WO2020054173A1 - 信号生成装置 - Google Patents

信号生成装置 Download PDF

Info

Publication number
WO2020054173A1
WO2020054173A1 PCT/JP2019/025018 JP2019025018W WO2020054173A1 WO 2020054173 A1 WO2020054173 A1 WO 2020054173A1 JP 2019025018 W JP2019025018 W JP 2019025018W WO 2020054173 A1 WO2020054173 A1 WO 2020054173A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sub
signals
analog
signal generation
Prior art date
Application number
PCT/JP2019/025018
Other languages
English (en)
French (fr)
Inventor
山崎 裕史
宗彦 長谷
秀之 野坂
政則 中村
宮本 裕
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/274,526 priority Critical patent/US11438083B2/en
Priority to JP2020546707A priority patent/JP7040626B2/ja
Publication of WO2020054173A1 publication Critical patent/WO2020054173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/662Multiplexed conversion systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to a signal generation device using a digital-analog converter used for, for example, a high-speed signal transmission system.
  • DSP digital signal processing circuit
  • DAC Digital-to-to-DAC
  • -Analog Converter a digital-to-analog converter
  • a DAC manufactured using a current CMOS platform has an insufficient analog output band of about 20 GHz, which is one of the bottlenecks in realizing a large-capacity communication system.
  • a signal generation device that can generate a signal having a wider band than the output band of a single DAC by using a plurality of sub DACs and a high-speed analog device such as a mixer or a multiplexer has been proposed. ing.
  • Non-Patent Document 1 the output bandwidth of one sub-DAC is used by using two sub-DACs, up-converting the output signal frequency of one sub-DAC with a multiplier, and adding the output signal of the other sub-DAC.
  • a technique for generating a signal with a wider band than that of has been proposed.
  • Non-Patent Document 2 reports a wideband signal generation by a configuration in which the principle of Non-Patent Document 1 is extended to three sub-DACs.
  • Patent Document 3 proposes a technique that eliminates the need for an analog frequency filter that has been conventionally required in the generation of a wideband signal using up-conversion by a multiplier by using pre-processing by digital signal processing.
  • Patent Document 1 discloses a means for generating a wideband signal with a configuration using a plurality of sub DACs and an analog multiplexer.
  • Patent Document 1 discloses a configuration in which a compensator for compensating a frequency response is provided for each sub DAC in the digital signal processor (paragraph 0060 and 651 and 652 in FIG. 6).
  • Patent Document 2 discloses an optical transmission system including means for estimating a transfer function necessary for performing such compensation.
  • the frequency response difference when comparing the baseband output signals of each sub DAC and the frequency when comparing the image signals obtained by up-converting the output signal of each sub DAC by the function of the analog device are compared. Since the response difference does not always coincide with each other, there is a problem that the compensation may be incomplete if only the compensation for each sub DAC is performed. Also, there is a problem that the above-described compensation for each sub DAC cannot completely compensate for signal degradation due to slight generation of an image signal of an order that should not ideally occur due to imperfection of an analog device. .
  • the present invention has been made in view of such a problem, and an object of the present invention is to use a plurality of sub-DACs and a high-speed analog device to achieve a wider band than the output band of a single sub-DAC.
  • An object of the present invention is to provide a signal generation device capable of generating a high-quality signal through high-efficiency, high-precision compensation in a signal generation device capable of generating a stable signal.
  • the present invention is characterized by having the following configuration in order to achieve such an object.
  • a digital signal processing unit M (M is an integer of 2 or more) sub DACs whose analog band is f B , A wideband analog signal generation unit that generates a wideband analog signal including a component of a frequency (M ⁇ 1) f B or more using the M analog signals output from the M sub DACs,
  • the digital signal processing unit Means for dividing the desired output signal into M parts on the frequency axis and generating M original divided signals corresponding to signals obtained by down-converting each of them into baseband; Means for folding the M original divided signals on the frequency axis to generate M folded divided signals;
  • a 2M ⁇ M filter that receives the M original divided signals and the M folded divided signals as input and outputs M composite signals transmitted to the M sub DACs,
  • the 2M ⁇ M filter is: 2M A signal generating device capable of independently setting a response function for two types of input / output combinations.
  • (Configuration 2) The wideband analog signal generator, An analog multiplexer that switches two input signals at a high frequency at a high speed and outputs the result; Or a circuit in which the analog multiplexer is connected in multiple stages in a tree shape, Or a circuit that frequency-converts at least M-1 of the M input signals by a mixer and then multiplexes and outputs the result.
  • the signal generation device according to Configuration 1 wherein the signal generation device is any one of a circuit using a combination of the analog multiplexer and the mixer.
  • (Configuration 3) The wideband analog signal generator, 2.
  • a response function G mq (f) independently set for 2M 2 input / output combinations of the 2M ⁇ M filter is:
  • the frequency response of the wideband analog signal generation unit is R kp (f)
  • the tilde symbol ⁇ is determined by the following expression, which is a folding operation of taking the complex conjugate by folding the original function around f B / 2 when the analog band of the sub DAC is f B. 4.
  • the signal generation device according to any one of Configurations 1 to 3, wherein
  • the digital signal processing unit includes a main nonlinear filter connected to an input side of the means for generating the original divided signal, and M sub-nonlinear filters connected to each of the M outputs of the 2M ⁇ M filter.
  • the signal generation device according to any one of Configurations 1 to 4, further comprising at least one of:
  • a signal generation device capable of generating a signal having a wider band than the output band of a single sub DAC by using a plurality of sub DACs and a high-speed analog device
  • High-quality signal generation by high-precision compensation can be realized with a lower calculation load than the conventional technology.
  • FIG. 1 is a diagram illustrating a configuration of a signal generation device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example 1 of a wideband analog signal generation unit in FIG. 1.
  • FIG. 2 is a diagram illustrating a configuration example 2 of the wideband analog signal generation unit in FIG. 1.
  • FIG. 3 is a diagram illustrating a configuration example 3 of the wideband analog signal generation unit in FIG. 1.
  • FIG. 2 is a diagram illustrating a spectrum of an output signal of each sub DAC of FIG. 1.
  • FIG. 2 is a diagram illustrating a spectrum of an output signal of a wideband analog signal generation unit in FIG. 1.
  • FIG. 2 is a functional block diagram of the inside of the digital signal processing unit in FIG. 1.
  • FIG. 1 is a diagram illustrating a configuration of a signal generation device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example 1 of a wideband analog signal generation unit in FIG
  • FIG. 11 is a diagram illustrating a specific configuration example 1 of the wideband analog signal generation unit in FIG. 10.
  • FIG. 11 is a diagram illustrating a specific configuration example 2 of the wideband analog signal generation unit in FIG. 10.
  • FIG. 11 is a diagram illustrating a spectrum of an output signal of each sub DAC in FIG. 10.
  • FIG. 11 is a diagram illustrating a spectrum of an output signal of a wideband analog signal generation unit in FIG. 10.
  • FIG. 11 is a functional block diagram of the inside of the digital signal processing unit in FIG. 10.
  • FIG. 11 is a diagram illustrating a configuration of a signal generation device according to a third embodiment of the present invention.
  • 17 is a diagram illustrating a specific configuration example 1 of the wideband analog signal generation unit in FIG. 16.
  • FIG. FIG. 17 is a diagram illustrating a specific configuration example 2 of the wideband analog signal generation unit in FIG. 16.
  • FIG. 17 is a diagram illustrating a spectrum of an output signal of each sub DAC in FIG. 16.
  • FIG. 17 is a diagram illustrating a spectrum of an output signal of the wideband analog signal generation unit in FIG. 16.
  • FIG. 17 is a functional block diagram of the inside of the digital signal processing unit in FIG. 16. It is a figure showing the composition of the signal generation device concerning a 4th embodiment of the present invention.
  • the negative frequency component is a function obtained by replacing the f of the positive frequency component with -f and taking the complex conjugate of the whole.
  • the superscript asterisk (*) represents a complex conjugate.
  • the input signal used as an input to the digital signal processing unit corresponds to a digital signal obtained by sampling a desired analog signal (preferable as a final output signal of the entire apparatus), but this is actually In this case, a desired analog signal is not physically generated and sampled, but is virtually generated in a digital domain based on a transmission digital data sequence, a modulation format, a desired pulse shape, and the like.
  • the generation of such a virtual digital input signal is not limited to the present invention, but is generally performed as transmission-side processing of a communication DSP.
  • the operation is mainly described focusing on the spectrum of a signal.
  • the spectrum is implicitly obtained from the spectrum in the first Nyquist region, that is, the direct current. It refers to a spectrum defined in the frequency domain up to half the sampling rate of the digital signal.
  • the sampling rate of the digital signal is set to a value exceeding twice the maximum frequency of the original signal. For example, a signal composed of components having a frequency range of 0 to f MAX is treated as a digital signal having a sampling rate> 2f MAX .
  • the analog band of a DAC refers to the upper limit frequency of an analog signal that the DAC can output without any significant signal deterioration.
  • a frequency at which the intensity of the output analog signal is attenuated by a certain value compared to the vicinity of DC is often set as the analog band.
  • the threshold value for the amount of decrease in signal strength that defines the analog band should be set arbitrarily according to the spectrum shape of the signal to be generated, the characteristics of the receiving side device, and the like, but typically about 3 to 6 dB. , Should be about 20 dB at the maximum.
  • FIG. 1 is a diagram schematically illustrating a configuration of a signal generation device according to a first embodiment of the present invention.
  • the signal generation device 100 includes a digital signal processing unit 110 to which an input signal 101 is input, sub DACs 121 to 122, and a wideband analog signal generation unit 131 to output an output signal 102.
  • M an integer of M ⁇ 2
  • the wideband analog signal generation unit 131 generates images in which the signals input from the sub DACs 121 to 122 are frequency-shifted by an integral multiple of f B , respectively, and superimposes the images to form an output signal 102 having a frequency range of 0 to 2f B. It has a function of outputting a signal of a wide band.
  • the wideband analog signal generation unit 131 As a specific configuration example of the wideband analog signal generation unit 131, one using an analog multiplexer 211 as shown in FIG. 2, one using a mixer 321 and a combiner 331 as shown in FIG. 3, and FIG.
  • the details of the operation of the configuration in FIGS. 2 to 4 will be described later, but in any of the configuration examples shown in FIGS. 2 to 4, if the digital signal processing unit 110 performs appropriate signal processing, the output signal 102 DAC121 is twice the analog bandwidth of ⁇ 122 0 can be any wideband signal over the region of ⁇ 2f B.
  • FIG. 5 is a diagram illustrating the spectrum of the output signals of the sub DACs 121 to 122 in the first embodiment and FIG. 1
  • FIG. 6 is a diagram illustrating the spectrum of the output signal 102 from the wideband analog signal generation unit 131. .
  • FIG. 5 shows the spectra of the output signals of the sub DACs 121 to 122 as Y 1 (f) to Y 2 (f).
  • FIG. 6 shows the spectrum of the signal corresponding to each sub DAC in the order of the order of the image signal from the baseband component (0th order) above.
  • the spectrum of the output signal 102 from the wideband analog signal generator 131 is shown as Z OUT (f) on the f-axis at the bottom of FIG.
  • Z OUT (f) on the f-axis at the bottom of FIG.
  • the description of the symbols of the spectral components of each signal used in the figure is shown.
  • the response characteristics of the sub DACs 121 to 122 are included in the model of the wideband analog signal generation unit 131, so that Y 1 (f) to Y 2 (f) are used by the sub DACs 121 to 122.
  • 7 is a spectrum of an output signal assuming that it has a perfectly flat ideal frequency response. That is, Y 1 (f) to Y 2 (f) match the spectrum of the digital signal input to the sub DACs 121 to 122 (to be exact, they match in the frequency domain corresponding to the first Nyquist domain of the digital signal). Do).
  • Y 1 (f) to Y 2 (f) are spectra substantially composed of components in the frequency range 0 to f B.
  • Z OUT (f) is generated from the baseband components of Y 1 (f) to Y 2 (f) and first and second order images.
  • the tilde symbol ( ⁇ ) indicates a folding operation to fold the original function around f B / 2 to take a complex conjugate, It is.
  • the first and second terms on the right side of equation (1) correspond to the lower sideband and the upper sideband of the k-th image, respectively.
  • the lower sideband has the ingredients generally (k-1) range of f B ⁇ kf B on the low frequency side mainly kf B
  • the upper sideband is high-frequency side centered on kf B ( k + 1) having a component in the range of f B.
  • Z OUT (f) is obtained by multiplying these image and baseband components by different response functions and adding them.
  • each Z k (f k ) can be expressed as a superposition of a total of four spectral components of two k-1 order upper sidebands and two k order lower sidebands.
  • Z k-1 (f k-1 ) and Z k (f k ) may have some overlap around kf B.
  • Z k (f) obtained by replacing the variable f k with f corresponds to a signal obtained by down-converting Z k (f k ) to baseband.
  • the relationship between Z k (f) and Y 1 (f) to Y 2 (f) can be expressed as the following equation (2).
  • R kp (f) represents the frequency response of the wideband analog signal generation unit 131.
  • Y k (f) corresponds to the upper sideband of the (k ⁇ 1) -order image of Y p (f).
  • R kp (f) includes not only the response of an image generated in an ideal operation but also the response of a spurious component generated due to imperfections of a device or the like.
  • the responses (including amplitude and phase) of the sub DACs 121 to 122 at the preceding stage and the connection between the sub DACs 121 to 122 and the wideband analog signal generator 131 are also included in R kp (f).
  • R kp (f) when the attenuation of the high frequency side of the sub DAC 121 is larger than that of the sub DAC 122, the high frequency side of R k1 (f) and the low frequency side of R k3 (f) are smaller than R k2 (f) and R k4 (f). growing.
  • Y 1 (f) to Y 2 (f) can be considered as a spectrum of a signal obtained by directly converting the digital signal input to the sub DACs 121 to 122 into an analog signal. Both coincide in a frequency region corresponding to one Nyquist region).
  • equation (2) does not take into account the effects of noise and nonlinear distortion.
  • the noise is added to the right side of the equation (2), and the nonlinear distortion affects the final output in the form of an image appearing at a position not considered in the equation (2) and FIG. 2, respectively.
  • the signal generator 100 is used under the condition that the influence of noise and nonlinear distortion is sufficiently reduced.
  • the signal amplitude is too small in the analog region (after the output of the sub DAC), the influence of noise increases, and if the signal amplitude is too large, the influence of nonlinear distortion increases. It is adjusted so as to have a proper amplitude. Optimization of the DC bias also affects the magnitude of the nonlinear distortion. Such adjustment is not limited to the signal generation device of the present invention, but is generally performed widely in a device that generates a high-speed signal.
  • the frequency range in which an arbitrary waveform can be obtained as an output of the wideband analog signal generation unit is 0 to Mf B (0 to 2f B in this example).
  • the high frequency side than mf B sometimes unnecessary images remain, these images can be easily removed at the transmitting side or the receiving side analog filter or the reception-side digital filter.
  • the operation of the wideband analog generation section 131 is performed by dividing the input signals from the M sub DACs and the signals obtained by inverting them on the frequency axis into a total of 2M input signals and output signals into M bands.
  • the concept of the present invention which is not present in the prior art, is expressed by M output signals corresponding to signals downconverted to baseband and a response function of M rows and 2M columns connecting them.
  • the analog multiplexer 211 is a switch (selector) circuit that outputs two input analog signals while switching at high speed at the clock frequency f clk .
  • the output signal from the analog multiplexer 211 is ideally expressed as a sum of a baseband component of two input analog signals and an image component centered on the frequency f clk. be able to.
  • the phase difference between the baseband components is zero, and the phase difference between the image components is ⁇ .
  • the digital signal processing unit 110 is premised on an ideal operation as shown in equations (2b) to (2d) or an operation in which only the response characteristics of the sub DACs 121 to 122 are considered. Discloses the content of the signal processing to be performed. However, in an actual device, equations (2b) to (2d) are not satisfied.
  • FIG. 7 shows a functional block diagram of the inside of the digital signal processing unit 110 of FIG.
  • each sub-signal is output so that a desired analog signal is obtained as the final output signal 102.
  • a digital signal to be sent to the DACs 121 to 122 is generated.
  • the input signal 101 to the digital signal processing unit 110 is a signal corresponding to a digital signal obtained by sampling a desired analog signal, and is virtually generated in the digital domain.
  • X target (f) is a spectrum composed of components having a frequency range of approximately 0 to Mf B (0 to 2f B in this example).
  • the band division section 611 divides the input signal 101 substantially for each frequency f B and generates original divided signals 621 to 622 corresponding to signals obtained by down-converting each of the input signals 101 to baseband. Assuming that the spectra of the original divided signals 621 to 622 are X 1 (f) to X 2 (f), the following equation (3) holds.
  • X k-1 (f k-1 ) and X k (f k ) may have some overlap around kf B.
  • X k (f) is a spectrum generally composed of components in the frequency range of 0 to f B. Since the original divided signals 621 to 622 have a bandwidth of about 1 / M (about 2) compared to the input signal 101, they can be expressed at a sampling rate of about 1 / M (about 2) of the input signal 101. . For this reason, it is desirable that the digital processing performed by the band division unit 211 includes processing for downsampling after band division.
  • the spectrum folding section 612 folds the original divided signals 621 to 622 around f B / 2 on the frequency axis to take complex conjugate, thereby generating folded divided signals 631 to 632.
  • the spectrum of the folded split signals 631 to 632 is calculated using the same tilde (() as in the equation (1). Can be expressed as
  • the 2M ⁇ M filter (4 ⁇ 2 filter) 613 receives the original divided signals 621 to 622 and the folded divided signals 631 to 632 as inputs, and generates composite signals 641 to 642 to be sent to the sub DACs 121 to 122.
  • the response of the sub DACs 121 to 122 and the connection between the sub DACs 121 to 122 and the wideband signal generator 131 is also included in R km (f), so that the spectra of these composite signals 641 to 642 are These are Y 1 (f) to Y 2 (f) themselves in (1) and (2).
  • the composite signals 641 to 642 are digital signals, the spectrum in the first Nyquist region matches Y 1 (f) to Y 2 (f) in equations (1) and (2). is there.
  • the 4 ⁇ 2 filter 613 multiplies the original divided signals 621 to 622 and the folded divided signals 631 to 632 by the response functions G mq (f) that can be set independently, and then superimposes the composite signal.
  • This is a filter for obtaining 641 to 642. Since the original division signals 621-622 and folding division signals 631-632 are all signals comprising the following ingredients frequency roughly f B, composite signals 641-642 also consist frequency approximately f B following components, the analog band generally by the sub-DAC 121 ⁇ 122 is f B can be converted to an analog signal without problems.
  • the range of the frequency 0 to 2f B can be made to substantially match the X target (f).
  • equation (9) will be summarized for G mq (f). First, both sides of the equation (9) are separated into two rows on the left and right (M rows each), and the following equations (10) and (11) are obtained. Get.
  • R kp (f) is an individual difference in response characteristics between the sub DACs 121 to 122, a skew between the connection between the sub DACs 121 to 122 and the wideband analog signal generation unit 131, and a wideband analog signal generation unit for each order image. It includes all 131 response characteristics (including the response of an image of an order that should not occur ideally due to device imperfections). Therefore, the 4 ⁇ 2 filter 213 using G mq (f) as a coefficient compensates for all of the individual differences of the sub DACs, the skew, and the response characteristic differences for each order, and obtains ideal DAC characteristics for the entire signal generator 100. Such composite signals 641 to 642 can be generated.
  • R kp (f) In order to obtain G mq (f) from equation (14), R kp (f) needs to be given. R kp (f) may be obtained by actual measurement or by simulation or the like. For example, if it is determined by actual measurement, the analog response of the sub DACs 121 to 122 is measured individually, and the response of the wideband analog signal generation unit 131 is evaluated by inputting four input signals one by one and evaluating the response. Conceivable.
  • the processing order may be changed within a range that does not affect the overall function as compared with the shape described in Patent Document 1.
  • an input signal is roughly divided by a frequency f B by a band division unit 711 and down-converted to a base band.
  • 721 and only the folded divided signal 732 obtained by folding the original divided signal on the high frequency side by the spectrum folding unit 712 are used. Downsampling accompanying band division is also performed by the band division unit 711 as necessary.
  • the weighted addition unit 713 the original divided signal 721 is multiplied by a constant 1, and the folded divided signal 732 is multiplied by constants r and -r, and then added.
  • the output from the weighted addition unit 713 is filtered by the sub-channel response compensation filter 714 to compensate for the analog response characteristics of the sub-channels including each sub-DAC, and then sent to each sub-DAC.
  • the weighted addition unit 713 is basically set with a constant assuming that the subsequent band analog signal generation unit performs an ideal operation. It is compensated by the channel response compensator 714.
  • the processing order may be changed within a range that does not affect the overall function as compared with the shape described in Patent Document 1.
  • an input signal is roughly divided by a frequency f B by a band dividing unit 811 and down-converted to a base band.
  • 821 to 822 and only the folded divided signal 832 obtained by folding the original divided signal on the high frequency side by the spectrum folding unit 812 are used.
  • Downsampling accompanying band division is also performed by the band division unit 811 as necessary.
  • the original divided signal 821 is multiplied by a constant 1
  • the original divided signal 822 is multiplied by constants r and -r
  • the folded divided signal 832 is multiplied by a coefficient -1, and then added. .
  • the output from the weighted addition unit 813 is filtered by the sub-channel response compensation filter 814 to compensate for the analog response characteristics of the sub-channels including each sub-DAC, and then sent to each sub-DAC.
  • the weighted adder 813 is basically set with a constant assuming that the subsequent band analog signal generator performs an ideal operation. It is compensated by the channel response compensator 814.
  • Patent Document 2 also basically assumes a form in which response compensation is performed for each sub-channel as shown in FIGS.
  • FIG. 10 is a diagram schematically illustrating a configuration of a signal generation device according to the second embodiment of the present invention.
  • the signal generation device 900 includes a digital signal processing unit 910 to which an input signal 901 is input, sub DACs 921 to 923, and a wideband analog signal generation unit 931 to output an output signal 902.
  • M an integer of ⁇ 2
  • the wideband analog signal generation unit 931 generates images in which the signals input from the sub DACs 921 to 923 are frequency-shifted by an integer multiple of f B , and superimposes the images to form an output signal 902 as a frequency range of 0 to 3f B. It has a function of outputting a signal of a wide band.
  • the wideband analog signal generation unit 931 As a specific configuration example of the wideband analog signal generation unit 931, a configuration using two mixers 1021 and 1022 and a combiner 1031 as shown in FIG. 11 or an analog multiplexer 1111 and a mixer as shown in FIG. 1121 and a combination of the combiner 1131 and the like can be used.
  • the three-input combiner 1031 generates a wideband signal by adding the baseband component from the sub DAC 931 to the primary image and the secondary image generated above.
  • the two-input combiner 1131 generates a wideband signal by adding the baseband component generated above and the primary image and the secondary image.
  • FIG. 13 is a diagram showing the spectrum of the output signals of the sub DACs 921 to 923 of the second embodiment and FIG. 10 in the same manner as FIG. 5 of the first embodiment.
  • FIG. 14 shows the output from the wideband analog signal generation unit 931.
  • FIG. 4 is a diagram illustrating a spectrum of a signal 902.
  • FIG. 13 shows the spectra of the output signals of the sub DACs 921 to 923 as Y 1 (f) to Y 3 (f).
  • FIG. 14 shows the spectrum of the signal corresponding to each sub DAC in the order from the upper baseband component (0th order) to the order of the image signal.
  • the spectrum of the output signal 902 from the wideband analog signal generation unit 931 is defined as Z OUT (f) on the f-axis at the bottom of FIG. 14, and Z OUT (f) is generally divided into portions for each frequency f B.
  • the description of the symbols of the spectral components of each signal used in the figure is shown.
  • Y 1 (f) to Y 3 (f) are set to the sub DAC 921. 923 coincides with each other (accurately, in the frequency domain corresponding to the first Nyquist domain of the digital signal).
  • Y 1 (f) to Y M (f) are spectra substantially composed of components in the frequency range 0 to f B.
  • Z OUT (f) is generated from baseband components of Y 1 (f) to Y M (f) and images of 1 to M order (1 to 3 order in this example).
  • the relationship between Z k (f) and Y 1 (f) to Y M (f) can be expressed as the following equation (15). .
  • R kp (f) represents the frequency response of the wideband analog signal generation unit 931.
  • p 1 to M (1 to 3 in this example)
  • the upper side of the k ⁇ 1 order image of Y p (f) is obtained.
  • R kp (f) includes not only the response of an image generated in an ideal operation but also the response of a spurious component generated due to imperfections of a device or the like. Also, as in the description of the first embodiment, the responses (including the amplitude and phase) of the sub DACs 921 to 923 in the preceding stage and the connection between the sub DACs 921 to 923 and the wideband analog signal generator 931 are also included in R kp (f). Shall be.
  • Equation (15) does not take into account the effects of noise and non-linear distortion, and that the signal generating apparatus 900 is generally used under the condition that the effects of noise and non-linear distortion are sufficiently small, is also the first type. This is the same as the embodiment.
  • R kp (f) 1 to M (1 to 3 in this example) in the equation (15), and M rows for each f. It is also the same as in the first embodiment that a matrix of 2M columns (3 rows and 6 columns in this example) may be handled.
  • R kp (f) is given by the following equation (15b).
  • equations (15b) to (15c) do not hold.
  • FIG. 15 shows a functional block diagram of the inside of the digital signal processing unit 910 of FIG.
  • each sub-signal is output so as to obtain a desired analog signal as the final output signal 902.
  • a digital signal to be sent to the DACs 921 to 923 is generated.
  • the input signal 901 to the digital signal processing unit 910 is a signal corresponding to a digital signal obtained by sampling a desired analog signal, and is virtually generated in a digital domain.
  • X target (f) is a spectrum composed of components having a frequency range of approximately 0 to Mf B (0 to 3f B in this example).
  • the band division unit 1311 divides the input signal 901 into approximately each frequency f B , and generates original divided signals 1321 to 1323 corresponding to signals that are down-converted to baseband. Assuming that the spectrum of the original divided signal is X 1 (f) to X M (f) in order from the top in the figure, the following equation (16) holds.
  • X k-1 (f k-1 ) and X k (f k ) may have some overlap around kf B.
  • X k (f) is a spectrum generally composed of components in the frequency range of 0 to f B.
  • the original divided signals 1321 to 1323 have a bandwidth of about 1 / M (about 1/3) as compared with the input signal 901, and can be represented by a sampling rate of about 1 / M (about 1/3) of the input signal 901. .
  • the digital processing in the band division unit 1311 includes processing for performing downsampling after band division.
  • the spectrum folding unit 1312 folds the original divided signals 1321 to 1323 around f B / 2 on the frequency axis and takes complex conjugates to generate folded divided signals 1331 to 1333.
  • the spectra of the folded split signals 1331 to 1333 are calculated using the same tilde (to) as in the equation (1). Can be expressed as
  • the 2M ⁇ M filter (6 ⁇ 3 filter in this example) 1313 receives the original divided signals 1321 to 1323 and the folded divided signals 1331 to 1333 as inputs, and generates composite signals 1341 to 1343 to be sent to the sub DACs 921 to 923.
  • the responses of the sub DACs 921 to 923 and the connection between the sub DACs 921 to 923 and the wideband signal generation unit 931 are also included in R km (f). These are Y 1 (f) to Y M (f) themselves in (15). (Accurately, since the composite signals 941 to 942 are digital signals, the spectrum in the first Nyquist region matches Y 1 (f) to Y M (f) in Expression (15).)
  • the 2M ⁇ M filter (6 ⁇ 3 filter in this example) 1313 multiplies the original divided signals 1321 to 1323 and the folded divided signals 1331 to 1333 by response functions G mq (f) that can be set independently.
  • This is a filter that obtains the composite signals 1341 to 1343 by superimposing the signals. Since the original divided signal from 1321 to 1323 and folding division signals 1331 to 1333 are all signals comprising the following ingredients frequency roughly f B, the composite signal 1341 to 1343 becomes a frequency approximately f B following components, the analog band generally by sub DAC921 ⁇ 923 is f B can be converted to an analog signal without problems.
  • Equation (18) gives: It can be.
  • the range of the frequency of about 0 to Mf B (0 to 3f B in this example) is made substantially equal to X target (f). Can be.
  • R kp (f) is the individual difference of the response characteristics of the sub DACs 921 to 923, the skew between the connection between the sub DACs 921 to 923 and the wideband analog signal generation unit 931, and the response of the wideband analog signal generation unit 931 to the image of each order. Includes all characteristics, including the response of images of orders that would not ideally result from device imperfections. Therefore, the 2M ⁇ M filter (6 ⁇ 3 filter in this example) 1313 using G mq (f) as a coefficient compensates for all the individual differences of sub DACs, skew, and response characteristic differences for each order, and the signal generation device 900 Composite signals 1341 to 1343 that can obtain ideal DAC characteristics as a whole can be generated.
  • FIG. 16 is a diagram schematically illustrating a configuration of a signal generation device according to the third embodiment of the present invention.
  • the analog bandwidth of the sub DAC1421 ⁇ 1424 and f B The wideband analog signal generation unit 1431 generates images in which the signals input from the sub DACs 1421 to 1424 are frequency-shifted by an integer multiple of f B , respectively, and superimposes the images so that the output signal 1402 has a frequency range of 0 to 4f B. It has a function of outputting a signal of a wide band.
  • the wideband analog signal generation unit 1431 As a specific configuration example of the wideband analog signal generation unit 1431, one using three mixers 1521 to 1523 and a four-input combiner 1531 as shown in FIG. A multiplexer in which analog multiplexers 1611 to 1613 are connected in multiple stages in a tree shape or the like can be used.
  • a wideband signal is generated by adding the baseband component of the signal from the sub DAC 1421.
  • FIG. 19 is a diagram showing the spectrum of the output signals of the sub DACs 1421 to 1424 of the third embodiment and FIG. 16 in the same manner as FIG. 5 of the first embodiment and FIG. 13 of the second embodiment
  • FIG. FIG. 14 is a diagram illustrating a spectrum of an output signal 1402 from a signal generation unit 1431.
  • FIG. 19 shows the spectra of the output signals of the sub DACs 1421 to 1424 as Y 1 (f) to Y 4 (f).
  • FIG. 20 shows the spectrum of the signal corresponding to each sub DAC in order from the baseband component (0th order) to the order of the image signal.
  • the spectrum of the output signal 1402 from the wideband analog signal generation unit 1431 is defined as Z OUT (f) on the f-axis at the bottom of FIG. 20, and Z OUT (f) is generally divided into portions for each frequency f B.
  • the description of the symbols of the spectral components of each signal used in the figure is shown.
  • Y 1 (f) to Y 4 (f) Coincides with the spectrum of the digital signal input to the sub DACs 1421 to 1424 (to be exact, both coincide in the frequency domain corresponding to the first Nyquist domain of the digital signal).
  • the relationship between R kp (f), Y 1 (f) to Y 4 (f), and Z 1 (f) to Z 4 (f) representing the frequency response of the wideband analog signal generation unit 1431 is given by the above equation (15).
  • M 4 in the description thereof.
  • FIG. 21 shows a functional block diagram of the inside of the digital signal processing unit 1410 in FIG.
  • the description of the digital signal processing unit 1410 corresponds to the description of the digital signal processing unit 910 in the second embodiment in which the value of M is changed from 3 to 4.
  • the response function G mq (f) of a 2M ⁇ M filter (8 ⁇ 4 filter in this example) 1813 is set according to equation (19), so that the signal generation device 1400 In the spectrum Z OUT (f) of the final output signal 1402, the range of frequencies approximately from 0 to Mf B (0 to 4f B in this example) can be substantially matched with X target (f).
  • R kp (f) is an individual difference in response characteristics of the sub DACs 1421 to 1424, a skew between the connection between the sub DACs 1421 to 1424 and the wideband analog signal generation unit 1431, and a response of the wideband analog signal generation unit 1431 to an image of each order. Includes all characteristics, including the response of images of orders that would not ideally result from device imperfections. Therefore, the 2M ⁇ M filter (8 ⁇ 4 filter in this example) 1813 having G mq (f) as a coefficient compensates for all of these individual differences, skews, and response characteristic differences for each order, and the entire signal generation device 1400 Thus, composite signals 1841 to 1844 that can obtain ideal DAC characteristics can be generated.
  • the present invention is based on a new idea of capturing a system based on the original divided signal and the folded divided signal as a basis and applying a 2M ⁇ M filter with these divided signals as input to compensate for device imperfections. .
  • the present invention has a remarkable merit that the calculation load required to obtain the same compensation accuracy is greatly reduced.
  • the calculation load is specifically compared between the conventional method and the present invention.
  • the frequency range of the divided signal is 0 to f B
  • the number of sample points of each partial filter constituting the 2M ⁇ M filter is f B / df
  • the total number of coefficients is 2M 2.
  • f B / df a 2MN number. That is, in the present invention and the conventional method, the ratio of the number of coefficients used for compensation is 2M: N.
  • the signal generation device according to the fourth embodiment of the present invention has the same configuration as the signal generation device according to the first embodiment shown in FIG. A configuration using a digital signal processing unit 2210 represented by a block diagram is employed.
  • the digital signal processing unit 2210 shown in FIG. 22 differs from the digital signal processing unit 110 shown in FIG. 7 in that a main nonlinear filter 2251 is provided before the band division unit 2211 and is provided after a 4 ⁇ 2 filter (2M ⁇ M filter) 2213. , Sub-nonlinear filters 2261 to 2262 are respectively added.
  • the present embodiment employs a configuration that takes into account the effects of nonlinear distortion.
  • the signal generator is used under the condition that the influence of the nonlinear distortion is sufficiently reduced. Did not consider.
  • the characteristic degradation due to nonlinear distortion may be a problem.
  • it is desirable to compensate for the nonlinear distortion by adding a nonlinear filter (nonlinear predistorter) to the digital signal processing unit.
  • nonlinear distortion in two types. That is, there are nonlinear distortion occurring in the analog domain before the wideband signal is generated, and nonlinear distortion occurring in the analog domain after the wideband signal is generated.
  • the former will be referred to as sub-channel nonlinear distortion, and the latter will be referred to as main channel nonlinear distortion.
  • the sub-channel non-linear distortion includes a non-linear distortion generated in the sub-DAC and a non-linear distortion generated in an input side circuit (such as an input buffer amplifier) of the wideband analog signal generation unit.
  • the main channel non-linear distortion includes a non-linear distortion generated in an output side circuit (such as an output buffer amplifier) of the wideband analog signal generation unit, a non-linear distortion generated in an optical modulator connected to a subsequent stage, and the like.
  • the nonlinear processing cannot basically change the order or divide it for each band.
  • the digital signal processing unit has a 4 ⁇ 2 filter (2M ⁇ M filter) 2213 after Sub-linear filters 2261 to 2262 may be added.
  • each nonlinear filter for example, a nonlinear filter generally used as a nonlinear compensation means of an analog electronic component or an optical modulator, such as a Volterra filter or a Memory @ Polynomial filter, can be used.
  • the filter coefficient can be optimized based on simulation results or actual measurement data using a test signal.
  • the optimization algorithm for example, a direct learning method, an indirect learning method, or the like as described in Non-Patent Document 4 can be used.
  • 2M ⁇ M filters 2M ⁇ M filters
  • the configuration for compensating for both the main channel and the sub-channel nonlinear distortion is adopted.
  • the complexity of the circuit configuration is taken into consideration.
  • only one of the compensations is limited, only one of the main nonlinear filter 2251 or the sub nonlinear filters 2261 to 2262 may be used. This is the same even when M ⁇ 3.
  • a function of nonlinear compensation is basically added to the first embodiment.
  • the eight response functions G mq (f) included in the 4 ⁇ 2 filter (2M ⁇ M filter) 613 in FIG. It may seem that a configuration replaced with a function (hereinafter, referred to as a component-by-component configuration) may be acceptable, but in practice, nonlinear distortion cannot be correctly compensated by the component-by-component configuration.
  • the output signals from the sub DACs 121 to 122 and the output signal 102 from the wideband signal generation unit 131 are actually generated as analog signals.
  • These signals are basically the original divided signals 621 to 622 and the aliased signals. It is a linear combination of four components (hereinafter, simply referred to as four components) of the divided signals 631 to 632. Therefore, the signals after these real analog signals have been subjected to nonlinear distortion due to the characteristics of the real analog devices include not only the respective power components of the four components but also the products of the four components.
  • the power component of each of the four components can be compensated, but the product component between the four components cannot be compensated.
  • the input to the band division unit 2211 is a signal containing four components at substantially the same ratio as the output signal 102 from the wideband signal generation unit 131, and the 4 ⁇ 2 filter ( Since the output from the (2M ⁇ M filter) 2213 is a signal containing four components at substantially the same ratio as the output signals from the sub DACs 121 to 122, the main non-linear filter 2251 and the sub non-linear filters 2261 to 2262 to which these are input are connected. If used, both the power component of each of the four components and the product component between the four components can be correctly compensated.
  • the nonlinear distortion similarly to the above-described linear response, the manner in which the nonlinear distortion is generated for each order of the image in the wideband analog signal generation unit 131 (hereinafter, referred to as a nonlinear response characteristic difference for each order). Since it is conceivable, not all the nonlinear distortions can be completely compensated for by the configuration of FIG. However, in the first place, the present signal generator is used in a range that responds almost linearly, and the strength of nonlinear distortion (the strength of a deviation component from an ideal signal due to nonlinear distortion) is small (typically, the signal strength). Is ⁇ 10 dB or less). The above-mentioned difference in the nonlinear response characteristics for each order is even smaller than the nonlinear distortion strength, so that the effect is sufficiently small.
  • a high-precision compensation is achieved.
  • Quality signal generation can be achieved with a lower computational load than the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transmitters (AREA)

Abstract

複数のサブDACと高速アナログデバイスを用いて、単体のサブDACの出力帯域と比べてより広帯域な信号を、高効率、高精度な補償により高品質に生成するために、デジタル信号処理部と、アナログ帯域がfBであるM個(Mは2以上の整数)のサブDACと、M個のサブDACが出力するM個のアナログ信号を用いて周波数(M-1)fB以上の成分を含む広帯域なアナログ信号を生成する広帯域アナログ信号生成部とを備え、デジタル信号処理部は、所望の出力信号を周波数軸上でM個の部分に分割しそれぞれをベースバンドにダウンコンバートした信号に相当するM個の原分割信号と、M個の原分割信号を周波数軸上で折返してM個の折返し分割信号とを生成する手段と、原分割信号および折返し分割信号を入力とし、M個のサブDACへと送信されるM個の複合信号を出力とする2M×Mフィルタとを備え、2M×Mフィルタは、2M2通りの入出力の組合せに対して独立に応答関数を設定可能である信号生成装置とした。

Description

信号生成装置
 本発明は、例えば高速信号伝送システムなどに用いられるデジタル-アナログ変換器を用いた信号生成装置に関する。
 スマートフォンの広い普及に代表されるように、インターネットのトラフィックは日々増え続けており、光ファイバ通信や無線通信、有線電気通信等の大容量化・高機能化が求められている。システムの大容量化・高機能化のための要素技術として、効率的なネットワーク構成、高度なデジタル変復調システムや、高速動作可能な光・電子デバイスなどの開発が続いている。例えば通信装置の送信側回路に着目すると、デジタル信号処理に特化したプロセッサであるデジタル信号処理回路(DSP:Digital Signal Processor)を用いて、高度な多値変調や波形整形などの処理をデジタル信号のレベルで行う検討が盛んに行われている。
 DSPを利用したこのようなデジタル信号処理技術の導入にあたっては、DSPにより生成されるデジタル信号を最終的な高速のアナログ信号に変換する、高速動作可能なデジタル-アナログ変換器(DAC:Digital-to-Analog Converter)が不可欠である。しかしながら、現行のCMOSプラットフォームを用いて作製されたDACでは、そのアナログ出力帯域が20GHz程度と不十分であり、通信システムの大容量化を実現するにあたってのボトルネックの1つとなっていた。これを解決する技術として、複数のサブDACとミキサやマルチプレクサ等の高速アナログデバイスを用いることで、単体のDACの出力帯域と比べてより広帯域な信号を生成することのできる信号生成装置が提案されている。
 非特許文献1では、2個のサブDACを用い、一方のサブDACの出力信号周波数を乗算器でアップコンバートしたうえで他方のサブDACの出力信号と加算することで、サブDAC単体の出力帯域と比べてより広帯域な信号を生成する技術が提案されている。さらに非特許文献2では、非特許文献1の原理を3個のサブDACに拡張した構成による広帯域信号生成が報告されている。さらに特許文献3では、デジタル信号処理による前処理を用いることで、乗算器によるアップコンバートを用いた広帯域信号生成において、従来必要であったアナログ周波数フィルタを不要とする技術が提案されている。また、特許文献1では、複数のサブDACとアナログマルチプレクサを用いた構成で広帯域信号を生成する手段が開示されている。
国際公開第2017/033446号 特開2018-42073号公報 特開2018-78403号公報
C. Laperle and M. O’Sullivan, "Advances in High-Speed DACs, ADCs, and DSP for Optical Coherent Transceivers", J. Lightw. Technol., vol.32, no.4, pp.629-643 (2014) X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, P. Winzer, "All-electronic 100 GHz bandwidth digital-to-analog converter generating PAM signals up to 190 GBaud", J. Lightw. Technol vol.35, no.3, pp.411-417 (2017) T. Jyo, H. Yamazaki, M. Nagatani, H. Hamada, H. Fukuyama, and H. Nosaka, "An 80-Gbaud Transmitter using Bandwidth Interleaving with Sideband Cancelling Method", in Proc. European Microwave Week 2018, paper EuMC15-1 (2018) D. Zhou and V. E. DeBrunner, "Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm," IEEE J. Trans. Signal Process., vol.55, no.1, pp.120-133 (2007)
 上記のような広帯域信号生成技術において、高品質な信号を生成するためには、サブDACの個体差やアナログバイスの不完全性を補償する技術が必要となる。
 このため特許文献1では、デジタル信号処理部において、サブDAC毎に周波数応答を補償する補償部を設ける構成が開示されている(段落0060および図6の651および652)。また、特許文献2では、このような補償を行うために必要な伝達関数を推定する手段を備えた光伝送システムが開示されている。
 しかしながら実際のデバイスでは、各サブDACのベースバンド出力信号同士を比較した場合の周波数応答差と、各サブDACの出力信号がアナログデバイスの機能によってアップコンバートされたイメージ信号同士を比較した場合の周波数応答差とが、必ずしも互いに一致しないために、サブDAC毎の補償だけでは補償が不完全になってしまう場合があるという課題があった。また、アナログデバイスの不完全性によって、理想的には生じないはずの次数のイメージ信号が僅かに生じることによる信号劣化についても、上記のサブDAC毎の補償では補償しきれないという課題があった。
 本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、複数のサブDACと高速アナログデバイスを用いることで、単体のサブDACの出力帯域と比べてより広帯域な信号を生成することのできる信号生成装置において、高効率、高精度な補償により高品質な信号生成を実現することのできる信号生成装置を提供することである。
 本発明は、このような目的を達成するために、以下のような構成を備えることを特徴とする。
 (構成1)
 デジタル信号処理部と、
 アナログ帯域がfBであるM個(Mは2以上の整数)のサブDACと、
 前記M個のサブDACが出力するM個のアナログ信号を用いて周波数(M-1)fB以上の成分を含む広帯域なアナログ信号を生成する広帯域アナログ信号生成部とを備え、
 前記デジタル信号処理部は、
 所望の出力信号を周波数軸上でM個の部分に分割しそれぞれをベースバンドにダウンコンバートした信号に相当するM個の原分割信号を生成する手段と、
 前記M個の原分割信号を周波数軸上で折返してM個の折返し分割信号を生成する手段と、
 前記M個の原分割信号および前記M個の折返し分割信号を入力とし、前記M個のサブDACへと送信されるM個の複合信号を出力とする2M×Mフィルタとを備え、
 前記2M×Mフィルタは、
2M2通りの入出力の組合せに対して独立に応答関数を設定可能である
ことを特徴とする信号生成装置。
 (構成2)
 前記広帯域アナログ信号生成部は、
2個の入力信号を一定の周波数で高速に切り替えて出力するアナログマルチプレクサ、
 または前記アナログマルチプレクサをツリー状に多段接続した回路、
 またはミキサによってM個の入力信号のうち少なくともM-1個を周波数アップコンバートした後に合波して出力する回路、
 または前記アナログマルチプレクサとミキサを複合的に用いた回路
のいずれかであることを特徴とする構成1に記載の信号生成装置。
 (構成3)
 前記広帯域アナログ信号生成部は、
 2つのミキサとコンバイナ、および90度位相シフタからなるIQ変調器型回路
 であることを特徴とする構成1に記載の信号生成装置。
 (構成4)
 前記2M×Mフィルタの、2M2通りの入出力の組合せに対して独立に設定される応答関数Gmq(f)は、
 前記広帯域アナログ信号生成部の周波数応答をRkp(f)としたときに、次式
Figure JPOXMLDOC01-appb-M000002
 但し、チルダ記号~は、前記サブDACのアナログ帯域をfBとしたときに、元の関数をfB/2を中心に折返して複素共役を取る折返し操作を示している
 により決定される
 ことを特徴とする構成1ないし3のいずれか1項に記載の信号生成装置
 (構成5)
 前記デジタル信号処理部は、前記原分割信号を生成する手段の入力側に接続されたメイン非線形フィルタと、前記2M×MフィルタのM個の出力の各々に接続されたM個のサブ非線形フィルタとのすくなくとも一方を備える
 ことを特徴とする構成1ないし4のいずれか1項に記載の信号生成装置。
 以上説明したように、本発明によれば、複数のサブDACと高速アナログデバイスを用いることで、単体のサブDACの出力帯域と比べてより広帯域な信号を生成することのできる信号生成装置において、高精度な補償による高品質な信号生成を、従来技術より低い計算負荷で実現することができる。
本発明の第1の実施形態に係る信号生成装置の構成を示す図である。 図1の広帯域アナログ信号生成部の構成例1を示す図である。 図1の広帯域アナログ信号生成部の構成例2を示す図である。 図1の広帯域アナログ信号生成部の構成例3を示す図である。 図1の各サブDACの出力信号のスペクトルを表した図である。 図1の広帯域アナログ信号生成部の出力信号のスペクトルを説明する図である。 図1のデジタル信号処理部の内部の機能ブロック図である。 従来の信号生成装置において、タイプ1の条件(fclk=2fB)とした際のデジタル信号処理部の機能ブロック図である。 従来の信号生成装置において、タイプ2の条件(fclk=fB)とした際のデジタル信号処理部の機能ブロック図である。 本発明の第2の実施形態に係る信号生成装置の構成を示す図である。 図10の広帯域アナログ信号生成部の具体的な構成例1を示す図である。 図10の広帯域アナログ信号生成部の具体的な構成例2を示す図である。 図10の各サブDACの出力信号のスペクトルを表した図である。 図10の広帯域アナログ信号生成部の出力信号のスペクトルを説明する図である。 図10のデジタル信号処理部の内部の機能ブロック図である。 本発明の第3の実施形態に係る信号生成装置の構成を示した図である。 図16の広帯域アナログ信号生成部の具体的な構成例1を示す図である。 図16の広帯域アナログ信号生成部の具体的な構成例2を示す図である。 図16の各サブDACの出力信号のスペクトルを表した図である。 図16の広帯域アナログ信号生成部の出力信号のスペクトルを説明する図である。 図16のデジタル信号処理部の内部の機能ブロック図である。 本発明の第4の実施形態に係る信号生成装置の構成を示した図である。
 以下の説明において、スペクトルを表す数式や図においては、簡単のため正周波数成分のみを表し、負周波数成分は省略する。以下の説明で用いる信号は全て実信号であるため、負周波数成分は正周波数成分のfを-fで置き換え、全体の複素共役を取った関数となる。また、上付きのアスタリスク(*)は複素共役を表すものとする。
 また、デジタル信号処理部への入力として用いられる入力信号とは、所望の(装置全体の最終的な出力信号として望ましい)アナログ信号をサンプリングして得られるデジタル信号に相当するものだが、これは実際に所望のアナログ信号を物理的に生成してサンプリングしたものではなく、送信デジタルデータ列、変調フォーマット、所望パルス形状等に基づきデジタル領域で仮想的に生成したものである。このような仮想的なデジタル入力信号の生成は、本発明に限らず通信用DSPの送信側処理として一般的に行われることである。
 また、本明細書においては主に信号のスペクトルに着目して動作を説明するが、説明の対象がデジタル信号である場合、スペクトルとは暗黙的に第1ナイキスト領域内のスペクトル、すなわち直流から当該デジタル信号のサンプリングレートの1/2までの周波数領域で定義されるスペクトルを指すものとする。また、特に断りのない限り、デジタル信号のサンプリングレートは、原信号の最大周波数の2倍を超える値に設定されるものとする。たとえば周波数範囲0~fMAXの成分からなる信号は、サンプリングレート>2fMAXのデジタル信号として扱われる。
 また、本明細書において、DACのアナログ帯域とは、当該DACが特段大きな信号劣化なく出力可能なアナログ信号の上限周波数を指す。具体的には、出力アナログ信号の強度がDC近傍に比べ一定の値だけ減衰する周波数をアナログ帯域とする場合が多い。アナログ帯域を定義する信号強度の減少量の閾値は、生成すべき信号のスペクトル形状や受信側装置の特性等に応じて任意に設定されるべきものであるが、典型的には3~6dB程度、最大でも概ね20dB程度とすべきである。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
 [第1の実施形態]
 図1は、本発明の第1の実施形態に係る信号生成装置の構成を模式的に示した図である。信号生成装置100は、入力信号101が入力されるデジタル信号処理部110、サブDAC121~122、出力信号102を出力する広帯域アナログ信号生成部131から構成される。サブDACの個数をM個(M≧2の整数)とすると、本例はM=2の例だが、その動作原理はM≧3の構成にも拡張可能である。
 サブDAC121~122のアナログ帯域をfBとする。広帯域アナログ信号生成部131は、サブDAC121~122から入力される信号をそれぞれfBの整数倍だけ周波数シフトしたイメージを生成し、それらを重ね合わせることで、出力信号102として周波数範囲0~2fB程度の広帯域な信号を出力する機能を有する。
 広帯域アナログ信号生成部131の具体的な構成例としては、図2に示されるようなアナログマルチプレクサ211を用いたもの、図3に示されるようなミキサ321とコンバイナ331を用いたもの、図4に示されるようなミキサ421,422、コンバイナ431、90度位相シフタ441からなるIQ変調器型のもの等が挙げられる。図2~図4の構成の動作の詳細については後述するが、図2~4に示した構成例のいずれにおいても、デジタル信号処理部110で適切な信号処理を行えば、出力信号102はサブDAC121~122のアナログ帯域の2倍である0~2fBの領域にわたる任意の広帯域信号とすることができる。
 図5は、実施形態1、図1のサブDAC121~122の出力信号のスペクトルを表した図であり、図6は、広帯域アナログ信号生成部131からの出力信号102のスペクトルを説明する図である。
 図5には、サブDAC121~122の出力信号のスペクトルを、Y1(f)~Y2(f)として示している。図6には、上のベースバンド成分(0次)からイメージ信号の次数の順に下へ、各サブDACに対応する信号のスペクトルを示している。図6の最下段のf軸上には、広帯域アナログ信号生成部131からの出力信号102のスペクトルを、ZOUT(f)として示している。図6の右上には、図中で使用する各信号のスペクトル成分の記号の説明を示している。
 後述の通り、説明の便宜上、サブDAC121~122の応答特性は広帯域アナログ信号生成部131のモデルの方に含めるものとするので、Y1(f)~Y2(f)はサブDAC121~122が完全にフラットな理想的な周波数応答を持つものと仮定した場合の出力信号のスペクトルである。すなわちY1(f)~Y2(f)は、サブDAC121~122への入力デジタル信号のスペクトルと一致する(正確には、当該デジタル信号の第1ナイキスト領域に相当する周波数領域において両者は一致する)。
 Y1(f)~Y2(f)は概ね周波数範囲0~fBの成分からなるスペクトルである。ZOUT(f)はY1(f)~Y2(f)のベースバンド成分および1~2次のイメージから生成される。但しここでは、k次イメージとは元の信号を周波数軸上でkfBだけシフトした信号を指す。Ym(f)(m=1,2)のk次イメージ(k=1,2,…)をYm,k(f)とすると、式(1)として
Figure JPOXMLDOC01-appb-M000003
と表すことができる。
 但しfkはf=(k-1)fBを原点とした周波数、すなわちfk=f-(k-1)fBである。またチルダ記号(~)は元の関数をfB/2を中心に折返して複素共役を取る折返し操作を示しており、
Figure JPOXMLDOC01-appb-M000004
である。
 式(1)右辺の第一項と第二項はそれぞれk次イメージの下側波帯と上側波帯に相当する。下側波帯はkfBを中心に低周波数側の概ね(k-1)fB~kfBの範囲に成分を持ち、上側波帯はkfBを中心に高周波数側の概ねkfB~(k+1)fBの範囲に成分を持つ。
 一般には、これらのイメージおよびベースバンド成分にそれぞれ異なる応答関数を乗じた後に加算したものがZOUT(f)となる。図6を参照すると、ZOUT(f)のうちf=(k-1)fB~kfBの成分は概ねY1(f)~Y2(f)のk-1次イメージの上側波帯とk次イメージの下側波帯から構成されることがわかる(但し0次イメージの上側波帯=ベースバンド成分)。つまり、ZOUT(f)を概ね周波数fB毎の部分に区切ったものを低周波数数側からZ1(f1),Z2(f2),…とすると、各Zk(fk)はそれぞれ2個のk-1次上側波帯および2個のk次下側波帯の計4個のスペクトル成分の重ね合わせとして表現できることがわかる。このときZk-1(fk-1)とZk(fk)はkfB周辺で多少の重なりを持ってもよい。変数fkをfで置換したZk(f)は、Zk(fk)をベースバンドにダウンコンバートした信号に相当する。Zk(f)とY1(f)~Y2(f)との関係は、以下の式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000005
 ただし、Rkp(f)は広帯域アナログ信号生成部131の周波数応答を表しており、p=1~2(1~M)についてはYp(f)のk-1次イメージの上側波帯に対する周波数応答、p=3~4(M+1~2M)についてはYp-4(f)のk次イメージの下側波帯に対する周波数応答である。
 Rkp(f)は理想的な動作において生じるイメージの応答だけでなく、デバイスの不完全性等により生じるスプリアス成分の応答も含む。また、説明の便宜上、前段のサブDAC121~122およびそれらと広帯域アナログ信号生成部131との接続部等の応答(振幅、位相を含む)もRkp(f)に含めるものとする。例えばサブDAC121の高周波数側の減衰がサブDAC122に比べ大きい場合は、Rk1(f)の高周波数側とRk3(f)の低周波数側がRk2(f)、Rk4(f)に比べ大きくなる。
 同様に、各サブDAC121~122と広帯域アナログ信号生成部131との間のケーブルによる信号遅延時間の差(スキュー)も、Rkp(f)の位相特性に含まれる。これにより、Y1(f)~Y2(f)は、サブDAC121~122への入力デジタル信号をそのままアナログ信号に変換した信号のスペクトルと考えることができる(正確には、当該デジタル信号の第1ナイキスト領域に相当する周波数領域において両者は一致する)。
 なお、式(2)は雑音や非線形歪の影響は考慮していない。雑音は式(2)右辺に加算される形で、非線形歪は式(2)や図2では考慮されていない位置に現れるイメージ等の形でそれぞれ最終的な出力に影響するが、一般的には信号生成装置100は雑音や非線形歪の影響が十分小さくなるような条件で用いられる。
 例えば、アナログ領域(サブDACの出力以降)において信号振幅が小さくなりすぎると雑音の影響が大きくなり、大きくなりすぎると非線形歪の影響が大きくなってしまうので、使用するデバイスの特性に合わせて最適な振幅となるよう調整される。DCバイアスの最適化も非線形歪の大きさに影響する。このような調整は、本発明の信号生成装置に限った特殊なものではなく、高速信号を生成する装置において広く一般に行われるものである。
 また、一般にM個のサブDACを使った場合、広帯域アナログ信号生成部の出力として任意の波形が得られる周波数範囲は0~MfB(本例では0~2fB)である。MfBより高周波数側には不要なイメージが残る場合があるが、これらのイメージは送信側或いは受信側のアナログフィルタ、或いは受信側のデジタルフィルタで容易に除去することができる。
 このため以降の説明では、k=1~M(本例では1~2)の要素についてのみ注目し、k>Mの要素については無視する。すなわち、広帯域アナログ信号生成部131の周波数応答については、式(2)のRkp(f):k=1~M(本例では1~2)にのみ注目し、各fに対しM行2M列(本例では2行4列)の行列として扱えばよい。
 このように、広帯域アナログ生成部131の動作を、M個のサブDACからの入力信号およびそれらを周波数軸上で反転した信号の計2M個の入力信号、出力信号をM個の帯域に分割してベースバンドにダウンコンバートした信号に相当するM個の出力信号、およびそれらを結ぶM行2M列の応答関数で表現するという従来技術にはない発想が、本発明の基礎となる。
 ここで、広帯域アナログ信号生成部131の具体的構成例の詳細について、式(2)と関連付けながら説明する。
 まず、図2に示したアナログマルチプレクサ211を用いた広帯域アナログ信号生成部131の構成について説明する。アナログマルチプレクサ211は、2個の入力アナログ信号をクロック周波数fclkで高速に切り替えながら出力するスイッチ(セレクタ)回路である。特許文献1に詳しく示される通り、アナログマルチプレクサ211からの出力信号は、理想的には2個の入力アナログ信号のベースバンド成分と、周波数fclkを中心とするイメージ成分とを加算したものとして表すことができる。また理想的には、ベースバンド成分間の位相差はゼロ、イメージ成分間の位相差はπであるる。また、ベースバンド信号とイメージ信号の振幅比を1:1/rとすると、アナログマルチプレクサ211の動作が遷移時間ゼロのスイッチングであればr=π/2だが、実際には遷移時間は有限であり、r=2程度となることもある。
 クロック周波数の設定は二通りの方法があり、fclk=2fBとする場合(特許文献1の第1~第5の実施形態)と、fclk=fBとする場合(特許文献1の第6~第7の実施形態)がある。便宜上、前者をタイプ1、後者をタイプ2とする。
 タイプ1の場合、アナログマルチプレクサ211の動作が理想的であれば、イメージはfclk=2fBの周りにのみ発生する(正確にはfclkの奇数倍の周波数の周りにのみ発生するが、関心のある周波数範囲0~2fB内ではfclk=2fBの周りのイメージのみ考慮すればよい)ため、式(2b)として、
Figure JPOXMLDOC01-appb-M000006
と表すことができる。
 ここで、クロック周波数の1倍であるfclkの周りのイメージは通常は1次イメージと呼ばれるが、本願では図2の考え方に従ってfBを単位にイメージの次数を定義しているので、fclk=2fBの周りのイメージは2次イメージに該当する。
 また、タイプ2の場合、アナログマルチプレクサ211の動作が理想的であれば、イメージはfclk=fBの周りにのみ発生する(正確にはfclkの奇数倍の周波数の周りにのみ発生するが、関心のある周波数範囲0~2fB内ではfclk=fBの周りのイメージのみ考慮すればよい)ため、式(2c)として、
Figure JPOXMLDOC01-appb-M000007
と表すことができる。
 この場合は、fclk=fBの周りのイメージは、本願の図2の考え方においても1次イメージとなる。
 次に、図3に示したミキサ321とコンバイナ331を用いた広帯域アナログ信号生成部131の構成について説明する。ミキサ321は入力アナログ信号の一方を周波数fclkの正弦波と乗算することで、周波数fclkだけアップコンバートするものである。この構成でfclk=fBとすると、出力信号102はサブDAC121からの出力アナログ信号のベースバンド成分にサブDAC122からの出力アナログ信号の1次イメージを加算したものになるから、ミキサ321およびコンバイナ331の動作が理想的であれば、式(2d)として、
Figure JPOXMLDOC01-appb-M000008
のように表すことができる。
 次に、図4に示したIQ変調器型の広帯域アナログ信号生成部131の構成について説明する。この例では2個のミキサ421および422を、互いに位相が90度異なる正弦波で駆動し、それぞれの出力信号をコンバイナ431で加算して出力する。fclk=fBとすれば、ミキサ421および422はそれぞれ互いに位相が90度ことなる1次イメージを出力するから、ミキサ421~422およびコンバイナ431の動作が理想的であれあれば、式(2e)として、
Figure JPOXMLDOC01-appb-M000009
のように表すことができる。
 特許文献1~3では、式(2b)~(2d)のような理想的な動作、或いはここに各サブDAC121~122の応答特性だけを考慮に入れた動作を前提として、デジタル信号処理部110で行うべき信号処理の内容を開示している。しかしながら、実際のデバイスにおいては式(2b)~(2d)の通りにはならない。
 一般的にはRkp(f)は式(2b)や(2c)のように定数ではなく、周波数依存性を持ち、周波数依存性(応答スペクトルの波形)も要素ごとに異なる。また、式(2b)~(2d)でゼロとなっている要素も、実際にはゼロにはならない。例えば図2の構成例をタイプ2の条件で駆動した場合には理想的には2次イメージが生じないため、式(2c)ではR23(f)=R24(f)=0となっているが、実際にはデバイスの不完全性に起因して2次イメージも発生し、R23(f)とR24(f)は非ゼロの応答となる。後述するように、このような応答の非理想性も含め高精度に補償できる点が本発明の特徴である。
 図7に、図1のデジタル信号処理部110内部の機能ブロック図を示す。デジタル信号処理部110では、式(2)で一般的に表されるような広帯域アナログ信号生成部131の特性に応じて、最終的な出力信号102として所望のアナログ信号が得られるよう、各サブDAC121~122に送るデジタル信号を生成する。デジタル信号処理部110への入力信号101は、所望のアナログ信号をサンプリングしたデジタル信号に相当する信号であり、デジタル領域で仮想的に生成される。入力信号101のスペクトルをXtarget(f)とする。Xtarget(f)は概ね周波数範囲0~MfB(本例では0~2fB)の成分からなるスペクトルである。
 帯域分割部611では、入力信号101を概ね周波数fB毎に分割し、それぞれをベースバンドにダウンコンバートした信号に相当する原分割信号621~622を生成する。原分割信号621~622のスペクトルをX1(f)~X2(f)とすると、以下の式(3)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 このときXk-1(fk-1)とXk(fk)はkfB周辺で多少の重なりを持ってもよい。Xk(f)はそれぞれ概ね周波数範囲0~fBの成分からなるスペクトルである。原分割信号621~622は入力信号101に比べ帯域幅が1/M程度(1/2程度)となるため、入力信号101に比べ1/M程度(1/2程度)のサンプリングレートで表現できる。このため、帯域分割部211でのデジタル処理には、帯域分割後にダウンサンプリングを行う処理も含めておくことが望ましい。
 スペクトル折返し部612では、原分割信号621~622を周波数軸上でfB/2を中心に折返して複素共役を取ることで、折返し分割信号631~632を生成する。折返し分割信号631~632のスペクトルは、式(1)と同様のチルダ(~)を用いて
Figure JPOXMLDOC01-appb-M000011
と表せる。
 2M×Mフィルタ(4×2フィルタ)613は、原分割信号621~622および折返し分割信号631~632を入力として受け入れ、サブDAC121~122へと送る複合信号641~642を生成する。前述の通り、式(2)のモデルではサブDAC121~122およびそれらと広帯域信号生成部131との接続部の応答もRkm(f)に含むので、これらの複合信号641~642のスペクトルは式(1),(2)におけるY1(f)~Y2(f)そのものである。(正確には複合信号641~642はデジタル信号であるため、その第1ナイキスト領域におけるスペクトルが式(1),(2)におけるY1(f)~Y2(f)と一致するということである。)
 4×2フィルタ613の動作は以下の式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000012
 ただしGmq(f)は4×2フィルタ(2M×Mフィルタ)613の応答関数であり、m=1~2(1~M)はそれぞれ出力として得られる複合信号641~642に対応し、q=1~2(1~M)はXq(f)、q=3~4(M+1~2M)は
Figure JPOXMLDOC01-appb-M000013
に対応する。
 このように4×2フィルタ613は、原分割信号621~622および折返し分割信号631~632に対し、それぞれ独立に設定可能な応答関数Gmq(f)を乗じた後に重ね合わせることで、複合信号641~642を得るフィルタである。原分割信号621~622および折返し分割信号631~632はいずれも周波数が概ねfB以下の成分からなる信号なので、複合信号641~642も周波数が概ねfB以下の成分からなり、アナログ帯域が概ねfBであるサブDAC121~122によって問題なくアナログ信号に変換することができる。
 さて、この4×2フィルタ613の応答Gmq(f)を適切に設定することで、雑音や非線形歪の影響を無視すれば、式(5)として、
Figure JPOXMLDOC01-appb-M000014
とすることができる。
 すなわち、信号生成装置100の最終的な出力信号102のスペクトルZOUT(f)のうち概ね周波数0~2fBの範囲をXtarget(f)と概ね一致させることができる。
 以下、式(5)を満たすGmq(f)の求め方を示す。まず、式(4)の両辺に折返し操作を行うと、式(6)として、
Figure JPOXMLDOC01-appb-M000015
を得る。
 ここで、式(6)右辺のG行列の左2列と右2列(左M列と右M列)を入れ替え、Xベクトルの上2行と下2行(上M行と下M行)を入れ替えれば、式(7)として、
Figure JPOXMLDOC01-appb-M000016
を得る。
 よって、式(2),(4),(7)より、式(8)として、
Figure JPOXMLDOC01-appb-M000017
を得る。
 したがって、式(5)を成り立たせるためには、以下の式(9)
Figure JPOXMLDOC01-appb-M000018
が成り立っていればよい。
 以下、式(9)をGmq(f)について整理する。まず式(9)両辺を左右2列ずつ(M列ずつ)に分離し、以下の式(10)、式(11)
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
を得る。
 次に式(11)について、両辺に折返し操作を行い、R行列の左2列と右2列(左M列と右M列)を入れ替え、G行列の上2行と下2行(上M行と下M行)を入れ替えれば、式(12)
Figure JPOXMLDOC01-appb-M000021
を得る。
 よって式(10),(12)より、以下の式(13)が得られ、その両辺にR行列の逆行列をかければ、以下の式(14)が得られる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 この式(14)より、所与のRkp(f)に対して、式(5)を満たすようなGmq(f)を求めることができる。
 前述の通りRkp(f)は、サブDAC121~122の応答特性の個体差、サブDAC121~122と広帯域アナログ信号生成部131との接続間のスキュー、および各次数のイメージに対する広帯域アナログ信号生成部131の応答特性(デバイス不完全性によって生じる、理想的には生じないはずの次数のイメージの応答も含む)をすべて含んでいる。そのため、Gmq(f)を係数とする4×2フィルタ213は、サブDACの個体差、スキュー、次数ごとの応答特性差を全て補償し、信号生成装置100全体として理想的なDAC特性が得られるような複合信号641~642を生成することができる。
 なお式(14)よりGmq(f)を求めるためにはRkp(f)が与えられる必要があるが、Rkp(f)は実測によって求めるか、シミュレーション等により求めればよい。例えば実測により求めるなら、サブDAC121~122のアナログ応答は個別に測定しておき、広帯域アナログ信号生成部131の応答は4系統の入力信号を1系統ずつ入力して応答を評価する等の方法が考えられる。
 (従来技術との比較)
 従来技術にはない本発明の大きな特徴は、2M×Mフィルタ(4×2フィルタ)613の部分にある。以下、本発明と、特許文献1に記載の従来技術とを比較する。
 図8は、特許文献1に記載の従来の信号生成装置において、前記タイプ1の条件(fclk=2fB)とした際のデジタル信号処理部710の機能ブロック図を示す。ただし、図7と比較しやすい形にするため、特許文献1に記載の形と比べ、全体の機能に影響のない範囲で、処理順序が入れ替わっている場合がある。
 図8に示す従来技術に基づくデジタル信号処理部710では、まず入力信号を帯域分割部711で概ね周波数fB毎に分割しベースバンドへとダウンコンバートするが、このうち低周波数側の原分割信号721と、高周波数側の原分割信号をスペクトル折返し部712で折返した折返し分割信号732のみを使う。帯域分割に伴うダウンサンプリングも必要に応じて帯域分割部711で行う。重み付き加算部713では、原分割信号721には定数1が、折返し分割信号732には定数rおよび-rが乗じられたのち、それぞれ加算される。
 その後、重み付き加算部713からの出力は、サブチャネル応答補償フィルタ714にて各サブDACを含むサブチャネルのアナログ応答特性を補償するフィルタリングをかけられた後、各サブDACに送られる。なお、重み付き加算部713には基本的に後段の帯域アナログ信号生成部が理想的な動作をすると仮定した場合の定数が設定されており、実際のデバイスの応答特性の補償は全て後段のサブチャネル応答補償部714にて補償される。
 図9は、特許文献1に記載の従来の信号生成装置において、前記タイプ2の条件(fclk=fB)とした際のデジタル信号処理部810の機能ブロック図を示す。ただし、図7と比較しやすい形にするため、特許文献1に記載の形と比べ、全体の機能に影響のない範囲で、処理順序が入れ替わっている場合がある。
 図9に示す従来技術に基づくデジタル信号処理部810では、まず入力信号を帯域分割部811で概ね周波数fB毎に分割しベースバンドへとダウンコンバートするが、このうち低周波数側の原分割信号821~822と、高周波数側の原分割信号をスペクトル折返し部812で折返した折返し分割信号832のみを使う。帯域分割に伴うダウンサンプリングも必要に応じて帯域分割部811で行う。重み付き加算部813では、原分割信号821には定数1が、原分割信号822には定数rおよび-rが、また折返し分割信号832には係数-1が乗じられたのち、それぞれ加算される。
 その後、重み付き加算部813からの出力は、サブチャネル応答補償フィルタ814にて各サブDACを含むサブチャネルのアナログ応答特性を補償するフィルタリングをかけられた後、各サブDACに送られる。なお、重み付き加算部813には基本的に後段の帯域アナログ信号生成部が理想的な動作をすると仮定した場合の定数が設定されており、実際のデバイスの応答特性の補償は全て後段のサブチャネル応答補償部814にて補償される。
 従来技術の、図8の重み付き加算部713とサブチャネル補償部714の組合せや、図9の重み付き加算部813とサブチャネル補償部814の組合せでは、周波数依存性を持つフィルタがサブチャネル応答補償部の2個しかないため、補償の自由度が限られ、式(2)のRmq(f)で表されるような広帯域アナログ信号生成部131の応答特性を補償しきれないという課題があった。
 具体的には、図8や図9の従来構成では、サブDACの応答特性の個体差や、サブDACと広帯域アナログ信号生成部の接続部のスキューはサブチャネル応答補償部714や814にて補償できるものの、広帯域アナログ信号生成部131におけるイメージの次数ごとの応答特性差や、デバイス不完全性によって生じる、理想的には生じないはずの次数のイメージの応答の補償はできないという課題があった。
 これに対し図7の本発明の構成においては、4×2フィルタ613で周波数依存性を持つフィルタを8個(2M2個)用意し、各原分割信号および折返し分割信号毎に個別に適用している。これを式(14)のように設定することで、広帯域アナログ信号生成部131におけるイメージの次数ごとの応答特性差や、デバイス不完全性によって生じる、理想的には生じないはずの次数のイメージの応答の補償も可能になり、より高効率、高精度な補償により高品質な信号を生成できる。
 なお、特許文献2においても、基本的に図8や図9のようにサブチャネル毎に応答補償を行う形が想定されている。
 [第2の実施形態]
 図10は、本発明の第2の実施形態に係る信号生成装置の構成を模式的に示した図である。信号生成装置900は、入力信号901が入力されるデジタル信号処理部910、サブDAC921~923、出力信号902を出力する広帯域アナログ信号生成部931から構成される。サブDACの個数をM(≧2の整数)個とすると、本例はM=3の例である。
 サブDAC921~923のアナログ帯域をfBとする。広帯域アナログ信号生成部931は、サブDAC921~923から入力される信号をそれぞれfBの整数倍だけ周波数シフトしたイメージを生成し、それらを重ね合わせることで、出力信号902として周波数範囲0~3fB程度の広帯域な信号を出力する機能を有する。
 広帯域アナログ信号生成部931の具体的な構成例としては、図11に示されるような2つのミキサ1021、1022とコンバイナ1031を用いたもの、或いは図12に示されるような、アナログマルチプレクサ1111とミキサ1121、コンバイナ1131を複合的に用いたもの等を用いることができる。
 図11の広帯域アナログ信号生成部931の構成例では、ミキサ1021は周波数fclk=fBで駆動されサブDAC922からの信号の1次イメージを生成し、ミキサ1022は周波数2fclk=2fBで駆動されサブDAC923からの信号の2次イメージを生成する。3入力のコンバイナ1031は、サブDAC931からのベースバンド成分と、上記で生成された1次イメージ、2次イメージを加算することで広帯域信号を生成する。
 図12の広帯域アナログ信号生成部931の構成例では、アナログマルチプレクサ1111は、fclk=fBのタイプ2の条件で駆動され、サブDAC921~922からの信号によりベースバンド成分と1次イメージを生成する。ミキサ1121は、2fclk=2fBで駆動され、サブDAC923からの信号の2次イメージを生成する。2入力のコンバイナ1131は、上記で生成されたベースバンド成分と1次イメージ、2次イメージをを加算することで広帯域信号を生成する。
 図11、12に示した広帯域アナログ信号生成部931の構成例のいずれにおいても、デジタル信号処理部910で適切な信号処理を行うことにより、サブDAC921~923のアナログ帯域の3倍の0~3fBの帯域にわたる広帯域の出力信号902を得ることができる。
 図13は、実施形態1の図5と同様に、実施形態2、図10のサブDAC921~923の出力信号のスペクトルを表した図であり、図14は、広帯域アナログ信号生成部931からの出力信号902のスペクトルを説明する図である。
 図13には、サブDAC921~923の出力信号のスペクトルを、Y1(f)~Y3(f)として示している。図14には、上のベースバンド成分(0次)からイメージ信号の次数の順に下へ、各サブDACに対応する信号のスペクトルを示している。図14の最下段のf軸上には、広帯域アナログ信号生成部931からの出力信号902のスペクトルをZOUT(f)とし、ZOUT(f)を概ね周波数fB毎の部分に区切ったものを低周波数数側からZ1(f1),Z2(f2),…として示している。図14の右上には、図中で使用する各信号のスペクトル成分の記号の説明を示している。
 上記第1の実施形態の説明と同様、サブDAC921~923の応答特性は広帯域アナログ信号生成部931のモデルの方に含めるものとするので、Y1(f)~Y3(f)はサブDAC921~923への入力デジタル信号のスペクトルと一致する(正確には、当該デジタル信号の第1ナイキスト領域に相当する周波数領域において両者は一致する)。
 以下の説明は、任意の整数M≧2について同様に適用できるものである。このため、可能な限り変数Mを使って説明する。M=3を代入すれば、本実施形態2についての説明となる。
 Y1(f)~YM(f)は概ね周波数範囲0~fBの成分からなるスペクトルである。ZOUT(f)はY1(f)~YM(f)のベースバンド成分および1~M次(本例では1~3次)のイメージから生成される。上記第1の実施形態の説明と同様の記法を用いれば、Zk(f)とY1(f)~YM(f)との関係は以下の式(15)のように表すことができる。
Figure JPOXMLDOC01-appb-M000024
 ただし、Rkp(f)は広帯域アナログ信号生成部931の周波数応答を表しており、p=1~M(本例では1~3)についてはYp(f)のk-1次イメージの上側波帯に対する周波数応答、p=M+1~2M(本例では4~6)についてはYp-4(f)のk次イメージの下側波帯に対する周波数応答である。
 Rkp(f)は理想的な動作において生じるイメージの応答だけでなく、デバイスの不完全性等により生じるスプリアス成分の応答も含む。また、前記第1の実施形態の説明と同様、前段のサブDAC921~923およびそれらと広帯域アナログ信号生成部931との接続部等の応答(振幅、位相を含む)もRkp(f)に含めるものとする。式(15)が雑音や非線形歪の影響を考慮していない点、一般的には信号生成装置900は雑音や非線形歪の影響が十分小さくなるような条件で用いられるという点も、前記第1の実施形態と同様である。
 さらには、広帯域アナログ信号生成部931の周波数応答については、式(15)のRkp(f):k=1~M(本例では1~3)にのみ注目し、各fに対しM行2M列(本例では3行6列)の行列として扱えばよいという点も、前記第1の実施形態と同様である。
 図11に示す広帯域アナログ信号生成部931の構成例を用いた場合には、ミキサ1021および1022とコンバイナ1031の動作が理想的であれば、Rkp(f)は以下の式(15b)
Figure JPOXMLDOC01-appb-M000025
で表すことができる。
 一方図12に示す広帯域アナログ信号生成部931の構成例を用いた場合、アナログマルチプレクサ1111、ミキサ1121、コンバイナ1131の動作が理想的であれば、Rkp(f)は以下の式(15c)
Figure JPOXMLDOC01-appb-M000026
で表すことができる。
 しかしながら、実際のデバイスにおいては式(15b)~(15c)の通りにはならない。
 一般的にはRkp(f)は式(15b)や式(15c)のように定数ではなく周波数依存性を持ち、周波数依存性(応答スペクトルの波形)も要素ごとに異なる。また、式(15b)や式(15c)でゼロとなっている要素も、実際にはゼロにはならない。例えばミキサは理想的にはベースバンド成分を通さないため式(15b)ではR21(f)=R31(f)=0となっているが、実際にはデバイスの不完全性に起因してベースバンド成分も透過し、R21(f)やR31(f)は非ゼロの応答となる。このような応答の非理想性も含め高精度に補償できる点が本発明の特徴である。
 図15に、図10のデジタル信号処理部910内部の機能ブロック図を示す。デジタル信号処理部910では、式(15)で一般的に表されるような広帯域アナログ信号生成部931の特性に応じて、最終的な出力信号902として所望のアナログ信号が得られるよう、各サブDAC921~923に送るデジタル信号を生成する。デジタル信号処理部910への入力信号901は、所望のアナログ信号をサンプリングしたデジタル信号に相当する信号であり、デジタル領域で仮想的に生成される。入力信号901のスペクトルをXtarget(f)とする。Xtarget(f)は概ね周波数範囲0~MfB(本例では0~3fB)の成分からなるスペクトルである。
 帯域分割部1311では、入力信号901を概ね周波数fB毎に分割し、それぞれをベースバンドにダウンコンバートした信号に相当する原分割信号1321~1323を生成する。原分割信号のスペクトルを図中上から順にX1(f)~XM(f)とすると、以下の式(16)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000027
 このときXk-1(fk-1)とXk(fk)はkfB周辺で多少の重なりを持ってもよい。Xk(f)はそれぞれ概ね周波数範囲0~fBの成分からなるスペクトルである。原分割信号1321~1323は入力信号901に比べ帯域幅が1/M程度(1/3程度)となるため、入力信号901に比べ1/M程度(1/3程度)のサンプリングレートで表現できる。このため、帯域分割部1311でのデジタル処理には、帯域分割後にダウンサンプリングを行う処理も含めておくことが望ましい。
 スペクトル折返し部1312では、原分割信号1321~1323を周波数軸上でfB/2を中心に折返して複素共役を取ることで、折返し分割信号1331~1333を生成する。折返し分割信号1331~1333のスペクトルは、式(1)と同様のチルダ(~)を用いて
Figure JPOXMLDOC01-appb-M000028
と表せる。
 2M×Mフィルタ(本例では6×3フィルタ)1313は、原分割信号1321~1323および折返し分割信号1331~1333を入力として受け入れ、サブDAC921~923へと送る複合信号1341~1343を生成する。
 前述の通り、式(15)のモデルではサブDAC921~923およびそれらと広帯域信号生成部931との接続部の応答もRkm(f)に含むので、これらの複合信号1341~1343のスペクトルは式(15)におけるY1(f)~YM(f)そのものである。(正確には複合信号941~942はデジタル信号であるため、その第1ナイキスト領域におけるスペクトルが式(15)におけるY1(f)~YM(f)と一致するということである。)
 2M×Mフィルタ(本例では6×3フィルタ)1313の動作は以下の式(17)で表すことができる。
Figure JPOXMLDOC01-appb-M000029
 ただしGmq(f)は2M×Mフィルタ(本例では6×3フィルタ)1313の応答関数であり、m=1~M(本例では1~3)はそれぞれ出力として得られる複合信号1341~1342に対応し、q=1~M(本例では1~3)はXq(f)、q=M+1~2M(本例では4~6)は
Figure JPOXMLDOC01-appb-M000030
に対応する。
 このように2M×Mフィルタ(本例では6×3フィルタ)1313は、原分割信号1321~1323および折返し分割信号1331~1333に対し、それぞれ独立に設定可能な応答関数Gmq(f)を乗じた後に重ね合わせることで、複合信号1341~1343を得るフィルタである。原分割信号1321~1323および折返し分割信号1331~1333はいずれも周波数が概ねfB以下の成分からなる信号なので、複合信号1341~1343も周波数が概ねfB以下の成分からなり、アナログ帯域が概ねfBであるサブDAC921~923によって問題なくアナログ信号に変換することができる。
 前記第1の実施形態の場合と同様、所与のRkp(f)に対して、2M×Mフィルタ(本例では6×3フィルタ)1313の応答Gmq(f)を適切に設定することで、雑音や非線形歪の影響を無視すれば、式(18)として、
Figure JPOXMLDOC01-appb-M000031
とすることができる。
 すなわち、信号生成装置900の最終的な出力信号902のスペクトルZOUT(f)のうち概ね周波数0~MfB(本例では0~3fB)の範囲をXtarget(f)と概ね一致させることができる。
 そのためには、前記第1の実施形態の場合と同様、所与のRkp(f)に対して、Gmq(f)を式(19)
Figure JPOXMLDOC01-appb-M000032
とすればよい。式(19)の導出は式(14)と同様であるので省略する。
 Rkp(f)は、サブDAC921~923の応答特性の個体差、サブDAC921~923と広帯域アナログ信号生成部931との接続間のスキュー、および各次数のイメージに対する広帯域アナログ信号生成部931の応答特性(デバイス不完全性によって生じる、理想的には生じないはずの次数のイメージの応答も含む)をすべて含んでいる。そのため、Gmq(f)を係数とする2M×Mフィルタ(本例では6×3フィルタ)1313は、サブDACの個体差、スキュー、次数ごとの応答特性差を全て補償し、信号生成装置900全体として理想的なDAC特性が得られるような複合信号1341~1343を生成することができる。
 [第3の実施形態]
 図16は、本発明の第3の実施形態に係る信号生成装置の構成を模式的に示した図である。信号生成装置1400は、入力信号1401が入力されるデジタル信号処理部1410、サブDAC1421~1424、出力信号1402を出力する広帯域アナログ信号生成部1431から構成される。サブDACの個数をM(≧2の整数)個とすると、本例はM=4の例である。
 サブDAC1421~1424のアナログ帯域をfBとする。広帯域アナログ信号生成部1431は、サブDAC1421~1424から入力される信号をそれぞれfBの整数倍だけ周波数シフトしたイメージを生成し、それらを重ね合わせることで、出力信号1402として周波数範囲0~4fB程度の広帯域な信号を出力する機能を有する。
 広帯域アナログ信号生成部1431の具体的な構成例としては、図17に示されるような3つのミキサ1521~1523と4入力のコンバイナ1531を用いたもの、或いは図18に示されるような、3つのアナログマルチプレクサ1611~1613をツリー状に多段接続したもの等を用いることができる。
 図17の広帯域アナログ信号生成部1431の構成例では、ミキサ1521は周波数fclk=fBで駆動されサブDAC1422からの信号の1次イメージを生成し、ミキサ1522は周波数2fclk=2fBで駆動されサブDAC1423からの信号の2次イメージを生成し、ミキサ1523は周波数3fclk=3fBで駆動されサブDAC1424からの信号の3次イメージを生成し、4入力のコンバイナ1531においてそれら3つのイメージをサブDAC1421からの信号のベースバンド成分と加算することで広帯域信号を生成する。
 図18の広帯域アナログ信号生成部1431の構成例では、アナログマルチプレクサ1611はfclk=fBのタイプ2の条件で駆動され、サブDAC1421、1422からの信号により、ベースバンド成分と1次イメージを生成する。アナログマルチプレクサ1612はfclk=fBのタイプ2の条件で駆動され、サブDAC1423、1424からの信号により、ベースバンド成分と1次イメージを生成する。さらにアナログマルチプレクサ1613は、2fclk=2fBのタイプ2の条件で駆動され、多段ツリー接続されてアナログマルチプレクサ1611、1612からの信号から、さらにその倍の帯域の信号を生成する。
 図17、18に示した広帯域アナログ信号生成部1431の構成例のいずれにおいても、デジタル信号処理部1410で適切な信号処理を行うことにより、サブDAC1421~1424のアナログ帯域の4倍である0~4fBの領域にわたる広帯域の出力信号1402を得ることができる。
 図19は、実施形態1の図5、実施形態2の図13と同様に、実施形態3、図16のサブDAC1421~1424の出力信号のスペクトルを表した図であり、図20は、広帯域アナログ信号生成部1431からの出力信号1402のスペクトルを説明する図である。
 図19には、サブDAC1421~1424の出力信号のスペクトルを、Y1(f)~Y4(f)として示している。図20には、上のベースバンド成分(0次)からイメージ信号の次数の順に下へ、各サブDACに対応する信号のスペクトルを示している。図20の最下段のf軸上には、広帯域アナログ信号生成部1431からの出力信号1402のスペクトルをZOUT(f)とし、ZOUT(f)を概ね周波数fB毎の部分に区切ったものを低周波数数側からZ1(f1),Z2(f2),…として示している。図20の右上には、図中で使用する各信号のスペクトル成分の記号の説明を示している。
 上記第1および第2の実施形態の説明と同様、サブDAC1421~1424の応答特性は広帯域アナログ信号生成部1431のモデルの方に含めるものとするので、Y1(f)~Y4(f)はサブDAC1421~1424への入力デジタル信号のスペクトルと一致する(正確には、当該デジタル信号の第1ナイキスト領域に相当する周波数領域において両者は一致する)。 広帯域アナログ信号生成部1431の周波数応答を表すRkp(f)とY1(f)~Y4(f)とZ1(f)~Z4(f)との関係は、前記式(15)およびその説明部分でM=4とした場合に該当する。
 図21に、図16のデジタル信号処理部1410内部の機能ブロック図を示す。デジタル信号処理部1410についての説明は、前記第2の実施形態におけるデジタル信号処理部910の説明においてMの値を3から4に変更したものに該当する。所与のRkp(f)に対して、2M×Mフィルタ(本例では8×4フィルタ)1813の応答関数Gmq(f)を式(19)に従って設定することで、信号生成装置1400の最終的な出力信号1402のスペクトルZOUT(f)のうち概ね周波数0~MfB(本例では0~4fB)の範囲をXtarget(f)と概ね一致させることができる。
 Rkp(f)は、サブDAC1421~1424の応答特性の個体差、サブDAC1421~1424と広帯域アナログ信号生成部1431との接続間のスキュー、および各次数のイメージに対する広帯域アナログ信号生成部1431の応答特性(デバイス不完全性によって生じる、理想的には生じないはずの次数のイメージの応答も含む)をすべて含んでいる。そのため、Gmq(f)を係数とする2M×Mフィルタ(本例では8×4フィルタ)1813は、それらの個体差、スキュー、次数ごとの応答特性差を全て補償し、信号生成装置1400全体として理想的なDAC特性が得られるような複合信号1841~1844を生成することができる。
 [本発明の作用効果(計算量の削減)について]
 本発明の計算量の観点から見た作用効果について検討する。従来技術においては、所望信号のスペクトルXをサンプル点数N個のデジタル波形で表し、これにデバイス応答の不完全性を補償するためのN×N行列Hを乗じて信号Pを得た後、Pをスペクトル分割し各サブDACに送るというデジタル補償手段が提案されている。(非特許文献2)これはすなわち、全ての周波数成分間のクロストークを考慮してデバイスの不完全性を補償するという原理であるが、補償のための計算量がN2で増大するという問題がある。
 一方本発明は、原分割信号と折返し分割信号を基底として系を捉え、これらの分割信号を入力として2M×Mフィルタを適用しデバイスの不完全性を補償する、という新たな着想に基づいている。従来手法に比べ、本発明は、同等の補償精度を得るために必要な計算負荷が大きく削減されるという顕著なメリットがある。
 従来手法と本発明で、計算負荷を具体的に比較する。サブDACをM個用いて周波数範囲0~MfBの広帯域信号を生成する場合を考える。補償を適切に行うためのフィルタの周波数分解能をdfとすると、従来手法ではサンプル点数NはN=MfB/dfとなり、補償行列Hの要素数、すなわち補償に必要な係数の数はN2個である。
 一方本発明においては、分割信号の周波数範囲は0~fBとなるので、2M×Mフィルタを構成する各部分フィルタのサンプル点数はそれぞれfB/dfであり、係数の数はトータルで2M2B/df=2MN個である。つまり、本発明と従来手法で、補償に用いる係数の数の比は2M:Nである。
 現実的にはM=2~16程度であり、M=2ならN>4において、M=16としてもN>32において、それぞれ本発明の補償フィルタの方が計算負荷が小さいことになる。例えばfMAX=64GHzとすれば、N=4はdf=16GHz、N=32はdf=2GHzに相当するが、これらは十分な分解能とは言い難く、高精度な補償を行うためにはNをこれよりも大きな値とすることが望ましい。
 典型的には、少なくとも1GHzの分解能で補償を行うことが望ましく、これは上記の条件ではN=64に相当するため、M=2なら本発明は従来の手法に対し係数の数が1/16、M=16としても1/2で済むことになる。当然ながら、fBを大きくすれば、同じ分解能を得るために必要なNも大きくなり、本発明がより有利となる。
 なお補償の精度に関しては、本明細書図6、14、20に説明した動作原理を考えれば、サブDACおよび広帯域アナログ信号生成部の応答はRkp(f)(k=1~M,p=1~2M)でほぼ完全に記述できるので、前述の通り式(14)のようにGmq(f)(m=1~M,q=1~2M)を設定すれば補償としては十分であり、これ以上係数を増やしたN×N行列での補償を行っても補償精度の改善はあまり望めないことがわかる。従って、現実的なサブDAC個数を前提として、広い信号帯域で充分な分解能の補償を行うためには、DSPの計算負荷の観点から本発明を用いることが有利である。
 見方を変えれば、従来のN×N行列による補償は、システム全体を完全なブラックボックスとして扱っているために無駄が多いのに対し、本発明ではシステムの動作原理を考慮し補償に必要な係数の数を2MNに絞っているので計算が効率的になる、と捉えることもできる。
 [第4の実施形態]
 本発明の第4の実施形態に係る信号生成装置は、図1に示した第1の実施形態に係る信号生成装置と同様の構成において、デジタル信号処理部110に代わり、図22に示す内部機能ブロック図で表されるデジタル信号処理部2210を用いた構成をとる。図22に示すデジタル信号処理部2210は、図7に示したデジタル信号処理部110と比べ、帯域分割部2211の前段にメイン非線形フィルタ2251が、4×2フィルタ(2M×Mフィルタ)2213の後段にサブ非線形フィルタ2261~2262がそれぞれを追加されている。
 本実施形態では非線形歪の影響を考慮した構成をとっている。前述の第1~3の実施形態においては、前述の式(2)の説明で記載の通り、信号生成装置を非線形歪の影響が十分小さくなるような条件で用いることを前提とし、非線形歪を考慮していなかった。しかしながら実際には、出力信号振幅を大きくする場合等において、非線形歪による特性劣化が問題になることもある。そのような場合には、デジタル信号処理部に非線形フィルタ(非線形プリディストータ)を追加することにより、非線形歪を補償することが望ましい。
 本発明の信号生成装置においては、非線形歪は2種類に分けて考える必要がある。すなわち、広帯域信号が生成される前のアナログ領域で生じる非線形歪と、広帯域信号が生成された後のアナログ領域で生じる非線形歪である。以下では前者をサブチャネル非線形歪、後者をメインチャネル非線形歪と呼ぶことにする。サブチャネル非線形歪には、サブDACで生じる非線形歪や、広帯域アナログ信号生成部の入力側回路(入力バッファアンプ等)で生じる非線形歪が含まれる。一方メインチャネル非線形歪には、広帯域アナログ信号生成部の出力側回路(出力バッファアンプ等)で生じる非線形歪や、その後段に接続される光変調器で生じる非線形歪等が含まれる。
 非線形処理は線形処理と異なり基本的に順序を入れ替えたり帯域毎に分割することはできない。サブチャネル非線形歪およびメインチャネル非線形歪を補償するにはそれぞれ個別の非線形フィルタを適切な順序で配置する必要がある。具体的には、メインチャネル非線形歪を補償するには、最終的な出力として得たい広帯域信号全体に対する非線形補償を行えばよいので、デジタル信号処理部2210の帯域分割部2211の前段にメイン非線形フィルタ2251を追加すればよい。一方でサブチャネル非線形歪を補償するには、各サブDACに送られる複合信号に対して非線形補償を行えばよいので、デジタル信号処理部の4×2フィルタ(2M×Mフィルタ)2213の後段にサブ非線形フィルタ2261~2262を追加すればよい。
 各非線形フィルタの具体的な構成としては、例えばVolterraフィルタやMemory Polynomialフィルタなど、アナログ電子部品や光変調器の非線形補償手段として一般的に用いられる非線形フィルタを用いることができる。フィルタ係数は、シミュレーション結果やテスト信号を用いた実測データに基づいて最適化することができる。最適化のアルゴリズムとしては、例えば非特許文献4に示されるような直接学習法や間接学習法等を用いることができる。
 なお本実施形態はM=2の構成だが、M=3以上でも同様の構成を用いることができることは自明である。例えば図10に示したM=3構成であれば、図15に示したデジタル信号処理部において、帯域分割部1311の前段にメイン非線形フィルタを、6×3フィルタ(2M×Mフィルタ)1313の各出力ポートの後段にサブ非線形フィルタをそれぞれ配置すれば、メインチャネル及びサブチャネル非線形歪を補償することができる。
 また、本実施形態ではメインチャネル及びサブチャネル非線形歪の両方を補償する構成をとったが、どちらか一方のみの歪が問題となる場合、或いは両方が問題となるが回路構成の複雑さを考慮しどちらか一方のみの補償に絞る場合等は、メイン非線形フィルタ2251あるいはサブ非線形フィルタ2261~2262のいずれか一方のみを用いてもよい。これはM≧3の場合でも同様である。
 以下、メイン非線形フィルタとサブ非線形フィルタを本実施形態4のように配置する必要性について、少し詳しく説明する。本実施形態4は基本的に第1の実施形態に非線形補償の機能を加えたものである。第1の実施形態に非線形補償の機能を加えることを考えた場合、一見、図7の4×2フィルタ(2M×Mフィルタ)613に含まれる8個の応答関数Gmq(f)を夫々非線形関数で置き換えた構成(以下、成分毎分割構成と呼ぶ)でも良いように見えるかもしれないが、実際には成分毎分割構成では正しく非線形歪を補償することはできない。
 なぜなら、現実にアナログ信号として生成されるのはサブDAC121~122からの出力信号および広帯域信号生成部131からの出力信号102であり、これらの信号は、基本的に原分割信号621~622および折返し分割信号631~632の4成分(以下、単に4成分と呼ぶ)の線形結合である。従って、これらの現実のアナログ信号が現実のアナログデバイスの特性によって非線形歪を受けた後の信号には、4成分のそれぞれのべき乗成分だけでなく、4成分間の積の成分も含まれる。ところが上記の成分毎分割構成は、4成分それぞれのべき乗成分は補償可能だが、4成分間の積の成分は補償できない。
 一方、図22に示した構成とすれば、帯域分割部2211への入力はほぼ広帯域信号生成部131からの出力信号102と同じ割合で4成分を含んだ信号であり、また4×2フィルタ(2M×Mフィルタ)2213からの出力はほぼサブDAC121~122からの出力信号と同じ割合で4成分を含んだ信号であるため、これらを入力とするメイン非線形フィルタ2251およびサブ非線形フィルタ2261~2262を用いれば、4成分それぞれのべき乗成分と4成分間の積成分を共に正しく補償することができる。
 実際には、非線形歪についても、前述の線形応答と同様、広帯域アナログ信号生成部131におけるイメージの次数ごとに非線形歪の出方が異なること(以下、次数毎の非線形応答特性差と呼ぶ)も考えられるので、図22の構成で全ての非線形歪を完全には補償しきれるとは限らない。しかしながら、そもそも本信号生成装置はほぼ線形に応答する範囲で使用されるものであり、非線形歪の強度(非線形歪による理想信号からのズレ成分の強度)は信号強度に対して微小(典型的には-10dB以下)である。上記の次数毎の非線形応答特性差は、非線形歪の強度に対して更に微小なので、その影響は十分小さい。
 本発明によれば、複数のサブDACと高速アナログデバイスを用いることで、単体のサブDACの出力帯域と比べてより広帯域な信号を生成することのできる信号生成装置において、高精度な補償による高品質な信号生成を、従来技術より低い計算負荷で実現することができる。
100,900、1400 信号生成装置
101,701,801、901、1401 入力信号
102、902、1402 出力信号
110、710,810,910、1410、2210 デジタル信号処理部
121~122、921~923、1421~1424 サブDAC
131,931、1431 広帯域アナログ信号生成部
211、1111、1611~1613 アナログマルチプレクサ
321、421,422、1021、1022,1121、1521~1523 ミキサ
331、431、1031,1131,1531 コンバイナ
441 90度位相シフタ
611,711,811,1311、1811、2211 帯域分割部
621、622,721、821、822、1321~1323、1821~1824、2221、2222 原分割信号
631、632,732,832、1331~1333、1831~1834、2231、2232 折返し分割信号
613,1313,1813、2213 2M×Mフィルタ
641、642,741,742,841,842、1341~1343、1841~1844、2241、2242 複合信号
713,813 重み付き加算部
612、712,812、1312,1812、2212 スペクトル折返し部
714,814 サブチャネル応答補償フィルタ
2251 メイン非線形フィルタ
2261、2262 サブ非線形フィルタ

Claims (5)

  1.  デジタル信号処理部と、
     アナログ帯域がfBであるM個(Mは2以上の整数)のサブDACと、
     前記M個のサブDACが出力するM個のアナログ信号を用いて周波数(M-1)fB以上の成分を含む広帯域なアナログ信号を生成する広帯域アナログ信号生成部とを備え、
     前記デジタル信号処理部は、
     所望の出力信号を周波数軸上でM個の部分に分割しそれぞれをベースバンドにダウンコンバートした信号に相当するM個の原分割信号を生成する手段と、
     前記M個の原分割信号を周波数軸上で折返してM個の折返し分割信号を生成する手段と、
     前記M個の原分割信号および前記M個の折返し分割信号を入力とし、前記M個のサブDACへと送信されるM個の複合信号を出力とする2M×Mフィルタとを備え、
     前記2M×Mフィルタは、
     2M2通りの入出力の組合せに対して独立に応答関数を設定可能である
     ことを特徴とする信号生成装置。
  2.  前記広帯域アナログ信号生成部は、
    2個の入力信号を一定の周波数で高速に切り替えて出力するアナログマルチプレクサ、
     または前記アナログマルチプレクサをツリー状に多段接続した回路、
    またはミキサによってM個の入力信号のうち少なくともM-1個を周波数アップコンバートした後に合波して出力する回路、
     または前記アナログマルチプレクサとミキサを複合的に用いた回路
     のいずれかであることを特徴とする請求項1に記載の信号生成装置。
  3.  前記広帯域アナログ信号生成部は、
     2つのミキサとコンバイナ、および90度位相シフタからなるIQ変調器型回路
     であることを特徴とする請求項1に記載の信号生成装置。
  4.  前記2M×Mフィルタの、2M2通りの入出力の組合せに対して独立に設定される応答関数Gmq(f)は、
     前記広帯域アナログ信号生成部の周波数応答をRkp(f)としたときに、次式
    Figure JPOXMLDOC01-appb-I000001
     但し、チルダ記号~は、前記サブDACのアナログ帯域をfBとしたときに、元の関数をfB/2を中心に折返して複素共役を取る折返し操作を示している
     により決定される
     ことを特徴とする請求項1ないし3のいずれか1項に記載の信号生成装置。
  5.  前記デジタル信号処理部は、前記原分割信号を生成する手段の入力側に接続されたメイン非線形フィルタと、前記2M×MフィルタのM個の出力の各々に接続されたM個のサブ非線形フィルタとのすくなくとも一方を備える
     ことを特徴とする請求項1ないし4のいずれか1項に記載の信号生成装置。
PCT/JP2019/025018 2018-09-11 2019-06-24 信号生成装置 WO2020054173A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/274,526 US11438083B2 (en) 2018-09-11 2019-06-24 Signal generation device
JP2020546707A JP7040626B2 (ja) 2018-09-11 2019-06-24 信号生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170037 2018-09-11
JP2018170037 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054173A1 true WO2020054173A1 (ja) 2020-03-19

Family

ID=69777103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025018 WO2020054173A1 (ja) 2018-09-11 2019-06-24 信号生成装置

Country Status (3)

Country Link
US (1) US11438083B2 (ja)
JP (1) JP7040626B2 (ja)
WO (1) WO2020054173A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166713A1 (ja) * 2022-03-04 2023-09-07 日本電信電話株式会社 信号生成装置、信号生成方法及びコンピュータプログラム
WO2023166714A1 (ja) * 2022-03-04 2023-09-07 日本電信電話株式会社 信号生成装置、信号生成方法及びコンピュータプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033446A1 (ja) * 2015-08-27 2017-03-02 日本電信電話株式会社 信号生成装置
JP2017184053A (ja) * 2016-03-30 2017-10-05 富士通株式会社 歪補償装置、及び歪補償方法
JP2018042073A (ja) * 2016-09-06 2018-03-15 日本電信電話株式会社 光送信機、光伝送システム及び光受信機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173980B2 (en) * 2002-09-20 2007-02-06 Ditrans Ip, Inc. Complex-IF digital receiver
US9621330B2 (en) * 2011-11-30 2017-04-11 Maxlinear Asia Singapore Private Limited Split microwave backhaul transceiver architecture with coaxial interconnect
US8885106B2 (en) * 2013-03-13 2014-11-11 Silicon Laboratories Inc. Multi-tuner using interpolative dividers
JP6649230B2 (ja) 2016-11-08 2020-02-19 日本電信電話株式会社 信号生成器
US10778263B2 (en) * 2019-02-15 2020-09-15 United States Of America As Represented By The Secretary Of The Air Force Poly phased, time-interleaved RF-DAC for multi-function frequency-agile, tunable transmitter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033446A1 (ja) * 2015-08-27 2017-03-02 日本電信電話株式会社 信号生成装置
JP2017184053A (ja) * 2016-03-30 2017-10-05 富士通株式会社 歪補償装置、及び歪補償方法
JP2018042073A (ja) * 2016-09-06 2018-03-15 日本電信電話株式会社 光送信機、光伝送システム及び光受信機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166713A1 (ja) * 2022-03-04 2023-09-07 日本電信電話株式会社 信号生成装置、信号生成方法及びコンピュータプログラム
WO2023166714A1 (ja) * 2022-03-04 2023-09-07 日本電信電話株式会社 信号生成装置、信号生成方法及びコンピュータプログラム

Also Published As

Publication number Publication date
JP7040626B2 (ja) 2022-03-23
JPWO2020054173A1 (ja) 2021-08-30
US11438083B2 (en) 2022-09-06
US20210320735A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US8237595B2 (en) Method and apparatus for bandpass digital to analog converter
EP2517362B1 (en) Active antenna array with modulator-based pre-distortion
JP6583096B2 (ja) 歪補償装置、及び歪補償方法
US20090052556A1 (en) Frequency interleaving method for wideband signal generation
WO2014136437A1 (ja) 無線送信装置および無線送信方法
EP2834919B1 (en) Parallel digital to analog conversion with image suppression
WO2012112360A1 (en) Digital pre-distortion
US20150318880A1 (en) Digital Pre-Distortion for High Bandwidth Signals
WO2020054173A1 (ja) 信号生成装置
US20120268191A1 (en) Digital pre-distortion
KR102234970B1 (ko) 튜닝가능 대역 외 간섭 완화를 위한 시스템 및 방법
Schmidt et al. Digital-to-analog converters using frequency interleaving: Mathematical framework and experimental verification
Nopchinda et al. 8-PSK Upconverting Transmitter Using $ E $-Band Frequency Sextupler
US8520968B1 (en) Communication signal image suppression for multi-frequency operation
JP6241789B2 (ja) 送信機
EP2768194B1 (en) Implementation method of compensating filter and signal bandwidth compensating apparatus
WO2019031447A1 (ja) 光送信機、光受信機及び通信システム
CN108011853A (zh) 混合滤波器组dac延迟和相位偏移的估计和补偿方法
WO2006038484A1 (ja) 送信装置及び歪補償方法
JP2006211112A (ja) 広帯域d/aコンバータ及び広帯域電力増幅装置
EP3073654A1 (en) A method for generation of a pulse pattern using pulse width modulation, and a transmitter therefor
US10469179B2 (en) Distortion compensation apparatus and distortion compensation method
Noweir et al. Low speed digital RoF transmitter linearizer using sub-band signal processing technique
WO2019216168A1 (ja) 信号生成器および信号生成方法
Zhao et al. A Magnitude-Response Compensation Method in the FI-DAC-Based Arbitrary Waveform Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861010

Country of ref document: EP

Kind code of ref document: A1