JP2016009556A - Secondary battery electrode - Google Patents

Secondary battery electrode Download PDF

Info

Publication number
JP2016009556A
JP2016009556A JP2014128724A JP2014128724A JP2016009556A JP 2016009556 A JP2016009556 A JP 2016009556A JP 2014128724 A JP2014128724 A JP 2014128724A JP 2014128724 A JP2014128724 A JP 2014128724A JP 2016009556 A JP2016009556 A JP 2016009556A
Authority
JP
Japan
Prior art keywords
carbon
intermediate layer
negative electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014128724A
Other languages
Japanese (ja)
Other versions
JP6403151B2 (en
Inventor
浩一 生杉
Koichi Namasugi
浩一 生杉
俊夫 滝谷
Toshio Takiya
俊夫 滝谷
和志 平岡
Kazuyuki Hiraoka
和志 平岡
福田 直晃
Naoaki Fukuda
直晃 福田
美奈子 加藤
Minako Kato
美奈子 加藤
周 豪慎
Goshin Shu
豪慎 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hitachi Zosen Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Zosen Corp
Priority to JP2014128724A priority Critical patent/JP6403151B2/en
Publication of JP2016009556A publication Critical patent/JP2016009556A/en
Application granted granted Critical
Publication of JP6403151B2 publication Critical patent/JP6403151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery electrode by which the worsening of a battery performance can be prevented.SOLUTION: A secondary battery electrode 10 comprises: a substrate 1; a carbon-based material 2 disposed on the substrate 1; a negative electrode active material absorber layer 3 disposed on the surface of the carbon-based material 2 and made of a material absorbing a negative electrode active material; and an intermediate layer 4 disposed between the carbon-based material 2 and the negative electrode active material absorber layer 3 and made of a material which allows electrons to travel between the carbon-based material 2 and the negative electrode active material absorber layer 3.

Description

本発明は二次電池用電極に関する。   The present invention relates to an electrode for a secondary battery.

従来の二次電池用電極の例として、電極活物質の吸収量を増加させるため、基板上に生成されたカーボンナノチューブの周囲にシース状(鞘状)にシリコン粒子のフィルムが直接堆積されたものがある(例えば特許文献1)。なお、一般的に、シリコンはカーボンよりも電極活物質の吸収量が多いことが知られている。   As an example of a conventional secondary battery electrode, a film of silicon particles is directly deposited in a sheath shape (sheath shape) around carbon nanotubes generated on a substrate in order to increase the amount of absorption of an electrode active material (For example, Patent Document 1). In general, it is known that silicon absorbs more electrode active material than carbon.

特表2009−521082号公報Special table 2009-521082 gazette

しかし、このような従来の二次電池用電極においては、カーボンナノチューブの表面にシリコン粒子のフィルムを直接堆積させているため、カーボンナノチューブとシリコン粒子のフィルムとの間に、カーボンナノチューブとシリコンとが反応して生成されるシリコンカーバイドの層が形成される可能性がある。このシリコンカーバイドの層は、シリコンよりも絶縁性が高いため電極としての電気抵抗値が増大してしまい、電池性能が低下する惧れがある。   However, in such a conventional secondary battery electrode, since a film of silicon particles is directly deposited on the surface of the carbon nanotube, the carbon nanotube and the silicon are interposed between the carbon nanotube and the silicon particle film. A layer of silicon carbide produced by reaction may be formed. Since this silicon carbide layer has higher insulation than silicon, the electrical resistance value as an electrode increases, and there is a concern that the battery performance may be lowered.

本発明は上記問題点を解決して、電池性能の低下を防止し得る二次電池用電極を提供することを目的とする。   An object of the present invention is to solve the above problems and provide an electrode for a secondary battery that can prevent a decrease in battery performance.

本発明の二次電池用電極は、基板と、当該基板上に配置される炭素系材料と、当該炭素系材料の表面に配置されて負極活物質を吸収する材料から成る負極活物質吸収層とから成る二次電池用電極において、
前記炭素系材料と前記負極活物質吸収層との間に、前記炭素系材料と前記負極活物質吸収層との間での電子移動を可能とする材料から成る中間層が配置されることを特徴とする。
An electrode for a secondary battery according to the present invention includes a substrate, a carbon-based material disposed on the substrate, and a negative electrode active material absorbing layer made of a material disposed on the surface of the carbon-based material and absorbing the negative electrode active material. A secondary battery electrode comprising:
An intermediate layer made of a material that enables electron transfer between the carbon-based material and the negative electrode active material absorption layer is disposed between the carbon-based material and the negative electrode active material absorption layer. And

また、中間層は、チタン、銅、ジルコニウム、それらの酸化物、それらの炭化物、又はこれらを少なくとも二種以上組み合わせた材料から成ることが好ましい。
また、中間層は、チタンの第1中間層と、チタンカーバイドの第2中間層とで構成されることが好ましい。このとき、炭素系材料の表面に第2中間層が、当該第2中間層の表面に第1中間層がそれぞれ配置されることがより好ましい。
Moreover, it is preferable that an intermediate | middle layer consists of a material which combined titanium, copper, zirconium, those oxides, those carbides, or these 2 or more types.
The intermediate layer is preferably composed of a first intermediate layer of titanium and a second intermediate layer of titanium carbide. At this time, it is more preferable that the second intermediate layer is disposed on the surface of the carbon-based material, and the first intermediate layer is disposed on the surface of the second intermediate layer.

また、炭素系材料は、カーボンナノチューブ、カーボンファイバー及び活性炭でできた繊維のうちのいずれか一つであるとよい。
また、負極活物質吸収層はアモルファスシリコンから成るとよい。
The carbon-based material may be any one of fibers made of carbon nanotubes, carbon fibers, and activated carbon.
The negative electrode active material absorption layer may be made of amorphous silicon.

本発明の二次電池用電極によれば、炭素系材料の表面に配置される負極活物質吸収層と炭素系材料との間に、炭素系材料と負極活物質吸収層との間の電子移動が可能な材料から成る中間層が配置されるため、炭素系材料と負極活物質吸収層との反応を防止することで電気抵抗値の増大を抑制するとともに、電池性能の低下を抑制する。   According to the secondary battery electrode of the present invention, the electron transfer between the carbon-based material and the negative electrode active material absorbing layer between the negative electrode active material absorbing layer and the carbon-based material disposed on the surface of the carbon-based material. Since an intermediate layer made of a material that can be used is disposed, the reaction between the carbon-based material and the negative electrode active material absorption layer is prevented, thereby suppressing an increase in electric resistance and suppressing a decrease in battery performance.

本発明の実施例に係る第1の二次電池用電極の模式断面図である。It is a schematic cross section of the 1st electrode for secondary batteries concerning the example of the present invention. 本発明の実施例に係る第2の二次電池用電極の模式断面図である。It is a schematic cross section of the 2nd electrode for secondary batteries concerning the example of the present invention. 本発明の実施例に係る二次電池用電極の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the electrode for secondary batteries which concerns on the Example of this invention.

[実施例]
本発明に係る二次電池用電極の実施例について、図1〜図3を用いて詳細に説明する。本実施例では、二次電池としてリチウムイオン電池を例として説明する。すなわち、本実施例に係る二次電池用電極10は、リチウムイオン電池の負極として用いられる。
[Example]
The Example of the electrode for secondary batteries which concerns on this invention is described in detail using FIGS. 1-3. In this embodiment, a lithium ion battery will be described as an example of a secondary battery. That is, the secondary battery electrode 10 according to this example is used as a negative electrode of a lithium ion battery.

図1及び図2に示すように、本発明に係る二次電池用電極10は、基板1と、基板1上に配置される炭素系材料2と、炭素系材料2の表面に配置されて負極活物質を吸収する材料から成る負極活物質吸収層3とを備え、炭素系材料2と負極活物質吸収層3との間に電子移動を可能とする材料から成る中間層4が配置されるものである。本実施例においては、一層で構成された中間層4を有する二次電池用電極10Aと、二層で構成された中間層4を有する二次電池用電極10Bとをそれぞれ説明する。二次電池用電極10A及び二次電池用電極10Bは、中間層の数以外は同一の構成であるため、同一の構成については、まとめて二次電池用電極10として説明する。   As shown in FIGS. 1 and 2, the secondary battery electrode 10 according to the present invention includes a substrate 1, a carbon-based material 2 disposed on the substrate 1, and a negative electrode disposed on the surface of the carbon-based material 2. An anode active material absorbing layer 3 made of a material that absorbs the active material, and an intermediate layer 4 made of a material that enables electron transfer between the carbon-based material 2 and the anode active material absorbing layer 3 It is. In this embodiment, a secondary battery electrode 10A having an intermediate layer 4 composed of one layer and a secondary battery electrode 10B having an intermediate layer 4 composed of two layers will be described. Since the secondary battery electrode 10A and the secondary battery electrode 10B have the same configuration except for the number of intermediate layers, the same configuration will be collectively described as the secondary battery electrode 10.

基板1は、集電板として機能するため導電材料、なかでも金属材料から成る。金属材料としては、銅(Cu)、アルミ(Al)、チタン(Ti)、鉄(Fe)、マグネシウム(Mg)などが例示される。本実施例においては、チタンが選択される。   The substrate 1 functions as a current collector plate and is made of a conductive material, particularly a metal material. Examples of the metal material include copper (Cu), aluminum (Al), titanium (Ti), iron (Fe), magnesium (Mg), and the like. In this example, titanium is selected.

炭素系材料2としては、炭素系繊維、例えばカーボンナノチューブ、カーボンファイバー及び活性炭でできた繊維が挙げられるが、本実施例ではカーボンナノチューブを用いる。図1に示すように、複数の炭素系材料(カーボンナノチューブ)2は、充電量向上の観点から、基板(集電板)1に所定方向(より好ましくは垂直)に配向されているとよい。さらにカーボンナノチューブ2は集電板1に対して高い密度で複数配置されている。例えば、カーボンナノチューブ2の配置条件としては、太さ5nm〜100nm、長さ1μm〜1000μm、密度10本/cm以上であることが好適である。 Examples of the carbon-based material 2 include carbon-based fibers such as carbon nanotubes, carbon fibers, and fibers made of activated carbon. In this embodiment, carbon nanotubes are used. As shown in FIG. 1, the plurality of carbon-based materials (carbon nanotubes) 2 are preferably oriented in a predetermined direction (more preferably perpendicular) to the substrate (current collector plate) 1 from the viewpoint of improving the charge amount. Further, a plurality of carbon nanotubes 2 are arranged at a high density with respect to the current collector plate 1. For example, the arrangement condition of the carbon nanotube 2, thickness 5 nm to 100 nm, it is preferable to set the length 1Myuemu~1000myuemu, density 10 nine / cm 2 or more.

負極活物質はリチウムイオン二次電池においては、リチウムイオン(以下、単にリチウムということがある。)であり充電時にはこのリチウムイオンを負極が吸収する。したがって、負極活物質吸収層3はリチウムを吸収し得る材料から成る。例えば、周期律表14族の元素、すなわちカーボン(C)、シリコン(Si)、ゲルマニウム(Ge)、錫(Sn)、鉛(Pb)、これらの合金、これらを含む合成材料が挙げられる。本実施例では、これらのうち最もリチウムの吸収量が多いシリコンが用いられる。さらに、負極活物質吸収層3は、非晶質及び結晶質のいずれの状態でも構わないが、本実施例では、充放電時に体積が増減することを考慮して、体積の増減に追従しやすい非晶質のもの(アモルファスシリコン)を用いる。なお、負極活物質吸収層3の厚みは、カーボンナノチューブ2の表面に形成されることを考慮すると、5nm〜100nmが好適な範囲である。   In the lithium ion secondary battery, the negative electrode active material is lithium ion (hereinafter sometimes simply referred to as lithium), and the negative electrode absorbs this lithium ion during charging. Therefore, the negative electrode active material absorption layer 3 is made of a material that can absorb lithium. For example, elements of group 14 of the periodic table, that is, carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), alloys thereof, and synthetic materials containing these can be given. In this embodiment, silicon having the largest lithium absorption amount is used. Furthermore, the negative electrode active material absorption layer 3 may be in any state of amorphous and crystalline, but in this embodiment, it is easy to follow the increase and decrease of the volume in consideration of the increase and decrease of the volume during charging and discharging. Amorphous material (amorphous silicon) is used. The thickness of the negative electrode active material absorption layer 3 is preferably in the range of 5 nm to 100 nm in consideration of being formed on the surface of the carbon nanotube 2.

中間層4は、炭素系材料2と負極活物質3との反応を抑制するために、上述のとおり炭素系材料2と負極活物質吸収層3との間に配置される。中間層4には、リチウムとの非反応性を有するとともに、両者間での電子の受け渡しを可能とする(すなわち導電性を有する)材料が適している。したがって、中間層4には、例えばチタン(Ti)、銅、ジルコニウム(Zr)、それらの炭化物、それらの酸化物、すなわちチタン、チタンカーバイド(TiC)、チタニア(TiO)、銅、炭化銅(CuC)、酸化銅(CuO)、ジルコニウム、炭化ジルコニウム(ZrC)、ジルコニア(ZrO)及びこれらを少なくとも二種以上組み合わせた材料を含む。これらのうち、本実施例においては、万一、炭素系材料2の炭素と中間層4の材料との反応物が形成されても導電性に影響しにくいものとして、基板1と同一の材料であるチタン(Ti)が選択される。また、中間層4が、結晶質の状態であれば高い導電性を、非晶質の状態であれば高い密着性を有することになる。いずれの性質を優先するかによって結晶質か否かを適宜決定すればよい。そして、中間層4は、炭素系材料2の全周囲を被覆するとともに集電板1に接触して形成されている。なお、中間層4の厚みはカーボンナノチューブ2の表面に形成することを考慮すると、1nm〜20nmが好適な範囲である。 The intermediate layer 4 is disposed between the carbon-based material 2 and the negative electrode active material absorbing layer 3 as described above in order to suppress the reaction between the carbon-based material 2 and the negative electrode active material 3. For the intermediate layer 4, a material that is non-reactive with lithium and that can transfer electrons between the two (that is, has conductivity) is suitable. Therefore, the intermediate layer 4 includes, for example, titanium (Ti), copper, zirconium (Zr), carbides thereof, oxides thereof, that is, titanium, titanium carbide (TiC), titania (TiO 2 ), copper, copper carbide ( CuC), copper oxide (CuO), zirconium, zirconium carbide (ZrC), zirconia (ZrO 2 ), and materials obtained by combining at least two of these. Among these, in the present embodiment, even if a reaction product of carbon of the carbon-based material 2 and the material of the intermediate layer 4 is formed, it is assumed that the conductivity is not easily affected. Some titanium (Ti) is selected. Further, if the intermediate layer 4 is in a crystalline state, it has high conductivity, and if it is in an amorphous state, it has high adhesion. Whether or not it is crystalline may be appropriately determined depending on which property is given priority. The intermediate layer 4 covers the entire periphery of the carbon-based material 2 and is formed in contact with the current collector plate 1. In consideration of the formation of the intermediate layer 4 on the surface of the carbon nanotube 2, 1 nm to 20 nm is a preferable range.

したがって、図1に示すように、本実施例に係る第1のリチウム電池用電極10Aは、チタン製集電板1と、チタン製集電板1上に配置されるカーボンナノチューブ2と、カーボンナノチューブ2の表面に配置されて負極活物質すなわちリチウムイオンを吸収するシリコンから成る負極活物質吸収層3とを備え、カーボンナノチューブ2と負極活物質吸収層3との間にチタン製の中間層4が配置されるものである。   Therefore, as shown in FIG. 1, the first lithium battery electrode 10 </ b> A according to this example includes a titanium current collector plate 1, a carbon nanotube 2 disposed on the titanium current collector plate 1, and a carbon nanotube. 2 and a negative electrode active material absorption layer 3 made of silicon that absorbs lithium ions, and an intermediate layer 4 made of titanium is interposed between the carbon nanotubes 2 and the negative electrode active material absorption layer 3. Is to be placed.

ところで、中間層4は、図2に示すように、中間層4をチタンの第1中間層4aと、チタンカーバイドの第2中間層4bとの二層で構成することにより密着性が向上する。また、図2に示すように、炭素系材料2の表面には、炭素系材料2と親和性の高いチタンカーバイドの第2中間層4bが、第2中間層4bの表面にチタンの第1中間層4aがそれぞれ配置されることが好ましい。   By the way, as shown in FIG. 2, the intermediate layer 4 is composed of two layers of a first intermediate layer 4a made of titanium and a second intermediate layer 4b made of titanium carbide. Further, as shown in FIG. 2, a second intermediate layer 4b of titanium carbide having high affinity with the carbon-based material 2 is formed on the surface of the carbon-based material 2, and a first intermediate layer of titanium is formed on the surface of the second intermediate layer 4b. The layers 4a are preferably arranged respectively.

したがって、図2に示すように、実施例に係る第2のリチウム電池用電極10Bは、チタン製集電板1と、チタン製集電板1上に配置されるカーボンナノチューブ2と、カーボンナノチューブ2の表面に配置されて負極活物質すなわちリチウムイオンを吸収するシリコンから成る負極活物質吸収層3とを備え、カーボンナノチューブ2と負極活物質吸収層3との間に、炭素系材料2の表面にチタンカーバイド製の第2中間層4bが、第2中間層4bの表面にチタン製の第1中間層4aがそれぞれ配置されるものである。   Accordingly, as shown in FIG. 2, the second lithium battery electrode 10 </ b> B according to the example includes a titanium current collector plate 1, a carbon nanotube 2 disposed on the titanium current collector plate 1, and a carbon nanotube 2. And a negative electrode active material absorption layer 3 made of silicon that absorbs lithium ions, and is disposed on the surface of the carbon-based material 2 between the carbon nanotubes 2 and the negative electrode active material absorption layer 3. The second intermediate layer 4b made of titanium carbide is arranged with the first intermediate layer 4a made of titanium on the surface of the second intermediate layer 4b.

本発明に係る二次電池用電極10によれば、炭素系材料2の表面に配置される負極活物質吸収層3と炭素系材料2との間に、炭素系材料2と負極活物質吸収層3との間の電子移動が可能な材料から成る中間層4が配置されるため、炭素系材料2と負極活物質吸収層3との反応を防止することで電気抵抗値の増大を抑制するとともに、電池性能の低下を抑制する。   According to the secondary battery electrode 10 of the present invention, the carbon-based material 2 and the negative electrode active material absorbing layer are disposed between the carbon-based material 2 and the negative-electrode active material absorbing layer 3 disposed on the surface of the carbon-based material 2. Since the intermediate layer 4 made of a material capable of transferring electrons between the carbon material 3 and the negative electrode active material absorption layer 3 is prevented, an increase in the electric resistance value is suppressed. Suppresses battery performance degradation.

また、中間層4に負極活物質吸収層3と炭素系材料2との間に、炭素系材料2と負極活物質吸収層3との間の電子移動が可能な材料(チタン)を用いることによって、導電性を低下させることなく負極活物質吸収層3の炭素系材料2への密着性を高めることができる。   Further, by using a material (titanium) capable of electron transfer between the carbon-based material 2 and the negative electrode active material absorbing layer 3 between the negative electrode active material absorbing layer 3 and the carbon-based material 2 for the intermediate layer 4. In addition, the adhesion of the negative electrode active material absorption layer 3 to the carbon-based material 2 can be improved without reducing the conductivity.

さらに、負極活物質吸収層3にアモルファスシリコンを用いた場合には、リチウム吸収時(充電時)の負極活物質吸収層3の体積膨張による負極活物質吸収層3の破壊を抑制するとともに、負極活物質吸収層3内へのリチウムの吸収を容易にすることもできる。   Further, when amorphous silicon is used for the negative electrode active material absorption layer 3, the negative electrode active material absorption layer 3 is prevented from being destroyed due to volume expansion of the negative electrode active material absorption layer 3 during lithium absorption (at the time of charging), and the negative electrode The absorption of lithium into the active material absorption layer 3 can also be facilitated.

なお、集電板1と同一材料を用いて中間層4を炭素系材料2の全周囲に被覆させるとともに集電板1に接触させて形成したことによって、導電性が向上する。
以下、本実施例に係る二次電池用電極10(10A,10B)の製造方法について、図3を用いて説明する。
The intermediate layer 4 is coated on the entire periphery of the carbon-based material 2 using the same material as the current collector plate 1 and is formed in contact with the current collector plate 1, thereby improving conductivity.
Hereinafter, a method for manufacturing the secondary battery electrode 10 (10A, 10B) according to this example will be described with reference to FIG.

本実施例の二次電池用電極10の製造方法は、炭素系材料2を形成する炭素系材料形成工程と、形成した炭素系材料を集電板1へ配置する炭素系材料配置(転写)工程と、集電板1に配置された炭素系材料の周囲に中間層4を配置する中間層配置(形成)工程と、形成された中間層4上に負極活物質吸収層3を配置する負極活物質吸収層配置(形成)工程とを備える。   The manufacturing method of the electrode 10 for secondary batteries of a present Example is the carbon-type material formation process which forms the carbon-type material 2, and the carbon-type material arrangement | positioning (transfer) process which arrange | positions the formed carbon-type material to the current collecting plate 1. An intermediate layer disposing (forming) step of disposing the intermediate layer 4 around the carbon-based material disposed on the current collector plate 1; and a negative electrode active material for disposing the negative electrode active material absorbing layer 3 on the formed intermediate layer 4 A substance absorption layer arrangement (formation) step.

まず、炭素系材料形成工程について説明する。炭素系材料2の形成は、選択される炭素系材料2において公知の製法を用いればよい。本実施例においては、炭素系材料2はカーボンナノチューブであるため、例えばアーク放電法や、レーザ蒸発法、熱化学気相成長法が挙げられる。本実施例においては、図3(a)に示すように、熱化学気相成長法によって、カーボンナノチューブ2が生成用基板20上に生成される。   First, the carbon-based material forming process will be described. The carbon-based material 2 may be formed by using a known manufacturing method for the selected carbon-based material 2. In this embodiment, since the carbon-based material 2 is a carbon nanotube, for example, an arc discharge method, a laser evaporation method, and a thermal chemical vapor deposition method can be used. In this embodiment, as shown in FIG. 3A, the carbon nanotubes 2 are generated on the generation substrate 20 by thermal chemical vapor deposition.

次に、炭素系材料配置(転写)工程について説明する。形成した炭素系材料(カーボンナノチューブ)2は、集電板1へ配置される。集電板1への配置は公知の方法を用いればよい。実施例1においては、例えば、生成用基板20上に生成されたカーボンナノチューブ2を生成用基板20から剥離して集電板(チタン製基板)1へ転写する方法が挙げられる。すなわち、実施例1においては、図3(b)に示すように、カーボンナノチューブ2を、生成用基板20からカッター、ガスやレーザ等で剥離するとともに、集電板1へ移し替えて配置(固定)する。   Next, a carbon-based material arrangement (transfer) process will be described. The formed carbon-based material (carbon nanotube) 2 is disposed on the current collector plate 1. A known method may be used for the arrangement on the current collector plate 1. In Example 1, for example, there is a method in which the carbon nanotubes 2 generated on the generation substrate 20 are peeled off from the generation substrate 20 and transferred to the current collector plate (titanium substrate) 1. That is, in Example 1, as shown in FIG. 3B, the carbon nanotubes 2 are peeled off from the generation substrate 20 with a cutter, gas, laser, or the like, and transferred to the current collector plate 1 to be arranged (fixed). )

次に、中間層配置(形成)工程について説明する。集電板1に転写した炭素系材料2の全周囲を被覆し、かつ集電板1に接触するように中間層4を形成する。すなわち、炭素系材料2の周囲に、中間層4に用いられる材料を蒸着、スパッタリング、化学気相成長法、物理気相成長法、VLS(Vapor−Liquid−Solid)法などの公知の薄膜生成技術を用いて均一にコーティングする。図3(c)には蒸着を用いた場合を示す。   Next, the intermediate layer arrangement (formation) step will be described. The intermediate layer 4 is formed so as to cover the entire circumference of the carbon-based material 2 transferred to the current collector plate 1 and to be in contact with the current collector plate 1. That is, a known thin film forming technique such as vapor deposition, sputtering, chemical vapor deposition, physical vapor deposition, VLS (Vapor-Liquid-Solid), etc., is used around the carbon-based material 2 to deposit the material used for the intermediate layer 4. Use to coat uniformly. FIG. 3C shows a case where vapor deposition is used.

ここで、図2に示す第2の二次電池用電極10Bを製造する場合、すなわち中間層4が第1中間層4aと第2中間層4bとを備える場合には、中間層配置工程は第1中間層配置工程と第2中間層配置工程とを具備する。すなわち、集電板1に形成された炭素系材料2の全周囲を被覆し、かつ集電板1に接触するように、第1中間層4aに用いられる材料を、第1中間層4a上に第2中間層4bに用いられる材料を、それぞれ上記の公知の薄膜生成技術を用いて均一にコーティングする。   Here, when the second secondary battery electrode 10B shown in FIG. 2 is manufactured, that is, when the intermediate layer 4 includes the first intermediate layer 4a and the second intermediate layer 4b, the intermediate layer disposing step is performed as follows. 1 intermediate | middle layer arrangement | positioning process and 2nd intermediate | middle layer arrangement | positioning process are comprised. That is, the material used for the first intermediate layer 4a is coated on the first intermediate layer 4a so as to cover the entire periphery of the carbon-based material 2 formed on the current collector plate 1 and to be in contact with the current collector plate 1. The materials used for the second intermediate layer 4b are uniformly coated using the above-described known thin film generation techniques.

最後に、負極活物質吸収層配置(形成)工程について説明する。中間層4が形成された炭素系材料2に、中間層4の上に負極活物質吸収層3を形成(配置)する。すなわち、炭素系材料2の周囲に、負極活物質吸収材料を蒸着、スパッタリング、化学気相成長法、物理気相成長法、VLS法などの公知の薄膜生成技術を用いて均一にコーティングする。図3(d)には蒸着を用いた場合を示す。これらのうち蒸着などの材料を気化して負極活物質吸収層3を形成する場合には、その温度が中間層4の材料が気化しない温度範囲で行うことが好ましい。本実施例においては、チタンが気化しない1300℃程度以下で且つシリコンが気化する1100℃以上(1100℃〜1300℃)が好適な温度範囲である。   Finally, the negative electrode active material absorption layer arrangement (formation) step will be described. The negative electrode active material absorption layer 3 is formed (arranged) on the intermediate layer 4 in the carbon-based material 2 on which the intermediate layer 4 is formed. That is, the negative electrode active material absorbing material is uniformly coated around the carbon-based material 2 using a known thin film forming technique such as vapor deposition, sputtering, chemical vapor deposition, physical vapor deposition, or VLS. FIG. 3D shows a case where vapor deposition is used. Of these, when the material for vapor deposition or the like is vaporized to form the negative electrode active material absorbing layer 3, it is preferable that the temperature be within a temperature range in which the material for the intermediate layer 4 is not vaporized. In this embodiment, the temperature range is preferably about 1300 ° C. or less at which titanium is not vaporized and 1100 ° C. or higher (1100 ° C. to 1300 ° C.) at which silicon is vaporized.

なお、本実施例のように炭素系材料2としてカーボンナノチューブを用いる場合には、付加的に、炭素系材料配置工程の前に、その先端を開端することや、炭素系材料配置工程の後にカーボンナノチューブ内部に残った触媒金属を除去することなどを行ってもよい。   In addition, when using a carbon nanotube as the carbon-based material 2 as in the present embodiment, in addition, the front end of the carbon-based material is opened before the carbon-based material arranging step, or after the carbon-based material arranging step. For example, the catalyst metal remaining inside the nanotube may be removed.

本実施例の二次電池用電極10の製造方法によれば、炭素系材料2の表面に配置される負極活物質吸収層3と炭素系材料2との間に、炭素系材料2と負極活物質吸収層3との間の電子移動が可能な材料から成る中間層4を配置するため、導電性を低下させることなく負極活物質吸収層3の炭素系材料2への密着性を高めることができる。   According to the method for manufacturing the secondary battery electrode 10 of the present embodiment, the carbon-based material 2 and the negative electrode active material are disposed between the carbon-based material 2 and the negative-electrode active material absorbing layer 3 disposed on the surface of the carbon-based material 2. Since the intermediate layer 4 made of a material capable of transferring electrons to and from the material absorption layer 3 is disposed, the adhesion of the negative electrode active material absorption layer 3 to the carbon-based material 2 can be improved without reducing the conductivity. it can.

さらに、負極活物質吸収層3にアモルファスシリコンを用いた場合には、リチウム吸収時(充電時)の負極活物質吸収層3の体積膨張による負極活物質吸収層3の破壊を抑制するとともに、負極活物質吸収層3内へのリチウムの吸収を容易にすることもできる。   Further, when amorphous silicon is used for the negative electrode active material absorption layer 3, the negative electrode active material absorption layer 3 is prevented from being destroyed due to volume expansion of the negative electrode active material absorption layer 3 during lithium absorption (at the time of charging), and the negative electrode The absorption of lithium into the active material absorption layer 3 can also be facilitated.

なお、中間層4が集電板1と同一材料であるとともに集電板1に接触させて形成したことによって、中間層4をコーティングする上で利便性がある。
したがって、得られた二次電池用電極10は、炭素系材料2と負極活物質吸収層3との反応を防止することで電気抵抗値の増大を抑制するとともに、電池性能の低下を抑制する。
The intermediate layer 4 is made of the same material as the current collector plate 1 and is formed in contact with the current collector plate 1, which is convenient for coating the intermediate layer 4.
Therefore, the obtained secondary battery electrode 10 prevents the reaction between the carbon-based material 2 and the negative electrode active material absorption layer 3, thereby suppressing an increase in electric resistance and suppressing a decrease in battery performance.

1 基板(集電板)
2 炭素系材料(カーボンナノチューブ)
3 負極活物質吸収層
4 中間層
4a 第1中間層
4b 第2中間層
10(10A,10B) 二次電池用電極
1 Substrate (collector plate)
2 Carbon materials (carbon nanotubes)
3 Negative electrode active material absorption layer 4 Intermediate layer 4a First intermediate layer 4b Second intermediate layer 10 (10A, 10B) Secondary battery electrode

Claims (6)

基板と、当該基板上に配置される炭素系材料と、当該炭素系材料の表面に配置されて負極活物質を吸収する材料から成る負極活物質吸収層とから成る二次電池用電極において、
前記炭素系材料と前記負極活物質吸収層との間に、前記炭素系材料と前記負極活物質吸収層との間での電子移動を可能とする材料から成る中間層が配置されることを特徴とする二次電池用電極。
In an electrode for a secondary battery comprising a substrate, a carbon-based material disposed on the substrate, and a negative electrode active material absorption layer made of a material that is disposed on the surface of the carbon-based material and absorbs the negative electrode active material,
An intermediate layer made of a material that enables electron transfer between the carbon-based material and the negative electrode active material absorption layer is disposed between the carbon-based material and the negative electrode active material absorption layer. An electrode for a secondary battery.
中間層は、チタン、銅、ジルコニウム、それらの酸化物、それらの炭化物、又はこれらを少なくとも二種以上組み合わせた材料から成ることを特徴とする請求項1に記載の二次電池用電極。   2. The electrode for a secondary battery according to claim 1, wherein the intermediate layer is made of titanium, copper, zirconium, oxides thereof, carbides thereof, or a combination of at least two of these materials. 中間層は、チタンの第1中間層と、チタンカーバイドの第2中間層とで構成されることを特徴とする請求項1に記載の二次電池用電極。   The secondary battery electrode according to claim 1, wherein the intermediate layer includes a first intermediate layer of titanium and a second intermediate layer of titanium carbide. 炭素系材料の表面に第2中間層が、当該第2中間層の表面に第1中間層がそれぞれ配置されることを特徴とする請求項3に記載の二次電池用電極。   The secondary battery electrode according to claim 3, wherein the second intermediate layer is disposed on the surface of the carbon-based material, and the first intermediate layer is disposed on the surface of the second intermediate layer. 炭素系材料は、カーボンナノチューブ、カーボンファイバー及び活性炭でできた繊維のうちのいずれか一つであることを特徴とする請求項1乃至4のいずれか一項に記載の二次電池用電極。   The electrode for a secondary battery according to any one of claims 1 to 4, wherein the carbon-based material is any one of carbon nanotubes, carbon fibers, and fibers made of activated carbon. 負極活物質吸収層はアモルファスシリコンから成ることを特徴とする請求項1乃至5のいずれか一項に記載の二次電池用電極。   The secondary battery electrode according to any one of claims 1 to 5, wherein the negative electrode active material absorption layer is made of amorphous silicon.
JP2014128724A 2014-06-24 2014-06-24 Secondary battery electrode Active JP6403151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128724A JP6403151B2 (en) 2014-06-24 2014-06-24 Secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128724A JP6403151B2 (en) 2014-06-24 2014-06-24 Secondary battery electrode

Publications (2)

Publication Number Publication Date
JP2016009556A true JP2016009556A (en) 2016-01-18
JP6403151B2 JP6403151B2 (en) 2018-10-10

Family

ID=55226989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128724A Active JP6403151B2 (en) 2014-06-24 2014-06-24 Secondary battery electrode

Country Status (1)

Country Link
JP (1) JP6403151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039609A1 (en) * 2018-08-24 2020-02-27 ゼプター コーポレーション Negative electrode for lithium battery, method for manufacturing same, and lithium battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198427A (en) * 2007-02-09 2008-08-28 Bridgestone Corp Manufacturing method of negative electrode for lithium ion battery, and lithium ion battery
JP2009521082A (en) * 2005-12-23 2009-05-28 コミツサリア タ レネルジー アトミーク Carbon nanotubes and silicon-based materials that can be used as cathodes for lithium batteries
JP2009181827A (en) * 2008-01-31 2009-08-13 Bridgestone Corp Method of manufacturing negative electrode for lithium-ion battery, and lithium-ion battery
JP2012084359A (en) * 2010-10-08 2012-04-26 Mazda Motor Corp Active material containing active carbon for power storage device, production method therefor, and power storage device having active material
JP2012512505A (en) * 2008-12-12 2012-05-31 アプライド マテリアルズ インコーポレイテッド 3D battery with hybrid nanocarbon layer
JP2013080699A (en) * 2011-09-21 2013-05-02 Semiconductor Energy Lab Co Ltd Negative electrode for power storage device and power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521082A (en) * 2005-12-23 2009-05-28 コミツサリア タ レネルジー アトミーク Carbon nanotubes and silicon-based materials that can be used as cathodes for lithium batteries
JP2008198427A (en) * 2007-02-09 2008-08-28 Bridgestone Corp Manufacturing method of negative electrode for lithium ion battery, and lithium ion battery
JP2009181827A (en) * 2008-01-31 2009-08-13 Bridgestone Corp Method of manufacturing negative electrode for lithium-ion battery, and lithium-ion battery
JP2012512505A (en) * 2008-12-12 2012-05-31 アプライド マテリアルズ インコーポレイテッド 3D battery with hybrid nanocarbon layer
JP2012084359A (en) * 2010-10-08 2012-04-26 Mazda Motor Corp Active material containing active carbon for power storage device, production method therefor, and power storage device having active material
JP2013080699A (en) * 2011-09-21 2013-05-02 Semiconductor Energy Lab Co Ltd Negative electrode for power storage device and power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039609A1 (en) * 2018-08-24 2020-02-27 ゼプター コーポレーション Negative electrode for lithium battery, method for manufacturing same, and lithium battery

Also Published As

Publication number Publication date
JP6403151B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
Wu et al. Lithiophilic Cu‐CuO‐Ni hybrid structure: advanced current collectors toward stable lithium metal anodes
Chao et al. C‐Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na‐Ion Storage
JP4445465B2 (en) Carbon-coated aluminum and method for producing the same
WO2017084128A1 (en) Novel secondary battery and preparation method therefor
JP4953631B2 (en) Non-aqueous electrolyte secondary battery
JP2016517157A (en) Electrochemical cell with solid and liquid electrolyte
JP2020503639A (en) Current collectors, their electrode sheets and electrochemical devices
US20110200884A1 (en) Positive current collector and manufacturing method thereof
JP4910297B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
US20220223855A1 (en) Method for producing silicon-based anodes for secondary batteries
JP2017069220A (en) Manufacturing method of power storage device
JP2012512505A (en) 3D battery with hybrid nanocarbon layer
TW201248664A (en) Electrode foil, commutator, electrode and storage element using such electrode
JP2009283275A (en) Current collecting foil for secondary battery, and method for manufacturing thereof
JP2016207644A (en) Electrode material, secondary batteries including the same, and manufacturing methods thereof
TW201121124A (en) Nano-structured lithium-sulfur battery and method of making same
JP2007294196A (en) Anode material for lithium ion secondary battery and its manufacturing method
US11158849B2 (en) Lithium ion battery including nano-crystalline graphene electrode
JP2011044368A (en) Nonaqueous electrolyte battery
Xu et al. Energy storage performance enhancement by surface engineering of electrode materials
JP6403151B2 (en) Secondary battery electrode
KR101337488B1 (en) ELECTRODE FOR Li SECONDARY BATTERY, METHOD OF PRODUCING THE SAME AND Li SECONDARY BATTERY
US10454105B2 (en) Electrode for an energy accumulator and manufacturing method
JP6653991B2 (en) Stabilized anode for lithium battery and method for producing the same
KR20180022706A (en) Silicon monolithic graphite anode for lithium cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180905

R150 Certificate of patent or registration of utility model

Ref document number: 6403151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250