WO2020039609A1 - Negative electrode for lithium battery, method for manufacturing same, and lithium battery - Google Patents

Negative electrode for lithium battery, method for manufacturing same, and lithium battery Download PDF

Info

Publication number
WO2020039609A1
WO2020039609A1 PCT/JP2019/000587 JP2019000587W WO2020039609A1 WO 2020039609 A1 WO2020039609 A1 WO 2020039609A1 JP 2019000587 W JP2019000587 W JP 2019000587W WO 2020039609 A1 WO2020039609 A1 WO 2020039609A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
lithium battery
layer
metal
Prior art date
Application number
PCT/JP2019/000587
Other languages
French (fr)
Japanese (ja)
Inventor
達則 鈴木
ティサン ウ
永田 幹人
正誉 堀篭
Original Assignee
ゼプター コーポレーション
ゼプター アジア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼプター コーポレーション, ゼプター アジア株式会社 filed Critical ゼプター コーポレーション
Publication of WO2020039609A1 publication Critical patent/WO2020039609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium battery, a method for producing the same, and a lithium battery.
  • lithium batteries have a high terminal voltage and a high energy density, and as a device for storing or generating electric energy, main batteries such as portable electronic devices, electric vehicles, and mobile communication devices. Its use is expanding.
  • a lithium battery is basically composed of a battery member such as a separator, if necessary, in addition to a positive electrode, a negative electrode, and an electrolyte, and is used as a primary battery or a secondary battery.
  • a battery member such as a separator
  • electrolyte a battery member that moves from the positive electrode to the negative electrode to accumulate charge
  • lithium ions move from the negative electrode to the positive electrode.
  • a lithium battery is a lithium metal battery or a lithium air battery using metal lithium as a negative electrode active material of a negative electrode, a lithium ion battery using graphite or silicon as a negative electrode, a lithium oxide or the like as a positive electrode, or the like.
  • metal lithium as a negative electrode active material of a negative electrode
  • lithium ion battery using graphite or silicon as a negative electrode
  • lithium oxide or the like as a positive electrode, or the like.
  • lithium ion secondary batteries are widely used as a negative electrode active material because carbon materials such as graphite capable of inserting and extracting lithium ions exhibit relatively high capacity and good cycle characteristics.
  • carbon materials such as graphite capable of inserting and extracting lithium ions exhibit relatively high capacity and good cycle characteristics.
  • a negative electrode active material capable of further increasing the capacity has been demanded.
  • carbon nanotubes extended from a conductive composite material are fixed as a structure applied as a whole or a part of a current conductor and an electrode for an electrochemical power device such as a conductive battery, a supercapacitor, and a fuel cell.
  • An example is shown in which such a structure is applied as an electrode of a lithium battery (for example, see Patent Document 2).
  • a negative electrode for a lithium battery including a conductive material layer having a three-dimensional surface structure in which a carbon nanotube is extended (extended) from the surface, metal lithium as a negative electrode active material is deposited on the carbon nanotube.
  • Patent Literature 3 does not disclose a concept of effectively preventing such a decrease in charge / discharge capacity.
  • the present invention has been made in view of such circumstances, and has a three-dimensional surface structure including an underlayer, and a plurality of nanocarbon materials extending from the surface of the underlayer, and as a negative electrode.
  • lithium metal or a negative electrode for a lithium battery in the case of using graphite or silicon as the negative electrode, lithium capable of effectively preventing a decrease in charge / discharge capacity even when charging and discharging of the lithium battery is repeated. It is an object to provide a negative electrode for a battery, a method for producing the same, and a lithium battery.
  • the gist configuration of the present invention is as follows.
  • the intermediate layer is made of a metal or an alloy capable of forming an alloy with lithium.
  • the material forming the surface layer is graphite or silicon.
  • the intermediate layer includes one or more metals selected from Al, Zn, Cr, Fe, Ni, Sn, Pb, Cu, Ag, Pt, Au, In, Pd, and Mg.
  • the intermediate layer is made of a metal of Sn, Al, Au, Mg, Ag or Zn, or an alloy of Cu and Sn or Ni.
  • the thickness of the intermediate layer is in the range of 0.01 ⁇ m or more and 3 ⁇ m or less.
  • the nanocarbon material includes a carbon nanotube.
  • a base layer made of a metal or an alloy is fixed on the surface of the substrate by an electrolytic plating method, and at least one surface of the base layer is fixed to the base layer. Forming a structure having a plurality of nanocarbon materials extending therefrom; and forming at least one surface of the underlayer constituting the structure, and extending the plurality of nanocarbon materials extending from the surface.
  • the present invention it is possible to provide a negative electrode for a lithium battery, a method for manufacturing the same, and a lithium battery that can effectively prevent a decrease in charge / discharge capacity even when charge / discharge of the lithium battery is repeated.
  • FIG. 3 is a cross-sectional view schematically illustrating a part of a substrate having a structure including an underlayer to which a plurality of carbon nanotubes are fixed. It is the schematic which shows typically an example of the composite plating apparatus used when forming the base layer in which the carbon nanotube was fixed on the board
  • FIG. 4 is a cross-sectional view schematically showing a part of an underlayer and an intermediate layer formed on carbon nanotubes. It is the schematic which shows the plating apparatus used for formation of an intermediate
  • FIG. 9 is a cross-sectional view schematically illustrating a state where a part of the surface of the intermediate layer is brought into contact with molten lithium in a third stage of the surface layer forming step.
  • FIG. 9 is a cross-sectional view schematically showing a state where the substrate is moved along the support from the state shown in FIG. 8 in a third stage of the surface layer forming step.
  • FIG. 10 is a cross-sectional view schematically showing a state where the substrate is further moved from the state shown in FIG. 9 to form a surface layer on the intermediate layer in the third stage of the surface layer forming step.
  • FIG. 2 is a cross-sectional view schematically illustrating a lithium metal battery according to a first embodiment, which is manufactured using the negative electrode illustrated in FIG. 1. It is sectional drawing which shows the lithium air battery which concerns on 2nd embodiment typically. It is sectional drawing which shows the lithium ion battery which concerns on 3rd embodiment typically. It is sectional drawing which shows typically the lithium solid battery which concerns on 4th Embodiment.
  • FIG. 5 is a diagram plotting the relationship between the number of cycles and the charge / discharge capacity retention rate when a cycle test in which charge / discharge is repeated is performed for each of the manufactured lithium secondary batteries of Example 1 and Comparative Example 1.
  • the present inventors have used lithium metal as a negative electrode active material of a negative electrode, lithium metal batteries and lithium air batteries, and graphite or silicon as a negative electrode, using lithium oxide and the like as a positive electrode, lithium ion batteries and the like.
  • the charge / discharge capacity was correspondingly reduced.
  • various studies were made on measures to prevent the decrease in charge / discharge capacity.
  • FIG. 1 is a diagram schematically illustrating a cross-sectional configuration of a negative electrode 10 (hereinafter, also simply referred to as “negative electrode 10”) used in a lithium metal battery included in the lithium battery according to the present embodiment.
  • the negative electrode 10 shown in FIG. 1 includes a substrate 20, a base layer 12 made of a metal or an alloy formed on the surface of the substrate 20, and fixed to the base layer 12 and extending from at least one surface of the base layer 12.
  • It has a laminated body 16 configured to include.
  • the laminate 16 has a three-dimensional surface structure, not a smooth surface.
  • the negative electrode active material is lithium.
  • the structure 13 shown in FIG. 1 includes a carbon nanotube 11 as a nanocarbon material and an underlayer 12 in which at least a part of the carbon nanotube 11 is embedded and fixed, and functions as a negative electrode current collector. It is.
  • the carbon nanotubes 11 are fixed to the underlayer 12 and extend from the surface 12a of the underlayer 12.
  • a carbon nanotube is used as an example of a nanocarbon material.
  • the present invention is not limited to a carbon nanotube, and the nanocarbon material is not limited to a carbon nanofiber or a cellulose nanofiber.
  • a negative electrode for a lithium battery including a carbon material is also included in the present invention.
  • the stacked body 16, particularly, the carbon nanotubes 11 are shown larger than the actual dimensions, and are different from the actual dimensions.
  • the underlayer 12 covers and embeds a part including the one end 11 a of the carbon nanotube 11, and the other end 11 b of the carbon nanotube 11 extends from the surface 12 a of the underlayer 12.
  • An embodiment is shown.
  • the underlayer 12 embeds and fixes a substantially central portion in the longitudinal direction of the carbon nanotube 11, and both end portions 11 a and 11 b of the carbon nanotube 11 have surfaces (first surface) 12 a and 11 a of the underlayer 12. Each may extend from the back surface (second surface) 12b.
  • the carbon nanotube 11 is a carbon material having a shape obtained by winding graphite in a tubular shape, and has a diameter of, for example, several nm or more and 100 nm or less, and a length of several nm or more and 1 mm or less.
  • the carbon nanotube 11 may have either a single-layer structure or a multi-layer structure.
  • the nanocarbon material not only the carbon nanotube 11 alone, but also a carbon nanofiber having a fiber diameter of about 100 nm or more and about 1 ⁇ m or less may be included.
  • the carbon nanotubes 11 are partially embedded in the underlayer 12 and extend from at least the surface 12 a of the underlayer 12.
  • the underlayer 12 is disposed as an underlayer for forming the intermediate layer 14.
  • the base layer 12 includes a conductive metal such as copper, nickel, zinc, aluminum, gold, and silver, and an alloy containing these metals or other metals. Among these metal components, the base layer 12 is preferably made of copper in consideration of the material cost and conductivity.
  • the base layer 12 embeds and fixes a part of the carbon nanotubes 11, and extends the surface 12 a of the base layer 12 and the plurality of carbon nanotubes 11 extending from the surface 12 a.
  • a middle layer 14 and a surface layer 15 as a negative electrode active material made of metallic lithium are sequentially deposited to form a laminate 16.
  • the thickness of the underlayer 12 is preferably 3 ⁇ m or more and 5 mm or less.
  • the carbon nanotubes 11 are configured to be embedded in the underlayer 12, and extend from at least the surface 12 a of the underlayer 12, so that the surface 12 a of the underlayer 12 is , Not a smooth surface, but a three-dimensional surface structure. Therefore, the surface area of the surface 12a of the underlayer 12 is larger than that of the smooth surface.
  • the underlayer 12 having the surface 12a on which the carbon nanotubes 11 extend is configured as a negative electrode current collector.
  • the layer 14 and the surface layer 15 are formed.
  • the surface density of the carbon nanotubes 11 on the surface 12a of the underlying layer 12 is not particularly limited, 0.1 mg / cm 2 or more is preferably about 10 mg / cm 2 or less.
  • the areal density is within the above range, the growth of dendrites generated on the surface 15a of the surface layer 15 during charging and discharging of the lithium battery can be sufficiently suppressed, and the safety of the battery is improved.
  • the carbon nanotubes 11 may extend substantially vertically or obliquely from the surface 12a.
  • the nanotubes 11 may extend so as to be entangled with each other.
  • the carbon nanotubes 11 are not limited to the mode in which the carbon nanotubes 11 extend outward in a state where they are arranged at regular intervals on the surface 12a of the underlayer 12, but extend in a state where they are arranged at random intervals. It may be a mode of doing.
  • the intermediate layer 14 is disposed between the underlayer 12 made of a metal or an alloy and the surface layer 15 made of the negative electrode active material (metal lithium), and between the carbon nanotube 11 and the surface layer 15. Composed of different metals or alloys.
  • metal lithium negative electrode active material
  • the intermediate layer 14 is made of a metal or an alloy capable of forming an alloy with lithium, a decrease in charge / discharge capacity can be more effectively prevented even when charging and discharging of the lithium battery are repeated.
  • the intermediate layer 14 in particular, one kind of metal selected from Al, Zn, Cr, Fe, Ni, Sn, Pb, Cu, Ag, Pt, Au, In, Pd and Mg, or an alloy containing one or more kinds By using, it is possible to effectively prevent a decrease in charge / discharge capacity even when charge / discharge of a lithium battery is repeated.
  • the intermediate layer 14 is formed of a metal of Sn, Al, Au, Mg, Ag, or Zn, or an alloy of Cu and Sn or Ni, the charge / discharge capacity is reduced even if the charge / discharge of the lithium battery is repeated. Can be further enhanced.
  • the intermediate layer 14 is made of Sn as described later, the effect of preventing a decrease in charge / discharge capacity can be further enhanced even if charge / discharge of the lithium battery is repeated.
  • the thickness of the intermediate layer 14 is preferably 0.01 ⁇ m or more and 3 mm or less.
  • the thickness of the intermediate layer 14 is 0.01 ⁇ m or more and 3 mm or less, at the time of depositing metallic lithium by a lithium metal deposition method described later, the metal or alloy component constituting the intermediate layer 14 and the deposited metallic lithium are alloyed. It can be considered that by forming, metal lithium can be deposited relatively uniformly and deterioration of cycle characteristics can be suppressed.
  • a negative electrode active material made of metallic lithium is used as the surface layer 15, and the surface layer 15 is formed of a layer on which metallic lithium is deposited.
  • an intermediate layer 14 is formed on a surface 12 a of an underlayer 12 and on a carbon nanotube 11 extending from the surface 12 a of the underlayer 12.
  • a negative electrode active material made of lithium is deposited to form a surface layer 15.
  • the surface layer 15 of metallic lithium forms a three-dimensional structure in which the carbon nanotubes 11 extend from the surface 12a of the underlayer 12, the surface 15a of the surface layer 15, that is, the deposited metallic lithium
  • the surface is not a smooth surface but a surface having a three-dimensional surface structure.
  • the deposition amount of metallic lithium constituting the surface layer 15 is not particularly limited, but is 0.01 mg / cm 2 or more and 5 mg / cm 2 from the viewpoint of preventing deterioration of battery characteristics, improving productivity, and suppressing dendrite growth. It is preferably about 2 or less. Further, when the deposition amount of metallic lithium is 0.01 mg / cm 2 or more, the amount of metallic lithium as the negative electrode active material is sufficient, and the battery characteristics are good. When the deposition amount of metallic lithium is 5.00 mg / cm 2 or less, productivity and suppression of dendrite growth can be effectively achieved.
  • the surface layer 15 of metallic lithium only needs to be deposited to a certain thickness, and is preferably deposited over the entire surface of the carbon nanotubes 11 and the underlayer 12.
  • the deposition state of the surface layer 15 can be changed within a range that does not affect the battery characteristics. Partially deposited state is acceptable.
  • the substrate 20 is preferably made of a metal or an alloy having high conductivity.
  • substrate 20 comprises a metal or alloy selected from the group of copper, copper alloy, nickel, nickel alloy, zinc, zinc alloy, aluminum, aluminum alloy, gold, gold alloy, silver, silver alloy, and stainless steel.
  • the shape may be a foil, a film, a plate, or the like.
  • the substrate 20 may include various additives such as a conductive polymer depending on required characteristics.
  • the thickness of the substrate 20 is preferably in the range of 3 ⁇ m or more and 5 mm or less from the viewpoint of excellent operability in manufacturing the negative electrode 10 for a lithium battery.
  • the substrate 20 the base layer 12 made of a metal or an alloy, formed on the substrate 20, and at least one of the base layers 12 fixed to the base layer 12.
  • An intermediate layer made of a metal or an alloy different from the underlayer 12 is provided between the structure 13 having the plurality of carbon nanotubes 11 extending from the surface 12a and the surface layer 15 functioning as a negative electrode active material of the negative electrode 10 for a lithium battery. Since the layer 14 is provided, a decrease in the charge / discharge capacity can be effectively prevented even when the charge / discharge of the lithium battery is repeated.
  • an underlayer 12 made of a metal or an alloy and at least one surface of the underlayer 12 fixed to the underlayer 12 are provided on the surface of the substrate 20.
  • Forming a structure 13 having a plurality of carbon nanotubes 11 extending from the surface, one surface 12a of the underlayer 12, and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a is performed.
  • the base layer 12 and a part including one end 11 a are buried and fixed in the base layer 12, and project from the surface 12 a of the base layer 12. Then, a plurality of carbon nanotubes 11 extending to form a structure 13 having the underlayer 12 and the carbon nanotubes 11 are formed.
  • the method for manufacturing the structure 13 is not particularly limited, and includes, for example, an electrolytic plating (composite plating) method in which carbon nanotubes are dispersed in an electrolytic solution.
  • FIG. 3 shows a composite plating apparatus used to form, on a substrate 20, an underlayer 12 to which an underlayer 12 and a plurality of carbon nanotubes 11 (see FIG. 2) extending from the surface of the underlayer 12 are fixed. It is the schematic which shows an example of 30 typically.
  • the composite plating apparatus 30 includes a pretreatment tank 21, an electrolytic plating treatment tank 23, a post-treatment tank 25, a cathode power supply roller 27, and a nip roller 28.
  • the long sheet-shaped substrate 20 made of a metal foil or the like is transported in a horizontal direction by a cathode power supply roller 27 and a nip roller 28, and is first subjected to a cleaning treatment in a pretreatment tank 21, and then to an electrolytic plating treatment tank 23. Electrolytic plating (composite plating) is performed, and then rust prevention is performed in the post-treatment tank 25.
  • the structure 13 including the underlayer 12 and the plurality of carbon nanotubes 11 (see FIG. 2) extending from the surface of the underlayer 12 is formed on the substrate 20.
  • the pretreatment tank 21 is a treatment tank that performs a pretreatment such as a degreasing treatment or an pickling treatment on the substrate 20, and contains a chemical solution (a pretreatment liquid 22) for performing the pretreatment.
  • the electrolytic plating tank 23 contains the electrolytic plating solution 24 and has anode electrodes 23a and 23b on the upper and lower parts, respectively.
  • cuprous sulfate (CuSO 4 .5H 2 O) of about 20 g / L to 300 g / L is used as the electrolytic plating solution.
  • An electrolytic plating solution of copper sulfate obtained by mixing sulfuric acid (H 2 SO 4 ) of about 5 g / L or more and about 50 g / L or less can be used.
  • the content of the carbon nanotubes in the electrolytic plating solution 24 is, for example, about 1% by mass or more and 50% by mass or less. Note that the composition of the electrolytic plating solution 24 and the content of the carbon nanotubes are not limited to these, but are appropriately adjusted according to required characteristics. Further, the electrolytic plating solution 24 may contain various additives such as chloride ions, polyethers, leveling agents, and surfactants, if necessary.
  • both of the anode electrodes 23 a and 23 b are energized to perform electrolytic plating on both sides of the substrate 20 that is being transported in the horizontal direction, so that the base layer 12 that is an electrolytic plating film is
  • the carbon nanotubes 11 can be fixed to the underlayer 12 while being formed thereon.
  • only the anode electrode 23a or 23b located on the surface side of the substrate 20 on which the underlayer 12 is formed may be energized. Good.
  • the post-treatment tank 25 is a treatment tank that performs post-treatment such as rust prevention treatment on the base layer 12 formed on the substrate 20 by electrolytic plating, and is a chemical solution for performing post-treatment (post-treatment liquid 26). Is housed.
  • the intermediate layer forming step as shown in FIG. 4, at least one surface 12a of the underlayer 12 provided on the substrate 20 and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a are provided on the underlayer.
  • An intermediate layer 14 made of a metal or alloy different from 12 is formed.
  • the method for forming the intermediate layer 14 is not particularly limited, and for example, an electrolytic plating method, an electroless plating method, or a vapor deposition method can be used.
  • FIG. 5 shows that an intermediate layer 14 (see FIG. 4) is formed on at least one surface 12a of the base layer 12 and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a by electrolytic plating.
  • the plating apparatus 31 includes an electrolytic plating tank 33, a post-treatment tank 35, a cathode power supply roller 27, and a nip roller 28.
  • the long sheet-like substrate 20 having the base layer 12 and the structure 13 including the plurality of carbon nanotubes 11 manufactured in the structure forming step is horizontally transferred by the cathode feeding roller 27 and the nip roller 28, First, after electrolytic plating is performed in the electrolytic plating tank 33, rust prevention processing is performed in the post-processing tank 35. In this way, in the intermediate layer forming step, the intermediate layer 14 (see FIG. 4) is provided on at least one surface 12a of the underlayer 12 and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a. ) Is formed.
  • the electrolytic plating tank 33 contains an electrolytic plating solution 34 and has anode electrodes 23a and 23b on the upper and lower parts, respectively.
  • As the electrolytic plating solution 34 a solution containing metal ions that are reduced to the metal constituting the intermediate layer 14 is used.
  • the electrolytic plating solution 34 for example, stannous sulfate (SnSO 4 ) of about 10 g / L or more and 100 g / L or less and sulfuric acid (H 2 SO 4 ) of about 50 g / L or more and 150 g / L or less are mixed. Can be used. Note that the composition of the electrolytic plating solution 34 is not limited to these, but is appropriately adjusted according to required characteristics. Further, the electrolytic plating solution 34 may contain various additives such as a surfactant, if necessary.
  • SnSO 4 stannous sulfate
  • H 2 SO 4 sulfuric acid
  • the composition of the electrolytic plating solution 34 is not limited to these, but is appropriately adjusted according to required characteristics. Further, the electrolytic plating solution 34 may contain various additives such as a surfactant, if necessary.
  • the electrolytic plating tank 33 by supplying electricity to both the anode electrodes 23 a and 23 b, electrolytic plating is performed on both surfaces of the substrate 20 having the structure 13, which is transported in the horizontal direction, to form an electrolytic plating film.
  • the intermediate layer 14 can be formed on the surface 12 a of the underlayer 12 and on the carbon nanotubes 11. When the intermediate layer 14 is formed only on one surface of the substrate 20 having the structure 13, only the anode electrode 23a or 23b located on the surface side of the substrate 20 where the intermediate layer 14 is to be formed needs to be energized. I just need.
  • the post-treatment tank 35 is a treatment tank for performing post-treatment such as rust prevention treatment on the intermediate layer 14 formed on the substrate 20 having the structure 13 by electrolytic plating, and is a chemical solution for performing the post-treatment. (Post-treatment liquid 36) is contained.
  • the method for forming the surface layer 15 is not particularly limited.
  • a lithium metal deposition method using electrolytic plating outside the cell a lithium metal deposition method using lithium contained in the positive electrode active material, a vapor deposition method inside the cell.
  • a lithium metal deposition method by a method can be used.
  • the molten lithium is pressed into contact with the surface of the intermediate layer 14 to form a molten lithium layer, and then cooled to form a molten lithium layer on the surface layer made of metallic lithium. It is possible to use a lithium metal deposition method by molten lithium pressing contact, which is carried out by solidification until the temperature reaches 15.
  • the surface layer forming step using the lithium metal deposition method by molten lithium pressure contact is performed in an inert atmosphere such as argon or nitrogen. In this step, for example, the following two types of methods can be applied.
  • the surface layer forming step has a first stage, a second stage, and a third stage.
  • a metal lithium foil 42 is placed on a support 41.
  • the support 41 is made of a metal component that is not alloyed with metallic lithium.
  • the support 41 is made of metallic nickel.
  • the thickness of the metal lithium foil 42 is preferably 0.1 ⁇ m or more and 100 ⁇ m or less from the viewpoint of the amount of lithium deposited on the surface layer 15 formed on the intermediate layer 14.
  • the metallic lithium foil 42 is heated on the support 41 to generate molten lithium 43.
  • the heating temperature of the metal lithium foil 42 is, for example, in the range of 200 ° C. or more and 500 ° C. or less.
  • the support 41 and the metal lithium foil 42 are heated, and the metal lithium foil 42 placed on the support 41 is heated. Melts and changes to molten lithium 43.
  • the metal lithium foil 42 on the support 41 is pressed by a roller member or the like so as to efficiently heat the metal lithium foil 42 by the hot plate 40, and the metal lithium foil 42 is adhered to the support 41. May be.
  • the roller member is made of a metal component that does not alloy with lithium metal.
  • the substrate 20 having the structure 13 is moved along the support 41 while the intermediate layer 14 is in contact with the molten lithium 43, whereby After forming the molten lithium layer 44 on the surface of the layer 14, the molten lithium layer 44 is cooled and solidified until the molten lithium layer 44 becomes the surface layer 15 made of lithium metal.
  • the illustrated example shows a case where the surface layer 15 is formed by fixing the support 41 and moving the substrate 20 having the structure in which the intermediate layer 14 is formed on the structure 13 from right to left.
  • the intermediate layer 14 of the substrate 20 is opposed to the support 41 so that the intermediate layer 14 formed on the surface of the underlayer 12 and the carbon nanotubes 11 is in contact with the molten lithium 43.
  • the substrate 20 is pressed toward the support 41, and the molten lithium 43 is pressed into contact with (deposited on) the surfaces of the underlayer 12 and the carbon nanotubes 11.
  • FIG. 9 when the substrate 20 is moved along the surface of the support 41 while the intermediate layer 14 and the molten lithium 43 (see FIG. 8) are in contact (deposit).
  • the molten lithium 43 is deposited on the surface of the intermediate layer 14 from above the support 41, and a molten lithium layer 44 is formed on the surface of the intermediate layer 14.
  • the second method includes a substrate supply step, a metal lithium foil supply step, and a laminate formation step.
  • FIG. 11 is a schematic view schematically showing an example of a continuous laminate forming apparatus 50 in which the substrate supply step and the metal lithium foil supply step are simultaneously performed to continuously perform the laminate formation step.
  • the laminated body continuous forming apparatus 50 includes a pair of heating members 51a and 51b and a film thickness adjusting member 57.
  • the heating member 51a is formed of a cylindrical rotating member
  • the heating member 51b is formed of a plate-shaped fixing member.
  • the film thickness adjusting member 57 is located on the opposite side to the supply side of the metal lithium foil 53 with the heating member 51a interposed therebetween, and is provided at an upper position facing the surface of the intermediate layer 14.
  • the lower surface 57a of the film thickness adjusting member 57 is not parallel to the surface of the underlayer 12 but forms a predetermined angle, and is formed as an inclined surface that approaches the surface of the underlayer 12 as the distance from the heating member 51a increases. .
  • the substrate 20 is moved from right to left by a transfer device not shown in FIG.
  • the substrate 20 is supplied between the pair of heating members 51a and 51b. Specifically, the substrate 20 is supplied such that the surface of the intermediate layer 14 faces the heating member 51a. For example, the substrate 20 is continuously supplied from a substrate roll (not shown).
  • the metal lithium foil 53 is supplied between the heating members 51a and 51b from a position facing the intermediate layer 14 of the substrate 20 which is supplied between the heating members 51a and 51b.
  • the metal lithium foil 53 is supplied between the heating members 51 a and 51 b from the raw metal foil roll 52 via a rotating member 54.
  • the heating members 51a and 51b are melted while contacting the metallic lithium foil 53 to generate molten lithium 55, and the generated molten lithium 55 is heated by the heating members 51a and 51b.
  • the molten lithium layer 56 is formed by pressing and contacting the surface of the intermediate layer 14 of the substrate 20 moving between 51b, the molten lithium layer 56 is moved in a direction in which the substrate 20 is separated from the space between the heating members 51a and 51b (see FIG. In FIG. 11, the molten lithium layer 56 is further moved in the left direction and cooled to solidify the molten lithium layer 56 until the surface layer 15 is made of metallic lithium.
  • the metallic lithium foil 53 supplied to the heating members 51 a and 51 b is melted while contacting the rotating heating member 51 a, and the molten lithium 55 is deposited on the surface of the intermediate layer 14.
  • the molten lithium 55 on the intermediate layer 14 moving from right to left along with the movement of the long substrate 20 is pressed against the surface of the intermediate layer 14 when passing through the film thickness adjusting member 57 provided above the heating member 51b.
  • the molten lithium layer 56 made of molten lithium is deposited on the surface of the intermediate layer 14 with a predetermined thickness on the downstream side of the film thickness adjusting member 57 in contact therewith.
  • the molten lithium layer 56 deposited on the surface of the intermediate layer 14 of the substrate 20 moves away from the heating member 51b with the movement of the substrate 20, the influence of heat transfer by the heating member 51b is reduced. Then, the surface layer 15 is formed by cooling until it is solidified. Thus, the negative electrode 10 for a lithium battery is obtained.
  • the negative electrode 10 for a lithium battery can be manufactured. It is suitable for mass production of the negative electrode 10.
  • the obtained negative electrode 10 for a lithium battery may be cut as necessary.
  • the negative electrode 10 for a lithium battery is cut into a size of about 1 mm 2 or more and about 1 m 2 or less.
  • the substrate 20 may be removed from the underlayer 12 as necessary.
  • the timing for removing the substrate 20 from the underlayer 12 is not particularly limited, and for example, the substrate 20 can be removed after the second step.
  • the thickness of the surface layer 15 (molten lithium layer 56) can be adjusted.
  • the lithium battery according to the present embodiment includes an underlayer 12 made of a metal or an alloy, and a plurality of carbon nanotubes 11 as a nanocarbon material fixed to the underlayer 12 and extending from at least one surface of the underlayer 12. And an underlayer 12 covering at least one surface 12a of the underlayer 12 constituting the structure 13 and a surface of an extended portion of the plurality of carbon nanotubes 11 extending from the surface 12a. And an intermediate layer 14 made of a metal or alloy different from the above, and a negative electrode 10 for a lithium battery having a laminate 16 including a surface layer 15 made of metallic lithium, which covers the surface of the intermediate layer 14.
  • FIG. 12 is a cross-sectional view schematically illustrating the lithium metal battery according to the first embodiment, which is manufactured using the negative electrode illustrated in FIG.
  • the lithium battery 1 includes a positive electrode 19, a negative electrode 10 for a lithium battery, an electrolytic solution L, and a separator 18.
  • the positive electrode 19 includes a positive electrode layer 19a containing a positive electrode active material, and a positive electrode current collector foil 19b coated with and holding the positive electrode active material.
  • the lithium battery 1 may be a primary battery or a secondary battery.
  • the charge / discharge capacity can be reduced even if charge / discharge is repeated. From the viewpoint that it can be effectively prevented, application as a secondary battery is particularly preferable.
  • the positive electrode active material constituting the positive electrode layer 19a is not particularly limited, and any material can be selected from materials which can occlude and release lithium ions and have a higher potential than metallic lithium as the negative electrode active material. Can be used.
  • the positive electrode active material lithium iron phosphate, lithium manganese phosphate, lithium manganese iron phosphate, lithium cobalt phosphate, lithium cobaltate composite oxide, lithium manganate composite oxide, lithium nickelate composite oxide, Lithium niobate composite oxide, lithium ferrate composite oxide, lithium magnesium oxide composite oxide, lithium calcium oxide composite oxide, lithium cuprate composite oxide, lithium zincate composite oxide, lithium molybdate composite oxide, tantalum Lithium oxide composite oxide, lithium tungstate composite oxide, lithium nickel cobalt aluminum composite oxide, lithium nickel cobalt manganese composite oxide, and the like.
  • a positive electrode layer 19a can be obtained by adding and kneading an additive such as a conductive agent and forming a layer on the positive electrode current collector foil 19b having conductivity.
  • the positive electrode current collector foil 19b is not particularly limited, and a conventionally known one can be used.
  • a metal foil, a metal sheet, a conductive polymer material, or the like made of nickel, stainless steel, aluminum, titanium, or the like can be used as the positive electrode current collector foil 19b.
  • the separator 18 is used for separating the negative electrode 10 and the positive electrode 19 to prevent a short circuit between the two electrodes, and a conventionally known separator can be used.
  • a nonwoven fabric commonly used for a secondary battery or a permeable separator made of another porous material can be used.
  • a known solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used as the separator 18.
  • the electrolytic solution L contains lithium ions, and a conventionally known electrolytic solution can be used.
  • This electrolytic solution can be constituted by dissolving an electrolyte in an organic solvent.
  • an organic solvent conventionally known as an electrolyte for a lithium battery can be used, and is not particularly limited.
  • carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds, and the like can be used, and propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, It is preferable to use ethyl methyl carbonate, vinylene carbonate, or the like, or a mixed solvent thereof.
  • Examples of the electrolyte include, but are not particularly limited to, inorganic salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiNO 3 , LiCl, LiF, and LiAsF 6, or derivatives of these inorganic salts, LiSO 3 CF 3 , and LiC (SO 3 CF).
  • Organic salts such as 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) or derivatives of these organic salts And the like.
  • the concentration of the electrolyte is also not particularly limited, and can be appropriately determined in consideration of the types of the electrolyte and the organic solvent.
  • the negative electrode used for the lithium metal battery has been described as an example.
  • the negative electrode used for the lithium air battery, the lithium ion battery, and the lithium solid battery can be similarly configured to have the negative electrode for the lithium metal battery. Since the same effect can be obtained, the configuration will be described below with reference to FIGS.
  • FIG. 13 is a cross-sectional view schematically illustrating a lithium-air battery according to the second embodiment.
  • the lithium air battery 1A shown in FIG. 13 includes a positive electrode 19A, a negative electrode 10, an electrolytic solution L, and a separator 18, and has a battery configuration similar to that of FIG. It has a different configuration. That is, the positive electrode 19A includes the positive electrode catalyst layer 19c and the positive electrode current collecting network 19d from the separator 18 side.
  • FIG. 14 is a cross-sectional view schematically showing a lithium ion battery according to the third embodiment.
  • the lithium ion battery 1B shown in FIG. 14 includes a positive electrode 19, a negative electrode 10B, an electrolytic solution L, and a separator 18.
  • the lithium ion battery 1B has the same configuration as the positive electrode 19 and the separator 18 of the lithium metal battery 1 shown in FIG.
  • the surface layer 15 of the negative electrode 10B is made of metal lithium
  • the surface layer of the negative electrode 10B in the lithium ion battery 1B is a negative electrode mixture layer obtained by solidifying graphite or silicon with a binder instead of the metal lithium.
  • the negative electrode mixture layer 60 is formed by impregnating the negative electrode mixture layer 60 with the electrolytic solution L.
  • FIG. 15 is a sectional view schematically showing a lithium solid state battery according to the fourth embodiment.
  • the lithium solid battery 1C shown in FIG. 15 includes the positive electrode 19, the negative electrode 10C, and the solid electrolyte layer 61, and has no separator or electrolyte.
  • the configurations of the negative electrode 10C and the positive electrode 19 of the lithium solid battery 1C are the same as those of the negative electrode 10 of the lithium metal battery 1 shown in FIG. 12 and the positive electrode 19 of the lithium ion battery 1B shown in FIG.
  • Example 1 In Example 1, first, a negative electrode for a lithium metal battery was manufactured.
  • the surface of a substrate made of rolled copper foil is subjected to electrolytic plating (composite plating), and a plurality of carbon nanotubes and a part of the carbon nanotubes are embedded and fixed.
  • a structure including the extended base layer was manufactured (structure forming step).
  • a copper sulfate plating solution in which carbon nanotubes are dispersed is used as the electrolytic plating solution 24, and the temperature of the electrolytic plating solution 24 is maintained at 25 ° C., and the anode electrode 23 a is 0.1 A / cm 2 or more.
  • An electrolytic plating treatment was performed while applying a current of 8 A / cm 2 or less and stirring the electrolytic plating solution 24 with a chemical pump.
  • a substrate having a structure in which a base layer made of metal copper plating was formed on only one surface of the surface of the rolled copper foil and a plurality of carbon nanotubes were fixed to the base layer was produced.
  • an intermediate layer made of metal tin is formed by an electrolytic plating method using the above-described plating apparatus 31 (see FIG. 5) (intermediate layer forming step). Subsequently, the above-described surface is formed on the surface of the intermediate layer.
  • a surface layer made of metallic lithium was formed by a lithium metal deposition method using lithium contained in the positive electrode active material (surface layer forming step), and a negative electrode for a lithium battery of Example 1 was produced. On the surface of the negative electrode for a lithium battery of Example 1, the surface density of carbon nanotubes, the deposition amount per unit area of the intermediate layer, and the deposition amount per unit area of metallic lithium on the surface layer were measured.
  • the coin-type lithium secondary battery of Example 1 is configured by stacking a negative electrode, a separator, a positive electrode layer including a lithium-cobalt composite oxide LCO (LiCoO 2 ), and a positive electrode including a positive electrode current collector foil. ing. Note that LiPF 6 was used as an electrolyte of the electrolytic solution.
  • Comparative Example 1 In Comparative Example 1, first, a negative electrode for a lithium battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the intermediate layer forming step of Example 1 was omitted and the intermediate layer was not formed. As a result of measuring the areal density of the carbon nanotubes and the deposition amount per unit area of metallic lithium on the surface layer on the surface of the negative electrode for a lithium battery of Comparative Example 1, the areal density of the carbon nanotubes was 0.1 mg / cm 2. And the deposition amount of metallic lithium per unit area was 0.6 mg / cm 2 . Thereafter, using this negative electrode for a lithium battery, a coin-type lithium secondary battery of Comparative Example 1 was produced.
  • the coin-type lithium secondary battery of Comparative Example 1 has a negative electrode for a lithium battery having a configuration in which no intermediate layer is formed, a separator, and a positive electrode layer containing lithium-cobalt composite oxide LCO (LiCoO 2 ) and It is configured by laminating a positive electrode made of a positive electrode current collector foil.
  • LiPF 6 similar to that of Example 1 was used as an electrolyte of the electrolytic solution.
  • Example 1 ⁇ Evaluation method> For each of the manufactured lithium secondary batteries of Example 1 and Comparative Example 1, a cycle test in which charging and discharging were repeated was performed. For each of these batteries, after forming the battery at a temperature of 25 ° C., an operation of charging to 4.2 V at a rate of 0.65 C and an operation of discharging to 3.0 V at the same rate were alternately repeated.
  • FIG. 16 shows the result of plotting the relationship between the number of cycles and the capacity retention rate (%), assuming that the discharge capacity at the first cycle (initial discharge capacity) is 100%.

Abstract

Provided is a negative electrode which is for a lithium battery and has a laminate which comprises: a structural body having a base layer composed of a metal or alloy, and a plurality of nanocarbon materials fixed to the base layer and extending from at least one surface of the base layer; an intermediate layer which is composed of a metal or alloy that is different from the base layer and covers the at least one surface of the base layer constituting the structural body, the surfaces of the extended portions of the plurality of nanocarbon materials extending from the surface; and a surface layer formed of metallic lithium, graphite or silicon on the surface of the intermediate layer.

Description

リチウム電池用負極およびその製造方法、ならびにリチウム電池Negative electrode for lithium battery, method for producing the same, and lithium battery
 本発明は、リチウム電池用負極およびその製造方法、ならびにリチウム電池に関する。 The present invention relates to a negative electrode for a lithium battery, a method for producing the same, and a lithium battery.
 従来から、様々な種類の電池が研究されている。なかでも、リチウム電池は、端子電圧が高く、高いエネルギー密度を有しているため、電気エネルギーを貯蔵あるいは発生させるためのデバイスとして、携帯用電子機器、電気自動車、移動体通信機器などの主電源としての利用が拡大している。 様 々 Various types of batteries have been studied. In particular, lithium batteries have a high terminal voltage and a high energy density, and as a device for storing or generating electric energy, main batteries such as portable electronic devices, electric vehicles, and mobile communication devices. Its use is expanding.
 リチウム電池は、正極、負極、電解質の他、必要に応じてセパレータなどの電池用部材で基本的に構成され、1次電池や2次電池として使用される。例えば、リチウム2次電池においては、充電時に、リチウムイオンが正極から負極に移動することにより電荷を貯めることができ、放電時には、リチウムイオンが負極から正極に移動する。 (4) A lithium battery is basically composed of a battery member such as a separator, if necessary, in addition to a positive electrode, a negative electrode, and an electrolyte, and is used as a primary battery or a secondary battery. For example, in a lithium secondary battery, during charging, lithium ions move from the positive electrode to the negative electrode to accumulate charge, and during discharging, lithium ions move from the negative electrode to the positive electrode.
 ここでいうリチウム電池は、負極の負極活物質として金属リチウムを用いた、リチウム金属電池およびリチウム空気電池や、負極として黒鉛やケイ素を用い、正極としてリチウム酸化物などを用いた、リチウムイオン電池などがあり、これらを含めた総称である。 As used herein, a lithium battery is a lithium metal battery or a lithium air battery using metal lithium as a negative electrode active material of a negative electrode, a lithium ion battery using graphite or silicon as a negative electrode, a lithium oxide or the like as a positive electrode, or the like. There is a generic term including these.
 この中で、リチウムイオン2次電池は、負極活物質として、リチウムイオンの吸蔵および放出が可能な黒鉛などの炭素材料が、比較的高容量を示すと共に良好なサイクル特性を示すことから、広く実用化されている。しかしながら、近年の電子機器の小型化や長時間使用などの観点から、さらなる高容量化の可能な負極活物質が求められている。 Among them, lithium ion secondary batteries are widely used as a negative electrode active material because carbon materials such as graphite capable of inserting and extracting lithium ions exhibit relatively high capacity and good cycle characteristics. Has been However, from the viewpoint of miniaturization and long-term use of electronic devices in recent years, a negative electrode active material capable of further increasing the capacity has been demanded.
 例えば、リチウム金属電池は、電極電位が最も卑であるため、一般的な正極活物質を用いた正極と組み合わせた電池としての出力電位は大きく、またエネルギー密度は高い(例えば、特許文献1参照)。 For example, since a lithium metal battery has the lowest electrode potential, the output potential as a battery combined with a positive electrode using a general positive electrode active material is large and the energy density is high (for example, see Patent Document 1). .
 また、導電性バッテリーや、スーパーキャパシタ、燃料電池などの電気化学パワーデバイスのための電流導電体および電極の全体又は一部として応用される構造体として、導電複合材料から伸びたカーボンナノチューブが固定された構造体をリチウム電池の電極として適用した例が示されている(例えば、特許文献2参照)。 In addition, carbon nanotubes extended from a conductive composite material are fixed as a structure applied as a whole or a part of a current conductor and an electrode for an electrochemical power device such as a conductive battery, a supercapacitor, and a fuel cell. An example is shown in which such a structure is applied as an electrode of a lithium battery (for example, see Patent Document 2).
 そして、カーボンナノチューブを表面から伸ばした(延在させた)、3次元的な表面構造を有する導電材料層を含むリチウム電池用負極において、そのカーボンナノチューブ上に負極活物質としての金属リチウムを堆積させることによって、高い生産性でもって生産し、デンドライトの発生を防止し、なおかつ高い安全性を確保できるようにした例が示されている(例えば、特許文献3参照)。 Then, in a negative electrode for a lithium battery including a conductive material layer having a three-dimensional surface structure in which a carbon nanotube is extended (extended) from the surface, metal lithium as a negative electrode active material is deposited on the carbon nanotube. Thus, there is disclosed an example in which production is performed with high productivity, generation of dendrite is prevented, and high safety can be ensured (for example, see Patent Document 3).
特開平7-29602号公報JP-A-7-29602 特表2012-532435号公報JP-T-2012-532435A 特開2016-207637号公報JP 2016-207637 A
 しかしながら、カーボンナノチューブを導電複合材料の表面から伸ばした(延在させた)、3次元的な表面構造を有し、かつ、金属リチウムを負極活物質に用いたリチウム電池用負極において、リチウム電池の充放電を繰り返すと、それに対応して、充放電容量が低下するが、特許文献3には、このような充放電容量の低下を有効に防止することについての考え方は示されていない。 However, in a negative electrode for a lithium battery having a three-dimensional surface structure in which carbon nanotubes are extended (extended) from the surface of the conductive composite material and using metal lithium as a negative electrode active material, a lithium battery When charge / discharge is repeated, the charge / discharge capacity is correspondingly reduced, but Patent Literature 3 does not disclose a concept of effectively preventing such a decrease in charge / discharge capacity.
 本発明は、このような実情に鑑みてなされたものであり、下地層、および下地層の表面から延在する複数のナノカーボン材料を有する3次元的な表面構造を有し、かつ、負極として金属リチウムを用いた場合、または、負極として黒鉛やケイ素を用いた場合のリチウム電池用負極において、リチウム電池の充放電を繰り返しても、充放電容量の低下を有効に防止することが可能なリチウム電池用負極およびその製造方法、ならびにリチウム電池を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a three-dimensional surface structure including an underlayer, and a plurality of nanocarbon materials extending from the surface of the underlayer, and as a negative electrode. In the case of using lithium metal or a negative electrode for a lithium battery in the case of using graphite or silicon as the negative electrode, lithium capable of effectively preventing a decrease in charge / discharge capacity even when charging and discharging of the lithium battery is repeated. It is an object to provide a negative electrode for a battery, a method for producing the same, and a lithium battery.
 本発明の要旨構成は、以下のとおりである。
[1]金属または合金からなる下地層、および、該下地層に固定され、前記下地層の少なくとも一方の表面から延在する複数のナノカーボン材料を有する構造体と、該構造体を構成する前記下地層の前記少なくとも一方の表面、および該表面から延在する前記複数のナノカーボン材料の延在部分の表面を被覆する、前記下地層とは異なる金属または合金からなる中間層と、該中間層の表面に、金属リチウム、黒鉛またはケイ素によって形成してなる表面層とを含んで構成された積層体を有するリチウム電池用負極。
[2]前記表面層を形成する材料が、金属リチウムである、上記[1]に記載のリチウム電池用負極。
[3]前記表面層を形成する金属リチウムの堆積量が、0.01mg/cm以上、5mg/cm以下の範囲である、上記[2]に記載のリチウム電池用負極。
[4]前記中間層が、リチウムとの合金形成が可能な金属または合金からなる、上記[2]または[3]に記載のリチウム電池用負極。
[5]前記表面層を形成する材料が、黒鉛またはケイ素である、上記[1]に記載のリチウム電池用負極。
[6]前記中間層が、Al、Zn、Cr、Fe、Ni、Sn、Pb、Cu、Ag、Pt、Au、In、PdおよびMgから選択される、1種の金属または1種以上を含む合金からなる、上記[2]~[5]のいずれか1項に記載のリチウム電池用負極。
[7]前記中間層が、Sn、Al、Au、Mg、AgもしくはZnの金属、またはCuとSnもしくはNiとの合金からなる、上記[6]に記載のリチウム電池用負極。
[8]前記中間層の厚みが、0.01μm以上、3μm以下の範囲である、上記[1]~[7]のいずれか1項に記載のリチウム電池用負極。
[9]前記ナノカーボン材料は、カーボンナノチューブを含む、上記[1]~[8]のいずれか1項に記載のリチウム電池用負極。
[10]前記ナノカーボン材料は、カーボンナノファイバーをさらに含む、上記[9]に記載のリチウム電池用負極。
[11]リチウム二次電池用負極である、上記[1]~[10]のいずれか1項に記載のリチウム電池用負極。
[12]ナノカーボン材料を混合した電解めっき液を用い、電解めっき法によって、基板の表面に、金属または合金からなる下地層と、該下地層に固定され、前記下地層の少なくとも一方の表面から延在する複数のナノカーボン材料とを有する構造体を形成する工程と、前記構造体を構成する前記下地層の前記少なくとも一方の表面、および該表面から延在する前記複数のナノカーボン材料の延在部分の表面に、前記下地層とは異なる金属または合金からなる中間層を堆積させて形成する工程と、前記中間層の表面に、金属リチウム、黒鉛またはケイ素によって表面層を形成して積層体を構成する工程とを含むリチウム電池用負極の製造方法。
[13]前記中間層を堆積させて形成する工程は、電解めっき法または無電解めっき法によって行う上記[12]に記載のリチウム電池用負極の製造方法。
[14]前記中間層を堆積させて形成する工程は、蒸着法によって行う上記[12]に記載のリチウム電池用負極の製造方法。
[15]前記表面層を形成する材料が金属リチウムである、上記[12]~[14]のいずれか1項に記載のリチウム電池用負極の製造方法。
[16]前記表面層を形成する工程は、対極として金属リチウムまたはリチウム化合物を用いた電解めっき法によって行う、上記[15]に記載のリチウム電池用負極の製造方法。
[17]前記表面層を形成する工程は、金属リチウムを蒸着することによって行う、上記[15]に記載のリチウム電池用負極の製造方法。
[18]上記[1]~[11]のいずれか1項に記載のリチウム電池用負極を含むリチウム電池。
The gist configuration of the present invention is as follows.
[1] A structure having an underlayer made of a metal or an alloy, a plurality of nanocarbon materials fixed to the underlayer, and extending from at least one surface of the underlayer, and the structure constituting the structure An intermediate layer made of a metal or an alloy different from the underlayer, covering the at least one surface of the underlayer, and the surface of the extended portion of the plurality of nanocarbon materials extending from the surface; and the intermediate layer A negative electrode for a lithium battery having a laminate comprising a surface layer formed of lithium metal, graphite or silicon.
[2] The negative electrode for a lithium battery according to the above [1], wherein the material forming the surface layer is metallic lithium.
[3] The negative electrode for a lithium battery according to the above [2], wherein a deposition amount of the metal lithium forming the surface layer is in a range of 0.01 mg / cm 2 or more and 5 mg / cm 2 or less.
[4] The negative electrode for a lithium battery according to the above [2] or [3], wherein the intermediate layer is made of a metal or an alloy capable of forming an alloy with lithium.
[5] The negative electrode for a lithium battery according to [1], wherein the material forming the surface layer is graphite or silicon.
[6] The intermediate layer includes one or more metals selected from Al, Zn, Cr, Fe, Ni, Sn, Pb, Cu, Ag, Pt, Au, In, Pd, and Mg. The negative electrode for a lithium battery according to any one of the above [2] to [5], comprising an alloy.
[7] The negative electrode for a lithium battery according to the above [6], wherein the intermediate layer is made of a metal of Sn, Al, Au, Mg, Ag or Zn, or an alloy of Cu and Sn or Ni.
[8] The negative electrode for a lithium battery according to any one of [1] to [7], wherein the thickness of the intermediate layer is in the range of 0.01 μm or more and 3 μm or less.
[9] The negative electrode for a lithium battery according to any one of [1] to [8], wherein the nanocarbon material includes a carbon nanotube.
[10] The negative electrode for a lithium battery according to [9], wherein the nanocarbon material further includes carbon nanofibers.
[11] The negative electrode for a lithium battery according to any one of the above [1] to [10], which is a negative electrode for a lithium secondary battery.
[12] Using an electrolytic plating solution mixed with a nanocarbon material, a base layer made of a metal or an alloy is fixed on the surface of the substrate by an electrolytic plating method, and at least one surface of the base layer is fixed to the base layer. Forming a structure having a plurality of nanocarbon materials extending therefrom; and forming at least one surface of the underlayer constituting the structure, and extending the plurality of nanocarbon materials extending from the surface. Depositing and forming an intermediate layer made of a metal or an alloy different from the underlayer on the surface of the existing portion; and forming a surface layer on the surface of the intermediate layer with metallic lithium, graphite or silicon to form a laminate. And a method for producing a negative electrode for a lithium battery.
[13] The method for producing a negative electrode for a lithium battery according to the above [12], wherein the step of depositing and forming the intermediate layer is performed by an electrolytic plating method or an electroless plating method.
[14] The method for producing a negative electrode for a lithium battery according to [12], wherein the step of depositing and forming the intermediate layer is performed by a vapor deposition method.
[15] The method for producing a negative electrode for a lithium battery according to any one of the above [12] to [14], wherein the material forming the surface layer is metallic lithium.
[16] The method for producing a negative electrode for a lithium battery according to the above [15], wherein the step of forming the surface layer is performed by an electrolytic plating method using lithium metal or a lithium compound as a counter electrode.
[17] The method for producing a negative electrode for a lithium battery according to the above [15], wherein the step of forming the surface layer is performed by depositing metallic lithium.
[18] A lithium battery including the negative electrode for a lithium battery according to any one of [1] to [11].
 本発明によれば、リチウム電池の充放電を繰り返しても、充放電容量の低下を有効に防止することが可能なリチウム電池用負極およびその製造方法、ならびにリチウム電池を提供することができる。 According to the present invention, it is possible to provide a negative electrode for a lithium battery, a method for manufacturing the same, and a lithium battery that can effectively prevent a decrease in charge / discharge capacity even when charge / discharge of the lithium battery is repeated.
一の実施形態に係るリチウム金属電池用負極の一部を模式的に示す断面図である。It is sectional drawing which shows typically a part of negative electrode for lithium metal batteries which concerns on one Embodiment. 複数のカーボンナノチューブが固定された下地層を含む構造体を有する基板の一部を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically illustrating a part of a substrate having a structure including an underlayer to which a plurality of carbon nanotubes are fixed. 構造体形成工程で、基板上にカーボンナノチューブが固定された下地層を形成する際に用いる複合めっき装置の一例を模式的に示す概略図である。It is the schematic which shows typically an example of the composite plating apparatus used when forming the base layer in which the carbon nanotube was fixed on the board | substrate in a structure formation process. 下地層およびカーボンナノチューブの上に中間層を形成したものの一部を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a part of an underlayer and an intermediate layer formed on carbon nanotubes. 中間層の形成に用いるめっき装置を模式的に示す概略図である。It is the schematic which shows the plating apparatus used for formation of an intermediate | middle layer typically. 表面層形成工程の第1段階を模式的に示す断面図である。It is sectional drawing which shows the 1st stage of a surface layer formation process typically. 表面層形成工程の第2段階を模式的に示す断面図である。It is sectional drawing which shows typically the 2nd stage of a surface layer formation process. 表面層形成工程の第3段階において、中間層の表面の一部を溶融リチウムに接触させた状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically illustrating a state where a part of the surface of the intermediate layer is brought into contact with molten lithium in a third stage of the surface layer forming step. 表面層形成工程の第3段階において、図8に示す状態から、基板を支持体上に沿って移動させたときの状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state where the substrate is moved along the support from the state shown in FIG. 8 in a third stage of the surface layer forming step. 表面層形成工程の第3段階において、図9に示す状態から、基板をさらに移動させて、中間層上に表面層を形成したときの状態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a state where the substrate is further moved from the state shown in FIG. 9 to form a surface layer on the intermediate layer in the third stage of the surface layer forming step. 表面層形成工程における基板供給段階と金属リチウム箔供給段階と積層体形成段階とを行うときに用いる装置の一例を模式的に示す概略図である。It is the schematic which shows typically an example of the apparatus used when performing a board | substrate supply step, a metal lithium foil supply step, and a laminated body formation step in a surface layer formation process. 図1に示す負極を用いて作製した、第一の実施形態に係るリチウム金属電池を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically illustrating a lithium metal battery according to a first embodiment, which is manufactured using the negative electrode illustrated in FIG. 1. 第二の実施形態に係るリチウム空気電池を模式的に示す断面図である。It is sectional drawing which shows the lithium air battery which concerns on 2nd embodiment typically. 第三の実施形態に係るリチウムイオン電池を模式的に示す断面図である。It is sectional drawing which shows the lithium ion battery which concerns on 3rd embodiment typically. 第四の実施形態に係るリチウム固体電池を模式的に示す断面図である。It is sectional drawing which shows typically the lithium solid battery which concerns on 4th Embodiment. 作製した実施例1および比較例1の各リチウム二次電池について、充放電を繰り返すサイクル試験を行った際の、サイクル数と充放電容量維持率との関係をプロットした図である。FIG. 5 is a diagram plotting the relationship between the number of cycles and the charge / discharge capacity retention rate when a cycle test in which charge / discharge is repeated is performed for each of the manufactured lithium secondary batteries of Example 1 and Comparative Example 1.
 以下、本発明を実施の形態に基づき詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, the present invention will be described in detail based on embodiments. Note that the present invention is not limited to the following embodiments, and various changes can be made without changing the gist of the present invention.
 本発明者らは、負極の負極活物質として金属リチウムを用いた、リチウム金属電池およびリチウム空気電池や、負極として黒鉛やケイ素を用い、正極としてリチウム酸化物などを用いた、リチウムイオン電池などの全てのリチウム電池において、充放電を繰り返すと、それに対応して、充放電容量が低下することに鑑み、この充放電容量の低下を防止する方策について種々の検討を行った。その結果、金属または合金からなる下地層、および該下地層の少なくとも一方の表面から延在する複数のナノカーボン材料を有する構造体と、金属リチウム、黒鉛またはケイ素によって形成してなる表面層との間に、該下地層とは異なる金属または合金からなる中間層を配置することによって、リチウム電池の充放電を繰り返しても、充放電容量の低下を有効に防止できることを見出し、本発明を完成させるに至ったものである。 The present inventors have used lithium metal as a negative electrode active material of a negative electrode, lithium metal batteries and lithium air batteries, and graphite or silicon as a negative electrode, using lithium oxide and the like as a positive electrode, lithium ion batteries and the like. In all lithium batteries, when charge / discharge was repeated, the charge / discharge capacity was correspondingly reduced. In view of the fact that the charge / discharge capacity was reduced, various studies were made on measures to prevent the decrease in charge / discharge capacity. As a result, an underlayer made of a metal or an alloy, and a structure having a plurality of nanocarbon materials extending from at least one surface of the underlayer, and a surface layer formed of metallic lithium, graphite or silicon In between, by arranging an intermediate layer made of a metal or alloy different from the underlayer, it has been found that a decrease in charge / discharge capacity can be effectively prevented even when charge / discharge of a lithium battery is repeated, thereby completing the present invention. It has been reached.
<リチウム電池用負極およびその構造>
 図1は、本実施形態に係るリチウム電池に含まれるリチウム金属電池に用いられる負極10(以下、単に「負極10」ともいう)の断面の構成を模式的に示す図である。図1に示す負極10は、基板20と、基板20の表面に形成される金属または合金からなる下地層12、および、該下地層12に固定され下地層12の少なくとも一方の表面から延在する複数のナノカーボン材料としてのカーボンナノチューブ(CNT)11を有する構造体13と、構造体13上に形成される中間層14と、中間層14上に形成される金属リチウムからなる表面層15とを含んで構成された積層体16を有する。積層体16は、表面が平滑な面ではなく3次元的な表面構造を形成している。また、負極10が用いられるリチウム金属電池は、負極活物質がリチウムである。
<Negative electrode for lithium battery and its structure>
FIG. 1 is a diagram schematically illustrating a cross-sectional configuration of a negative electrode 10 (hereinafter, also simply referred to as “negative electrode 10”) used in a lithium metal battery included in the lithium battery according to the present embodiment. The negative electrode 10 shown in FIG. 1 includes a substrate 20, a base layer 12 made of a metal or an alloy formed on the surface of the substrate 20, and fixed to the base layer 12 and extending from at least one surface of the base layer 12. A structure 13 having carbon nanotubes (CNTs) 11 as a plurality of nanocarbon materials, an intermediate layer 14 formed on the structure 13, and a surface layer 15 made of metallic lithium formed on the intermediate layer 14 It has a laminated body 16 configured to include. The laminate 16 has a three-dimensional surface structure, not a smooth surface. In a lithium metal battery using the negative electrode 10, the negative electrode active material is lithium.
 [構造体]
 図1に示す構造体13は、ナノカーボン材料としてのカーボンナノチューブ11と、このカーボンナノチューブ11の少なくとも一部を埋め込んで固定する下地層12とを有しており、負極集電体として機能するものである。
[Structure]
The structure 13 shown in FIG. 1 includes a carbon nanotube 11 as a nanocarbon material and an underlayer 12 in which at least a part of the carbon nanotube 11 is embedded and fixed, and functions as a negative electrode current collector. It is.
 図1に示すように、カーボンナノチューブ11は、下地層12に固定され、下地層12の表面12aから延在している。
 ここでは、ナノカーボン材料の一例としてカーボンナノチューブを用いているが、本発明は、ナノカーボン材料がカーボンナノチューブに限定されるものではなく、例えば、カーボンナノファイバーやセルロースナノファイバーなどで構成されるナノカーボン材料を備えるリチウム電池用負極も本発明に含まれる。なお、図1では、説明の便宜上、積層体16、特にカーボンナノチューブ11は、実際の寸法よりも大きく示していて、実際の寸法とは異なる。
As shown in FIG. 1, the carbon nanotubes 11 are fixed to the underlayer 12 and extend from the surface 12a of the underlayer 12.
Here, a carbon nanotube is used as an example of a nanocarbon material. However, the present invention is not limited to a carbon nanotube, and the nanocarbon material is not limited to a carbon nanofiber or a cellulose nanofiber. A negative electrode for a lithium battery including a carbon material is also included in the present invention. In FIG. 1, for convenience of explanation, the stacked body 16, particularly, the carbon nanotubes 11 are shown larger than the actual dimensions, and are different from the actual dimensions.
 図1に示す例では、下地層12が、カーボンナノチューブ11の一端部11aを含む一部を覆って埋め込んでおり、下地層12の表面12aからカーボンナノチューブ11の他端部11bを延在させた態様を示している。また、他の態様として、下地層12がカーボンナノチューブ11の長手方向の略中央部を埋め込んで固定し、そのカーボンナノチューブ11の両端部11aおよび11bが下地層12の表面(第1面)12aおよび裏面(第2面)12bからそれぞれ延在していてもよい。 In the example shown in FIG. 1, the underlayer 12 covers and embeds a part including the one end 11 a of the carbon nanotube 11, and the other end 11 b of the carbon nanotube 11 extends from the surface 12 a of the underlayer 12. An embodiment is shown. In another embodiment, the underlayer 12 embeds and fixes a substantially central portion in the longitudinal direction of the carbon nanotube 11, and both end portions 11 a and 11 b of the carbon nanotube 11 have surfaces (first surface) 12 a and 11 a of the underlayer 12. Each may extend from the back surface (second surface) 12b.
 カーボンナノチューブ11は、グラファイトを筒状に巻いた形状を有する炭素材料であって、例えばその直径が数nm以上、100nm以下程度であり、長さが数nm以上、1mm以下程度である。カーボンナノチューブ11としては、単層構造のもの、多層構造になったもののいずれの構造であってもよい。また、ナノカーボン材料としては、カーボンナノチューブ11のみを用いるだけではなく、さらに、繊維径が100nm以上、1μm以下程度であるカーボンナノファイバーを含んでいてもよい。本実施形態のリチウム電池用負極10では、カーボンナノチューブ11が、下地層12の内部に一部が埋め込まれているとともに、その下地層12の少なくとも表面12aから延在して構成されている。 The carbon nanotube 11 is a carbon material having a shape obtained by winding graphite in a tubular shape, and has a diameter of, for example, several nm or more and 100 nm or less, and a length of several nm or more and 1 mm or less. The carbon nanotube 11 may have either a single-layer structure or a multi-layer structure. Further, as the nanocarbon material, not only the carbon nanotube 11 alone, but also a carbon nanofiber having a fiber diameter of about 100 nm or more and about 1 μm or less may be included. In the negative electrode 10 for a lithium battery according to the present embodiment, the carbon nanotubes 11 are partially embedded in the underlayer 12 and extend from at least the surface 12 a of the underlayer 12.
 下地層12は、中間層14を形成する下地層として配置されている。また、下地層12は、銅、ニッケル、亜鉛、アルミニウム、金、銀などの導電性金属、またこれら金属あるいはその他の金属を含む合金などを有する。これら金属成分のうち、特に材料コストや導電性などを考慮すると、下地層12は銅で構成されることが好ましい。本実施形態のリチウム電池用負極10では、下地層12がカーボンナノチューブ11の一部を埋め込んで固定するとともに、下地層12の表面12aおよびこの表面12aから延在する複数のカーボンナノチューブ11の延在部分の表面に、中間層14、および金属リチウムからなる負極活物質としての表面層15が順次堆積されて積層体16が構成される。 The underlayer 12 is disposed as an underlayer for forming the intermediate layer 14. The base layer 12 includes a conductive metal such as copper, nickel, zinc, aluminum, gold, and silver, and an alloy containing these metals or other metals. Among these metal components, the base layer 12 is preferably made of copper in consideration of the material cost and conductivity. In the negative electrode 10 for a lithium battery according to the present embodiment, the base layer 12 embeds and fixes a part of the carbon nanotubes 11, and extends the surface 12 a of the base layer 12 and the plurality of carbon nanotubes 11 extending from the surface 12 a. On the surface of the portion, a middle layer 14 and a surface layer 15 as a negative electrode active material made of metallic lithium are sequentially deposited to form a laminate 16.
 また、下地層12の厚みは、3μm以上、5mm以下であることが好ましい。 (4) The thickness of the underlayer 12 is preferably 3 μm or more and 5 mm or less.
 このように、積層体16においては、カーボンナノチューブ11が、下地層12に埋め込まれて構成されているとともに、この下地層12の少なくとも表面12aから延在することにより、下地層12の表面12aは、平滑な表面ではなく、3次元的な表面構造を形成している。したがって、下地層12の表面12aでは、平滑な面の状態と比べて、その表面積が大きくなっている。本実施形態のリチウム電池用負極10では、このようなカーボンナノチューブ11が延在する表面12aを有する下地層12が負極集電体として構成されており、その表面積の大きな下地層12上に、中間層14および表面層15を形成している。 As described above, in the laminate 16, the carbon nanotubes 11 are configured to be embedded in the underlayer 12, and extend from at least the surface 12 a of the underlayer 12, so that the surface 12 a of the underlayer 12 is , Not a smooth surface, but a three-dimensional surface structure. Therefore, the surface area of the surface 12a of the underlayer 12 is larger than that of the smooth surface. In the negative electrode 10 for a lithium battery according to the present embodiment, the underlayer 12 having the surface 12a on which the carbon nanotubes 11 extend is configured as a negative electrode current collector. The layer 14 and the surface layer 15 are formed.
 ここで、下地層12の表面12aにおけるカーボンナノチューブ11の面密度としては、特に限定されないが、0.1mg/cm以上、10mg/cm以下程度であることが好ましい。この面密度が上記範囲内であると、リチウム電池の充放電時に、表面層15の表面15aに生じるデンドライトの成長を十分に抑制することができるため、電池の安全性が向上する。 Here, the surface density of the carbon nanotubes 11 on the surface 12a of the underlying layer 12 is not particularly limited, 0.1 mg / cm 2 or more is preferably about 10 mg / cm 2 or less. When the areal density is within the above range, the growth of dendrites generated on the surface 15a of the surface layer 15 during charging and discharging of the lithium battery can be sufficiently suppressed, and the safety of the battery is improved.
 下地層12の表面12aからカーボンナノチューブ11が延在した態様としては、その表面12aからほぼ垂直方向に延在していてもよく、また斜め方向に延在していてもよく、さらに隣接するカーボンナノチューブ11同士が絡み合うように延在していてもよい。また、カーボンナノチューブ11は、下地層12の表面12aに一定の間隔で配列した状態で外方に向かって延在していること態様だけには限られず、ランダムな間隔で配列した状態で延在する態様であってもよい。 As an aspect in which the carbon nanotubes 11 extend from the surface 12a of the underlayer 12, the carbon nanotubes 11 may extend substantially vertically or obliquely from the surface 12a. The nanotubes 11 may extend so as to be entangled with each other. Further, the carbon nanotubes 11 are not limited to the mode in which the carbon nanotubes 11 extend outward in a state where they are arranged at regular intervals on the surface 12a of the underlayer 12, but extend in a state where they are arranged at random intervals. It may be a mode of doing.
 [中間層]
 中間層14は、金属または合金からなる下地層12と負極活物質(金属リチウム)からなる表面層15との間、およびカーボンナノチューブ11と表面層15との間に配置され、下地層12とは異なる金属または合金で構成される。本実施形態では、このように中間層14を配置することによって、従来のリチウム電池の場合のように、リチウム電池の充放電を繰り返すことによって充放電容量が低下するのを有効に防止することができる。
[Intermediate layer]
The intermediate layer 14 is disposed between the underlayer 12 made of a metal or an alloy and the surface layer 15 made of the negative electrode active material (metal lithium), and between the carbon nanotube 11 and the surface layer 15. Composed of different metals or alloys. In the present embodiment, by arranging the intermediate layer 14 in this manner, it is possible to effectively prevent the charge / discharge capacity from being reduced by repeating charge / discharge of the lithium battery as in the case of the conventional lithium battery. it can.
 中間層14を、リチウムとの合金形成が可能な金属または合金で構成すれば、リチウム電池の充放電を繰り返しても、充放電容量の低下をより有効に防止できる。 (4) If the intermediate layer 14 is made of a metal or an alloy capable of forming an alloy with lithium, a decrease in charge / discharge capacity can be more effectively prevented even when charging and discharging of the lithium battery are repeated.
 中間層14として、特に、Al、Zn、Cr、Fe、Ni、Sn、Pb、Cu、Ag、Pt、Au、In、PdおよびMgから選択される、1種の金属または1種以上を含む合金を用いると、リチウム電池の充放電を繰り返しても、充放電容量の低下を有効に防止できる。 As the intermediate layer 14, in particular, one kind of metal selected from Al, Zn, Cr, Fe, Ni, Sn, Pb, Cu, Ag, Pt, Au, In, Pd and Mg, or an alloy containing one or more kinds By using, it is possible to effectively prevent a decrease in charge / discharge capacity even when charge / discharge of a lithium battery is repeated.
 さらに好ましくは、中間層14をSn、Al、Au、Mg、AgもしくはZnの金属、またはCuとSnもしくはNiとの合金で構成すると、リチウム電池の充放電を繰り返しても、充放電容量の低下を防止する効果を一層高めることができる。 More preferably, when the intermediate layer 14 is formed of a metal of Sn, Al, Au, Mg, Ag, or Zn, or an alloy of Cu and Sn or Ni, the charge / discharge capacity is reduced even if the charge / discharge of the lithium battery is repeated. Can be further enhanced.
 さらに、後記するように中間層14をSnで構成すると、リチウム電池の充放電を繰り返しても、充放電容量の低下を防止する効果をより一層高めることができる。 Furthermore, when the intermediate layer 14 is made of Sn as described later, the effect of preventing a decrease in charge / discharge capacity can be further enhanced even if charge / discharge of the lithium battery is repeated.
 また、中間層14の厚みは、0.01μm以上、3mm以下であることが好ましい。中間層14の厚みが、0.01μm以上、3mm以下であると、後記するリチウム金属析出法による金属リチウムの析出時に、中間層14を構成する金属または合金成分と、析出した金属リチウムとが合金を形成することにより、比較的均一に金属リチウムを析出させることができ、サイクル特性の劣化を抑えることができると考えられる。 The thickness of the intermediate layer 14 is preferably 0.01 μm or more and 3 mm or less. When the thickness of the intermediate layer 14 is 0.01 μm or more and 3 mm or less, at the time of depositing metallic lithium by a lithium metal deposition method described later, the metal or alloy component constituting the intermediate layer 14 and the deposited metallic lithium are alloyed. It can be considered that by forming, metal lithium can be deposited relatively uniformly and deterioration of cycle characteristics can be suppressed.
 [表面層]
 本実施形態のリチウム電池用負極10では、表面層15として、金属リチウムからなる負極活物質が用いられ、表面層15は金属リチウムが堆積された層で構成される。
[Surface layer]
In the negative electrode 10 for a lithium battery according to the present embodiment, a negative electrode active material made of metallic lithium is used as the surface layer 15, and the surface layer 15 is formed of a layer on which metallic lithium is deposited.
 図1に示す、リチウム電池用負極10では、下地層12の表面12a上、および下地層12の表面12aから延在するカーボンナノチューブ11上に中間層14が形成され、該中間層14上に金属リチウムからなる負極活物質が堆積されて表面層15を形成している。このように、金属リチウムの表面層15は、カーボンナノチューブ11が下地層12の表面12aから延在した立体的な構造を形成するため、その表面層15の表面15a、すなわち堆積された金属リチウムの表面は、平滑な面ではなく3次元的な表面構造を有する面となる。 In the negative electrode 10 for a lithium battery shown in FIG. 1, an intermediate layer 14 is formed on a surface 12 a of an underlayer 12 and on a carbon nanotube 11 extending from the surface 12 a of the underlayer 12. A negative electrode active material made of lithium is deposited to form a surface layer 15. As described above, since the surface layer 15 of metallic lithium forms a three-dimensional structure in which the carbon nanotubes 11 extend from the surface 12a of the underlayer 12, the surface 15a of the surface layer 15, that is, the deposited metallic lithium The surface is not a smooth surface but a surface having a three-dimensional surface structure.
 表面層15を構成する金属リチウムの堆積量は、特に限定されないが、電池特性の低下防止、生産性の向上、なおかつデンドライトの成長の抑制の点から、0.01mg/cm以上、5mg/cm以下程度であることが好ましい。また、金属リチウムの堆積量が0.01mg/cm以上であると、負極活物質である金属リチウムの量が十分であり、電池特性は良好である。また、金属リチウムの堆積量が5.00mg/cm以下であると、生産性およびデンドライトの成長の抑制を有効に図ることができる。 The deposition amount of metallic lithium constituting the surface layer 15 is not particularly limited, but is 0.01 mg / cm 2 or more and 5 mg / cm 2 from the viewpoint of preventing deterioration of battery characteristics, improving productivity, and suppressing dendrite growth. It is preferably about 2 or less. Further, when the deposition amount of metallic lithium is 0.01 mg / cm 2 or more, the amount of metallic lithium as the negative electrode active material is sufficient, and the battery characteristics are good. When the deposition amount of metallic lithium is 5.00 mg / cm 2 or less, productivity and suppression of dendrite growth can be effectively achieved.
 また、金属リチウムの表面層15は、ある程度の厚みで堆積されていればよく、カーボンナノチューブ11および下地層12の表面上に全面に亘って堆積された状態が好ましい。表面層15の堆積状態は、電池特性に影響を及ぼさない範囲で変更できる。部分的に堆積された状態でも許容される。 The surface layer 15 of metallic lithium only needs to be deposited to a certain thickness, and is preferably deposited over the entire surface of the carbon nanotubes 11 and the underlayer 12. The deposition state of the surface layer 15 can be changed within a range that does not affect the battery characteristics. Partially deposited state is acceptable.
 [基板]
 基板20は、導電率の高い金属または合金から構成されることが好ましい。例えば、基板20は、銅、銅合金、ニッケル、ニッケル合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、金、金合金、銀、銀合金、およびステンレス鋼の群から選択される金属または合金から構成することができ、形状としては、箔、フィルム、板などが挙げられる。また、基板20は、要求される特性に応じて、導電性ポリマーのような種々の添加材を含んでもよい。
[substrate]
The substrate 20 is preferably made of a metal or an alloy having high conductivity. For example, substrate 20 comprises a metal or alloy selected from the group of copper, copper alloy, nickel, nickel alloy, zinc, zinc alloy, aluminum, aluminum alloy, gold, gold alloy, silver, silver alloy, and stainless steel. The shape may be a foil, a film, a plate, or the like. Further, the substrate 20 may include various additives such as a conductive polymer depending on required characteristics.
 基板20の厚みは、3μm以上、5mm以下の範囲内であることが、リチウム電池用負極10の製造時の操作性に優れる点で好ましい。 (4) The thickness of the substrate 20 is preferably in the range of 3 μm or more and 5 mm or less from the viewpoint of excellent operability in manufacturing the negative electrode 10 for a lithium battery.
 以上説明したリチウム電池用負極10によれば、基板20と、基板20の上に形成される、金属または合金からなる下地層12、および該下地層12に固定され、下地層12の少なくとも一方の表面12aから延在する複数のカーボンナノチューブ11を有する構造体13と、リチウム電池用負極10の負極活物質として機能する表面層15との間に、下地層12とは異なる金属または合金からなる中間層14を配置したので、リチウム電池の充放電を繰り返しても、充放電容量の低下を有効に防止できる。 According to the negative electrode 10 for a lithium battery described above, the substrate 20, the base layer 12 made of a metal or an alloy, formed on the substrate 20, and at least one of the base layers 12 fixed to the base layer 12. An intermediate layer made of a metal or an alloy different from the underlayer 12 is provided between the structure 13 having the plurality of carbon nanotubes 11 extending from the surface 12a and the surface layer 15 functioning as a negative electrode active material of the negative electrode 10 for a lithium battery. Since the layer 14 is provided, a decrease in the charge / discharge capacity can be effectively prevented even when the charge / discharge of the lithium battery is repeated.
(リチウム電池用負極の製造方法)
 次に、本実施形態に係るリチウム電池用負極10の製造方法について説明する。
(Method of manufacturing negative electrode for lithium battery)
Next, a method for manufacturing the negative electrode 10 for a lithium battery according to the present embodiment will be described.
 本実施形態のリチウム電池用負極10(図1、参照)の製造方法は、基板20の表面に、金属または合金からなる下地層12、および下地層12に固定され下地層12の少なくとも一方の表面から延在する複数のカーボンナノチューブ11を有する構造体13を形成する構造体形成工程と、下地層12の一方の表面12a、および表面12aから延在する複数のカーボンナノチューブ11の延在部分の表面に、下地層12とは異なる金属または合金を堆積させて中間層14を形成する中間層形成工程と、中間層14の表面に、金属リチウムを堆積させて表面層15を形成して積層体を構成する表面層形成工程とを有する。 In the method of manufacturing the negative electrode 10 for a lithium battery according to the present embodiment (see FIG. 1), an underlayer 12 made of a metal or an alloy and at least one surface of the underlayer 12 fixed to the underlayer 12 are provided on the surface of the substrate 20. Forming a structure 13 having a plurality of carbon nanotubes 11 extending from the surface, one surface 12a of the underlayer 12, and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a Then, an intermediate layer forming step of forming an intermediate layer 14 by depositing a metal or an alloy different from the underlayer 12, and forming a surface layer 15 by depositing metallic lithium on the surface of the intermediate layer 14 to form a laminate And forming a surface layer.
(構造体形成工程)
 まず、構造体形成工程について説明する。
(Structure forming step)
First, the structure forming step will be described.
 構造体形成工程では、図2に示すように、基板20上に、下地層12、および下地層12中に一端部11aを含む一部が埋設されて固定され、下地層12の表面12aから突出して延在する複数のカーボンナノチューブ11を形成して、下地層12およびカーボンナノチューブ11を有する構造体13を形成する。構造体13の作製方法については、特に限定されるものではないが、例えば、電解液中にカーボンナノチューブを分散させた状態で行う電解めっき(複合めっき)法が挙げられる。 In the structure forming step, as shown in FIG. 2, the base layer 12 and a part including one end 11 a are buried and fixed in the base layer 12, and project from the surface 12 a of the base layer 12. Then, a plurality of carbon nanotubes 11 extending to form a structure 13 having the underlayer 12 and the carbon nanotubes 11 are formed. The method for manufacturing the structure 13 is not particularly limited, and includes, for example, an electrolytic plating (composite plating) method in which carbon nanotubes are dispersed in an electrolytic solution.
 図3は、基板20上に、下地層12、および下地層12の表面から延在する複数のカーボンナノチューブ11(図2、参照)が固定された下地層12を形成するのに用いる複合めっき装置30の一例を模式的に示す概略図である。図3に示すように、複合めっき装置30は、前処理槽21と、電解めっき処理槽23と、後処理槽25と、陰極給電ローラー27と、ニップローラー28とを備える。金属箔などからなる長尺シート状の基板20は、陰極給電ローラー27およびニップローラー28によって水平方向に搬送されて、まず前処理槽21で洗浄処理が施された後、電解めっき処理槽23で電解めっき(複合めっき)処理が施され、続いて後処理槽25で防錆処理が施される。このようにして、構造体形成工程で、下地層12、および下地層12の表面から延在する複数のカーボンナノチューブ11(図2、参照)からなる構造体13が基板20上に形成される。 FIG. 3 shows a composite plating apparatus used to form, on a substrate 20, an underlayer 12 to which an underlayer 12 and a plurality of carbon nanotubes 11 (see FIG. 2) extending from the surface of the underlayer 12 are fixed. It is the schematic which shows an example of 30 typically. As shown in FIG. 3, the composite plating apparatus 30 includes a pretreatment tank 21, an electrolytic plating treatment tank 23, a post-treatment tank 25, a cathode power supply roller 27, and a nip roller 28. The long sheet-shaped substrate 20 made of a metal foil or the like is transported in a horizontal direction by a cathode power supply roller 27 and a nip roller 28, and is first subjected to a cleaning treatment in a pretreatment tank 21, and then to an electrolytic plating treatment tank 23. Electrolytic plating (composite plating) is performed, and then rust prevention is performed in the post-treatment tank 25. Thus, in the structure forming step, the structure 13 including the underlayer 12 and the plurality of carbon nanotubes 11 (see FIG. 2) extending from the surface of the underlayer 12 is formed on the substrate 20.
 前処理槽21は、基板20に対して脱脂処理や酸洗処理などの前処理を行う処理槽であり、前処理を行うための薬液(前処理液22)が収容されている。 (4) The pretreatment tank 21 is a treatment tank that performs a pretreatment such as a degreasing treatment or an pickling treatment on the substrate 20, and contains a chemical solution (a pretreatment liquid 22) for performing the pretreatment.
 電解めっき処理槽23は、電解めっき液24を収容し、上部と下部とにそれぞれ陽極電極23a、23bを備える。電解めっき液24には、下地層12を構成する金属に還元される金属イオンを含む溶液に、カーボンナノチューブ11を分散させたものを用いる。 The electrolytic plating tank 23 contains the electrolytic plating solution 24 and has anode electrodes 23a and 23b on the upper and lower parts, respectively. As the electrolytic plating solution 24, a solution in which the carbon nanotubes 11 are dispersed in a solution containing metal ions that are reduced to the metal constituting the underlayer 12 is used.
 電解めっき液24として、下地層12を銅めっきで形成する場合には、電解めっき液として、例えば、20g/L以上、300g/L以下程度の硫酸第1銅(CuSO・5HO)と、5g/L以上、50g/L以下程度の硫酸(HSO)とを混合して得られた硫酸銅電解めっき液を用いることができる。電解めっき液24中のカーボンナノチューブの含有量としては、例えば、1質量%以上、50質量%以下程度である。なお、電解めっき液24の組成やカーボンナノチューブの含有量は、これらに限られるものではなく、要求される特性に応じて、適宜調整される。また、電解めっき液24は、必要に応じて、塩化物イオン、ポリエーテル、レベリング剤、界面活性剤などの種々の添加物を含有してもよい。 When the underlying layer 12 is formed by copper plating as the electrolytic plating solution 24, for example, cuprous sulfate (CuSO 4 .5H 2 O) of about 20 g / L to 300 g / L is used as the electrolytic plating solution. An electrolytic plating solution of copper sulfate obtained by mixing sulfuric acid (H 2 SO 4 ) of about 5 g / L or more and about 50 g / L or less can be used. The content of the carbon nanotubes in the electrolytic plating solution 24 is, for example, about 1% by mass or more and 50% by mass or less. Note that the composition of the electrolytic plating solution 24 and the content of the carbon nanotubes are not limited to these, but are appropriately adjusted according to required characteristics. Further, the electrolytic plating solution 24 may contain various additives such as chloride ions, polyethers, leveling agents, and surfactants, if necessary.
 電解めっき処理槽23では、陽極電極23a、23bの両方を通電させることによって、水平方向に搬送されている基板20の両面に電解めっき処理を施して、電解めっき皮膜である下地層12を基板20上に形成すると共に、カーボンナノチューブ11(図2、参照)を下地層12に固定することができる。なお、基板20の片面のみに複数のカーボンナノチューブ11を固定した下地層12を形成する場合には、下地層12を形成する基板20の表面側に位置する陽極電極23aまたは23bのみを通電すればよい。 In the electrolytic plating tank 23, both of the anode electrodes 23 a and 23 b are energized to perform electrolytic plating on both sides of the substrate 20 that is being transported in the horizontal direction, so that the base layer 12 that is an electrolytic plating film is The carbon nanotubes 11 (see FIG. 2) can be fixed to the underlayer 12 while being formed thereon. In the case where the underlayer 12 in which the plurality of carbon nanotubes 11 are fixed on only one surface of the substrate 20 is formed, only the anode electrode 23a or 23b located on the surface side of the substrate 20 on which the underlayer 12 is formed may be energized. Good.
 後処理槽25は、電解めっき処理により基板20上に形成された下地層12に対して防錆処理などの後処理を行う処理槽であり、後処理を行うための薬液(後処理液26)が収容されている。 The post-treatment tank 25 is a treatment tank that performs post-treatment such as rust prevention treatment on the base layer 12 formed on the substrate 20 by electrolytic plating, and is a chemical solution for performing post-treatment (post-treatment liquid 26). Is housed.
(中間層形成工程)
 次に、中間層形成工程について説明する。
(Intermediate layer forming step)
Next, the intermediate layer forming step will be described.
 中間層形成工程では、図4に示すように、基板20に備わる下地層12の少なくとも一方の表面12a、および該表面12aから延在する複数のカーボンナノチューブ11の延在部分の表面に、下地層12とは異なる金属または合金からなる中間層14を形成する。中間層14の形成方法は、特に限定されるものではないが、例えば、電解めっき法または無電解めっき法、あるいは蒸着法を用いることができる。 In the intermediate layer forming step, as shown in FIG. 4, at least one surface 12a of the underlayer 12 provided on the substrate 20 and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a are provided on the underlayer. An intermediate layer 14 made of a metal or alloy different from 12 is formed. The method for forming the intermediate layer 14 is not particularly limited, and for example, an electrolytic plating method, an electroless plating method, or a vapor deposition method can be used.
 図5は、電解めっき法により、下地層12の少なくとも一方の表面12a、および該表面12aから延在する複数のカーボンナノチューブ11の延在部分の表面に、中間層14(図4、参照)を形成するのに用いるめっき装置31の一例を模式的に示す概略図である。図5に示すように、めっき装置31は、電解めっき処理槽33と、後処理槽35と、陰極給電ローラー27と、ニップローラー28とを備える。構造体形成工程で作製された、下地層12および複数のカーボンナノチューブ11からなる構造体13を有する長尺シート状の基板20は、陰極給電ローラー27およびニップローラー28によって水平方向に搬送されて、まず電解めっき処理槽33内で電解めっき処理が施された後、後処理槽35で防錆処理が施される。このようにして、中間層形成工程で、下地層12の少なくとも一方の表面12a、および該表面12aから延在する複数のカーボンナノチューブ11の延在部分の表面に、中間層14(図4、参照)が形成される。 FIG. 5 shows that an intermediate layer 14 (see FIG. 4) is formed on at least one surface 12a of the base layer 12 and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a by electrolytic plating. It is the schematic which shows an example of the plating apparatus 31 used for formation typically. As shown in FIG. 5, the plating apparatus 31 includes an electrolytic plating tank 33, a post-treatment tank 35, a cathode power supply roller 27, and a nip roller 28. The long sheet-like substrate 20 having the base layer 12 and the structure 13 including the plurality of carbon nanotubes 11 manufactured in the structure forming step is horizontally transferred by the cathode feeding roller 27 and the nip roller 28, First, after electrolytic plating is performed in the electrolytic plating tank 33, rust prevention processing is performed in the post-processing tank 35. In this way, in the intermediate layer forming step, the intermediate layer 14 (see FIG. 4) is provided on at least one surface 12a of the underlayer 12 and the surface of the extending portion of the plurality of carbon nanotubes 11 extending from the surface 12a. ) Is formed.
 電解めっき処理槽33は、電解めっき液34を収容し、上部と下部とにそれぞれ陽極電極23a、23bを備える。電解めっき液34には、中間層14を構成する金属に還元される金属イオンを含む溶液を用いる。 The electrolytic plating tank 33 contains an electrolytic plating solution 34 and has anode electrodes 23a and 23b on the upper and lower parts, respectively. As the electrolytic plating solution 34, a solution containing metal ions that are reduced to the metal constituting the intermediate layer 14 is used.
 電解めっき液34として、例えば、10g/L以上、100g/L以下程度の硫酸第1スズ(SnSO)と、50g/L以上、150g/L以下程度の硫酸(HSO)とを混合して得られたスズ電解質溶液を用いることができる。なお、電解めっき液34の組成は、これらに限られるものではなく、要求される特性に応じて、適宜調整される。また、電解めっき液34は、必要に応じて、界面活性剤などの種々の添加物を含有してもよい。 As the electrolytic plating solution 34, for example, stannous sulfate (SnSO 4 ) of about 10 g / L or more and 100 g / L or less and sulfuric acid (H 2 SO 4 ) of about 50 g / L or more and 150 g / L or less are mixed. Can be used. Note that the composition of the electrolytic plating solution 34 is not limited to these, but is appropriately adjusted according to required characteristics. Further, the electrolytic plating solution 34 may contain various additives such as a surfactant, if necessary.
 電解めっき処理槽33では、陽極電極23a、23bの両方を通電させることによって、水平方向に搬送されている、構造体13を有する基板20の両面に電解めっき処理を施して、電解めっき皮膜である中間層14を、下地層12の表面12aおよびカーボンナノチューブ11上に形成することができる。なお、構造体13を有する基板20の片面のみに中間層14を形成する場合には、中間層14を形成しようとする、当該基板20の表面側に位置する陽極電極23aまたは23bのみを通電すればよい。 In the electrolytic plating tank 33, by supplying electricity to both the anode electrodes 23 a and 23 b, electrolytic plating is performed on both surfaces of the substrate 20 having the structure 13, which is transported in the horizontal direction, to form an electrolytic plating film. The intermediate layer 14 can be formed on the surface 12 a of the underlayer 12 and on the carbon nanotubes 11. When the intermediate layer 14 is formed only on one surface of the substrate 20 having the structure 13, only the anode electrode 23a or 23b located on the surface side of the substrate 20 where the intermediate layer 14 is to be formed needs to be energized. I just need.
 後処理槽35は、電解めっき処理により、構造体13を有する基板20上に形成された中間層14に対して防錆処理などの後処理を行う処理槽であり、後処理を行うための薬液(後処理液36)が収容されている。 The post-treatment tank 35 is a treatment tank for performing post-treatment such as rust prevention treatment on the intermediate layer 14 formed on the substrate 20 having the structure 13 by electrolytic plating, and is a chemical solution for performing the post-treatment. (Post-treatment liquid 36) is contained.
(表面層形成工程)
 次に、表面層形成工程について説明する。
(Surface layer forming step)
Next, the surface layer forming step will be described.
 表面層15の形成方法は、特に限定されるものではないが、例えば、セルの外部における電解めっきによるリチウム金属析出法、セル内において、例えば正極活物質に含まれるリチウムによるリチウム金属析出法、蒸着法によるリチウム金属析出法などを用いることができる。それ以外にも、表面層形成工程では、中間層14の表面に、溶融リチウムを押圧接触させて溶融リチウム層を形成した後、これを冷却して、溶融リチウム層を、金属リチウムからなる表面層15になるまで凝固させて行う、溶融リチウム押圧接触によるリチウム金属析出法を用いることができる。この溶融リチウム押圧接触によるリチウム金属析出法を用いる表面層形成工程は、アルゴンや窒素などの不活性雰囲気中で行われる。この工程は、例えば、以下に示す2種類の方法を適用することができる。 The method for forming the surface layer 15 is not particularly limited. For example, a lithium metal deposition method using electrolytic plating outside the cell, a lithium metal deposition method using lithium contained in the positive electrode active material, a vapor deposition method inside the cell. For example, a lithium metal deposition method by a method can be used. In addition, in the surface layer forming step, the molten lithium is pressed into contact with the surface of the intermediate layer 14 to form a molten lithium layer, and then cooled to form a molten lithium layer on the surface layer made of metallic lithium. It is possible to use a lithium metal deposition method by molten lithium pressing contact, which is carried out by solidification until the temperature reaches 15. The surface layer forming step using the lithium metal deposition method by molten lithium pressure contact is performed in an inert atmosphere such as argon or nitrogen. In this step, for example, the following two types of methods can be applied.
 まず、第1の方法として、表面層形成工程は、第1段階、第2段階、および第3段階を有する。 First, as a first method, the surface layer forming step has a first stage, a second stage, and a third stage.
 第1段階では、図6に示すように、支持体41上に金属リチウム箔42を載置する。支持体41は、金属リチウムとは合金化しない金属成分からなる。例えば、支持体41は金属ニッケルからなる。また、金属リチウム箔42の厚みは、中間層14上に形成される表面層15のリチウムの堆積量の観点から、0.1μm以上、100μm以下であることが好ましい。 In the first stage, as shown in FIG. 6, a metal lithium foil 42 is placed on a support 41. The support 41 is made of a metal component that is not alloyed with metallic lithium. For example, the support 41 is made of metallic nickel. The thickness of the metal lithium foil 42 is preferably 0.1 μm or more and 100 μm or less from the viewpoint of the amount of lithium deposited on the surface layer 15 formed on the intermediate layer 14.
 第2段階では、図7に示すように、支持体41上で金属リチウム箔42を加熱し溶融リチウム43を生成する。金属リチウム箔42の加熱温度は、例えば200℃以上、500℃以下の範囲内である。例えば、支持体41をホットプレート40の上に設置し、ホットプレート40を加熱することによって、支持体41および金属リチウム箔42が加熱され、支持体41上に載置されていた金属リチウム箔42は、溶融して溶融リチウム43に変化する。 In the second stage, as shown in FIG. 7, the metallic lithium foil 42 is heated on the support 41 to generate molten lithium 43. The heating temperature of the metal lithium foil 42 is, for example, in the range of 200 ° C. or more and 500 ° C. or less. For example, by placing the support 41 on the hot plate 40 and heating the hot plate 40, the support 41 and the metal lithium foil 42 are heated, and the metal lithium foil 42 placed on the support 41 is heated. Melts and changes to molten lithium 43.
 ホットプレート40によって金属リチウム箔42を効率的に加熱するため、第2段階の前に、支持体41上の金属リチウム箔42をローラー部材などによって押圧し、金属リチウム箔42を支持体41に密着させてもよい。この場合、金属リチウム箔42とローラー部材との接触による金属リチウム箔42の合金化を回避するため、ローラー部材は金属リチウムとは合金化しない金属成分からなる。 Before the second step, the metal lithium foil 42 on the support 41 is pressed by a roller member or the like so as to efficiently heat the metal lithium foil 42 by the hot plate 40, and the metal lithium foil 42 is adhered to the support 41. May be. In this case, in order to avoid alloying of the metal lithium foil 42 due to contact between the metal lithium foil 42 and the roller member, the roller member is made of a metal component that does not alloy with lithium metal.
 第3段階では、図8~図10に示すように、構造体13を有する基板20を、中間層14が溶融リチウム43に接触した状態で、支持体41上に沿って移動させることにより、中間層14の表面に、溶融リチウム層44を形成した後、引き続き冷却して、溶融リチウム層44を、金属リチウムからなる表面層15になるまで凝固させる。図示の例では、支持体41を固定し、構造体13の上に中間層14を形成した構造を有する基板20を右から左に移動させて、表面層15を形成する場合を示している。 In the third stage, as shown in FIGS. 8 to 10, the substrate 20 having the structure 13 is moved along the support 41 while the intermediate layer 14 is in contact with the molten lithium 43, whereby After forming the molten lithium layer 44 on the surface of the layer 14, the molten lithium layer 44 is cooled and solidified until the molten lithium layer 44 becomes the surface layer 15 made of lithium metal. The illustrated example shows a case where the surface layer 15 is formed by fixing the support 41 and moving the substrate 20 having the structure in which the intermediate layer 14 is formed on the structure 13 from right to left.
 図8に示すように、下地層12およびカーボンナノチューブ11の表面に形成した中間層14が溶融リチウム43に接触するように、基板20の中間層14を支持体41上に対向させてホットプレート40に載置した後、該基板20を支持体41に向かって押圧して、下地層12およびカーボンナノチューブ11の表面に溶融リチウム43を押圧接触(堆積)させる。続いて、図9に示すように、中間層14と溶融リチウム43(図8、参照)とを接触(堆積)させた状態で、該基板20を支持体41の表面に沿って移動させると、溶融リチウム43が支持体41上から中間層14の表面に堆積し、中間層14の表面に溶融リチウム層44が形成される。続いて、図10に示すように、溶融リチウム層44が完全に支持体41から離れると、ホットプレート40による熱が溶融リチウム層44に伝達されなくなるため、基板20の中間層14の表面に堆積した溶融リチウム層44は、冷却されて凝固し、これによって、表面層15が形成される。こうして、リチウム電池用負極10が得られる。 As shown in FIG. 8, the intermediate layer 14 of the substrate 20 is opposed to the support 41 so that the intermediate layer 14 formed on the surface of the underlayer 12 and the carbon nanotubes 11 is in contact with the molten lithium 43. After that, the substrate 20 is pressed toward the support 41, and the molten lithium 43 is pressed into contact with (deposited on) the surfaces of the underlayer 12 and the carbon nanotubes 11. Subsequently, as shown in FIG. 9, when the substrate 20 is moved along the surface of the support 41 while the intermediate layer 14 and the molten lithium 43 (see FIG. 8) are in contact (deposit). The molten lithium 43 is deposited on the surface of the intermediate layer 14 from above the support 41, and a molten lithium layer 44 is formed on the surface of the intermediate layer 14. Subsequently, as shown in FIG. 10, when the molten lithium layer 44 is completely separated from the support 41, heat from the hot plate 40 is not transmitted to the molten lithium layer 44, so that the heat is deposited on the surface of the intermediate layer 14 of the substrate 20. The molten lithium layer 44 thus cooled is solidified by cooling, whereby the surface layer 15 is formed. Thus, the negative electrode 10 for a lithium battery is obtained.
 次に、第2の方法として、基板供給段階と金属リチウム箔供給段階と積層体形成段階とを有する。 Next, the second method includes a substrate supply step, a metal lithium foil supply step, and a laminate formation step.
 図11は、基板供給段階と金属リチウム箔供給段階とを同時に行って積層体形成段階を連続して行う、積層体連続形成装置50の一例を模式的に示す概略図である。図11に示すように、積層体連続形成装置50は、一対の加熱部材51a、51bと膜厚調整部材57とを備える。例えば、加熱部材51aは筒状の回転部材からなり、加熱部材51bは板状の固定部材からなる。また、膜厚調整部材57は、加熱部材51aを挟んで、金属リチウム箔53の供給側とは反対側に位置し、かつ中間層14の表面に対向する上方位置に設けられている。膜厚調整部材57の下面57aは、下地層12の表面に対して平行ではなく所定の角度をなし、加熱部材51aから遠ざかるにつれて、下地層12の表面に近づくような傾斜面で形成されている。基板20は、図11では不図示の搬送装置によって右から左に移動する。 FIG. 11 is a schematic view schematically showing an example of a continuous laminate forming apparatus 50 in which the substrate supply step and the metal lithium foil supply step are simultaneously performed to continuously perform the laminate formation step. As shown in FIG. 11, the laminated body continuous forming apparatus 50 includes a pair of heating members 51a and 51b and a film thickness adjusting member 57. For example, the heating member 51a is formed of a cylindrical rotating member, and the heating member 51b is formed of a plate-shaped fixing member. The film thickness adjusting member 57 is located on the opposite side to the supply side of the metal lithium foil 53 with the heating member 51a interposed therebetween, and is provided at an upper position facing the surface of the intermediate layer 14. The lower surface 57a of the film thickness adjusting member 57 is not parallel to the surface of the underlayer 12 but forms a predetermined angle, and is formed as an inclined surface that approaches the surface of the underlayer 12 as the distance from the heating member 51a increases. . The substrate 20 is moved from right to left by a transfer device not shown in FIG.
 基板供給段階では、基板20を、一対の加熱部材51a、51bの間に供給する。具体的には、中間層14の表面が加熱部材51aに対向するように、基板20が供給される。例えば、基板20は、不図示の基板原反ロールから連続供給される。 In the substrate supply stage, the substrate 20 is supplied between the pair of heating members 51a and 51b. Specifically, the substrate 20 is supplied such that the surface of the intermediate layer 14 faces the heating member 51a. For example, the substrate 20 is continuously supplied from a substrate roll (not shown).
 金属リチウム箔供給段階では、金属リチウム箔53を、加熱部材51a、51bの間に供給される基板20の中間層14と離隔して向かい合う位置から、加熱部材51a、51bの間に供給する。例えば、金属リチウム箔53は、金属リチウム箔原反ロール52から回転部材54を介して加熱部材51a、51bの間に供給される。 (4) In the metal lithium foil supply stage, the metal lithium foil 53 is supplied between the heating members 51a and 51b from a position facing the intermediate layer 14 of the substrate 20 which is supplied between the heating members 51a and 51b. For example, the metal lithium foil 53 is supplied between the heating members 51 a and 51 b from the raw metal foil roll 52 via a rotating member 54.
 積層体形成段階では、加熱部材51a、51bのうちの少なくとも一方の加熱部材に、金属リチウム箔53を接触させながら溶融して溶融リチウム55を生成し、生成した溶融リチウム55を、加熱部材51a、51b間を移動する基板20の中間層14の表面に、押圧接触させて溶融リチウム層56を形成した後に、形成した溶融リチウム層56を、基板20が加熱部材51a、51b間から離れる方向(図11では左方向)にさらに移動させて冷却し、溶融リチウム層56を、金属リチウムからなる表面層15になるまで凝固させる。 In the laminate formation step, at least one of the heating members 51a and 51b is melted while contacting the metallic lithium foil 53 to generate molten lithium 55, and the generated molten lithium 55 is heated by the heating members 51a and 51b. After the molten lithium layer 56 is formed by pressing and contacting the surface of the intermediate layer 14 of the substrate 20 moving between 51b, the molten lithium layer 56 is moved in a direction in which the substrate 20 is separated from the space between the heating members 51a and 51b (see FIG. In FIG. 11, the molten lithium layer 56 is further moved in the left direction and cooled to solidify the molten lithium layer 56 until the surface layer 15 is made of metallic lithium.
 図11に示すように、加熱部材51a、51bに供給される金属リチウム箔53は、回転している加熱部材51aに接触しながら溶融し、溶融リチウム55が中間層14の表面上に堆積する。長尺状の基板20の移動と共に右から左に移動する中間層14上の溶融リチウム55は、加熱部材51bの上方に設けられる膜厚調整部材57を通過するときに中間層14の表面に押圧接触され、膜厚調整部材57の下流側では、溶融リチウムからなる溶融リチウム層56が所定の膜厚で中間層14の表面に堆積する。基板20の中間層14の表面に堆積した溶融リチウム層56は、基板20の移動に伴って加熱部材51bから遠ざかると、加熱部材51bによる熱の伝達の影響が小さくなるため、溶融リチウム層56は、凝固されるまで冷却されて表面層15が形成される。こうして、リチウム電池用負極10が得られる。 金属 As shown in FIG. 11, the metallic lithium foil 53 supplied to the heating members 51 a and 51 b is melted while contacting the rotating heating member 51 a, and the molten lithium 55 is deposited on the surface of the intermediate layer 14. The molten lithium 55 on the intermediate layer 14 moving from right to left along with the movement of the long substrate 20 is pressed against the surface of the intermediate layer 14 when passing through the film thickness adjusting member 57 provided above the heating member 51b. The molten lithium layer 56 made of molten lithium is deposited on the surface of the intermediate layer 14 with a predetermined thickness on the downstream side of the film thickness adjusting member 57 in contact therewith. When the molten lithium layer 56 deposited on the surface of the intermediate layer 14 of the substrate 20 moves away from the heating member 51b with the movement of the substrate 20, the influence of heat transfer by the heating member 51b is reduced. Then, the surface layer 15 is formed by cooling until it is solidified. Thus, the negative electrode 10 for a lithium battery is obtained.
 以上説明した第2の方法では、長尺状の基板20および金属リチウム箔53を加熱部材51a、51bに連続的に供給できるため、リチウム電池用負極10を製造することができ、特にリチウム電池用負極10の量産化に適している。 In the second method described above, since the long substrate 20 and the metal lithium foil 53 can be continuously supplied to the heating members 51a and 51b, the negative electrode 10 for a lithium battery can be manufactured. It is suitable for mass production of the negative electrode 10.
 得られたリチウム電池用負極10は、必要に応じて切断してもよい。例えば、リチウム電池用負極10は、1mm以上、1m以下程度の大きさに切断される。 The obtained negative electrode 10 for a lithium battery may be cut as necessary. For example, the negative electrode 10 for a lithium battery is cut into a size of about 1 mm 2 or more and about 1 m 2 or less.
 また、基板20は、必要に応じて、下地層12から取り除いてもよい。下地層12から基板20を取り除く時機は、特に限定されるものではなく、例えば第2工程の後に基板20を取り除くことができる。 (4) The substrate 20 may be removed from the underlayer 12 as necessary. The timing for removing the substrate 20 from the underlayer 12 is not particularly limited, and for example, the substrate 20 can be removed after the second step.
 また、膜厚調整部材57の下面57aと中間層14の表面との間の距離を調整することによって、表面層15(溶融リチウム層56)の膜厚を調整することができる。 (4) By adjusting the distance between the lower surface 57a of the thickness adjusting member 57 and the surface of the intermediate layer 14, the thickness of the surface layer 15 (molten lithium layer 56) can be adjusted.
<リチウム金属電池>
 本実施形態に係るリチウム電池は、金属または合金からなる下地層12、および、該下地層12に固定され、下地層12の少なくとも一方の表面から延在する複数のナノカーボン材料としてのカーボンナノチューブ11を有する構造体13と、該構造体13を構成する下地層12の少なくとも一方の表面12a、および該表面12aから延在する複数のカーボンナノチューブ11の延在部分の表面を被覆する、下地層12とは異なる金属または合金からなる中間層14と、該中間層14の表面を被覆する、金属リチウムからなる表面層15とを含んで構成された積層体16を有するリチウム電池用負極10を含む。
<Lithium metal battery>
The lithium battery according to the present embodiment includes an underlayer 12 made of a metal or an alloy, and a plurality of carbon nanotubes 11 as a nanocarbon material fixed to the underlayer 12 and extending from at least one surface of the underlayer 12. And an underlayer 12 covering at least one surface 12a of the underlayer 12 constituting the structure 13 and a surface of an extended portion of the plurality of carbon nanotubes 11 extending from the surface 12a. And an intermediate layer 14 made of a metal or alloy different from the above, and a negative electrode 10 for a lithium battery having a laminate 16 including a surface layer 15 made of metallic lithium, which covers the surface of the intermediate layer 14.
 図12は、図1に示す負極を用いて作製した、第一の実施形態に係るリチウム金属電池を模式的に示す断面図である。図12に示すように、リチウム電池1は、正極19と、リチウム電池用負極10と、電解液Lと、セパレータ18とを含んで構成されている。 FIG. 12 is a cross-sectional view schematically illustrating the lithium metal battery according to the first embodiment, which is manufactured using the negative electrode illustrated in FIG. As shown in FIG. 12, the lithium battery 1 includes a positive electrode 19, a negative electrode 10 for a lithium battery, an electrolytic solution L, and a separator 18.
 正極19は、正極活物質を含む正極電極層19aと、その正極活物質が塗布され保持する正極集電箔19bとを備えている。 The positive electrode 19 includes a positive electrode layer 19a containing a positive electrode active material, and a positive electrode current collector foil 19b coated with and holding the positive electrode active material.
 なお、リチウム電池1としては、一次電池であっても、二次電池であってもよいが、上述したリチウム電池用負極10を用いることによって、充放電を繰り返しても、充放電容量の低下を有効に防止することができるという観点から、特に二次電池としての適用が好ましい。 Note that the lithium battery 1 may be a primary battery or a secondary battery. However, by using the above-described negative electrode 10 for a lithium battery, the charge / discharge capacity can be reduced even if charge / discharge is repeated. From the viewpoint that it can be effectively prevented, application as a secondary battery is particularly preferable.
 正極電極層19aを構成する正極活物質としては、特に限定されず、リチウムイオンを吸蔵、放出することができ、負極活物質である金属リチウムよりも電位が貴な材料のうちから任意なものを用いることができる。例えば、正極活物質としては、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸マンガン鉄リチウム、リン酸コバルトリチウム、コバルト酸リチウム複合酸化物、マンガン酸リチウム複合酸化物、ニッケル酸リチウム複合酸化物、ニオブ酸リチウム複合酸化物、鉄酸リチウム複合酸化物、マグネシウム酸リチウム複合酸化物、カルシウム酸リチウム複合酸化物、銅酸リチウム複合酸化物、亜鉛酸リチウム複合酸化物、モリブデン酸リチウム複合酸化物、タンタル酸リチウム複合酸化物、タングステン酸リチウム複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物などが挙げられる。 The positive electrode active material constituting the positive electrode layer 19a is not particularly limited, and any material can be selected from materials which can occlude and release lithium ions and have a higher potential than metallic lithium as the negative electrode active material. Can be used. For example, as the positive electrode active material, lithium iron phosphate, lithium manganese phosphate, lithium manganese iron phosphate, lithium cobalt phosphate, lithium cobaltate composite oxide, lithium manganate composite oxide, lithium nickelate composite oxide, Lithium niobate composite oxide, lithium ferrate composite oxide, lithium magnesium oxide composite oxide, lithium calcium oxide composite oxide, lithium cuprate composite oxide, lithium zincate composite oxide, lithium molybdate composite oxide, tantalum Lithium oxide composite oxide, lithium tungstate composite oxide, lithium nickel cobalt aluminum composite oxide, lithium nickel cobalt manganese composite oxide, and the like.
 これらの正極活物質を、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)などの結着剤(バインダー)と混合し、また適用な溶剤を添加し、さらに炭素材料などの導電剤やイオン導電剤などの添加剤を添加して混練し、導電性を有する正極集電箔19b上に層形成することにより正極電極層19aとすることができる。 These positive electrode active materials are mixed with a binding agent (binder) such as PVDF (polyvinylidene fluoride) or PTFE (polytetrafluoroethylene), and an appropriate solvent is added thereto. A positive electrode layer 19a can be obtained by adding and kneading an additive such as a conductive agent and forming a layer on the positive electrode current collector foil 19b having conductivity.
 また、正極集電箔19bとしては、特に限定されず、従来公知のものを用いることができる。例えば、正極集電箔19bとして、ニッケル、ステンレス鋼、アルミニウム、チタンなどからなる金属箔、金属シート、又は導電性高分子材料などを用いることができる。 Further, the positive electrode current collector foil 19b is not particularly limited, and a conventionally known one can be used. For example, as the positive electrode current collector foil 19b, a metal foil, a metal sheet, a conductive polymer material, or the like made of nickel, stainless steel, aluminum, titanium, or the like can be used.
 セパレータ18は、負極10と正極19とを分離して、両極の短絡を防止するために用いられるものであり、従来公知のものを用いることができる。例えば、セパレータ18として、二次電池に通常用いられる不織布や、その他の多孔質材料からなる透過性セパレータを用いることができる。また、セパレータ18として、公知の電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 The separator 18 is used for separating the negative electrode 10 and the positive electrode 19 to prevent a short circuit between the two electrodes, and a conventionally known separator can be used. For example, as the separator 18, a nonwoven fabric commonly used for a secondary battery or a permeable separator made of another porous material can be used. In addition, as the separator 18, a known solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used.
 電解液Lは、リチウムイオンを含有するものであり、従来公知の電解液を用いることができる。この電解液としては、有機溶媒に電解質を溶解して構成することができる。 The electrolytic solution L contains lithium ions, and a conventionally known electrolytic solution can be used. This electrolytic solution can be constituted by dissolving an electrolyte in an organic solvent.
 有機溶媒としては、リチウム電池用の電解液として従来公知の有機溶媒を用いることができ、特に限定されない。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物などを用いることができ、プロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニレンカーボネートなどやそれらの混合溶媒を用いることが好ましい。 As the organic solvent, an organic solvent conventionally known as an electrolyte for a lithium battery can be used, and is not particularly limited. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds, and the like can be used, and propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, It is preferable to use ethyl methyl carbonate, vinylene carbonate, or the like, or a mixed solvent thereof.
 電解質としては、特に限定されないが、LiPF、LiBF、LiClO、LiNO、LiCl、LiF、およびLiAsFなどの無機塩又はこれらの無機塩の誘導体、LiSOCF、LiC(SOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)などの有機塩又はこれらの有機塩の誘導体などを挙げることができる。電解質の濃度についても、特に限定されず、電解質および有機溶媒の種類などを考慮して適宜決定することができる。 Examples of the electrolyte include, but are not particularly limited to, inorganic salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiNO 3 , LiCl, LiF, and LiAsF 6, or derivatives of these inorganic salts, LiSO 3 CF 3 , and LiC (SO 3 CF). 3 ) Organic salts such as 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) or derivatives of these organic salts And the like. The concentration of the electrolyte is also not particularly limited, and can be appropriately determined in consideration of the types of the electrolyte and the organic solvent.
 ここまでは、リチウム金属電池に用いる負極を例として説明してきたが、同様に、リチウム空気電池、リチウムイオン電池およびリチウム固体電池に用いる負極についても、同様に構成することによって、リチウム金属電池用負極と同様の効果を奏することができるので、以下でその構成を図13乃至図15を参照しながら説明する。 So far, the negative electrode used for the lithium metal battery has been described as an example. Similarly, the negative electrode used for the lithium air battery, the lithium ion battery, and the lithium solid battery can be similarly configured to have the negative electrode for the lithium metal battery. Since the same effect can be obtained, the configuration will be described below with reference to FIGS.
<リチウム空気電池>
 図13は、第二の実施形態に係るリチウム空気電池を模式的に示す断面図である。図13に示すリチウム空気電池1Aは、正極19Aと、負極10と、電解液Lと、セパレータ18とを含んで構成されており、図12と同様の電池構成をしているが、正極19Aが異なる構成となっている。すなわち、正極19Aは、セパレータ18側から、正極触媒層19cと、正極集電網19dとで構成されている。
<Lithium air battery>
FIG. 13 is a cross-sectional view schematically illustrating a lithium-air battery according to the second embodiment. The lithium air battery 1A shown in FIG. 13 includes a positive electrode 19A, a negative electrode 10, an electrolytic solution L, and a separator 18, and has a battery configuration similar to that of FIG. It has a different configuration. That is, the positive electrode 19A includes the positive electrode catalyst layer 19c and the positive electrode current collecting network 19d from the separator 18 side.
<リチウムイオン電池>
 図14は、第三の実施形態に係るリチウムイオン電池を模式的に示す断面図である。図14に示すリチウムイオン電池1Bは、正極19と、負極10Bと、電解液Lと、セパレータ18とを含んで構成されている。このリチウムイオン電池1Bは、正極19およびセパレータ18については図12に示すリチウム金属電池1の正極19およびセパレータ18と同様の構成であるが、負極10の表面層については、リチウム金属電池1の負極10の表面層15が金属リチウムで構成されているのに対し、リチウムイオン電池1Bでは負極10Bの表面層は、この金属リチウムの代わりに、黒鉛またはケイ素を結着材で固めた負極合材層60で形成され、この負極合材層60に電解液Lを含浸させたもので構成されている点で異なっている。
<Lithium ion battery>
FIG. 14 is a cross-sectional view schematically showing a lithium ion battery according to the third embodiment. The lithium ion battery 1B shown in FIG. 14 includes a positive electrode 19, a negative electrode 10B, an electrolytic solution L, and a separator 18. The lithium ion battery 1B has the same configuration as the positive electrode 19 and the separator 18 of the lithium metal battery 1 shown in FIG. While the surface layer 15 of the negative electrode 10B is made of metal lithium, the surface layer of the negative electrode 10B in the lithium ion battery 1B is a negative electrode mixture layer obtained by solidifying graphite or silicon with a binder instead of the metal lithium. The negative electrode mixture layer 60 is formed by impregnating the negative electrode mixture layer 60 with the electrolytic solution L.
<リチウム固体電池>
 図15は、第四の実施形態に係るリチウム固体電池を模式的に示す断面図である。図15に示すリチウム固体電池1Cは、正極19と、負極10Cと、固体電解質層61とを含んで構成されており、セパレータや電解液は存在しない。このリチウム固体電池1Cの負極10Cおよび正極19の構成はそれぞれ、図12に示すリチウム金属電池1の負極10および図14に示すリチウムイオン電池1Bとの正極19の各構成と同様である。
<Lithium solid battery>
FIG. 15 is a sectional view schematically showing a lithium solid state battery according to the fourth embodiment. The lithium solid battery 1C shown in FIG. 15 includes the positive electrode 19, the negative electrode 10C, and the solid electrolyte layer 61, and has no separator or electrolyte. The configurations of the negative electrode 10C and the positive electrode 19 of the lithium solid battery 1C are the same as those of the negative electrode 10 of the lithium metal battery 1 shown in FIG. 12 and the positive electrode 19 of the lithium ion battery 1B shown in FIG.
 以上、実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various aspects included in the concept of the present invention and the claims, and variously fall within the scope of the present invention. Can be modified.
 次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples and comparative examples will be described, but the present invention is not limited to these examples.
(実施例1)
 実施例1では、まず、リチウム金属電池用負極を作製した。
(Example 1)
In Example 1, first, a negative electrode for a lithium metal battery was manufactured.
 まず、図3に示す複合めっき装置30を用いて、圧延銅箔からなる基板の表面に、電解めっき(複合めっき)処理を施し、複数のカーボンナノチューブと該カーボンナノチューブの一部を埋め込んで固定し延在させた下地層とを含む構造体を作製した(構造体形成工程)。 First, using a composite plating apparatus 30 shown in FIG. 3, the surface of a substrate made of rolled copper foil is subjected to electrolytic plating (composite plating), and a plurality of carbon nanotubes and a part of the carbon nanotubes are embedded and fixed. A structure including the extended base layer was manufactured (structure forming step).
 具体的には、電解めっき液24として、カーボンナノチューブを分散させた硫酸銅めっき液を用い、電解めっき液24の温度を25℃に保持して、陽極電極23aに0.1A/cm以上、8A/cm以下の電流を印加し、ケミカルポンプにより電解めっき液24を攪拌させながら電解めっき処理を施した。こうして、圧延銅箔の表面からなる基板の表面の片面のみに、金属銅めっきからなる下地層を形成すると共に、該下地層に複数のカーボンナノチューブを固定した構造体を有する基板を作製した。 Specifically, a copper sulfate plating solution in which carbon nanotubes are dispersed is used as the electrolytic plating solution 24, and the temperature of the electrolytic plating solution 24 is maintained at 25 ° C., and the anode electrode 23 a is 0.1 A / cm 2 or more. An electrolytic plating treatment was performed while applying a current of 8 A / cm 2 or less and stirring the electrolytic plating solution 24 with a chemical pump. Thus, a substrate having a structure in which a base layer made of metal copper plating was formed on only one surface of the surface of the rolled copper foil and a plurality of carbon nanotubes were fixed to the base layer was produced.
 次に、上述しためっき装置31(図5、参照)を用いた電解めっき法によって、金属スズからなる中間層を形成し(中間層形成工程)、続いて、該中間層の表面に、上述した正極活物質に含まれるリチウムによるリチウム金属析出法により、金属リチウムからなる表面層を形成し(表面層形成工程)、実施例1のリチウム電池用負極を作製した。この実施例1のリチウム電池用負極の表面における、カーボンナノチューブの面密度、中間層の単位面積当たりの堆積量、および表面層の金属リチウムの単位面積当たりの堆積量をそれぞれ測定した結果、カーボンナノチューブの面密度は0.1mg/cmであり、中間層の単位面積当たりの堆積量は0.1mg/cmであり、金属リチウムの単位面積当たりの堆積量は0.6mg/cmであった。
 その後、このリチウム電池用負極を用いて、実施例1のコイン型のリチウム二次電池を作製した。
Next, an intermediate layer made of metal tin is formed by an electrolytic plating method using the above-described plating apparatus 31 (see FIG. 5) (intermediate layer forming step). Subsequently, the above-described surface is formed on the surface of the intermediate layer. A surface layer made of metallic lithium was formed by a lithium metal deposition method using lithium contained in the positive electrode active material (surface layer forming step), and a negative electrode for a lithium battery of Example 1 was produced. On the surface of the negative electrode for a lithium battery of Example 1, the surface density of carbon nanotubes, the deposition amount per unit area of the intermediate layer, and the deposition amount per unit area of metallic lithium on the surface layer were measured. Is 0.1 mg / cm 2 , the deposition amount per unit area of the intermediate layer is 0.1 mg / cm 2 , and the deposition amount per unit area of metallic lithium is 0.6 mg / cm 2. Was.
Thereafter, using this negative electrode for a lithium battery, a coin-type lithium secondary battery of Example 1 was produced.
 実施例1のコイン型のリチウム二次電池は、負極と、セパレータと、リチウム・コバルト複合酸化物LCO(LiCoO)を含む正極電極層および正極集電箔からなる正極とを積層させて構成されている。なお、電解液の電解質としてはLiPFを用いた。 The coin-type lithium secondary battery of Example 1 is configured by stacking a negative electrode, a separator, a positive electrode layer including a lithium-cobalt composite oxide LCO (LiCoO 2 ), and a positive electrode including a positive electrode current collector foil. ing. Note that LiPF 6 was used as an electrolyte of the electrolytic solution.
(比較例1)
 比較例1では、まず、実施例1の中間層形成工程を省略して、中間層を形成しなかったこと以外は実施例1と同様にして比較例1のリチウム電池用負極を作製した。この比較例1のリチウム電池用負極の表面における、カーボンナノチューブの面密度、および表面層の金属リチウムの単位面積当たりの堆積量をそれぞれ測定した結果、カーボンナノチューブの面密度は0.1mg/cmであり、金属リチウムの単位面積当たりの堆積量は0.6mg/cmであった。
 その後、このリチウム電池用負極を用いて、比較例1のコイン型のリチウム二次電池を作製した。
(Comparative Example 1)
In Comparative Example 1, first, a negative electrode for a lithium battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the intermediate layer forming step of Example 1 was omitted and the intermediate layer was not formed. As a result of measuring the areal density of the carbon nanotubes and the deposition amount per unit area of metallic lithium on the surface layer on the surface of the negative electrode for a lithium battery of Comparative Example 1, the areal density of the carbon nanotubes was 0.1 mg / cm 2. And the deposition amount of metallic lithium per unit area was 0.6 mg / cm 2 .
Thereafter, using this negative electrode for a lithium battery, a coin-type lithium secondary battery of Comparative Example 1 was produced.
 比較例1のコイン型のリチウム二次電池は、中間層を形成しなかった構成を有するリチウム電池用負極と、セパレータと、およびリチウム・コバルト複合酸化物LCO(LiCoO)を含む正極電極層および正極集電箔からなる正極とを積層させて構成されている。なお、電解液の電解質としては実施例1と同様のLiPFを用いた。 The coin-type lithium secondary battery of Comparative Example 1 has a negative electrode for a lithium battery having a configuration in which no intermediate layer is formed, a separator, and a positive electrode layer containing lithium-cobalt composite oxide LCO (LiCoO 2 ) and It is configured by laminating a positive electrode made of a positive electrode current collector foil. In addition, LiPF 6 similar to that of Example 1 was used as an electrolyte of the electrolytic solution.
 <評価方法>
 作製した実施例1および比較例1の各リチウム二次電池について、充放電を繰り返すサイクル試験を行った。
 これらの各電池に対して、温度25℃にて電池を化成後、0.65Cのレートで4.2Vまで充電する操作と、同じレートで3.0Vまで放電させる操作を交互に繰り返した。1サイクル目の放電容量(初期放電容量)を100%として、サイクル数と容量維持率(%)との関係をプロットした結果を図16に示す。
<Evaluation method>
For each of the manufactured lithium secondary batteries of Example 1 and Comparative Example 1, a cycle test in which charging and discharging were repeated was performed.
For each of these batteries, after forming the battery at a temperature of 25 ° C., an operation of charging to 4.2 V at a rate of 0.65 C and an operation of discharging to 3.0 V at the same rate were alternately repeated. FIG. 16 shows the result of plotting the relationship between the number of cycles and the capacity retention rate (%), assuming that the discharge capacity at the first cycle (initial discharge capacity) is 100%.
 図16に示す結果から、比較例1は、5サイクル数を超えると容量維持率の急激な低下が認められるものの、実施例1は、10サイクル数付近までは容量維持率が70%であり、サイクル数の増加に伴う容量維持率の低下割合が顕著に抑制されていることが分かる。 From the results shown in FIG. 16, in Comparative Example 1, a rapid decrease in the capacity retention ratio was observed when the number of cycles exceeded 5, but in Example 1, the capacity retention ratio was 70% up to around the number of 10 cycles. It can be seen that the rate of decrease in the capacity retention rate with the increase in the number of cycles is significantly suppressed.
 1 リチウム金属電池
 1A リチウム空気電池
 1B リチウムイオン電池
 1C リチウム固体電池
 10 リチウム金属電池用負極
 11 ナノカーボン材料(カーボンナノチューブ)
 12 下地層
 13 構造体
 14 中間層
 15 表面層
 16 積層体
 18 セパレータ
 19a 正極電極層
 19b 正極集電箔
 20 基板
 30 複合めっき装置
 31 めっき装置
 42 金属リチウム箔
 43 溶融リチウム
 44、55、56 溶融リチウム層
 50 積層体連続形成装置
 L 電解液

 
DESCRIPTION OF SYMBOLS 1 Lithium metal battery 1A Lithium air battery 1B Lithium ion battery 1C Lithium solid battery 10 Negative electrode for lithium metal battery 11 Nano carbon material (carbon nanotube)
DESCRIPTION OF SYMBOLS 12 Underlayer 13 Structure 14 Intermediate layer 15 Surface layer 16 Laminate 18 Separator 19a Positive electrode layer 19b Positive current collector foil 20 Substrate 30 Composite plating apparatus 31 Plating apparatus 42 Metal lithium foil 43 Molten lithium 44, 55, 56 Molten lithium layer 50 Laminate Continuous Forming Apparatus L Electrolyte

Claims (18)

  1.  金属または合金からなる下地層、および、該下地層に固定され、前記下地層の少なくとも一方の表面から延在する複数のナノカーボン材料を有する構造体と、
     該構造体を構成する前記下地層の前記少なくとも一方の表面、および該表面から延在する前記複数のナノカーボン材料の延在部分の表面を被覆する、前記下地層とは異なる金属または合金からなる中間層と、
     該中間層の表面に、金属リチウム、黒鉛またはケイ素によって形成してなる表面層と
    を含んで構成された積層体を有するリチウム電池用負極。
    A base layer made of a metal or an alloy, and a structure fixed to the base layer and having a plurality of nanocarbon materials extending from at least one surface of the base layer;
    The at least one surface of the underlayer constituting the structure, and the surface of the extending portion of the plurality of nanocarbon materials extending from the surface are made of a metal or alloy different from the underlayer. An intermediate layer,
    A negative electrode for a lithium battery having a laminate comprising a surface layer formed of metallic lithium, graphite or silicon on the surface of the intermediate layer.
  2.  前記表面層を形成する材料が、金属リチウムである、請求項1に記載のリチウム電池用負極。 The negative electrode for a lithium battery according to claim 1, wherein the material forming the surface layer is metallic lithium.
  3.  前記表面層を形成する前記金属リチウムの堆積量が、0.01mg/cm以上、5mg/cm以下の範囲である、請求項2に記載のリチウム電池用負極。 3. The negative electrode for a lithium battery according to claim 2, wherein a deposition amount of the metal lithium forming the surface layer is in a range of 0.01 mg / cm 2 or more and 5 mg / cm 2 or less. 4.
  4.  前記中間層が、リチウムとの合金形成が可能な金属または合金からなる、請求項2または3に記載のリチウム電池用負極。 4. The negative electrode for a lithium battery according to claim 2, wherein the intermediate layer is made of a metal or an alloy capable of forming an alloy with lithium.
  5.  前記表面層を形成する材料が、黒鉛またはケイ素である、請求項1に記載のリチウム電池用負極。 The negative electrode for a lithium battery according to claim 1, wherein the material forming the surface layer is graphite or silicon.
  6.  前記中間層が、Al、Zn、Cr、Fe、Ni、Sn、Pb、Cu、Ag、Pt、Au、In、PdおよびMgから選択される、1種の金属または1種以上を含む合金からなる、請求項2~5のいずれか1項に記載のリチウム電池用負極。 The intermediate layer is made of one metal selected from Al, Zn, Cr, Fe, Ni, Sn, Pb, Cu, Ag, Pt, Au, In, Pd, and Mg, or an alloy containing one or more metals. The negative electrode for a lithium battery according to any one of claims 2 to 5.
  7.  前記中間層が、Sn、Al、Au、Mg、AgもしくはZnの金属、またはCuとSnもしくはNiとの合金からなる、請求項6に記載のリチウム電池用負極。 The negative electrode for a lithium battery according to claim 6, wherein the intermediate layer is made of a metal of Sn, Al, Au, Mg, Ag, or Zn, or an alloy of Cu and Sn or Ni.
  8.  前記中間層の厚みが、0.01μm以上、3μm以下の範囲である、請求項1~7のいずれか1項に記載のリチウム電池用負極。 (8) The negative electrode for a lithium battery according to any one of (1) to (7), wherein the thickness of the intermediate layer is in the range of 0.01 μm or more and 3 μm or less.
  9.  前記ナノカーボン材料は、カーボンナノチューブを含む、請求項1~8のいずれか1項に記載のリチウム電池用負極。 The negative electrode for a lithium battery according to any one of claims 1 to 8, wherein the nanocarbon material includes a carbon nanotube.
  10.  前記ナノカーボン材料は、カーボンナノファイバーをさらに含む、請求項9に記載のリチウム電池用負極。 The negative electrode for a lithium battery according to claim 9, wherein the nanocarbon material further includes a carbon nanofiber.
  11.  リチウム二次電池用負極である、請求項1~10のいずれか1項に記載のリチウム電池用負極。 The negative electrode for a lithium battery according to any one of claims 1 to 10, which is a negative electrode for a lithium secondary battery.
  12.  ナノカーボン材料を混合した電解めっき液を用い、電解めっき法によって、基板の表面に、金属または合金からなる下地層と、該下地層に固定され、前記下地層の少なくとも一方の表面から延在する複数のナノカーボン材料とを有する構造体を形成する工程と、
     前記構造体を構成する前記下地層の前記少なくとも一方の表面、および該表面から延在する前記複数のナノカーボン材料の延在部分の表面に、前記下地層とは異なる金属または合金からなる中間層を堆積させて形成する工程と、
     前記中間層の表面に、金属リチウム、黒鉛またはケイ素によって表面層を形成して積層体を構成する工程と
    を含むリチウム電池用負極の製造方法。
    Using an electroplating solution in which a nanocarbon material is mixed, a base layer made of a metal or an alloy, and fixed to the base layer, extending from at least one surface of the base layer, by an electroplating method, on the surface of the substrate. Forming a structure having a plurality of nanocarbon materials,
    An intermediate layer made of a metal or alloy different from the underlayer on the at least one surface of the underlayer constituting the structure, and on the surface of the extending portion of the plurality of nanocarbon materials extending from the surface; Depositing and forming
    Forming a surface layer of metallic lithium, graphite or silicon on the surface of the intermediate layer to form a laminate.
  13.  前記中間層を堆積させて形成する工程は、電解めっき法または無電解めっき法によって行う、請求項12に記載のリチウム電池用負極の製造方法。 The method for manufacturing a negative electrode for a lithium battery according to claim 12, wherein the step of depositing and forming the intermediate layer is performed by an electrolytic plating method or an electroless plating method.
  14.  前記中間層を堆積させて形成する工程は、蒸着法によって行う、請求項12に記載のリチウム電池用負極の製造方法。 The method for producing a negative electrode for a lithium battery according to claim 12, wherein the step of depositing and forming the intermediate layer is performed by a vapor deposition method.
  15.  前記表面層を形成する材料が金属リチウムである、請求項12~14のいずれか1項に記載のリチウム電池用負極の製造方法。 The method for producing a negative electrode for a lithium battery according to any one of claims 12 to 14, wherein the material forming the surface layer is lithium metal.
  16.  前記表面層を形成する工程は、対極として金属リチウムまたはリチウム化合物を用いた電解めっき法によって行う、請求項15に記載のリチウム電池用負極の製造方法。 The method for producing a negative electrode for a lithium battery according to claim 15, wherein the step of forming the surface layer is performed by an electrolytic plating method using lithium metal or a lithium compound as a counter electrode.
  17.  前記表面層を形成する工程は、金属リチウムを蒸着することによって行う、請求項15に記載のリチウム電池用負極の製造方法。 The method for producing a negative electrode for a lithium battery according to claim 15, wherein the step of forming the surface layer is performed by depositing metallic lithium.
  18.  請求項1~11のいずれか1項に記載のリチウム電池用負極を含むリチウム電池。 A lithium battery comprising the negative electrode for a lithium battery according to any one of claims 1 to 11.
PCT/JP2019/000587 2018-08-24 2019-01-10 Negative electrode for lithium battery, method for manufacturing same, and lithium battery WO2020039609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862722797P 2018-08-24 2018-08-24
US62/722,797 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039609A1 true WO2020039609A1 (en) 2020-02-27

Family

ID=69591230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000587 WO2020039609A1 (en) 2018-08-24 2019-01-10 Negative electrode for lithium battery, method for manufacturing same, and lithium battery

Country Status (1)

Country Link
WO (1) WO2020039609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488607A (en) * 2021-06-07 2021-10-08 暨南大学 Preparation and application of metal zinc cathode with functional nano material modification layer
US11508969B2 (en) 2019-08-20 2022-11-22 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2015043331A (en) * 2008-02-25 2015-03-05 ロナルド エイ ロジェスキー High capacity electrode
US20150140436A1 (en) * 2012-05-25 2015-05-21 Renault S.A.S. Method of manufacturing an electrode, corresponding electrode and battery comprising such an electrode
WO2015092957A1 (en) * 2013-12-16 2015-06-25 株式会社アルバック Positive electrode for lithium sulfur secondary batteries and method for forming same
JP2016009556A (en) * 2014-06-24 2016-01-18 日立造船株式会社 Secondary battery electrode
US20160315323A1 (en) * 2011-06-15 2016-10-27 Georgia Tech Research Corporation Carbon nanotube array bonding
JP2016207637A (en) * 2015-04-22 2016-12-08 ゼプター コーポレイションZeptor Corporation Negative electrode for lithium battery, lithium battery, and manufacturing method of negative electrode for lithium battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043331A (en) * 2008-02-25 2015-03-05 ロナルド エイ ロジェスキー High capacity electrode
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
US20160315323A1 (en) * 2011-06-15 2016-10-27 Georgia Tech Research Corporation Carbon nanotube array bonding
US20150140436A1 (en) * 2012-05-25 2015-05-21 Renault S.A.S. Method of manufacturing an electrode, corresponding electrode and battery comprising such an electrode
WO2015092957A1 (en) * 2013-12-16 2015-06-25 株式会社アルバック Positive electrode for lithium sulfur secondary batteries and method for forming same
JP2016009556A (en) * 2014-06-24 2016-01-18 日立造船株式会社 Secondary battery electrode
JP2016207637A (en) * 2015-04-22 2016-12-08 ゼプター コーポレイションZeptor Corporation Negative electrode for lithium battery, lithium battery, and manufacturing method of negative electrode for lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508969B2 (en) 2019-08-20 2022-11-22 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices
CN113488607A (en) * 2021-06-07 2021-10-08 暨南大学 Preparation and application of metal zinc cathode with functional nano material modification layer

Similar Documents

Publication Publication Date Title
JP6367390B2 (en) Production of large capacity prism lithium ion alloy anode
JP5941210B1 (en) Negative electrode for lithium battery, lithium battery, and method for producing negative electrode for lithium battery
JP5378720B2 (en) Lithium ion secondary battery
KR101162794B1 (en) Method of producing a negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6219273B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery
JP5419885B2 (en) Negative electrode, method for producing the same, and nonaqueous electrolyte secondary battery
US10020126B2 (en) Three-dimensional network aluminum porous body, electrode using the aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
US20130004856A1 (en) Three-dimensional network aluminum porous body for current collector, current collector using the aluminum porous body, electrode using the current collector, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor, each using the electrode
US20120264022A1 (en) Electrode for electrochemical device and method for producing the same
JP2019537231A (en) Negative electrode having carbon-based thin film formed thereon, method for producing the same, and lithium secondary battery including the same
KR20130143038A (en) Three-dimensional porous aluminum mesh for use in collector, electrode using same, and battery, capacitor, and lithium-ion capacitor using said electrode
JP2008047304A (en) Nonaqueous electrolyte secondary battery
JP6613647B2 (en) Manufacturing method of electrode for power storage device and manufacturing apparatus of said electrode
JP2010009905A (en) Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it
WO2008018204A1 (en) Non-aqueous electrolyte secondary battery
WO2020039609A1 (en) Negative electrode for lithium battery, method for manufacturing same, and lithium battery
KR20200081305A (en) Electrode comprising particle, method for fabricating the same, and lithium secondary battery
JP2008047306A (en) Nonaqueous electrolyte secondary battery
EP4024503A1 (en) Lithium secondary battery
JP5422360B2 (en) Method for producing porous metal body for lithium secondary battery active material
JP2008243656A (en) Electrode for electrochemical element, and manufacturing method therefor
CN111699575B (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP2006092808A (en) Battery structure
WO2013077245A1 (en) Electrode using aluminum porous body as power collector, and method for manufacturing same
JP2012059722A (en) Manufacturing method of battery electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.06.2021)

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19852328

Country of ref document: EP

Kind code of ref document: A1