerant. As a result, the recovered refrigerant can be efficiently filled from the first heat source unit to the second heat source unit without passing through a factory or the like.
  • the refrigerant to be collected and filled means the refrigerant collected from the first heat source unit.
  • the refrigerant charging method according to a second aspect is the refrigerant charging method according to the first aspect, wherein in the step (b), the first refrigerant is collected from the first heat source unit using a measuring device that weighs a recovery cylinder. The weight of the refrigerant transferred from the heat source unit to the second heat source unit is measured.
  • the weight of the refrigerant is measured from the weight of the recovery cylinder that has recovered the refrigerant from the first heat source unit by the measuring device, for example, before and after the refrigerant is charged into the second heat source unit from the recovery cylinder. Can be weighed. As a result, the amount of the refrigerant transferred from the first heat source unit to the second heat source unit via the recovery cylinder can be accurately measured.
  • the refrigerant charging method according to a third aspect is the refrigerant charging method according to the first aspect, and in the step (b), performing a pump-down operation in which the refrigerant of the existing refrigeration cycle device is recovered to the first heat source unit.
  • the weight of the refrigerant transferred from the first heat source unit to the second heat source unit is measured using a weighing device that measures the weight of the first heat source unit after being collected by the first heat source unit.
  • the weight of the first heat source unit after the refrigerant to be recovered is recovered by the first heat source unit by the pump-down operation is measured by the measuring device. And the weight of the first heat source unit before and after sending is supplied. As a result, the amount of the refrigerant transferred from the first heat source unit to the second heat source unit can be accurately measured.
  • the refrigerant charging method according to a fourth aspect is the refrigerant charging method according to the first aspect, and in the step (b), using a mass flow meter that measures the mass of the refrigerant flowing from the first heat source unit to the second heat source unit, The weight of the refrigerant transferred from the first heat source unit to the second heat source unit is measured.
  • the mass of the refrigerant flowing from the first heat source unit to the second heat source unit is measured by the mass flow meter, the amount of the refrigerant transferred from the first heat source unit to the second heat source unit is accurately determined. It can be measured directly.
  • the refrigerant charging method according to a fifth aspect is the refrigerant charging method according to the first aspect, and in the step (b), using a measuring device that measures the weight of the second heat source unit to which the refrigerant has been transferred from the first heat source unit. The weight of the refrigerant transferred from the first heat source unit to the second heat source unit is measured.
  • the weight of the second heat source unit to which the recovered refrigerant has been transferred from the first heat source unit is measured by the measuring device, for example, the second heat source before and after transferring the recovered refrigerant to the second heat source unit
  • the weight of the unit can be weighed. As a result, the amount of the refrigerant transferred from the first heat source unit to the second heat source unit can be accurately measured.
  • a refrigerant charging method is the refrigerant charging method according to any one of the first to fifth aspects, wherein the filter removes foreign matter from the refrigerant when transferring the recovered refrigerant from the first heat source unit to the second heat source unit. And / or flowing the refrigerant through a dryer that removes moisture from the refrigerant.
  • the refrigerant charging method when the recovered refrigerant is transferred from the first heat source unit to the second heat source unit, the refrigerant flows through the filter and / or the dryer, and thus the refrigerant transferred from the first heat source unit to the second heat source unit Foreign substances and / or moisture can be more removed.
  • a refrigerant charging method is the refrigerant charging method according to the sixth aspect, wherein the filter and / or the dryer are arranged in a bypass through which the refrigerant does not flow during normal operation of the refrigeration cycle apparatus.
  • the filter and / or the dryer since the filter and / or the dryer is arranged in the bypass, the foreign matter and / or moisture is removed by transferring the collected refrigerant through the bypass in which the filter and / or the dryer is arranged. Can be. By preventing the refrigerant from passing through the bypass during normal operation, it is possible to suppress an increase in flow path resistance and an increase in energy loss.
  • the refrigerant charging method according to an eighth aspect is the refrigerant charging method according to any one of the first aspect to the seventh aspect, wherein the second heat source unit has an effect in the flow path of the refrigerant circulating in the refrigeration cycle apparatus. And / or an oxygen absorbent before the refrigerant is transferred from the first heat source unit to the second heat source unit.
  • the second heat source unit transfers an antioxidant and / or an oxygen absorber that produces an effect in the flow path of the refrigerant circulating in the refrigeration cycle device from the first heat source unit to the second heat source unit. Since the recovered refrigerant is provided before the transfer, the antioxidant and / or the oxygen absorbent can be operated simply by transferring the refrigerant to the second heat source unit. As a result, it is possible to save time and effort when filling the second heat source unit with the refrigerant.
  • the refrigerant charging method according to a ninth aspect is the refrigerant charging method according to any one of the first to eighth aspects, in which the existing refrigeration cycle device is operated to recover the refrigerant before recovering the refrigerant from the first heat source unit.
  • the method further includes a heating step.
  • the existing refrigeration cycle device since the existing refrigeration cycle device is operated to warm the refrigerant before the refrigerant is recovered from the first heat source unit, the oil dissolved in the refrigerant can be separated. In addition, the amount of oil contained in the recovered refrigerant recovered from the first heat source unit can be reduced.
  • FIG. 1 is a refrigerant circuit diagram illustrating an outline of a configuration of a refrigeration cycle device according to an embodiment.
  • FIG. 3 is a schematic diagram for explaining transfer of a refrigerant from a first heat source unit to a second heat source unit.
  • coolant transferred from a 1st heat source unit to a 2nd heat source unit.
  • the flowchart which shows the outline
  • coolant in the modification 1G The schematic diagram for demonstrating the measurement of the weight of the refrigerant
  • the refrigerant circuit diagram showing the outline of the composition of the refrigeration cycle device concerning modification 1J. 13 is a flowchart showing an outline of a flow of a refrigerant charging method in Modification Example 1J.
  • FIG. 1 shows an example of a configuration of a refrigeration cycle apparatus to be subjected to a refrigerant charging method.
  • the refrigeration cycle apparatus 1 illustrated in FIG. 1 is an apparatus that performs a refrigeration cycle using a refrigerant circulating in a refrigerant circuit 100.
  • the refrigeration cycle apparatus 1 repeats a cycle of compression of the refrigerant, heat radiation from the refrigerant, decompression and expansion of the refrigerant, and heat absorption to the refrigerant.
  • the refrigeration cycle apparatus 1 includes a first heat source unit 10A or a second heat source unit 10B that can switch between a heat dissipation function and a heat absorption function in the refrigeration cycle, and the first heat source unit 10A or the second heat source unit.
  • a usage unit 50 connected to the communication unit 10B.
  • the first heat source unit 10A is a heat source unit before updating
  • the second heat source unit 10B is a heat source unit after updating.
  • the updated refrigeration cycle apparatus 1 includes the second heat source unit 10B
  • the case where the refrigerant recovered from the first heat source unit 10A of the existing refrigeration cycle device 1 is charged into the second heat source unit 10B is not limited to the case of such renewal of the refrigeration cycle device 1.
  • the second heat source unit 10B may be provided in another refrigeration cycle device of a building adjacent to the building in which the refrigeration cycle device 1 is installed.
  • the refrigerant to be collected and charged means the refrigerant collected from the first heat source unit 10A.
  • the use unit 50 cools the target by utilizing the heat absorbed by the refrigerant. Further, when the first heat source unit 10A or the second heat source unit 10B is a heat source that causes the refrigerant to absorb heat, the utilization unit 50 heats the target by utilizing the heat release of the refrigerant.
  • the refrigeration cycle apparatus 1 can be applied to an air conditioner that performs cooling and heating.
  • the first heat source unit 10A or the second heat source unit 10B is an outdoor unit of the air conditioner
  • the use unit 50 is an air conditioner. It becomes an indoor unit of a harmony device.
  • the usage unit 50 which is an indoor unit, cools or heats the air in the space to be air-conditioned to perform cooling or heating.
  • the refrigeration cycle apparatus 1 can be applied to other apparatuses, for example, a heat pump water heater, a refrigerator, and a refrigerator. It can be applied to a cooling device that cools the inside.
  • FIGS. 2 and 3 show an example in which the refrigeration cycle apparatus 1 is installed in a building 200 when the refrigeration cycle apparatus 1 is an air conditioner.
  • the first heat source unit 10A or the second heat source unit 10B is installed on the roof of the building 200.
  • the plurality of usage units 50 are installed in each room to air-condition each room in the building 200.
  • FIGS. 2 and 3 show a first heat source unit 10 ⁇ / b> A before update included in the existing refrigeration cycle apparatus 1 and a second heat source unit 10 ⁇ / b> B scheduled to be included in the refrigeration cycle apparatus 1 after update.
  • the first heat source unit 10A is an old heat source unit
  • the second heat source unit 10B is a new heat source unit.
  • the existing refrigeration cycle apparatus 1 is already installed in the building 200, and has a record of performing a refrigeration cycle by circulating a refrigerant before updating.
  • a refrigerant exists in the first heat source unit 10 ⁇ / b> A and the plurality of utilization units 50 included in the refrigeration cycle apparatus 1.
  • the refrigerant inside the refrigeration cycle device 1 is referred to as a circulating refrigerant for the purpose of circulating in the refrigerant circuit 100.
  • the method for charging the refrigerant to the refrigeration cycle apparatus 1 described above includes a step S3 of transferring the refrigerant from the first heat source unit 10A to the second heat source unit 10B, as described in the flowchart of FIG.
  • the measurement of the amount of the refrigerant transferred from the first heat source unit 10A to the second heat source unit 10B includes a step S4 of using a measurement system for measuring the weight of the refrigerant.
  • the first heat source unit 10A is removed from the refrigeration cycle device 1 in a state where the circulating refrigerant of the refrigeration cycle device 1 is transferred to the first heat source unit 10A by the pump-down operation. (Step S1).
  • the high pressure side closing valve 21 and the low pressure side closing valve 22 of the first heat source unit 10A are closed.
  • the second heat source unit 10B is incorporated into the refrigeration cycle device 1 (Step S2).
  • the refrigeration cycle apparatus 1 after the second heat source unit 10B is incorporated for example, the airtightness of the refrigeration cycle apparatus 1 is inspected, and after the airtightness of the refrigeration cycle apparatus 1 is confirmed, the refrigeration cycle apparatus 1 is operated by a vacuum pump. It is evacuated.
  • FIG. 2 schematically shows a state in which the refrigerant is being transferred from the first heat source unit 10A to the second heat source unit 10B.
  • the second heat source unit 10B is connected to the power supply 210 in a state where the second heat source unit 10B is incorporated in the updated refrigeration cycle apparatus 1, and is in an operable state.
  • the first heat source unit 10A and the second heat source unit 10B are connected by a charge hose 70.
  • the refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B through the charge hose 70 (Step S3).
  • the first heat source unit 10A is temporarily placed on the roof of the building 200, for example, and is not connected to the power supply 210.
  • FIG. 3 shows a state in which the weight of the recovered refrigerant recovered from the first heat source unit 10A to the second heat source unit 10B is being measured.
  • the weight of the first heat source unit 10A is measured by the measuring device 61.
  • the measurement of the collected refrigerant collected from the first heat source unit 10A by the measuring device 61 is performed both before the collected refrigerant is transferred from the first heat source unit 10A and after the collected refrigerant is transferred from the first heat source unit 10A. This is performed by measuring the weight of the first heat source unit 10A.
  • the measurement for the first heat source unit 10A before the recovered refrigerant has been transferred from the first heat source unit 10A is calculated (step S4).
  • Step S5 if the circulating refrigerant is insufficient with the recovered refrigerant alone, the additional refrigerant is added to complete the charging of the refrigerant (Step S5).
  • the total weight of the refrigerant that is appropriate for the updated refrigeration cycle apparatus 1 in which the second heat source unit 10B is incorporated is calculated in advance using data of the existing refrigeration cycle apparatus 1 in which the first heat source unit 10A is incorporated. Can be. By subtracting the weight of the recovered refrigerant measured by the measurement system 60 in step S4 from the total weight of the refrigerant appropriate for the refrigeration cycle apparatus 1 after the update, the weight of the insufficient refrigerant can be obtained.
  • the recovered refrigerant having a weight corresponding to the surplus may be extracted from the refrigeration cycle apparatus 1 after the update.
  • the calculation may be performed using, for example, the median of the predetermined range.
  • step S1 to step S5 The above-described update work from step S1 to step S5 is performed on site.
  • the renewal work is performed locally, and the collected refrigerant is not taken back to a facility such as a factory, and the collected refrigerant is processed as it is or at the installation location of the refrigeration cycle device 1 and the refrigeration cycle device 1 is updated. Is to refill.
  • the operations from step S1 to step S5 are performed, for example, on the roof of the building 200.
  • the update work from step S1 to step S5 is preferably performed within one day, and more preferably during the day within one day. This is because changes in the environment are small, the work target can be easily recognized, and leakage of the refrigerant and entry of foreign matter into the refrigeration cycle apparatus 1 can be easily prevented.
  • the refrigeration cycle apparatus 1 shown in FIG. 1 has one first heat source unit 10A or second heat source unit 10B and a plurality of use units 50. Are connected by refrigerant communication pipes 81 and 82.
  • the refrigerant circuit 100 is configured by connecting the heat source side circuit 110 in the first heat source unit 10A or the second heat source unit 10B and the use side circuit 120 in the use unit 50. .
  • the refrigerant circulates through the refrigerant circuit 100, whereby the vapor compression refrigeration cycle is repeated.
  • an example in which the refrigeration cycle apparatus 1 is applied to an air conditioner will be described.
  • both the first heat source unit 10A and the second heat source unit 10B include a compressor 11, an oil separator 12, a four-way valve 13, a heat source side heat exchanger 14, A cooling heat exchanger 15, an accumulator 16, a refrigerant regulator 18, an oil regulator 19, a heat source side fan 20, a high pressure side shutoff valve 21, a low pressure side shutoff valve 22, a charge port 23, Expansion valve 25a to third expansion valve 25c, first solenoid valve 26a to sixth solenoid valve 26f, first check valve 27a to fourth check valve 27d, and first pressure regulating valve 28a to third pressure regulating.
  • a valve 28c, a capillary tube 29, a plurality of filters 30, and a strainer 31 are provided.
  • the heat source side heat exchanger 14 is, for example, a fin-and-tube heat exchanger, and exchanges heat between air and a refrigerant.
  • a plate heat exchanger can be used as the supercooling heat exchanger 15, for example, a plate heat exchanger.
  • the first solenoid valve 26a to the sixth solenoid valve 26f have a function of opening and closing a flow path.
  • the first to third pressure regulating valves 28a to 28c have a function of keeping the pressure of the upstream-side refrigerant at a predetermined absolute pressure. Arrows attached to the first to third pressure regulating valves 28a to 28c indicate the downstream sides of the first to third pressure regulating valves 28a to 28c.
  • the filter 30 has a function of removing foreign matter from the passing refrigerant.
  • the strainer 31 has a function of removing solid components from the refrigerant.
  • the discharge side of the compressor 11 is connected to the first port of the four-way valve 13 via the oil separator 12 and the first check valve 27a.
  • the refrigerant discharged from the compressor 11 has oil separated by the oil separator 12 and flows toward the first port of the four-way valve 13.
  • the second port of the four-way valve 13 is connected to one inlet / outlet of the heat source side heat exchanger 14, the third port of the four-way valve 13 is connected to the inlet of the accumulator 16, and the fourth port of the four-way valve 13 is connected to the low-pressure side closing valve 22. It is connected to the.
  • the first port and the second port communicate with each other and the third port and the fourth port communicate with each other during the cooling operation as shown by a solid line, and as shown by a dashed line during the heating operation.
  • the first and fourth ports communicate with each other, and the second and third ports communicate with each other.
  • the other port of the heat source side heat exchanger 14 is connected to one end of the first expansion valve 25a, and is connected to the high pressure side closing valve 21 via the first expansion valve 25a.
  • the supercooling heat exchanger 15 is provided between the other end of the first expansion valve 25a and the high pressure side closing valve 21.
  • the first expansion valve 25a is provided on the liquid side of the heat source side heat exchanger 14, and can adjust the degree of pressure reduction of the refrigerant passing therethrough.
  • the subcooling heat exchanger 15, the subcooling circuit 32a, and the second expansion valve 25b constitute a subcooling unit 32.
  • the subcooling circuit 32a branches from a branch point P1 of a portion extending from the other end of the first expansion valve 25a toward the high-pressure side closing valve 21, passes through the subcooling heat exchanger 15, passes through the four-way valve 13, the accumulator 16, To the junction P2.
  • the second expansion valve 25b provided between the branch point P1 and the subcooling heat exchanger 15 can adjust the degree of pressure reduction of the refrigerant passing through the subcooling circuit 32a.
  • the supercooling heat exchanger 15 performs heat exchange between the refrigerant flowing between the branch point P1 and the high-pressure side closing valve 21 and the refrigerant flowing from the branch point P1 toward the junction P2 in the supercooling circuit 32a.
  • a branch point P3, a first solenoid valve 26a, a junction P4, and a second check valve 27b are provided in this order from the subcooling heat exchanger 15 to the junction P2.
  • the junction P1 and the junction P4 are connected via the first pressure regulating valve 28a, and the refrigerant flows from the junction P1 toward the junction P4.
  • the branch point P3 is connected to an injection port of the compressor 11. Therefore, the intermediate-pressure refrigerant decompressed by the second expansion valve 25b exits the subcooling heat exchanger 15, branches off upstream of the first solenoid valve 26a, and flows into the injection port of the compressor 11.
  • One outlet of the accumulator 16 is directly connected to the suction side of the compressor 11 to return the gas refrigerant to the suction side of the compressor 11, and the other outlet of the accumulator 16 is connected to the filter 30 and the second
  • the compressor 11 is connected to the suction side of the compressor 11 via an electromagnetic valve 26b.
  • a path passing through the filter 30, the third solenoid valve 26c, and the capillary tube 29 for returning the separated oil to the compressor 11 is provided. Is formed.
  • One inlet / outlet of the refrigerant regulator 18 is connected to the suction side of the compressor 11 via a third expansion valve 25c.
  • the refrigerant adjuster 18 is a device that adjusts the amount of refrigerant flowing through the refrigerant circuit 100.
  • the other inlet / outlet of the refrigerant regulator 18 is connected to the junction P2 via the second pressure regulating valve 28b.
  • the outlet of the first check valve 27a is connected to the other inlet / outlet of the refrigerant regulator 18 via a fourth solenoid valve 26d and a third check valve 27c.
  • the refrigerant regulator 18 has a function of keeping the amount of refrigerant flowing in the refrigerant circuit 100 constant.
  • one inlet / outlet of the oil regulator 19 is connected to the suction side of the compressor 11 via a sixth solenoid valve 26f.
  • the other port of the oil regulator 19 is connected to the junction P2 via a third pressure regulating valve 28c.
  • the outlet of the first check valve 27a is connected to the other port of the oil regulator 19 via a fifth solenoid valve 26e and a fourth check valve 27d.
  • the oil regulator 19 has a function of keeping the amount of oil supplied to the refrigerant circuit 100 constant.
  • the heat source side heat exchanger 14 is provided with a heat source side fan 20.
  • the heat source side fan 20 generates an air flow for promoting heat exchange in the heat source side heat exchanger 14.
  • the filter 30 is provided between the oil separator 12 and the first check valve 27a, between the heat source side heat exchanger 14 and the first expansion valve 25a, and between the subcooling heat exchanger 15 and the high pressure side closing valve 21. , Between the fourth port of the four-way valve 13 and the low pressure side closing valve 22, between the other outlet of the accumulator 16 and the second solenoid valve 26b, between the oil separator 12 and the third solenoid valve 26c, and third expansion. It is provided between the valve 25c and the refrigerant regulator 18 and between the oil regulator 19 and the sixth solenoid valve 26f. The strainer 31 is provided between the oil regulator 19 and the third pressure regulating valve 28. The charge port 23 is provided between the filter 30a and the third expansion valve 25c.
  • the reference numeral 30a is assigned to distinguish the filter 30 from other filters 30.
  • Each usage unit 50 includes, for example, a usage-side heat exchanger 51, a usage-side expansion valve 52, and a usage-side fan 53, as shown in FIG.
  • the use-side heat exchanger 51 is, for example, a fin-and-tube heat exchanger, and causes heat exchange between air and a refrigerant.
  • the use-side expansion valve 52 and the use-side heat exchanger 51 are connected in series between the liquid-side refrigerant communication pipe 81 and the gas-side refrigerant communication pipe 82.
  • the use-side expansion valve 52 and the use-side heat exchanger 51 are arranged in the order of the use-side expansion valve 52 and the use-side heat exchanger 51 from the liquid-side refrigerant communication pipe 81 to the gas-side refrigerant communication pipe 82. I have.
  • Each use side heat exchanger 51 is provided with a use side fan 53.
  • the use-side fan 53 causes the use-side heat exchanger 51 to generate an airflow for promoting heat exchange.
  • a plurality of usage units 50 connected in parallel between the liquid-side refrigerant communication pipe 81 and the gas-side refrigerant communication pipe 82 constitute a usage-side circuit 120.
  • the refrigeration cycle apparatus 1 has the four-way valve 13 in a solid line state, in other words, the first port and the second port communicate with each other, and the third port and the fourth port communicate with each other. State.
  • the heat source side heat exchanger 14 functions as a radiator
  • the use side heat exchanger 51 functions as an evaporator.
  • the refrigerant discharged from the compressor 11 circulates through the heat source side heat exchanger 14, the use side expansion valve 52, and the use side heat exchanger 51 in order to perform a vapor compression refrigeration cycle of compression, condensation, expansion, and evaporation. repeat.
  • the refrigeration cycle apparatus 1 controls the operating frequency of the compressor 11 so that the evaporating pressure or the evaporating temperature in the use-side heat exchanger 51 becomes the target pressure or the target evaporating temperature. Is controlled such that the superheat degree of the refrigerant flowing on the gas side of the use side heat exchanger 51 becomes the target superheat degree.
  • the first expansion valve 25a is fully opened.
  • the refrigeration cycle apparatus 1 adjusts the opening degree of the second expansion valve 25b so that the degree of superheating of the refrigerant that has exited the subcooling heat exchanger 15 becomes the target degree of superheating.
  • the refrigeration cycle apparatus 1 causes the refrigerant flowing in the supercooling circuit 32a to exchange heat with the refrigerant flowing between the branch point P1 and the high-pressure side closing valve 21 in the supercooling heat exchanger 15.
  • a gas refrigerant of an intermediate pressure is supplied from an injection port to a compression chamber in the middle of compression of a compression mechanism of the compressor 11.
  • the compressor 11 supplied with the intermediate-pressure gas refrigerant can lower the discharge temperature as compared with a case where the gas refrigerant is not injected.
  • the second expansion valve 25b is in a fully closed state.
  • the refrigeration cycle apparatus 1 controls the operating frequency of the compressor 11 so that the condensing temperature in the use side heat exchanger 51 becomes the target condensing temperature, and adjusts the valve opening of the use side expansion valve 52 to the use side heat exchanger 51. Is controlled so that the degree of supercooling of the refrigerant flowing on the liquid side of the liquid becomes the target degree of supercooling.
  • the refrigeration cycle apparatus 1 controls the valve opening of the first expansion valve 25a such that the degree of superheat of the refrigerant flowing on the gas side of the heat source side heat exchanger 14 becomes the target degree of superheat.
  • the measurement system 60 includes the scale 61 shown in FIG.
  • Examples of the weighing device 61 include a platform weigher and a hanging weigher.
  • the weighing device 61 has a function of measuring the weight of the first heat source unit 10A or the second heat source unit 10B, and has a sufficient resolution for detecting the weight of the refrigerant.
  • R410A refrigerant is a mixed refrigerant containing difluoromethane and pentafluoroethane. Even in a normal use state, in the refrigeration cycle apparatus 1, the mixing ratio of difluoromethane and pentafluoroethane in the R410A refrigerant may change over time. Therefore, the refrigeration cycle apparatus 1 is designed to operate properly even when the mixture of difluoromethane and pentafluoroethane changes.
  • the circulating refrigerant is recovered from the refrigerant circuit 100 of the existing refrigeration cycle apparatus 1 in which the first heat source unit 10A is incorporated, and the recovered refrigerant is used in the newly installed refrigeration cycle apparatus 1 in which the second heat source unit 10B is incorporated.
  • the refrigerant may be filled with R410A refrigerant, but may be filled with difluoromethane or pentafluoroethane, which is a component of the R410A refrigerant.
  • the mixed refrigerant may be replenished when supplementing the refrigerant amount that is insufficient with the recovered refrigerant alone, but the refrigerant that is a component of the mixed refrigerant may be replenished. .
  • the high-pressure side closing valve 21 is closed, and the first heat source unit 10A performs the cooling operation.
  • the high-pressure side closing valve 21 is closed, and the operation which makes the heat source side heat exchanger 14 of the first heat source unit 10A function as a condenser is performed.
  • the pressure of the low pressure side stop valve 22 becomes sufficiently low, the low pressure side stop valve 22 is closed.
  • the second heat source unit 10B is incorporated into the refrigeration cycle apparatus 1.
  • the service port of the high-pressure side closing valve 21 of the first heat source unit 10A and the charge port 23 of the second heat source unit 10B are connected by the charge hose 70.
  • the transfer means of the refrigerant includes the charge hose 70.
  • the compressor 11 is driven by operating the second heat source unit 10B to transfer the refrigerant from the service port of the high pressure side closing valve 21 of the first heat source unit 10A to the charge port 23 of the second heat source unit 10B.
  • the third expansion valve 25c When driving the compressor 11 by operating the second heat source unit 10B, the third expansion valve 25c is closed, a cooling operation is performed, and the recovered refrigerant is drawn into the compressor 11 from the refrigerant regulator 18 through the accumulator 16 and the refrigerant. Inhale. By removing the charge hose 70 from the service port and the charge port 23 of the high-pressure stop valve 21, the service port and the charge port 23 of the high-pressure stop valve 21 are closed.
  • the refrigeration cycle apparatus 1 is, for example, a dedicated machine that functions as a heat source that causes the first heat source unit 10A or the second heat source unit 10B to radiate heat from the refrigerant, and that the use unit 50 functions as a device that absorbs heat to the refrigerant. Is also good. In this case, if the refrigeration cycle apparatus 1 is an air conditioner, it becomes a cooling only machine.
  • the refrigeration cycle apparatus 1 is, for example, a dedicated machine that functions as a heat source that causes the first heat source unit 10A or the second heat source unit 10B to absorb heat into the refrigerant and that the use unit 50 functions as a device that radiates heat from the refrigerant. There may be. In this case, if the refrigeration cycle apparatus 1 is an air conditioner, it becomes a heating-only machine.
  • step S4 is performed after the operation of transferring the refrigerant in step S3, but the order of performing the operations in step S3 and step S4 is not limited to the order shown in FIG.
  • the operation of step S3 may be performed after step S4.
  • the operations of step S3 and step S4 may be performed in parallel.
  • the refrigerant is the R410A refrigerant or the R32 refrigerant has been described, but the refrigerant that can be used in the refrigeration cycle apparatus 1 is not limited to this.
  • the refrigerant may be R452B refrigerant or R125 refrigerant, and may be refrigerant other than HFC refrigerant.
  • the multi-type refrigeration cycle apparatus 1 in which the refrigeration cycle apparatus 1 includes a plurality of use units 50 has been described.
  • the refrigeration cycle device to which the technology of the present disclosure can be applied is not limited to a multi-type refrigeration cycle device.
  • the technology of the present disclosure can be applied to a pair-type refrigeration cycle device in which one heat source unit is connected to one utilization unit.
  • the number of heat source units connected to the refrigeration cycle apparatus is not limited to one, and a plurality of heat source units may be connected.
  • the refrigeration cycle apparatus includes two first heat source units
  • the recovered refrigerant is transferred to two second heat source units exchanged with the two first heat source units, and the two refrigerant units after the transfer are transferred.
  • the weight of the recovered refrigerant may be detected by measuring the weight of the second heat source unit by the measurement system 60.
  • the recovery cylinder 80 When the recovery cylinder 80 is used in this manner, for example, if the first heat source unit 10A is connected to the power supply 210 and operable, the refrigerant of the use side circuit 120 is pumped down by the first heat source unit 10A. To the heat source side circuit 110. Then, the service port of the high-pressure side shut-off valve 21 of the first heat source unit 10A and the collection cylinder 80 are connected by the charge hose 70. By attaching the charge hose 70 to the service port of the high-pressure side closing valve 21 and the collection cylinder 80, communication between the heat source side circuit 110 of the first heat source unit 10A and the collection cylinder 80 is established.
  • the first heat source unit 10A is operated to drive the compressor 11, and the refrigerant is transferred from the service port of the high pressure side closing valve 21 of the first heat source unit 10A to the recovery cylinder 80.
  • the service port of the high pressure side closing valve 21 is closed.
  • the refrigeration cycle apparatus 1 With respect to the refrigeration cycle apparatus 1 after the second heat source unit 10B is incorporated, for example, the airtightness of the refrigeration cycle apparatus 1 is inspected, and after the airtightness of the refrigeration cycle apparatus 1 is confirmed, the refrigeration cycle apparatus 1 is operated by a vacuum pump. It is evacuated.
  • the recovery cylinder 80 and the charge port 23 of the second heat source unit 10B are connected. Connected by charge hose 70. By attaching the charge hose 70 to the charge port 23 and the collection cylinder 80, the communication between the heat source side circuit 110 of the second heat source unit 10B and the collection cylinder 80 is established.
  • the second heat source unit 10B is operated to drive the compressor 11, and the refrigerant is transferred from the recovery cylinder 80 to the charge port 23 of the second heat source unit 10B.
  • the charge port 23 is closed.
  • the measurement for the second heat source unit 10B before the recovered refrigerant has been transferred to the second heat source unit 10B is obtained from the measured value of the measuring device 61 for the second heat source unit 10B after the recovered refrigerant has been transferred to the second heat source unit 10B.
  • the weight of the recovered refrigerant can be calculated.
  • the pump-down operation causes the use side circuit 120 to operate.
  • the refrigerant is transferred to the heat source side circuit 110 of the first heat source unit 10A.
  • the high pressure side closing valve 21 is closed, and the first heat source unit 10A is operated for cooling.
  • the high-pressure side closing valve 21 is closed, and the operation which makes the heat source side heat exchanger 14 of the first heat source unit 10A function as a condenser is performed.
  • the pressure of the low pressure side stop valve 22 becomes sufficiently low, the low pressure side stop valve 22 is closed.
  • the service port of the high pressure side closing valve 21 of the first heat source unit 10A and the charge port 23 of the second heat source unit 10B are connected by the charge hose 70.
  • the charge hose 70 By attaching the charge hose 70 to the service port and the charge port 23 of the high-pressure side closing valve 21, the communication between the heat source side circuit 110 of the first heat source unit 10A and the heat source side circuit 110 of the second heat source unit 10B is established.
  • the first heat source unit 10A is operated to drive the compressor 11, and the refrigerant is transferred from the service port of the high pressure side closing valve 21 of the first heat source unit 10A to the charge port 23 of the second heat source unit 10B.
  • the service port and the charge port 23 of the high-pressure stop valve 21 are closed. Since the collected refrigerant is transferred into the second heat source unit 10B, the collected refrigerant in the second heat source unit 10B is transferred to the refrigeration cycle device 1 by incorporating the second heat source unit 10B into the refrigeration cycle device 1. Will be filled.
  • the second heat source unit 10B may be preliminarily charged with a small amount of refrigerant.
  • the sum of the weight of the recovered refrigerant, the weight of the pre-charged refrigerant, and the weight of the additional refrigerant as needed is the total weight of the refrigerant that is appropriate for the refrigeration cycle apparatus 1 after the update. It may be adjusted so that
  • the mass of the recovered refrigerant can be measured even if the refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B in a gas-liquid two-phase state.
  • the difference in the gravitational acceleration on the earth is small, it is treated as the measurement value (kg) of the mass flow meter 62 divided by the weight of the collected refrigerant (kgf).
  • the mass flow meter 62 when the first heat source unit 10A is connected to the power source 210 and the refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B, the second heat source unit 10B is connected to the power source 210.
  • the transfer is performed in either case where the refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B, or where the refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B via the recovery cylinder 80. be able to.
  • a bypass 40 including a filter 30 a and a dryer 33 is provided between the charge port 23 for the recovered refrigerant and the refrigerant regulator 18.
  • the refrigeration cycle apparatus 1 may be configured to transfer the recovered refrigerant to the heat source side circuit 110 of the second heat source unit 10B through such a bypass 40.
  • the filter 30a for removing foreign matter from the refrigerant and / or the dryer 33 for removing moisture from the refrigerant Is added to the step S3a.
  • the filter 30a and / or the dryer 33 may be provided in the charge hose 70.
  • the order of steps S3 and S3a may be reversed, or these steps S3 and S3a may be performed in parallel.
  • the refrigeration cycle apparatus 1 preferably includes an oxygen absorbent and / or an antioxidant before the refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B.
  • the refrigeration cycle device 1 of the type corresponding to the recovered refrigerant does not support the recovered refrigerant.
  • More oxygen absorbers and / or antioxidants are added to the refrigeration oil than type refrigeration cycle devices. The point where the oxygen absorbent and / or the antioxidant is added is located in the compressor 11, the oil regulator 19, or the refrigerant regulator 18 of the refrigeration cycle apparatus 1 having no oil regulator 19. is there.
  • the refrigerant regulator 18 is not provided in the first heat source unit 10A and / or the second heat source unit 10B. Is also good.
  • the refrigerant of the first heat source unit 10A is recovered for charging the second heat source unit 10B. Since the weight of the refrigerant transferred from the first heat source unit 10A to the second heat source unit 10B is measured, the recovered refrigerant that can be recharged to the refrigeration cycle apparatus 1 to which the first heat source unit 10A is attached to the second heat source unit 10B. You can see the weight of Then, since the weight of the circulating refrigerant required for the refrigeration cycle apparatus 1 including the second heat source unit 10B can be obtained in advance as a design value, for example, the difference between the design value and the measured weight of the recovered refrigerant is insufficient.
  • the first heat source unit 10A can fill the second heat source unit 10B with an appropriate amount of refrigerant.
  • the time required for transporting the refrigerant recovered by the first heat source unit 10A to the factory and / or transporting the refrigerant from the factory to the second heat source unit 10B as in the related art Saves time.
  • the recovered refrigerant can be efficiently charged from the first heat source unit to the second heat source unit.
  • the weight of the recovered refrigerant is measured by the measuring device 61 from the weight of the recovery cylinder 80 that has recovered the refrigerant from the first heat source unit 10A.
  • the weight of the collection cylinder 80 before and after collecting the collected refrigerant from the first heat source unit 10A to the collection cylinder 80 can be measured, or the collection cylinder 80 before and after transferring the refrigerant from the collection cylinder 80 to the second heat source unit 10B can be measured.
  • the amount of the recovered refrigerant transferred from the first heat source unit 10A to the second heat source unit 10B via the recovery cylinder 80 can be accurately measured.
  • the weight of the first heat source unit 10A after the refrigerant to be collected is collected by the first heat source unit 10A by the pump-down operation is measured by the measuring device 61.
  • the weight of the first heat source unit 10A before and after sending the refrigerant from the first heat source unit 10A can be measured, and the amount of the recovered refrigerant transferred from the first heat source unit 10A to the second heat source unit 10B can be accurately measured. be able to.
  • the weight of the second heat source unit 10B to which the recovered refrigerant has been transferred from the first heat source unit 10 is measured by the measuring device 61. Therefore, for example, the weight of the second heat source unit 10B before and after transferring the collected refrigerant to the second heat source unit 10B can be measured, and the amount of the collected refrigerant transferred from the first heat source unit 10A to the second heat source unit 10B can be accurately determined. We can measure well.
  • the filter 30 and / or the dryer 33 described in the above modification 1J are arranged in the bypass 40 through which the refrigerant does not flow during the normal operation of the refrigeration cycle apparatus 1. Foreign matter and / or moisture can be removed by transferring the recovered refrigerant through the bypass 40 in which the filter 30 and / or the dryer 33 are disposed, while the refrigerant is prevented from passing through the bypass 40 during normal operation, thereby reducing the flow. An increase in road resistance can be suppressed, and an increase in energy loss can be suppressed.
  • the second heat source unit 10B causes the refrigeration cycle apparatus 1 to transfer an antioxidant and / or an oxygen absorbent, and the recovered refrigerant is transferred from the first heat source unit 10A to the second heat source unit 10B.
  • the antioxidant and / or the oxygen absorbent can be actuated simply by transferring the refrigerant to the second heat source unit 10B, and the time and effort for updating the refrigeration cycle apparatus 1 can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Elimination Of Static Electricity (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

第1熱源ユニットから回収した冷媒を第2熱源ユニットに充填する場合に、冷媒充填作業の効率化を図る。循環する冷媒によって冷凍サイクルを行なう既設の冷凍サイクル装置の第1熱源ユニット(10A)を、第2熱源ユニット(10B)に入れ替える冷媒充填方法において、第1熱源ユニット(10A)から第2熱源ユニット(10B)に冷媒を移すステップを備える。また、第1熱源ユニット(10A)から第2熱源ユニット(10B)に移される冷媒の重量を測定するステップを備える。

Description

冷媒充填方法
 循環する冷媒によって冷凍サイクルを行なう冷凍サイクル装置の冷媒充填方法
 冷凍サイクルを行なう冷媒回路を備える冷凍サイクル装置は、空気調和装置及び給湯器などに適用されている。また、冷凍サイクル装置は、例えば特許文献1(特開2003-240388号公報)に記載されているように、冷凍サイクル装置に冷媒の充填を行なう際に既設配管を利用する場合がある。特許文献1に記載されている冷凍サイクル装置では、例えば、ポンプダウン運転によって液冷媒が熱源ユニットの室外熱交換器に集められて回収される。通常、冷媒サイクル装置から回収された冷媒は、工場に搬送されて処分されるか、あるいは工場に搬送されて再生される。
 しかしながら、既設の冷凍サイクル装置から回収した冷媒を工場に持って帰って再生するには、既設の冷凍サイクル装置の在る場所から工場まで、回収した冷媒を運搬しなければならない。また、工場から冷媒充填の対象の冷凍サイクル装置の在る場所まで、工場で再生した冷媒を運搬しなければならない。
 このように工場に持って帰って再生する再生利用では冷媒充填作業の効率が悪くなるという課題がある。
 第1観点の冷媒充填方法は、循環する冷媒によって冷凍サイクルを行なう既設の冷凍サイクル装置の第1熱源ユニットの冷媒を、第2熱源ユニットに充填するために回収して、第2熱源ユニットに充填する冷媒充填方法であって、(a)第1熱源ユニットから第2熱源ユニットに冷媒を移すステップと、(b)第1熱源ユニットから第2熱源ユニットに移される冷媒の重量を測定するステップと、を備える。
 第1観点の冷媒充填方法では、第1熱源ユニットから第2熱源ユニットに移される冷媒の重量が測定されることから、第2熱源ユニットに対して、冷媒を再度充填できる第1熱源ユニットからの回収冷媒の重量が分かる。第2熱源ユニットにおいて不足している冷媒の重量を精度よく知ることができ、第2熱源ユニットに対して適正な冷媒の量を充填することができる。その結果、工場などを経由せずに、効率良く、第1熱源ユニットから第2熱源ユニットに回収冷媒を充填することができる。なお、回収して充填する冷媒は、第1熱源ユニットから回収した冷媒を意味する。
 第2観点の冷媒充填方法は、第1観点の冷媒充填方法であって、(b)ステップでは、第1熱源ユニットから冷媒を回収した回収ボンベの重量を計量する計量器を用いて、第1熱源ユニットから第2熱源ユニットに移される冷媒の重量を測定する。
 第2観点の冷媒充填方法では、計量器により第1熱源ユニットから冷媒を回収した回収ボンベの重量から冷媒の重量が計量されることから、例えば回収ボンベから第2熱源ユニットに冷媒を充填する前後の回収ボンベの重量を計量することができる。その結果、回収ボンベを介して第1熱源ユニットから第2熱源ユニットに移される冷媒の量を精度良く計ることができる。
 第3観点の冷媒充填方法は、第1観点の冷媒充填方法であって、(b)ステップでは、既設の冷凍サイクル装置の冷媒が第1熱源ユニットに回収されるように運転するポンプダウン運転を行うことによって第1熱源ユニットに回収された後の第1熱源ユニットの重量を計量する計量器を用いて、第1熱源ユニットから第2熱源ユニットに移される冷媒の重量を測定する。
 第3観点の冷媒充填方法では、回収対象の冷媒がポンプダウン運転によって第1熱源ユニットに回収された後の第1熱源ユニットの重量を計量器により計量することから、例えば第1熱源ユニットから冷媒を送出する前後の第1熱源ユニットの重量を計量することができる。その結果、第1熱源ユニットから第2熱源ユニットに移される冷媒の量を精度良く計ることができる。
 第4観点の冷媒充填方法は、第1観点の冷媒充填方法であって、(b)ステップでは、第1熱源ユニットから第2熱源ユニットに流れる冷媒の質量を計量する質量流量計を用いて、第1熱源ユニットから第2熱源ユニットに移される冷媒の重量を測定する。
 第4観点の冷媒充填方法では、質量流量計により第1熱源ユニットから第2熱源ユニットに流れる冷媒の質量を計量することから、第1熱源ユニットから第2熱源ユニットに移される冷媒の量を精度良く直接的に計ることができる。
 第5観点の冷媒充填方法は、第1観点の冷媒充填方法であって、(b)ステップでは、第1熱源ユニットから冷媒が移された第2熱源ユニットの重量を計量する計量器を用いて、第1熱源ユニットから第2熱源ユニットに移される冷媒の重量を測定する。
 第5観点の冷媒充填方法では、計量器により第1熱源ユニットから回収冷媒が移された第2熱源ユニットの重量を計量することから、例えば第2熱源ユニットに回収冷媒を移す前後の第2熱源ユニットの重量を計量することができる。その結果、第1熱源ユニットから第2熱源ユニットに移される冷媒の量を精度よく計ることができる。
 第6観点の冷媒充填方法は、第1観点から第5観点のいずれかの冷媒充填方法であって、第1熱源ユニットから第2熱源ユニットに回収冷媒を移すときに、冷媒から異物を取り除くフィルタ及び/または冷媒から水分を取り除くドライヤに、冷媒を流すステップをさらに備える。
 第6観点の冷媒充填方法では、第1熱源ユニットから第2熱源ユニットに回収冷媒を移すときにフィルタ及び/またはドライヤに冷媒を流すので、第1熱源ユニットから前記第2熱源ユニットに移される冷媒より異物及び/または水分を除去することができる。
 第7観点の冷媒充填方法は、第6観点の冷媒充填方法であって、フィルタ及び/またはドライヤは、冷凍サイクル装置の通常運転時には冷媒が流れないバイパスに配置されている。
 第7観点の冷媒充填方法では、フィルタ及び/またはドライヤがバイパスに配置されていることから、フィルタ及び/またはドライヤが配置されたバイパスを通して回収冷媒を移すことにより異物及び/または水分を除去することができる。通常運転時にはバイパスを冷媒が通らないようにすることで、流路抵抗が増加するのを抑制してエネルギーロスが増加するのを抑制することができる。
 第8観点の冷媒充填方法は、第1観点から第7観点のいずれかの冷媒充填方法であって、第2熱源ユニットが、冷凍サイクル装置を循環する冷媒の流路において効果を生じる酸化防止剤及び/または酸素吸収剤を、第1熱源ユニットから第2熱源ユニットに冷媒が移される前から備える。
 第8観点の冷媒充填方法では、第2熱源ユニットが、冷凍サイクル装置を循環する冷媒の流路において効果を生じる酸化防止剤及び/または酸素吸収剤を、第1熱源ユニットから第2熱源ユニットに回収冷媒が移される前から備えることから、第2熱源ユニットに冷媒を移すだけで酸化防止剤及び/または酸素吸収剤を働かせることができる。その結果、第2熱源ユニットに冷媒を充填する際の手間を省くことができる。
 第9観点の冷媒充填方法は、第1観点から第8観点のいずれかの冷媒充填方法であって、第1熱源ユニットから冷媒を回収する前に、既設の冷凍サイクル装置を運転して冷媒を温めるステップをさらに備える。
 第9観点の冷媒充填方法では、第1熱源ユニットから冷媒を回収する前に、既設の冷凍サイクル装置を運転して冷媒を温めることから、冷媒の中に溶けていた油を分離することができ、第1熱源ユニットから回収される回収冷媒に含まれる油を減らすことができる。
実施形態に係る冷凍サイクル装置の構成の概要を示す冷媒回路図。 第1熱源ユニットから第2熱源ユニットへの冷媒の移送を説明するための模式図。 第1熱源ユニットから第2熱源ユニットに移送される冷媒の重量の測定を説明するための模式図。 冷媒充填方法のフローの概要を示すフローチャート。 変形例1Fにおける冷媒の重量の測定を説明するための模式図。 変形例1Fにおける冷媒の重量の測定を説明するための模式図。 変形例1Gにおける冷媒の重量の測定を説明するための模式図。 変形例1Hにおける冷媒の重量の測定を説明するための模式図。 変形例1Jに係る冷凍サイクル装置の構成の概要を示す冷媒回路図。 変形例1Jにおける冷媒充填方法のフローの概要を示すフローチャート。
 (1)全体構成
 図1には、冷媒充填方法の対象となる冷凍サイクル装置の構成の一例が示されている。図1に示されている冷凍サイクル装置1は、冷媒回路100を循環する冷媒によって冷凍サイクルを行う装置である。冷凍サイクル装置1は、冷媒の圧縮と、冷媒からの放熱と、冷媒の減圧膨張と、冷媒への吸熱のサイクルを繰り返す。冷凍サイクル装置1は、冷凍サイクルにおける放熱の機能を有するかまたは吸熱の機能を有するかを切り換えることができる第1熱源ユニット10A若しくは第2熱源ユニット10Bと、第1熱源ユニット10A若しくは第2熱源ユニット10Bに接続されている利用ユニット50とを備えている。ここで、第1熱源ユニット10Aが更新前の熱源ユニットであり、第2熱源ユニット10Bが更新後の熱源ユニットである。
 ここでは、更新後の冷凍サイクル装置1が第2熱源ユニット10Bを備える場合を例に挙げて説明する。しかし、既設の冷凍サイクル装置1の第1熱源ユニット10Aから回収した冷媒を第2熱源ユニット10Bに充填する場合は、このような冷凍サイクル装置1の更新の場合に限られない。例えば、第2熱源ユニット10Bが、冷凍サイクル装置1が設置されているビルに隣接するビルの他の冷凍サイクル装置に備えられているものであってもよい。回収して充填する冷媒は、第1熱源ユニット10Aから回収した冷媒を意味する。
 利用ユニット50は、第1熱源ユニット10Aまたは第2熱源ユニット10Bが冷媒から放熱させる熱源となっている場合には、冷媒が吸熱することを利用して対象の冷却を行う。また、利用ユニット50は、第1熱源ユニット10Aまたは第2熱源ユニット10Bが冷媒に吸熱させる熱源となっている場合には、冷媒が放熱することを利用して対象の加熱を行う。
 冷凍サイクル装置1は、冷暖房を行う空気調和装置に適用することができ、その場合には例えば第1熱源ユニット10Aまたは第2熱源ユニット10Bが空気調和装置の室外機になり、利用ユニット50が空気調和装置の室内機になる。室内機である利用ユニット50は、空調対象空間の空気を冷却し、または加熱して、冷房または暖房を行う。なお、ここでは、冷凍サイクル装置1が空気調和装置に適用される場合を例に挙げて説明するが、冷凍サイクル装置は、他の装置にも適用でき、例えば、ヒートポンプ給湯器、冷蔵庫、及び庫内を冷却する冷却装置に適用することができる。
 図2及び図3には、冷凍サイクル装置1が空気調和装置である場合について、冷凍サイクル装置1が建物200に設置されている例が示されている。図2に示されている例では、第1熱源ユニット10Aまたは第2熱源ユニット10Bが建物200の屋上に設置されている。複数の利用ユニット50は、図2に示されているように、建物200の中の各部屋の空調を行うために、各部屋に設置されている。
 図2及び図3には、既設の冷凍サイクル装置1に含まれている更新前の第1熱源ユニット10Aと、更新後に冷凍サイクル装置1に含まれる予定の第2熱源ユニット10Bが示されている。言い換えると、第1熱源ユニット10Aが旧熱源ユニットであり、第2熱源ユニット10Bが新熱源ユニットである。既設の冷凍サイクル装置1は、既に建物200に設置されており、更新前に冷媒を循環させて冷凍サイクルを行った実績がある。冷凍サイクル装置1に含まれている第1熱源ユニット10A及び複数の利用ユニット50の中には冷媒が存在している。ここでは、冷媒回路100の中を循環させる目的で、冷凍サイクル装置1が内部に有している冷媒を循環冷媒という。
 以下に説明する、上述のような冷凍サイクル装置1への冷媒充填方法は、図4のフローチャートに記載されているように、第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒を移すステップS3と、第1熱源ユニット10Aから第2熱源ユニット10Bに移される冷媒の量の計測に、冷媒の重量を測定する測定システムを用いるステップS4とを含むように構成されている。
 図4に示されているように、まず、ポンプダウン運転によって冷凍サイクル装置1の循環冷媒が第1熱源ユニット10Aに移された状態で、第1熱源ユニット10Aが、冷凍サイクル装置1から取り外される(ステップS1)。第1熱源ユニット10Aが取り外されるときには、第1熱源ユニット10Aの高圧側閉鎖弁21と低圧側閉鎖弁22が閉じられている。
 次に、第2熱源ユニット10Bが冷凍サイクル装置1に組み込まれる(ステップS2)。第2熱源ユニット10Bが組み込まれた後の冷凍サイクル装置1に対して、例えば、冷凍サイクル装置1の気密が検査され、冷凍サイクル装置1の気密が確認された後に真空ポンプによって冷凍サイクル装置1が真空引きされる。
 図2には、第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒が移されている状態が模式的に示されている。第2熱源ユニット10Bは、更新後の冷凍サイクル装置1に組み込まれた状態で、電源210に接続されており、運転可能な状態になっている。また、第1熱源ユニット10Aと第2熱源ユニット10Bがチャージホース70で接続されている。第2熱源ユニット10Bを運転することによって、冷媒が、チャージホース70を通って第1熱源ユニット10Aから第2熱源ユニット10Bに移される(ステップS3)。このとき、第1熱源ユニット10Aは、例えば、建物200の屋上に仮置きされた状態になっていて電源210には接続されていない。
 図3には、第1熱源ユニット10Aから第2熱源ユニット10Bに回収された回収冷媒の重量を測定している状態が示されている。第1熱源ユニット10Aは、計量器61で重量を計量される。計量器61による第1熱源ユニット10Aから回収された回収冷媒の計量は、第1熱源ユニット10Aから回収冷媒が移される前と、第1熱源ユニット10Aから回収冷媒が移された後の両方で、第1熱源ユニット10Aの重量を測定することにより行われる。第1熱源ユニット10Aから回収冷媒が移された後の第1熱源ユニット10Aについての計量器61の計量値から、第1熱源ユニット10Aから回収冷媒が移される前の第1熱源ユニット10Aについての計量器61の計量値を差し引くことで、回収冷媒の重量を算出することができる(ステップS4)。
 第2熱源ユニット10Bが組み込まれた冷凍サイクル装置1にとって、回収冷媒だけでは循環冷媒が不足する場合には、追加冷媒が足されて冷媒の充填が完了する(ステップS5)。第2熱源ユニット10Bが組み込まれた更新後の冷凍サイクル装置1にとって適正な冷媒の総重量は、第1熱源ユニット10Aが組み込まれた既設の冷凍サイクル装置1のデータを用いて、予め計算することができる。ステップS4で測定システム60により測定された回収冷媒の重量を、更新後の冷凍サイクル装置1にとっての適正な冷媒の総重量から差し引くことで、不足する冷媒の重量を得ることができる。なお、回収冷媒の重量が更新後の冷凍サイクル装置1にとっての適正な冷媒の総重量を超えるときには、余剰分に相当する重量の回収冷媒を更新後の冷凍サイクル装置1から抜き取ればよい。なお、更新後の冷凍サイクル装置1にとっての適正な冷媒の総重量が所定範囲で設定されている場合には、例えば所定範囲の中央値を使って計算すればよい。
 上述のステップS1からステップS5の更新作業は、現地で行われる。ここで、更新作業が現地で行われるとは、回収冷媒を工場などの施設に持ち帰らずに、回収冷媒をそのまま、または冷凍サイクル装置1の設置場所で処理して更新後の冷凍サイクル装置1に再充填することである。上述の場合には、ステップS1からステップS5までの作業が、例えば建物200の屋上で行われる。なお、ステップS1からステップS5の更新作業は、1日以内に行われることが好ましく、1日のうちでも日中に行われることがさらに好ましい。環境変化が小さく、作業対象の視認が容易になり、冷媒漏洩及び冷凍サイクル装置1への異物の混入を防止し易くなるからである。
 (2)詳細構成
 (2-1)冷凍サイクル装置1の構成
 図1に示されている冷凍サイクル装置1は、1台の第1熱源ユニット10Aまたは第2熱源ユニット10Bと複数台の利用ユニット50が冷媒連絡配管81,82によって接続されている。冷凍サイクル装置1においては、第1熱源ユニット10Aまたは第2熱源ユニット10Bの中の熱源側回路110と、利用ユニット50の中の利用側回路120とが接続されて冷媒回路100が構成されている。この冷凍サイクル装置1においては、この冷媒回路100の中を冷媒が循環することにより、蒸気圧縮式の冷凍サイクルが繰り返される。ここでは、冷凍サイクル装置1が空気調和装置に適用されている例を説明する。
 (2-1-1)第1熱源ユニット10A、第2熱源ユニット10B
 ここでは、説明を簡素化するために、更新前の第1熱源ユニット10Aと更新後の第2熱源ユニット10Bとが同じ構成である場合について説明するが、これらの構成が同じでなくても本開示に係る技術を適用することは可能である。第1熱源ユニット10Aも第2熱源ユニット10Bも、例えば、図1に示されているように、圧縮機11と、油分離器12と、四方弁13と、熱源側熱交換器14と、過冷却熱交換器15と、アキュムレータ16と、冷媒調整器18と、油調整器19と、熱源側ファン20と、高圧側閉鎖弁21と、低圧側閉鎖弁22と、チャージポート23と、第1膨張弁25a~第3膨張弁25cと、第1電磁弁26a~第6電磁弁26fと、第1逆止弁27a~第4逆止弁27dと、第1圧力調整弁28a~第3圧力調整弁28cと、キャピラリーチューブ29と、複数のフィルタ30と、ストレーナ31とを備えている。
 熱源側熱交換器14は、例えばフィンアンドチューブ式の熱交換器であって、空気と冷媒との間で熱交換を行う。過冷却熱交換器15には、例えばプレート式熱交換器を用いることができる。第1電磁弁26a~第6電磁弁26fは、流路の開閉機能を有する。第1圧力調整弁28a~第3圧力調整弁28cは、上流側の冷媒の圧力を予め定められた所定の絶対圧力に保つ機能を有する。第1圧力調整弁28a~第3圧力調整弁28cに付された矢印の先が第1圧力調整弁28a~第3圧力調整弁28cの下流側を示している。フィルタ30は、通過する冷媒から異物を取り除く機能を有する。ストレーナ31は、冷媒から固形成分を取り除く機能を有する。
 圧縮機11の吐出側は、油分離器12と第1逆止弁27aを介して、四方弁13の第1ポートに接続されている。圧縮機11から吐出される冷媒は、油分離器12で油を分離されて、四方弁13の第1ポートに向って流れる。四方弁13の第2ポートが熱源側熱交換器14の一方出入口に接続され、四方弁13の第3ポートがアキュムレータ16の入口に接続され、四方弁13の第4ポートが低圧側閉鎖弁22に接続されている。四方弁13において、冷房運転時には実線で示されているように、第1ポートと第2ポートが連通するとともに第3ポートと第4ポートが連通し、暖房運転時には破線で示されているように、第1ポートと第4ポートが連通するとともに第2ポートと第3ポートが連通する。
 熱源側熱交換器14の他方出入口は、第1膨張弁25aの一端に接続され、第1膨張弁25aを介して高圧側閉鎖弁21に接続されている。第1膨張弁25aの他端と高圧側閉鎖弁21との間に過冷却熱交換器15が設置されている。第1膨張弁25aは、熱源側熱交換器14の液側に設けられており、通過する冷媒の減圧程度を調節することができる。過冷却熱交換器15と、過冷却回路32aと、第2膨張弁25bとが過冷却部32を構成している。過冷却回路32aは、第1膨張弁25aの他端から高圧側閉鎖弁21に向けて延びる部分の分岐点P1から分岐し、過冷却熱交換器15を通って、四方弁13とアキュムレータ16との間の合流点P2に接続する。分岐点P1と過冷却熱交換器15の間に設けられている第2膨張弁25bは、過冷却回路32aを通過する冷媒の減圧程度を調節することができる。過冷却熱交換器15は、分岐点P1と高圧側閉鎖弁21との間を流れる冷媒と、過冷却回路32aにおいて分岐点P1から合流点P2に向って流れる冷媒との間で熱交換を行わせる。
 過冷却回路32aにおいて、過冷却熱交換器15から合流点P2に向って順に、分岐点P3、第1電磁弁26a、合流点P4、第2逆止弁27bが設けられている。分岐点P1と合流点P4とは第1圧力調整弁28aを介して接続され、分岐点P1から合流点P4に向って冷媒が流れる。分岐点P3は、圧縮機11のインジェクションポートに接続されている。従って、第2膨張弁25bで減圧された中間圧の冷媒が、過冷却熱交換器15から出て第1電磁弁26aの上流で分岐されて、圧縮機11のインジェクションポートに流入する。
 アキュムレータ16の一方の出口は、ガス冷媒を圧縮機11の吸入側に戻すために圧縮機11の吸入側に直接接続され、アキュムレータ16の他方の出口は、油戻しのためにフィルタ30と第2電磁弁26bとを介して圧縮機11の吸入側に接続されている。また、圧縮機11の吸入側と油分離器12との間には、分離された油を圧縮機11に戻すために、フィルタ30と第3電磁弁26cとキャピラリーチューブ29とを通過する経路が形成されている。
 圧縮機11の吸入側には、第3膨張弁25cを介して、冷媒調整器18の一方出入口が接続されている。冷媒調整器18は、冷媒回路100を流れる冷媒量を調整する機器である。冷媒調整器18の他方出入口は、第2圧力調整弁28bを介して合流点P2に接続されている。また、冷媒調整器18の他方出入口には、第4電磁弁26dと第3逆止弁27cを介して第1逆止弁27aの流出側が接続されている。冷媒調整器18は、冷媒回路100に流れる冷媒の量を一定に保つ機能を有する。
 また、圧縮機11の吸入側には、第6電磁弁26fを介して油調整器19の一方出入口が接続されている。油調整器19の他方出入口は、第3圧力調整弁28cを介して合流点P2に接続されている。また、油調整器19の他方出入口には、第5電磁弁26eと第4逆止弁27dを介して第1逆止弁27aの流出側が接続されている。油調整器19は、冷媒回路100に供給される油量を一定に保つ機能を有する。
 熱源側熱交換器14には、熱源側ファン20が配置されている。熱源側ファン20は、熱交換を促進するための気流を熱源側熱交換器14に発生させる。
 フィルタ30は、油分離器12と第1逆止弁27aとの間、熱源側熱交換器14と第1膨張弁25aとの間、過冷却熱交換器15と高圧側閉鎖弁21との間、四方弁13の第4ポートと低圧側閉鎖弁22との間、アキュムレータ16の他方出口と第2電磁弁26bとの間、油分離器12と第3電磁弁26cとの間、第3膨張弁25cと冷媒調整器18の間及び油調整器19と第6電磁弁26fとの間に設けられている。ストレーナ31は、油調整器19と第3圧力調整弁28の間に設けられている。チャージポート23は、フィルタ30aと第3膨張弁25cとの間に設けられている。ここでは、他のフィルタ30と区別するために、30aの符号を付している。
 (2-1-2)利用ユニット50
 各利用ユニット50は、例えば、図1に示されているように、利用側熱交換器51と、利用側膨張弁52と、利用側ファン53とを備えている。利用側熱交換器51は、例えばフィンアンドチューブ式の熱交換器であって空気と冷媒との間で熱交換を行わせる。液側の冷媒連絡配管81とガス側の冷媒連絡配管82の間に、利用側膨張弁52と利用側熱交換器51が直列接続されている。利用側膨張弁52と利用側熱交換器51は、液側の冷媒連絡配管81からガス側の冷媒連絡配管82に向って、利用側膨張弁52、利用側熱交換器51の順に配置されている。各利用側熱交換器51には、利用側ファン53が配置されている。利用側ファン53は、熱交換を促進するための気流を利用側熱交換器51に発生させる。液側の冷媒連絡配管81とガス側の冷媒連絡配管82の間に並列に接続されている複数の利用ユニット50により、利用側回路120が構成されている。
 (2-1-3)冷房運転
 冷凍サイクル装置1は、冷房運転では、四方弁13を実線の状態、言い換えると第1ポートと第2ポートが連通するとともに第3ポートと第4ポートが連通する状態にする。冷房運転で行われる冷凍サイクルでは、熱源側熱交換器14が放熱器として機能し、利用側熱交換器51が蒸発器として機能する。圧縮機11から吐出された冷媒は、熱源側熱交換器14、利用側膨張弁52、利用側熱交換器51を順に循環して、圧縮、凝縮、膨張、蒸発の蒸気圧縮式の冷凍サイクルを繰り返す。
 冷凍サイクル装置1は、圧縮機11の運転周波数を利用側熱交換器51における蒸発圧力または蒸発温度が目標圧力または目標蒸発温度となるように制御するとともに、利用側膨張弁52の各弁開度を利用側熱交換器51のガス側を流れる冷媒の過熱度が目標過熱度となるように制御する。冷房運転において、第1膨張弁25aは全開状態とされる。冷凍サイクル装置1は、過冷却熱交換器15を出た冷媒の過熱度が目標過熱度となるように第2膨張弁25bの開度を調節する。また、冷凍サイクル装置1は、所定条件を満たすときに、過冷却回路32aを流れる冷媒を分岐点P1と高圧側閉鎖弁21との間を流れる冷媒と過冷却熱交換器15において熱交換させて中間圧のガス冷媒とし、インジェクションポートから圧縮機11の圧縮機構の圧縮途中の圧縮室に供給する。中間圧のガス冷媒を供給された圧縮機11は、ガス冷媒をインジェクションされない場合に比べて吐出温度を下げることができる。
 (2-1-4)暖房運転
 冷凍サイクル装置1は、暖房運転では、四方弁13の破線の状態、言い換えると第1ポートと第4ポートが連通するとともに第2ポートと第3ポートが連通する状態にする。暖房運転で行われる冷凍サイクルでは、熱源側熱交換器14が蒸発器として機能し、利用側熱交換器51が放熱器として機能する。圧縮機11から吐出された冷媒は、利用側熱交換器51、第1膨張弁25a、熱源側熱交換器14を順に循環して、圧縮、凝縮、膨張、蒸発の蒸気圧縮式の冷凍サイクルを繰り返す。
 暖房運転において、第2膨張弁25bは全閉状態とされる。冷凍サイクル装置1は、圧縮機11の運転周波数を利用側熱交換器51における凝縮温度が目標凝縮温度となるように制御するとともに、利用側膨張弁52の弁開度を利用側熱交換器51の液側を流れる冷媒の過冷却度が目標過冷却度となるように制御する。冷凍サイクル装置1は、第1膨張弁25aの弁開度を、熱源側熱交換器14のガス側を流れる冷媒の過熱度が目標過熱度になるように制御する。
 (2-2)測定システム60
 測定システム60は、図3に示されている計量器61を含んでいる。計量器61としては、例えば、台秤、吊り秤がある。計量器61は、第1熱源ユニット10Aまたは第2熱源ユニット10Bの重量を量れる機能を有するとともに、冷媒の重量を検出するための十分な分解能を有している。
 (2-3)冷媒
 冷凍サイクル装置1が、例えば、R410A冷媒に対応して構成されている場合、第1熱源ユニット10A及び第2熱源ユニット10Bは、いずれもR410A冷媒に対応して構成される。R410A冷媒は、ジフルオロメタンとペンタフルオロエタンを含む混合冷媒である。通常の使用状態でも、冷凍サイクル装置1において、R410A冷媒の中のジフルオロメタンとペンタフルオロエタンの混合割合が時間の経過とともに変化する場合がある。そのため、冷凍サイクル装置1は、ジフルオロメタンとペンタフルオロエタンの混合が変化しても適正に動作するように設計されている。従って、第1熱源ユニット10Aが組み込まれていた既設の冷凍サイクル装置1の冷媒回路100から循環冷媒を回収して第2熱源ユニット10Bが組み込まれている新設の冷凍サイクル装置1において回収冷媒を用いる場合、不足の冷媒量を補う際には、R410A冷媒を充填してもよいが、R410A冷媒の成分であるジフルオロメタンまたはペンタフルオロエタンを充填してもよい。
 冷凍サイクル装置1が混合冷媒に対応している場合、回収冷媒だけでは不足する冷媒量を補う際に、混合冷媒を補充してもよいが、混合冷媒の成分である冷媒を補充してもよい。
 (2-4)冷媒の移送
 第1熱源ユニット10Aから第2熱源ユニット10Bへの冷媒の移送では、例えば、第1熱源ユニット10Aが冷凍サイクル装置1に組み込まれていて可動可能な状態で、ポンプダウン運転によって、利用側回路120の冷媒を第1熱源ユニット10Aの熱源側回路110に移送する。その後、第1熱源ユニット10Aの高圧側閉鎖弁21と低圧側閉鎖弁22を閉じる。ポンプダウン運転後に第1熱源ユニット10Aの高圧側閉鎖弁21と低圧側閉鎖弁22を閉じた状態で、第1熱源ユニット10Aを取り外して仮置きの状態にする。ポンプダウン運転では、例えば、高圧側閉鎖弁21を閉じて、第1熱源ユニット10Aを冷房運転する。高圧側閉鎖弁21を閉じて、第1熱源ユニット10Aの熱源側熱交換器14を凝縮器して機能させる運転を行う。低圧側閉鎖弁22の圧力が十分に低くなったら、低圧側閉鎖弁22を閉じる。
 第1熱源ユニット10Aを冷凍サイクル装置1から取り外した後に、第2熱源ユニット10Bを冷凍サイクル装置1に組み込む。その後、図2に示されているように、第1熱源ユニット10Aの高圧側閉鎖弁21のサービスポートと第2熱源ユニット10Bのチャージポート23とをチャージホース70で接続する。ここでは、冷媒の移送手段が、チャージホース70を含んでいる。第2熱源ユニット10Bを運転して圧縮機11を駆動し、第1熱源ユニット10Aの高圧側閉鎖弁21のサービスポートから第2熱源ユニット10Bのチャージポート23へ冷媒を移送する。第2熱源ユニット10Bを運転して圧縮機11を駆動するときには、第3膨張弁25cを閉じ、冷房運転を行い、冷媒調整器18からアキュムレータ16を通して圧縮機11に吸入される経路で回収冷媒を吸入する。高圧側閉鎖弁21のサービスポート及びチャージポート23からチャージホース70を取り外すことで、高圧側閉鎖弁21のサービスポート及びチャージポート23が閉じられる。
 (3)変形例
 (3-1)変形例1A
 上記実施形態では、冷凍サイクル装置1の第1熱源ユニット10Aも第2熱源ユニット10Bも、冷凍サイクルの放熱と吸熱とを切り換えられるように構成されている場合について説明したが、冷凍サイクル装置1は、このような構成には限られない。冷凍サイクル装置1は、例えば、第1熱源ユニット10Aまたは第2熱源ユニット10Bが冷媒から放熱させる熱源として機能する専用機であるとともに利用ユニット50が冷媒へ吸熱させる装置として機能する専用機であってもよい。この場合、冷凍サイクル装置1が空気調和装置であれば冷房専用機になる。また、冷凍サイクル装置1は、例えば、第1熱源ユニット10Aまたは第2熱源ユニット10Bが冷媒へ吸熱させる熱源として機能する専用機であるとともに利用ユニット50が冷媒から放熱させる装置として機能する専用機であってもよい。この場合、冷凍サイクル装置1が空気調和装置であれば暖房専用機になる。
 (3-2)変形例1B
 なお、ステップS3の冷媒を移す操作の次にステップS4の測定の操作を行っているが、ステップS3とステップS4の操作を行う順序は図3に示された順には限られない。例えば、ステップS4の次にステップS3の操作を行ってもよい。あるいはステップS3とステップS4の操作を並行して行ってもよい。
 (3-3)変形例1C
 上記実施形態では、冷媒がR410A冷媒またはR32冷媒である場合について説明したが、冷凍サイクル装置1で使用できる冷媒はこれだけには限られない。例えば、R452B冷媒またはR125冷媒であってもよく、さらにはHFC冷媒以外の冷媒であってもよい。
 (3-4)変形例1D
 上記実施形態では、冷凍サイクル装置1が利用ユニット50を複数備えるマルチ型の冷凍サイクル装置1について説明した。しかし、本開示の技術が適用できる冷凍サイクル装置はマルチ型の冷凍サイクル装置には限られない。例えば、1台の熱源ユニットに1台の利用ユニットが接続されるペア型の冷凍サイクル装置に対しても、本開示の技術を適用することができる。
 また、冷凍サイクル装置に接続される熱源ユニットは、1台には限られず、複数台の熱源ユニットが接続されてもよい。例えば、2台の第1熱源ユニットを冷凍サイクル装置が含んでいるときには、2台の第1熱源ユニットと交換される2台の第2熱源ユニットに回収冷媒を移送して、移送後の2台の第2熱源ユニットの重量を測定システム60で測定することにより回収冷媒の重量を検出すればよい。
 (3-5)変形例1E
 上記実施形態では、第1熱源ユニット10Aの圧縮機11を冷媒の移送の動力源に用いる場合について説明した。しかし、冷媒の移送の動力源は、第1熱源ユニット10Aの圧縮機11には限られない。冷媒の移送には、例えば、内部に圧縮機を有する冷媒回収装置を用いてもよい。
 (3-6)変形例1F
 上記実施形態では、第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒を直接移送する場合について説明したが、図5に示されているように、一旦、第1熱源ユニット10Aから回収ボンベ80に冷媒を移送し、その後回収ボンベ80から第2熱源ユニット10Bに冷媒を移送してもよい。この場合、計量器61により回収冷媒が回収ボンベ80の中に回収される前の回収ボンベ80の重量と、回収ボンベ80の中に回収冷媒が回収された後の回収ボンベ80の重量とを測定し、回収前後の回収ボンベ80の重量の差から回収冷媒の重量を測定するように構成してもよい。
 このように回収ボンベ80を使用する場合、例えば、第1熱源ユニット10Aが、電源210に接続されていて運転可能であれば、ポンプダウン運転によって、利用側回路120の冷媒を第1熱源ユニット10Aの熱源側回路110に移送する。そして、第1熱源ユニット10Aの高圧側閉鎖弁21のサービスポートと回収ボンベ80とをチャージホース70で接続する。高圧側閉鎖弁21のサービスポートと回収ボンベ80にチャージホース70が取り付けられることで、第1熱源ユニット10Aの熱源側回路110と回収ボンベ80の間が連通する。その後、第1熱源ユニット10Aを運転して圧縮機11を駆動し、第1熱源ユニット10Aの高圧側閉鎖弁21のサービスポートから回収ボンベ80へ冷媒を移送する。回収ボンベ80を閉じて高圧側閉鎖弁21のサービスポート及び回収ボンベ80からチャージホース70を取り外すことで、高圧側閉鎖弁21のサービスポートが閉じられる。
 第2熱源ユニット10Bが組み込まれた後の冷凍サイクル装置1に対して、例えば、冷凍サイクル装置1の気密が検査され、冷凍サイクル装置1の気密が確認された後に真空ポンプによって冷凍サイクル装置1が真空引きされる。冷凍サイクル装置1に組み込まれた第2熱源ユニット10Bに回収ボンベ80から回収冷媒を移送するときには、図6に示されているように、回収ボンベ80と第2熱源ユニット10Bのチャージポート23とをチャージホース70で接続する。チャージポート23と回収ボンベ80にチャージホース70が取り付けられることで、第2熱源ユニット10Bの熱源側回路110と回収ボンベ80の間が連通する。その後、第2熱源ユニット10Bを運転して圧縮機11を駆動し、回収ボンベ80から第2熱源ユニット10Bのチャージポート23へ冷媒を移送する。回収ボンベ80を閉じてチャージポート23及び回収ボンベ80からチャージホース70を取り外すことで、チャージポート23が閉じられる。
 また、計量器61により回収ボンベ80の中に回収冷媒が回収された後の回収ボンベ80の重量と、回収ボンベ80から第2熱源ユニット10Bに回収冷媒が移送された後の回収ボンベ80の重量とを測定し、移送前後の回収ボンベ80の重量の差から回収冷媒の重量を測定するように構成してもよい。
 (3-7)変形例1G
 上記実施形態では、第2熱源ユニット10Bに冷媒が移送される前後の第1熱源ユニット10Aの重量を計量する場合について説明したが、図7に示されているように、第2熱源ユニット10Bに冷媒が移送される前後の第2熱源ユニット10Bの重量を計量してもよい。第2熱源ユニット10Bは、計量器61で重量を計量される。計量器61による第2熱源ユニット10Bに移送された回収冷媒の計量は、第2熱源ユニット10Bに回収冷媒が移される前と、第2熱源ユニット10Bに回収冷媒が移された後の両方で、第2熱源ユニット10Bの重量を測定することにより行われる。第2熱源ユニット10Bに回収冷媒が移された後の第2熱源ユニット10Bについての計量器61の計量値から、第2熱源ユニット10Bに回収冷媒が移される前の第2熱源ユニット10Bについての計量器61の計量値を差し引くことで、回収冷媒の重量を算出することができる。
 第1熱源ユニット10Aから第2熱源ユニット10Bへの冷媒の移送では、例えば、第1熱源ユニット10Aが、電源210に接続されていて運転可能である場合、ポンプダウン運転によって、利用側回路120の冷媒を第1熱源ユニット10Aの熱源側回路110に移送する。例えば、高圧側閉鎖弁21を閉じて、第1熱源ユニット10Aを冷房運転する。高圧側閉鎖弁21を閉じて、第1熱源ユニット10Aの熱源側熱交換器14を凝縮器して機能させる運転を行う。低圧側閉鎖弁22の圧力が十分に低くなったら、低圧側閉鎖弁22を閉じる。そして第1熱源ユニット10Aの高圧側閉鎖弁21のサービスポートと第2熱源ユニット10Bのチャージポート23とをチャージホース70で接続する。高圧側閉鎖弁21のサービスポート及びチャージポート23にチャージホース70が取り付けられることで、第1熱源ユニット10Aの熱源側回路110と第2熱源ユニット10Bの熱源側回路110の間が連通する。その後、第1熱源ユニット10Aを運転して圧縮機11を駆動し、第1熱源ユニット10Aの高圧側閉鎖弁21のサービスポートから第2熱源ユニット10Bのチャージポート23へ冷媒を移送する。高圧側閉鎖弁21のサービスポート及びチャージポート23からチャージホース70を取り外すことで、高圧側閉鎖弁21のサービスポート及びチャージポート23が閉じられる。第2熱源ユニット10Bの中には回収冷媒が移されているので、第2熱源ユニット10Bが冷凍サイクル装置1に組み込まれることで、第2熱源ユニット10Bの中の回収冷媒が冷凍サイクル装置1に充填される。
 なお、第2熱源ユニット10Bに予め少量の冷媒を予めチャージしておいてもよい。その場合に、回収冷媒の重量と、予めチャージされた冷媒の重量と、必要に応じて追加冷媒の重量を加えた重量の合計が、更新後の冷凍サイクル装置1にとって適正な冷媒の総重量となるように調整すればよい。
 (3-8)変形例1H
 上記実施形態及び変形例では、計量器61を用いて回収冷媒の重量を測定する場合について説明したが、図8に示されているように、第1熱源ユニット10Aから第2熱源ユニット10Bに移送される回収冷媒の重量を、質量流量計62を用いて測定してもよい。この場合には、測定システム60に質量流量計62が含まれる。質量流量計62としては、コリオリ式流量計がある。コリオリ式流量計を用いれば、冷媒が気液二相状態で第1熱源ユニット10Aから第2熱源ユニット10Bに移送されても、回収冷媒の質量を測定することができる。なお、本開示では、地球上における重力加速度の差が僅かであることから、質量流量計62の計測値(kg)≒回収冷媒の重量(kgf)として取り扱う。質量流量計62を用いた測定は、第1熱源ユニット10Aを電源210に接続して第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒を移送する場合、第2熱源ユニット10Bを電源210に接続して第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒を移送する場合、あるいは第1熱源ユニット10Aから第2熱源ユニット10Bに回収ボンベ80を介して冷媒を移送する場合のいずれの場合でも行うことができる。
 (3-9)変形例1I
 上記実施形態で説明した冷凍サイクル装置1の冷媒充填方法においては、第1熱源ユニット10から冷媒を回収する前に、既設の冷凍サイクル装置1を運転して冷媒回路100の中の冷媒を温めるステップをさらに備えることが好ましい。
 (3-10)変形例1J
 図9に示されている冷凍サイクル装置1には回収冷媒用のチャージポート23と冷媒調整器18との間に、フィルタ30a及びドライヤ33を含むバイパス40が設けられている。このようなバイパス40を通過させて回収冷媒を第2熱源ユニット10Bの熱源側回路110に移送するように、冷凍サイクル装置1が構成されてもよい。
 この場合には、図10に示されているように、第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒を移すときに、冷媒から異物を取り除くフィルタ30a及び/または冷媒から水分を取り除くドライヤ33に、冷媒を流すステップS3aが追加される。
 なお、上述のフィルタ30a及び/またはドライヤ33を第2熱源ユニット10Bに設ける代わりに、チャージホース70に設けてもよい。ステップS3,S3aの順序は逆でもよく、またはこれらステップS3,S3aが並行して行われてもよい。
 (3-11)変形例1K
 冷凍サイクル装置1は、第1熱源ユニット10Aから第2熱源ユニット10Bに冷媒が移される前から酸素吸収剤及び/または酸化防止剤を備えていることが好ましい。特に、同種の冷凍機油を用いる同じ機種で、回収冷媒に対応したタイプと、回収冷媒に対応しないタイプとを設ける場合、回収冷媒に対応したタイプの冷凍サイクル装置1には、回収冷媒に対応しないタイプの冷凍サイクル装置よりも多くの酸素吸収剤及び/または酸化防止剤が冷凍機油に添加される。酸素吸収剤及び/または酸化防止剤を添加する箇所は、圧縮機11の中か、油調整器19の中か、または油調整器19を持たない冷凍サイクル装置1の冷媒調整器18の中である。
 (3-12)変形例1L
 上記実施形態では、第1熱源ユニット10A及び第2熱源ユニット10Bに過冷却熱交換器15が設けられる場合について説明したが、第1熱源ユニット10A及び/または第2熱源ユニット10Bに過冷却熱交換器15が設けられなくてもよい。
 また、第1熱源ユニット10A及び第2熱源ユニット10Bに油調整器19が設けられる場合について説明したが、第1熱源ユニット10A及び/または第2熱源ユニット10Bに油調整器19が設けられなくてもよい。
 また、第1熱源ユニット10A及び第2熱源ユニット10Bに冷媒調整器18が設けられる場合について説明したが、第1熱源ユニット10A及び/または第2熱源ユニット10Bに冷媒調整器18が設けられなくてもよい。
 また、第1熱源ユニット10A及び第2熱源ユニット10Bに油分離器12が設けられる場合について説明したが、第1熱源ユニット10A及び/または第2熱源ユニット10Bに油分離器12が設けられなくてもよい。
 (4)特徴
 (4-1)
 上記実施形態の冷凍サイクル装置1の冷媒充填方法においては、第1熱源ユニット10Aの冷媒を、第2熱源ユニット10Bに充填するために回収している。第1熱源ユニット10Aから第2熱源ユニット10Bに移される冷媒の重量が測定されることから、第1熱源ユニット10Aから第2熱源ユニット10Bが取り付けられる冷凍サイクル装置1に対して再度充填できる回収冷媒の重量が分かる。そして、第2熱源ユニット10Bを含む冷凍サイクル装置1に必要な循環冷媒の重量を例えば設計値として予め入手できるので、この設計値と、測定された回収冷媒の重量との差から、不足している冷媒の重量を精度よく知ることができる。従って、第1熱源ユニット10Aから第2熱源ユニット10Bに対して適正な冷媒の量を充填することができる。このように、回収冷媒を第2熱源ユニット10Bに充填することにより、例えば、従来のように第1熱源ユニット10Aで回収した冷媒を工場まで運ぶ手間及び/または工場から第2熱源ユニット10Bまで運ぶ手間が省ける。その結果、上述の冷媒充填方法によれば、第1熱源ユニットから第2熱源ユニットに回収冷媒を効率良く充填することができる。
 (4-2)
 上記変形例1Fで説明した冷凍サイクル装置1の冷媒充填方法においては、計量器61により第1熱源ユニット10Aから冷媒を回収した回収ボンベ80の重量から回収冷媒の重量が計量される。例えば第1熱源ユニット10Aから回収ボンベ80に回収冷媒を回収する前後の回収ボンベ80の重量を計量することができ、あるいは回収ボンベ80から第2熱源ユニット10Bに冷媒を移送する前後の回収ボンベ80の重量を計量することができる。その結果、回収ボンベ80を介して第1熱源ユニット10Aから第2熱源ユニット10Bに移される回収冷媒の量を精度良く計ることができる。
 (4-3)
 上記実施形態に係る冷凍サイクル装置1の冷媒充填方法では、回収対象の冷媒がポンプダウン運転によって第1熱源ユニット10Aに回収された後の第1熱源ユニット10Aの重量を計量器61により計量している。例えば、第1熱源ユニット10Aから冷媒を送出する前後の第1熱源ユニット10Aの重量を計量することができ、第1熱源ユニット10Aから第2熱源ユニット10Bに移される回収冷媒の量を精度良く計ることができる。
 (4-4)
 上記変形例1Hで説明した冷凍サイクル装置1の冷媒充填方法では、質量流量計62により第1熱源ユニット10Aから第2熱源ユニット10Bに流れる冷媒の質量を計量することから、第1熱源ユニット10から第2熱源ユニット10Bに移される回収冷媒の量を精度良く直接的に計ることができる。上述の計量器61を用いる場合に比べて、質量流量計62を用いる場合には、計量器61に重い第1熱源ユニット10、第2熱源ユニット10Bまたは回収ボンベ80を掛けなくて済むので、作業者の作業負担が軽減される。
 (4-5)
 上記変形例1Gで説明した冷凍サイクル装置1の冷媒充填方法においては、計量器61により第1熱源ユニット10から回収冷媒が移された第2熱源ユニット10Bの重量を計量している。そのため、例えば、第2熱源ユニット10Bに回収冷媒を移す前後の第2熱源ユニット10Bの重量を計量することができ、第1熱源ユニット10Aから第2熱源ユニット10Bに移される回収冷媒の量を精度良く計ることができる。
 (4-6)
 上記変形例1Jで説明したように、第1熱源ユニット10Aから第2熱源ユニット10Bに回収冷媒を移すときにフィルタ30及び/またはドライヤ33に冷媒を流すので、第1熱源ユニット10Aから第2熱源ユニット10Bに移される回収冷媒より異物及び/または水分を除去することができる。
 (4-7)
 上記変形例1Jで説明したフィルタ30及び/またはドライヤ33は、冷凍サイクル装置1の通常運転時には冷媒が流れないバイパス40に配置されている。フィルタ30及び/またはドライヤ33が配置されたバイパス40を通して回収冷媒を移すことにより異物及び/または水分を除去することができる一方、通常運転時にはバイパス40を冷媒が通らないようにすることで、流路抵抗が増加するのを抑制してエネルギーロスが増加するのを抑制することができる。
 (4-8)
 上記変形例1Kで説明したように、第2熱源ユニット10Bが、冷凍サイクル装置1を酸化防止剤及び/または酸素吸収剤を、第1熱源ユニット10Aから第2熱源ユニット10Bに回収冷媒が移される前から備える場合には、第2熱源ユニット10Bに冷媒を移すだけで酸化防止剤及び/または酸素吸収剤を働かせることができ、冷凍サイクル装置1の更新時の手間を省くことができる。
 (4-9)
 第1熱源ユニット10から冷媒を回収する前に、既設の冷凍サイクル装置1を運転して冷媒を温める場合には、冷媒の中に溶けていた油を分離することができ、第1熱源ユニット10Aから回収される回収冷媒に含まれる油を減らすことができる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 1 冷凍サイクル装置
 10A 第1熱源ユニット
 10B 第2熱源ユニット
 30a フィルタ
 33 ドライヤ
 40 バイパス
 60 測定システム
 61 計量器
 62 質量流量計
 80 回収ボンベ
特開2003-240388号公報

Claims (9)

  1.  循環する冷媒によって冷凍サイクルを行なう既設の冷凍サイクル装置(1)の第1熱源ユニット(10A)の冷媒を、第2熱源ユニット(10B)に充填するために回収して、前記第2熱源ユニットに充填する冷媒充填方法であって、
     (a)前記第1熱源ユニットから前記第2熱源ユニットに冷媒を移すステップと、
     (b)前記第1熱源ユニットから前記第2熱源ユニットに移される冷媒の重量を測定するステップと、
    を備える、冷媒充填方法。
  2.  前記(b)ステップでは、前記第1熱源ユニットから冷媒を回収した回収ボンベ(80)の重量を計量する計量器(61)を用いて、前記第1熱源ユニットから前記第2熱源ユニットに移される冷媒の重量を測定する、
    請求項1に記載の冷媒充填方法。
  3.  前記(b)ステップでは、前記既設の冷凍サイクル装置の冷媒が前記第1熱源ユニットに回収されるように運転するポンプダウン運転を行うことによって前記第1熱源ユニットに回収された後の前記第1熱源ユニットの重量を計量する計量器(61)を用いて、前記第1熱源ユニットから前記第2熱源ユニットに移される冷媒の重量を測定する、
    請求項1に記載の冷媒充填方法。
  4.  前記(b)ステップでは、前記第1熱源ユニットから前記第2熱源ユニットに流れる冷媒の質量を計量する質量流量計(62)を用いて、前記第1熱源ユニットから前記第2熱源ユニットに移される冷媒の重量を測定する、
    請求項1に記載の冷媒充填方法。
  5.  前記(b)ステップでは、前記第1熱源ユニットから冷媒が移された前記第2熱源ユニットの重量を計量する計量器(61)を前記第1熱源ユニットから前記第2熱源ユニットに移される冷媒の重量を測定する、
    請求項1に記載の冷媒充填方法。
  6.  前記第1熱源ユニットから前記第2熱源ユニットに冷媒を移すときに、冷媒から異物を取り除くフィルタ及び/または冷媒から水分を取り除くドライヤに、冷媒を流すステップをさらに備える、
    請求項1から5のいずれか一項に記載の冷媒充填方法。
  7.  前記フィルタ及び/または前記ドライヤは、冷凍サイクル装置の通常運転時には冷媒が流れないバイパス(40)に配置されている、
    請求項6に記載の冷媒充填方法。
  8.  前記第2熱源ユニットが、冷凍サイクル装置を循環する冷媒の流路において効果を生じる酸化防止剤及び/または酸素吸収剤を、前記第1熱源ユニットから前記第2熱源ユニットに冷媒が移される前から備える、
    請求項1から7のいずれか一項に記載の冷媒充填方法。
  9.  前記第1熱源ユニットから冷媒を回収する前に、前記既設の冷凍サイクル装置を運転して冷媒を温めるステップをさらに備える、
    請求項1から8のいずれか一項に記載の冷媒充填方法。
PCT/JP2019/037048 2018-09-28 2019-09-20 冷媒充填方法 WO2020066921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19865862.7A EP3859241B1 (en) 2018-09-28 2019-09-20 Refrigerant filling method
CN201980063430.9A CN112752936B (zh) 2018-09-28 2019-09-20 制冷剂填充方法
US17/280,806 US20220003470A1 (en) 2018-09-28 2019-09-20 Refrigerant charging method
JP2020549147A JP7164822B2 (ja) 2018-09-28 2019-09-20 冷媒充填方法
AU2019345581A AU2019345581B2 (en) 2018-09-28 2019-09-20 Refrigerant charging method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-184329 2018-09-28
JP2018184331 2018-09-28
JP2018184330 2018-09-28
JP2018184329 2018-09-28
JP2018-184332 2018-09-28
JP2018184332 2018-09-28
JP2018-184331 2018-09-28
JP2018-184330 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066921A1 true WO2020066921A1 (ja) 2020-04-02

Family

ID=69949412

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2019/037048 WO2020066921A1 (ja) 2018-09-28 2019-09-20 冷媒充填方法
PCT/JP2019/037049 WO2020066922A1 (ja) 2018-09-28 2019-09-20 冷媒充填方法
PCT/JP2019/037050 WO2020066923A1 (ja) 2018-09-28 2019-09-20 冷媒充填方法及び熱源ユニット並びに更新された冷凍サイクル装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/037049 WO2020066922A1 (ja) 2018-09-28 2019-09-20 冷媒充填方法
PCT/JP2019/037050 WO2020066923A1 (ja) 2018-09-28 2019-09-20 冷媒充填方法及び熱源ユニット並びに更新された冷凍サイクル装置

Country Status (6)

Country Link
US (3) US11988426B2 (ja)
EP (3) EP3859242B1 (ja)
JP (3) JP7164822B2 (ja)
CN (3) CN112752937B (ja)
AU (3) AU2019347324B2 (ja)
WO (3) WO2020066921A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380209B2 (ja) 2019-12-27 2023-11-15 住友ゴム工業株式会社 重荷重用タイヤ
EP4177539A1 (en) * 2020-07-06 2023-05-10 Daikin Industries, Ltd. Refrigeration device
WO2023189391A1 (ja) * 2022-03-30 2023-10-05 ダイキン工業株式会社 空調ユニットおよび梱包ユニット

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129273A (ja) * 1986-11-18 1988-06-01 株式会社デンソー 冷媒回収装置
JPH02157573A (ja) * 1988-12-12 1990-06-18 Hitachi Ltd 冷媒回収装置
JPH08145515A (ja) * 1994-11-25 1996-06-07 Hitachi Ltd 冷媒回収装置
JPH08303911A (ja) * 1995-05-12 1996-11-22 Touou Kogyo Kk 冷媒充填装置
JPH08327168A (ja) * 1995-06-02 1996-12-13 Tokyo Gas Co Ltd 冷媒用フロンの回収再利用方法
JPH09217970A (ja) * 1996-02-09 1997-08-19 Matsushita Electric Ind Co Ltd 空気調和装置
JPH11201849A (ja) * 1998-01-19 1999-07-30 Matsushita Refrig Co Ltd 圧力検出装置及びそれを用いた冷凍システムの施工方法
JP2000199660A (ja) * 1998-12-28 2000-07-18 Daikin Ind Ltd 冷媒回収方法および冷媒回収装置
JP2003240388A (ja) 2002-02-08 2003-08-27 Daikin Ind Ltd 既設配管の利用可能性の判断方法、および既設配管の利用可能性のチェックツール
JP2005024167A (ja) * 2003-07-02 2005-01-27 Dengen Kk 被回収機器の冷媒回収充填用オイルセパレーター
JP2005127542A (ja) * 2003-10-21 2005-05-19 Mk Seiko Co Ltd 冷媒処理装置
JP2006207925A (ja) * 2005-01-28 2006-08-10 Showa Tansan Co Ltd 炭酸ガスの充填装置
CN101691963A (zh) * 2009-05-25 2010-04-07 广东志高空调有限公司 一种空调室外机制冷剂回收再利用***
WO2014203355A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
KR101727540B1 (ko) * 2016-11-18 2017-04-17 (주)메카스 냉매 정제, 회수, 누설검사, 및 주입 통합장치
WO2018146719A1 (ja) * 2017-02-07 2018-08-16 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441330A (en) * 1980-12-01 1984-04-10 Robinair Manufacturing Corporation Refrigerant recovery and recharging system
JPH04268177A (ja) * 1991-02-20 1992-09-24 Toshiba Corp 冷媒回収充填装置
JPH04273957A (ja) 1991-02-28 1992-09-30 Toshiba Corp 空調機の冷媒再充填方法
JPH06341737A (ja) 1993-05-28 1994-12-13 Nippondenso Co Ltd 冷媒再生装置
JP2983853B2 (ja) 1994-10-19 1999-11-29 三洋電機株式会社 蒸気圧縮式冷凍機
US5927087A (en) 1994-11-29 1999-07-27 Ishikawa; Atuyumi Refrigerating cycle
JPH08152207A (ja) 1994-11-29 1996-06-11 Sanyo Electric Co Ltd 空気調和機
JPH08296908A (ja) 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd 空気調和機
JPH0972637A (ja) * 1995-09-04 1997-03-18 Hitachi Ltd 空気調和機と冷媒の封入方法および冷媒の封入装置
JPH09113044A (ja) 1995-10-18 1997-05-02 Sanyo Electric Co Ltd 電気機器
JP3503413B2 (ja) 1997-05-12 2004-03-08 松下電器産業株式会社 空気調和機の製造方法
JP3360575B2 (ja) 1997-08-12 2002-12-24 ダイキン工業株式会社 冷媒回収方法
JP3763559B2 (ja) 1997-12-16 2006-04-05 松下電器産業株式会社 パージ装置
JP4520127B2 (ja) 1998-05-26 2010-08-04 パナソニック株式会社 空気調和装置の室外機保管・運送・設置方法、及び冷凍装置の保管・運送・設置方法
JP3501678B2 (ja) 1998-05-26 2004-03-02 松下電器産業株式会社 空気調和装置の保管・運送・設置方法
US6035648A (en) 1998-08-03 2000-03-14 York International Corporation Method of charging and recharging a refrigeration system containing a ternary refrigerant
EP1473527A4 (en) 2002-02-08 2015-04-29 Daikin Ind Ltd METHOD FOR DETERMINING THE RECYCLING CAPACITY OF A DEVICE USING A REFRIGERIGENE OR A REFRIGERATED PIPING, AND TOOL FOR VERIFYING THE RECYCLING CAPACITY OF SAID DEVICE OR PIPING THEREFOR
JP3903250B2 (ja) * 2002-03-18 2007-04-11 デンゲン株式会社 被回収機器の冷媒処理装置及びオイルセパレーター装置
US6868686B2 (en) 2002-04-04 2005-03-22 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
JP2004116875A (ja) 2002-09-25 2004-04-15 Horiba Ltd 冷媒の追加充填量算出装置および冷媒の追加充填量算出方法
JP3855901B2 (ja) * 2002-09-26 2006-12-13 三菱電機株式会社 冷凍空調サイクル装置の取り扱い方法、冷凍空調サイクル装置の冷媒回収機構
JP2004232951A (ja) 2003-01-30 2004-08-19 Mitsubishi Electric Corp 冷媒封入方法
KR20040085472A (ko) * 2003-03-31 2004-10-08 김종성 냉매회수, 세척, 진공, 충전 혹은 보충을 자동으로 일괄처리하는 방법 및 그 장치
JP2006046446A (ja) 2004-08-03 2006-02-16 Daikin Ind Ltd 弾性シール構造
US7569170B2 (en) 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
CA2922197A1 (en) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
JP4605784B2 (ja) 2005-11-02 2011-01-05 ヤンマー株式会社 室外機と室内機との連絡配管の洗浄用の運転モードを備えたエンジン駆動式ヒートポンプとその運転方法
JP2008202909A (ja) 2007-02-22 2008-09-04 Mitsubishi Electric Corp 冷凍装置および装置内異物除去方法
JP2008256254A (ja) 2007-04-04 2008-10-23 Daikin Ind Ltd 冷凍装置および冷媒組成の推定方法
JP2009222356A (ja) 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置及び冷媒充填方法
CN201327256Y (zh) * 2008-11-04 2009-10-14 江苏天舒电器有限公司 一种制冷剂回收装置
JP4975052B2 (ja) * 2009-03-30 2012-07-11 三菱電機株式会社 冷凍サイクル装置
JP5253330B2 (ja) 2009-08-26 2013-07-31 三菱電機株式会社 空気調和装置の製造方法
JP2011094871A (ja) 2009-10-29 2011-05-12 Mitsubishi Electric Corp 冷凍・空調装置、冷凍・空調装置の設置方法
WO2012032587A1 (ja) * 2010-09-10 2012-03-15 三菱電機株式会社 車両用空調装置の更新方法、車両用空調装置
SE535453C2 (sv) * 2010-12-01 2012-08-14 Scania Cv Ab Arrangemang och förfarande för att omvandla värmeenergi till mekanisk energi
CN102032732B (zh) 2010-12-03 2012-01-11 海信(山东)空调有限公司 具有制冷剂回收功能的空调***
AU2010364874B2 (en) * 2010-12-03 2014-12-11 Mitsubishi Electric Corporation Part replacement method for refrigeration cycle device and refrigeration cycle device
JP5387610B2 (ja) 2011-04-15 2014-01-15 ダイキン工業株式会社 空気調和機の室外機
US20120291457A1 (en) 2011-05-17 2012-11-22 Service Solutions U.S. Llc Pressure Decay Leak Check Method and Apparatus
JP5934482B2 (ja) 2011-08-26 2016-06-15 株式会社前川製作所 閉鎖型ガス循環式冷凍装置及びその運転方法
EP2808625B1 (en) * 2012-01-24 2020-05-20 Mitsubishi Electric Corporation A refrigerant charging method for an air-conditioning apparatus
JPWO2013111180A1 (ja) * 2012-01-24 2015-05-11 三菱電機株式会社 空気調和装置の冷媒充填方法、空気調和装置
WO2013179241A2 (en) 2012-05-30 2013-12-05 Ecotechnics S.P.A. Apparatus and method for recovering and regenerating a refrigerant from an a/c plant
JP5673645B2 (ja) 2012-10-11 2015-02-18 ダイキン工業株式会社 室外機
CN203190730U (zh) * 2013-02-08 2013-09-11 甘小琴 空调制冷剂回收加注机监控***
US9464834B2 (en) 2013-03-14 2016-10-11 Bosch Automotive Service Solutions Inc. Temperature controlled service hoses for improved refrigerant charge accuracy
JP5697710B2 (ja) 2013-04-08 2015-04-08 三菱電機株式会社 冷凍サイクル装置
US20160084556A1 (en) 2013-06-06 2016-03-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus and method of operating the same
JP2015014372A (ja) 2013-07-03 2015-01-22 日立アプライアンス株式会社 空気調和機
US9696072B2 (en) 2013-12-05 2017-07-04 Bosch Automotive Service Solutions Inc. System and method for calculating temperature in an air conditioning system
CN104019525B (zh) 2014-06-24 2017-01-04 广东美的暖通设备有限公司 空调器冷媒的回收方法和回收***
EP3851504A1 (en) 2014-11-11 2021-07-21 Trane International Inc. Refrigerant compositions
JP6944236B2 (ja) 2015-07-30 2021-10-06 ダイキン工業株式会社 冷凍装置
AU2016304989B2 (en) * 2015-08-11 2022-05-12 Trane International Inc. Refrigerant recovery and repurposing
JP2017067383A (ja) 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置および冷凍装置の運転方法
JP6697890B2 (ja) 2016-02-08 2020-05-27 日立ジョンソンコントロールズ空調株式会社 空気調和機用のユニット機構、及びこれを備えた空気調和機
WO2017199384A1 (ja) * 2016-05-19 2017-11-23 三菱電機株式会社 空気調和装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129273A (ja) * 1986-11-18 1988-06-01 株式会社デンソー 冷媒回収装置
JPH02157573A (ja) * 1988-12-12 1990-06-18 Hitachi Ltd 冷媒回収装置
JPH08145515A (ja) * 1994-11-25 1996-06-07 Hitachi Ltd 冷媒回収装置
JPH08303911A (ja) * 1995-05-12 1996-11-22 Touou Kogyo Kk 冷媒充填装置
JPH08327168A (ja) * 1995-06-02 1996-12-13 Tokyo Gas Co Ltd 冷媒用フロンの回収再利用方法
JPH09217970A (ja) * 1996-02-09 1997-08-19 Matsushita Electric Ind Co Ltd 空気調和装置
JPH11201849A (ja) * 1998-01-19 1999-07-30 Matsushita Refrig Co Ltd 圧力検出装置及びそれを用いた冷凍システムの施工方法
JP2000199660A (ja) * 1998-12-28 2000-07-18 Daikin Ind Ltd 冷媒回収方法および冷媒回収装置
JP2003240388A (ja) 2002-02-08 2003-08-27 Daikin Ind Ltd 既設配管の利用可能性の判断方法、および既設配管の利用可能性のチェックツール
JP2005024167A (ja) * 2003-07-02 2005-01-27 Dengen Kk 被回収機器の冷媒回収充填用オイルセパレーター
JP2005127542A (ja) * 2003-10-21 2005-05-19 Mk Seiko Co Ltd 冷媒処理装置
JP2006207925A (ja) * 2005-01-28 2006-08-10 Showa Tansan Co Ltd 炭酸ガスの充填装置
CN101691963A (zh) * 2009-05-25 2010-04-07 广东志高空调有限公司 一种空调室外机制冷剂回收再利用***
WO2014203355A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
KR101727540B1 (ko) * 2016-11-18 2017-04-17 (주)메카스 냉매 정제, 회수, 누설검사, 및 주입 통합장치
WO2018146719A1 (ja) * 2017-02-07 2018-08-16 三菱電機株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859241A4

Also Published As

Publication number Publication date
EP3859240A4 (en) 2021-11-10
EP3859242B1 (en) 2024-02-07
AU2019349084B2 (en) 2023-01-12
JPWO2020066921A1 (ja) 2021-08-30
EP3859241B1 (en) 2024-07-10
EP3859241A1 (en) 2021-08-04
WO2020066923A1 (ja) 2020-04-02
CN112789457B (zh) 2022-12-13
EP3859242A4 (en) 2021-11-10
CN112752936B (zh) 2022-10-28
JP7303448B2 (ja) 2023-07-05
AU2019349084A1 (en) 2021-05-27
EP3859240A1 (en) 2021-08-04
US20220003469A1 (en) 2022-01-06
AU2019349084B9 (en) 2023-05-11
EP3859242A1 (en) 2021-08-04
EP3859240B1 (en) 2024-07-10
EP3859241A4 (en) 2021-11-03
JPWO2020066922A1 (ja) 2021-08-30
JP7164823B2 (ja) 2022-11-02
CN112752936A (zh) 2021-05-04
WO2020066922A1 (ja) 2020-04-02
US11988426B2 (en) 2024-05-21
AU2019347324B2 (en) 2022-07-21
JP7164822B2 (ja) 2022-11-02
CN112789457A (zh) 2021-05-11
US20210348816A1 (en) 2021-11-11
CN112752937A (zh) 2021-05-04
AU2019347324A1 (en) 2021-05-27
US20220003470A1 (en) 2022-01-06
JPWO2020066923A1 (ja) 2021-08-30
AU2019345581A1 (en) 2021-05-27
CN112752937B (zh) 2022-09-02
US11994323B2 (en) 2024-05-28
AU2019345581B2 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2020066921A1 (ja) 冷媒充填方法
EP2629028B1 (en) Air conditioner
WO2007069578A1 (ja) 空気調和装置
WO2007069581A1 (ja) 空気調和装置
WO2007105604A1 (ja) 空気調和装置
WO2007108433A1 (ja) 空気調和装置
JP7227506B2 (ja) 冷凍サイクル装置及びその制御方法
JP6715961B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865862

Country of ref document: EP

Effective date: 20210428

ENP Entry into the national phase

Ref document number: 2019345581

Country of ref document: AU

Date of ref document: 20190920

Kind code of ref document: A