WO2020066183A1 - ステアリング制御装置およびパワーステアリング装置 - Google Patents

ステアリング制御装置およびパワーステアリング装置 Download PDF

Info

Publication number
WO2020066183A1
WO2020066183A1 PCT/JP2019/025351 JP2019025351W WO2020066183A1 WO 2020066183 A1 WO2020066183 A1 WO 2020066183A1 JP 2019025351 W JP2019025351 W JP 2019025351W WO 2020066183 A1 WO2020066183 A1 WO 2020066183A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
control device
angle
motor
Prior art date
Application number
PCT/JP2019/025351
Other languages
English (en)
French (fr)
Inventor
漢宇 孫
遠藤 修司
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020547993A priority Critical patent/JP7342876B2/ja
Priority to CN201980063210.6A priority patent/CN112770960B/zh
Priority to DE112019004813.9T priority patent/DE112019004813T5/de
Publication of WO2020066183A1 publication Critical patent/WO2020066183A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the present invention relates to a steering control device and a power steering device.
  • a control device disclosed in Patent Document 1 calculates a current command value that is a control target of a motor based on a steering torque detected by a torque sensor, and calculates a current alignment value based on a self-aligning torque estimated by a disturbance observer. To define the steering reaction force and feed back to the steering torque.
  • an object of the present invention is to perform steering control with little influence of torque ripple.
  • One aspect of a steering control device is a steering control device that controls a rotation angle of a motor that drives a steering mechanism according to a rotation angle of a steering wheel, wherein a steering reaction torque generated when the steering mechanism changes the steering angle. And a motor control unit that reduces the difference between the target steering angle and the steering angle in the steering mechanism by driving the motor with the rotation angle of the steering wheel and the steering reaction torque as a command value. , Is provided.
  • One embodiment of a power steering device includes the steering control device, a motor controlled by the steering control device, and a power steering mechanism driven by the motor.
  • FIG. 1 is a schematic diagram showing an embodiment of the power steering device of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the electric power steering device.
  • FIG. 3 is a diagram illustrating a modified example of the steering control device.
  • FIG. 4 is a diagram illustrating another modified example of the steering control device.
  • FIG. 5 is a diagram showing a modification of the electric power steering device.
  • FIG. 1 is a schematic diagram showing an embodiment of the power steering device of the present invention.
  • a column type electric power steering device is exemplified.
  • the electric power steering device 9 is mounted on a steering mechanism of a vehicle wheel.
  • the electric power steering device 9 is a column-type power steering device that directly reduces a steering force by the power of a steering control device 1 having a built-in motor.
  • the electric power steering device 9 includes the steering control device 1, a steering shaft 914, and an axle 913.
  • the steering shaft 914 transmits the input torque transmitted from the handle 911 via the torsion bar 915 to the axle 913 having the wheels 912.
  • the handle 911 applies a torque to the steering mechanism including the wheel 912, the axle 913, and the steering shaft 914 via the torsion bar 915.
  • the power of the steering control device 1 is transmitted to the steering shaft 914 via gears or the like.
  • the motor used in the column-type electric power steering device 9 is provided inside an engine room (not shown).
  • the electric power steering device 9 shown in FIG. 1 is a column type as an example, the power steering device of the present invention may be a rack type.
  • the steering angle ⁇ h which is the rotation angle of the handle 911, is detected by the angle sensor 916.
  • the value detected by the angle sensor 916 is input to the steering control device 1 and used for calculating the target output of the steering control device 1.
  • the torque transmitted from the torsion bar 915 to the steering shaft 914 is detected by a torque sensor 917.
  • the value detected by the torque sensor 917 is also input to the steering control device 1 and used for calculating the target output of the steering control device 1.
  • FIG. 2 is a block diagram illustrating a configuration of the electric power steering device 9.
  • ⁇ h indicates a steering angle
  • ⁇ s indicates a steering angle
  • Ktor indicates a torsion coefficient of the torsion bar 915
  • STG (s) indicates a steering characteristic.
  • the torsion bar 915 is twisted to generate torque.
  • the steering angle ⁇ h is detected by the angle sensor 916 and is input to the steering control device 1.
  • the torque generated in the torsion bar 915 is detected by the torque sensor 917 and is input to the steering control device 1.
  • the steering control device 1 includes a motor 10.
  • the motor 10 is a so-called electromechanical motor, and receives a command value representing a target output torque and outputs the output torque.
  • the steering control device 1 corresponds to an embodiment of a steering control device that controls a rotation angle of a motor 10 that drives a steering mechanism according to a rotation angle of a steering wheel 911.
  • the torque generated in the torsion bar 915, the output torque of the motor 10, and the torque of the disturbance D (s) are applied to the steering mechanism including the wheels 912 to the steering shaft 914 and exhibiting the steering characteristic STG (s).
  • the steering angle ⁇ s is generated by the sum of the torques.
  • the disturbance D (s) applied to the steering mechanism is mainly a steering reaction torque generated when the steering angle (steering angle ⁇ s) is changed by the steering mechanism or a torque given to the wheels 912 by irregularities on the ground. It works in a direction opposite to the steering force and the torque of the motor 10.
  • the steering reaction torque includes a self-aligning torque (SAT) and a torque associated with a frictional force between the wheel 912 and the ground.
  • the steering control device 1 drives the motor 10 based on the steering angle ⁇ h to bring the steering angle ⁇ s closer to the steering angle ⁇ h.
  • the steering control device 1 includes an angle feedback unit 21, a target steering angle estimation unit 22, a steering reaction torque estimation unit 23, and a disturbance observer 30.
  • the disturbance observer 30 includes a motor torque calculation unit 31, a steering torque estimation unit 32, and a filter 33.
  • the drive current value Imotor of the motor 10, the detection value of the torque sensor 917, and the steering angle ⁇ s are input to the disturbance observer 30.
  • the steering angle ⁇ s is obtained from the rotation speed of the motor 10 detected by a rotation sensor provided in the motor 10.
  • the rotation shaft (output shaft) of the motor 10 and the steering shaft 914 are mutually connected via a reduction gear or the like. Therefore, regardless of whether the torque for rotating the steering shaft 914 is the torque by the motor 10 or another torque, the motor 10 and the steering shaft 914 always rotate together. Therefore, the steering angle ⁇ s is calculated from the rotation speed of the motor 10 based on the gear ratio and the like.
  • the motor torque calculator 31 of the disturbance observer 30 inputs the drive current value Imotor of the motor 10 to the characteristic K of the motor 10 to calculate the output torque of the motor 10.
  • the torque calculated by the motor torque calculator 31 is a torque used for steering among the output torque of the motor 10.
  • the steering torque estimator 32 of the disturbance observer 30 calculates the total torque applied to the steering system by inputting the steering angle ⁇ s to the inverse characteristic of the steering characteristic STG (s).
  • the estimated value of the disturbance D (s) is obtained by adding the calculated value of the motor torque calculating unit 31 to the detected value of the torque sensor 917 and further subtracting the calculated value of the steering torque estimating unit 32. Since the estimated value includes various disturbance components, the disturbance observer 30 calculates a self-aligning torque (SAT) of the steering reaction torque by performing a filter process using the filter 33.
  • SAT self-aligning torque
  • the self-aligning torque (SAT) calculated by the disturbance observer 30 is input to the steering reaction torque estimation unit 23, and is converted into a steering reaction torque Tk generated in the steering wheel 911 based on a specific conversion characteristic.
  • the combination of the disturbance observer 30 and the steering reaction torque estimation unit 23 shown in FIG. 2 corresponds to an example of the disturbance observer according to the present invention.
  • the steering reaction force torque Tk is calculated using the detection value of the torque sensor 917 corresponding to the measured value of the torque applied to the steering mechanism by the rotation of the handle 911. Therefore, the calculation accuracy of the steering reaction torque Tk is high.
  • the target steering angle estimating unit 22 estimates the target steering angle ⁇ s0 based on the steering reaction torque Tk obtained by the steering reaction torque estimating unit 23 and the steering angle ⁇ h detected by the angle sensor 916.
  • the estimation of the target steering angle ⁇ s0 is obtained by the following equations (1) and (2).
  • ⁇ ⁇ K tor Tk (1)
  • ⁇ s0 ⁇ h + ⁇ (2)
  • the difference between the target steering angle ⁇ s0 and the steering angle ⁇ s estimated in this way is input to the angle feedback unit 21, and the larger the difference, the larger the torque is calculated.
  • the command value representing the calculated torque is input to the motor 10 to generate the assist torque.
  • the steering control device Since the angle component ⁇ added to the steering angle ⁇ h in the above equation (2) is the angle component ⁇ added to maintain the current steering angle ⁇ h against the steering reaction torque Tk, the steering control device is ultimately completed. In 1, the angle control for reducing the difference between the steering angle ⁇ s and the steering angle ⁇ h is performed. Further, since the target steering angle ⁇ s0 is estimated using the above equation (1) including the torsion bar 915's torsion coefficient K tor , the amount of torsion of the torsion bar 915 is suppressed as a result of the angle control.
  • the combination of the angle feedback unit 21 and the target steering angle estimating unit 22 drives the motor 10 with the rotation angle of the steering wheel 911 (steering angle ⁇ h) and the steering reaction torque Tk as command values, thereby setting the target steering angle ⁇ s0.
  • a steering angle control unit that reduces the difference between the steering angle and the steering angle of the steering mechanism (the steering angle ⁇ s).
  • FIG. 3 is a diagram showing a modification of the steering control device 1. As shown in FIG.
  • a speed loop unit 24 is provided between the angle feedback unit 21 of the steering control device 1 and the motor 10.
  • the speed loop unit 24 performs a feedforward control in which a loss torque generated depending on the rotation speed of the motor 10 such as friction is calculated, and a compensation value for compensating the loss torque is input to the motor 10.
  • FIG. 4 is a diagram showing another modified example of the steering control device 1.
  • the disturbance estimator 34 is provided in the disturbance observer 30 of the steering control device 1.
  • the torque estimating unit 34 calculates the torque applied to the steering mechanism via the torsion bar 915 by the rotation of the steering wheel 911, the steering angle ⁇ s calculated from the rotation speed of the motor 10, and the steering angle detected by the angle sensor 916.
  • the estimation is performed based on ⁇ h and the torsion bar 915 torsion coefficient K tor . By estimating the torque in this way, a torque sensor is not required, and the configuration around the steering is simplified.
  • FIG. 5 is a diagram illustrating a modification of the electric power steering device 9.
  • the modification shown in FIG. 5 is a so-called steer-by-wire electric power steering device 9 in which a steering wheel 911 and a steering shaft 914 are physically separated. That is, the handle 911 is in a state where the physical transmission path of the torque is separated from the steering mechanism. Therefore, there is no physical torque transmission from the handle 911 to the steering mechanism.
  • the steering angle ⁇ h of the steering wheel 911 is detected by the angle sensor 916 and is input to the steering control device 1.
  • the steering torque for the steering shaft 914 is generated by the motor 10 in the steering control device 1.
  • a motor not shown generates a torque corresponding to the steering reaction torque estimated by the steering reaction torque estimating unit 23 and applies the generated torque to the steering wheel 911. .
  • the steering control device 1 provided in the electric power steering device 9 of the modified example shown in FIG. 5 is a steering control device 1 having feedforward control as shown in FIG. By performing the feedforward control described above, the steering mechanism exhibits a natural response to the operation of the steering wheel 911.
  • the steering control device of the present invention may be a device on the control side without a built-in motor.
  • steering control device 9 electric power steering device 911: steering wheel 912: wheels 913: axle 914: steering shaft 915: torsion bar 916: angle sensor 917: torque sensor 10: motor 21: angle feedback unit 22: target steering angle estimation Unit 23: steering reaction torque estimation unit 24: speed loop unit 30: disturbance observer 31: motor torque calculation unit 32: steering torque estimation unit 33: filter 34: torque estimation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

ステアリング制御装置の一態様は、ステアリング機構を駆動するモータの回転角をハンドルの回転角に従って制御するステアリング制御装置において、上記ステアリング機構による舵角の変更に伴って生じる操舵反力トルクを算出する外乱アブソーバと、上記ハンドルの回転角と上記操舵反力トルクとを指令値として上記モータを駆動させることで目標舵角と上記ステアリング機構における舵角との差を減少させるモータ制御部と、を備える。

Description

ステアリング制御装置およびパワーステアリング装置
本発明は、ステアリング制御装置およびパワーステアリング装置に関する。
従来、パワーステアリング装置に対してステアリング制御を行うステアリング制御装置が知られている。従来のステアリング制御は主としてアシスト制御である。 
例えば、特許文献1に開示された制御装置は、トルクセンサで検出された操舵トルクに基づいて、モータの制御目標である電流指令値を演算し、外乱オブザーバにより推定されたセルフアライニングトルクに基づいて操舵反力の定義を行って操舵トルクにフィードバックする。
特開2003-200844号公報
特許文献1に示すような制御装置では、トルクフィードバックループが設けられることで制御器の設計自由度が高く、系の安定と路面情報、外乱情報に対する処理が実現される。 
しかし、トルクフィードバックが行われることにより、目標トルクに対する追従性はモータのロストルクとトルクリップルの影響を受けてしまう。そして、このような影響の抑制には複雑な補償処理が必要である。また、補償器の設計はモータの製造ばらつきや経年変化の影響もあり、容易ではない。 そこで、本発明は、トルクリップルの影響が少ないステアリング制御を行うことを目的とする。
本発明に係るステアリング制御装置の一態様は、ステアリング機構を駆動するモータの回転角をハンドルの回転角に従って制御するステアリング制御装置において、上記ステアリング機構による舵角の変更に伴って生じる操舵反力トルクを算出する外乱アブソーバと、上記ハンドルの回転角と上記操舵反力トルクとを指令値として上記モータを駆動させることで目標舵角と上記ステアリング機構における舵角との差を減少させるモータ制御部と、を備える。 
また、本発明に係るパワーステアリング装置の一態様は、上記ステアリング制御装置と、上記ステアリング制御装置によって制御されるモータと、上記モータによって駆動されるパワーステアリング機構と、を備える。
本発明によれば、トルクリップルの影響が少ないステアリング制御を行うことができる。
図1は、本発明のパワーステアリング装置の一実施形態を示す概略図である。 図2は、電動パワーステアリング装置の構成を示すブロック図である。 図3は、ステアリング制御装置の変形例を示す図である。 図4は、ステアリング制御装置の別の変形例を示す図である。 図5は、電動パワーステアリング装置の変形例を示す図である。
以下、添付の図面を参照しながら、本開示のステアリング制御装置およびおよびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。図1は、本発明のパワーステアリング装置の一実施形態を示す概略図である。 
図1に示す通り、本実施形態では、コラムタイプの電動パワーステアリング装置が例示される。電動パワーステアリング装置9は、自動車の車輪の操舵機構に搭載される。電動パワーステアリング装置9は、モータを内蔵したステアリング制御装置1の動力により操舵力を直接的に軽減するコラム式のパワーステアリング装置である。電動パワーステアリング装置9は、ステアリング制御装置1と、操舵軸914と、車軸913と、を備える。 
操舵軸914は、ハンドル911からトーションバー915を介して伝達される入力トルクを、車輪912を有する車軸913に伝える。換言すると、ハンドル911は、トーションバー915を介して、車輪912と車軸913と操舵軸914を含んだステアリング機構にトルクを加える。 
ステアリング制御装置1の動力は、ギヤなどを介して操舵軸914に伝えられる。コラム式の電動パワーステアリング装置9に採用されるモータは、エンジンルーム(図示せず)の内部に設けられる。なお、図1に示す電動パワーステアリング装置9は、一例としてコラム式であるが、本発明のパワーステアリング装置はラック式であってもよい。 
ハンドル911の回転角である操舵角θhは、角度センサ916によって検出される。角度センサ916による検出値はステアリング制御装置1に入力され、ステアリング制御装置1の目標出力の算出に用いられる。また、トーションバー915から操舵軸914へと伝達されるトルクはトルクセンサ917によって検出される。トルクセンサ917による検出値もステアリング制御装置1に入力され、ステアリング制御装置1の目標出力の算出に用いられる。 
ハンドル911からトーションバー915を経て伝達される操舵トルクと、ステアリング制御装置1の動力によるアシストトルクとが操舵軸914に加えられることにより、操舵軸914の回転角であるステアリング角θsが生じる。 図2は、電動パワーステアリング装置9の構成を示すブロック図である。 図2において、θhは操舵角、θsはステアリング角、Ktorはトーションバー915の捻り係数、STG(s)はステアリング特性を表している。 
ハンドル911の操舵角θhとステアリング角θsとの差によってトーションバー915が捻られてトルクが生じる。操舵角θhは角度センサ916によって検出されてステアリング制御装置1に入力される。また、トーションバー915に生じたトルクはトルクセンサ917によって検出されてステアリング制御装置1に入力される。 
ステアリング制御装置1にはモータ10が備えられている。モータ10は、いわゆる機電一体型のモータであり、目標の出力トルクを表す指令値の入力を受けて、その出力トルクを出力する。ステアリング制御装置1は、ステアリング機構を駆動するモータ10の回転角をハンドル911の回転角に従って制御するステアリング制御装置の一実施形態に相当する。 
車輪912から操舵軸914までを含みステアリング特性STG(s)を示すステアリング機構には、トーションバー915に生じたトルクと、モータ10の出力トルクと、外乱D(s)のトルクが加えられ、これらのトルクの総合によってステアリング角θsが生じる。ステアリング機構に加えられる外乱D(s)は、ステアリング機構による舵角(ステアリング角θs)の変更に伴って生じる操舵反力トルクや車輪912に対して地面の凹凸等が与えるトルクが主であり、操舵力やモータ10のトルクとは逆方向に働く。 また、操舵反力トルクには、セルフアライニングトルク(SAT)や、車輪912と地面との摩擦力に伴うトルクが含まれる。 ステアリング制御装置1は、操舵角θhに基づいてモータ10を駆動することでステアリング角θsを操舵角θhに近づける。 
ステアリング制御装置1は、角度フィードバック部21と、目標舵角推定部22と、操舵反力トルク推定部23と、外乱オブザーバ30とを備えている。外乱オブザーバ30とは、モータトルク算出部31と、ステアリングトルク推定部32と、フィルタ33とを備えている。 
外乱オブザーバ30には、モータ10の駆動電流値Imotorと、トルクセンサ917の検出値と、ステアリング角θsが入力される。ここでステアリング角θsは、モータ10に備えられている回転センサによって検出されたモータ10の回転数から求められる。 
モータ10の回転軸(出力軸)と操舵軸914とは減速ギヤなどを介して相互に結合されている。このため、操舵軸914を回転させるトルクがモータ10によるトルクであるか他のトルクであるかに関わらず、モータ10と操舵軸914とは常に一緒に回転する。従って、モータ10の回転数からギヤ比などに基づいてステアリング角θsが算出される。 
外乱オブザーバ30のモータトルク算出部31は、モータ10の駆動電流値Imotorをモータ10の特性Kに入力してモータ10の出力トルクを算出する。但し、モータトルク算出部31によって算出されるトルクは、モータ10の出力トルクのうち、操舵に使われるトルクである。 
また、外乱オブザーバ30のステアリングトルク推定部32は、ステアリング角θsをステアリング特性STG(s)の逆特性に入力することで、ステアリング系に加えられている総合的なトルクを算出する。 
モータトルク算出部31の算出値がトルクセンサ917の検出値と加算され、さらにステアリングトルク推定部32の算出値が減算されることにより、外乱D(s)の推定値が得られる。この推定値には種々の外乱成分が含まれているので、外乱オブザーバ30は、フィルタ33によるフィルタ処理によって、操舵反力トルクのうちのセルフアライニングトルク(SAT)を算出する。 
外乱オブザーバ30によって算出されたセルフアライニングトルク(SAT)は操舵反力トルク推定部23に入力され、特定の変換特性に基づいて、ハンドル911に生じている操舵反力トルクTkに変換される。 
図2に示す外乱オブザーバ30と操舵反力トルク推定部23とを併せたものが、本発明にいう外乱オブザーバの一例に相当する。本実施形態では、ハンドル911の回転によりステアリング機構に加えられたトルクの測定値に相当するトルクセンサ917の検出値が用いられて操舵反力トルクTkが算出される。このため、操舵反力トルクTkの算出精度が高い。 
目標舵角推定部22は、操舵反力トルク推定部23によって得られた操舵反力トルクTkと角度センサ916によって検出された操舵角θhとに基づいて目標舵角θs0を推定する。目標舵角θs0の推定は、以下の式(1)、式(2)によって求められる。



Δθ×Ktor=Tk   ……(1)



θs0=θh+Δθ    ……(2)


このように推定された目標舵角θs0とステアリング角θsとの差分が角度フィードバック部21に入力され、差分が大きい程大きなトルクが算出される。このように算出されたトルクを表す指令値がモータ10に入力されることでアシストトルクが発生する。 
上記式(2)で操舵角θhに加算された角度成分Δθは、操舵反力トルクTkに逆らって現在の操舵角θhを保つために加算される角度成分Δθであるため、結局、ステアリング制御装置1では、ステアリング角θsと操舵角θhとの差を減少させる角度制御が行われることになる。また、トーションバー915の捻り係数Ktorを含んだ上記式(1)が用いられて目標舵角θs0が推定されるので、角度制御の結果としてトーションバー915の捻れ量が抑制される。 
角度フィードバック部21と目標舵角推定部22とを併せたものは、ハンドル911の回転角(操舵角θh)と操舵反力トルクTkとを指令値としてモータ10を駆動させることで目標舵角θs0とステアリング機構における舵角(ステアリング角θs)との差を減少させる舵角制御部の一例に相当する。 
このようにステアリング制御装置1では角度制御が行われるので、モータ10の回転角度に依存したコギングトルクの影響がトルク制御に較べて小さい。また、角度制御の下ではトルク制御よりもトルクリップルの補償が容易である。このため、本実施形態のステアリング制御装置1では、ステアリング制御におけるトルクリップルの影響が小さい。そして、本実施形態の電動パワーステアリング装置9では、滑らかなパワーアシストが実現される。 次に、電動パワーステアリング装置9およびステアリング制御装置1の変形例について説明する。 図3は、ステアリング制御装置1の変形例を示す図である。 
図3に示す変形例では、ステアリング制御装置1の角度フィードバック部21とモータ10との間に速度ループ部24が備えられている。速度ループ部24は、摩擦などのようにモータ10の回転速度に依存して生じるロストルクを算出し、そのロストルクを補う補償値をモータ10に入力するフィードフォワード制御を行う。 
モータ10は、角度フィードバック部21から入力される指令値が表すトルクと、速度ループ部24から入力される補償値が表すトルクとの合計トルクを出力する。これにより、摩擦などによるロストルクが補償されたパワーアシストが実現される。 図4は、ステアリング制御装置1の別の変形例を示す図である。 
図4に示す変形例では、ステアリング制御装置1の外乱オブザーバ30に、トルク推定部34が備えられる。このトルク推定部34は、ハンドル911の回転によりトーションバー915を介してステアリング機構に加えられたトルクを、モータ10の回転数から算出されるステアリング角θsと、角度センサ916によって検出される操舵角θhと、トーションバー915の捻り係数Ktorとに基づいて推定する。このようにトルクが推定されることにより、トルクセンサが不要となり、ステアリング周辺の構成が簡素となる。 図5は、電動パワーステアリング装置9の変形例を示す図である。 
図5に示す変形例は、ハンドル911と操舵軸914とが物理的に切り離された、いわゆるステアバイワイヤ型の電動パワーステアリング装置9である。即ち、ハンドル911は、ステアリング機構に対してトルクの物理的な伝達経路が離隔した状態に在る。従って、ハンドル911からステアリング機構に対する物理的なトルク伝達は生じない。 
ハンドル911の操舵角θhは角度センサ916によって検出されてステアリング制御装置1に入力される。図5に示す変形例では、操舵軸914に対する操舵トルクはステアリング制御装置1内のモータ10によって発生される。また、操縦者にハンドル操作の手応えを持たせるために、図示が省略されたモータが、操舵反力トルク推定部23で推定された操舵反力トルクに相当するトルクを発生させてハンドル911に加える。 
また、図5に示す変形例の電動パワーステアリング装置9に備えられるステアリング制御装置1は、図4に示すような、フィードフォワード制御を有するステアリング制御装置1であることが好ましい。上述したフィードフォワード制御が行われることで、ハンドル911の操作に対してステアリング機構が自然な応答を示す。 
このようなステアバイワイヤ型の電動パワーステアリング装置9ではトーションバーが存在せず、トルク制御の制御目標となるトルクが発生しないため、トルク制御よりも上述した角度制御の方が有用である。 
なお、上記説明では、ステアリング制御装置1にモータ10が内蔵された例が示されているが、本発明のステアリング制御装置は、モータを内蔵しない制御側のみの装置であってもよい。 
上述した実施形態及び変形例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1  :ステアリング制御装置9  :電動パワーステアリング装置911  :ハンドル912  :車輪913  :車軸914  :操舵軸915  :トーションバー916  :角度センサ917  :トルクセンサ10  :モータ21  :角度フィードバック部22  :目標舵角推定部23  :操舵反力トルク推定部24  :速度ループ部30  :外乱オブザーバ31  :モータトルク算出部32  :ステアリングトルク推定部33  :フィルタ34  :トルク推定部

Claims (7)

  1. ステアリング機構を駆動するモータの回転角をハンドルの回転角に従って制御するステアリング制御装置において、



     前記ステアリング機構による舵角の変更に伴って生じる操舵反力トルクを算出する外乱オブザーバと、



     前記ハンドルの回転角と前記操舵反力トルクとを指令値として前記モータを駆動させることで目標舵角と前記ステアリング機構における舵角との差を減少させる舵角制御部と、



    を備えるステアリング制御装置。
  2. 前記モータの回転速度に依存した制御量で前記モータをフィードフォワード制御するフィードフォワード制御部を更に備える請求項1に記載のステアリング制御装置。
  3. 前記ハンドルが、トーションバーを介して前記ステアリング機構にトルクを加え、



     前記トーションバーの捻り係数を用いて前記目標舵角を算出する目標舵角算出部を更に備える請求項1または2に記載のステアリング制御装置。
  4. 前記外乱オブザーバが、前記ハンドルの回転により前記ステアリング機構に加えられたトルクの測定値を用いて前記操舵反力トルクを算出する請求項3に記載のステアリング制御装置。
  5. 前記外乱オブザーバが、前記ハンドルの回転により前記ステアリング機構に加えられたトルクの推定値を用いて前記操舵反力トルクを算出する請求項3に記載のステアリング制御装置。
  6. 前記ハンドルは、前記ステアリング機構に対してトルクの物理的な伝達経路が離隔した請求項2に記載のステアリング制御装置。
  7. 請求項1から6のいずれか1項に記載のステアリング制御装置と、



     前記ステアリング制御装置によって駆動が制御されるモータと、



     前記モータによって駆動されるパワーステアリング機構と、



    を備えるパワーステアリング装置。
PCT/JP2019/025351 2018-09-26 2019-06-26 ステアリング制御装置およびパワーステアリング装置 WO2020066183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020547993A JP7342876B2 (ja) 2018-09-26 2019-06-26 ステアリング制御装置およびパワーステアリング装置
CN201980063210.6A CN112770960B (zh) 2018-09-26 2019-06-26 转向控制装置和助力转向装置
DE112019004813.9T DE112019004813T5 (de) 2018-09-26 2019-06-26 Lenkungssteuerungsvorrichtung und Servolenkungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180490 2018-09-26
JP2018180490 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066183A1 true WO2020066183A1 (ja) 2020-04-02

Family

ID=69952635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025351 WO2020066183A1 (ja) 2018-09-26 2019-06-26 ステアリング制御装置およびパワーステアリング装置

Country Status (4)

Country Link
JP (1) JP7342876B2 (ja)
CN (1) CN112770960B (ja)
DE (1) DE112019004813T5 (ja)
WO (1) WO2020066183A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665664B (zh) * 2021-08-06 2022-08-19 上海汽车工业(集团)总公司 Sbw角度跟随前馈控制方法、存储介质和控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040850A (ja) * 2002-06-28 2004-02-05 Mitsubishi Motors Corp 電動パワーステアリング装置
JP2005088610A (ja) * 2003-09-12 2005-04-07 Toyota Central Res & Dev Lab Inc 車両用操舵装置
JP2006130940A (ja) * 2004-11-02 2006-05-25 Toyoda Mach Works Ltd ステアバイワイヤシステム
JP2010188825A (ja) * 2009-02-17 2010-09-02 Denso Corp 操舵負荷推定装置及び電動パワーステアリング装置
WO2016088718A1 (ja) * 2014-12-02 2016-06-09 日本精工株式会社 電動パワーステアリング装置
WO2017014228A1 (ja) * 2015-07-22 2017-01-26 日本精工株式会社 電動パワーステアリング装置の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306205A (ja) * 2004-04-21 2005-11-04 Nissan Motor Co Ltd 電動パワーステアリング装置
CN102066182B (zh) * 2008-07-30 2012-11-28 三菱电机株式会社 电动助力转向控制装置
US10160482B2 (en) * 2015-06-26 2018-12-25 Nsk Ltd. Driving support control apparatus using electric power steering mechanism
JP6582674B2 (ja) * 2015-07-24 2019-10-02 株式会社ジェイテクト 操舵制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040850A (ja) * 2002-06-28 2004-02-05 Mitsubishi Motors Corp 電動パワーステアリング装置
JP2005088610A (ja) * 2003-09-12 2005-04-07 Toyota Central Res & Dev Lab Inc 車両用操舵装置
JP2006130940A (ja) * 2004-11-02 2006-05-25 Toyoda Mach Works Ltd ステアバイワイヤシステム
JP2010188825A (ja) * 2009-02-17 2010-09-02 Denso Corp 操舵負荷推定装置及び電動パワーステアリング装置
WO2016088718A1 (ja) * 2014-12-02 2016-06-09 日本精工株式会社 電動パワーステアリング装置
WO2017014228A1 (ja) * 2015-07-22 2017-01-26 日本精工株式会社 電動パワーステアリング装置の制御装置

Also Published As

Publication number Publication date
CN112770960B (zh) 2023-10-10
JP7342876B2 (ja) 2023-09-12
CN112770960A (zh) 2021-05-07
DE112019004813T5 (de) 2021-06-10
JPWO2020066183A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP7173036B2 (ja) 操舵制御装置
JP3705173B2 (ja) 車両用操舵制御装置
US9452775B2 (en) Control system for an electric power steering system
US8234041B2 (en) Electric power steering controller
US7873453B2 (en) Control apparatus for electric power steering apparatus
JP5751338B2 (ja) 操舵制御装置
JP4203062B2 (ja) 車両用操舵装置
EP3461721A2 (en) Vehicle control apparatus
JP4868397B2 (ja) 電動可変ギア伝達装置と電動パワーステアリング装置の制御装置
JP4453012B2 (ja) 電動パワーステアリング装置
WO2012014399A1 (ja) 電動パワーステアリング装置
JP5981509B2 (ja) 電動パワーステアリング装置
JP7129003B2 (ja) モータ制御装置
US11897550B2 (en) Steering control device
JP4340118B2 (ja) 車両用操舵装置
WO2020066183A1 (ja) ステアリング制御装置およびパワーステアリング装置
JP2020535059A (ja) 電動ステアリングアシスト部を有するステアリングシステムを駆動制御するための方法
JP6252062B2 (ja) ステアリング制御装置
JP6279367B2 (ja) パワーステアリング装置
JP6252059B2 (ja) ステアリング制御装置
JP2004284569A (ja) 操作反力生成制御装置
JP7275762B2 (ja) 操舵制御装置
JP4415304B2 (ja) 車両の電動パワーステアリング制御装置
JP6011458B2 (ja) ステアリング制御装置
JP5979079B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547993

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19868127

Country of ref document: EP

Kind code of ref document: A1