WO2020031721A1 - 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板 - Google Patents

粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2020031721A1
WO2020031721A1 PCT/JP2019/029224 JP2019029224W WO2020031721A1 WO 2020031721 A1 WO2020031721 A1 WO 2020031721A1 JP 2019029224 W JP2019029224 W JP 2019029224W WO 2020031721 A1 WO2020031721 A1 WO 2020031721A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
roughened
carrier
copper
roughened copper
Prior art date
Application number
PCT/JP2019/029224
Other languages
English (en)
French (fr)
Inventor
眞 細川
哲聡 ▲高▼梨
美智 溝口
慎哉 平岡
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201980047289.3A priority Critical patent/CN112424399B/zh
Priority to MYPI2021000356A priority patent/MY186454A/en
Priority to JP2020536455A priority patent/JP6905157B2/ja
Priority to KR1020217000738A priority patent/KR102480377B1/ko
Publication of WO2020031721A1 publication Critical patent/WO2020031721A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
  • the MSAP method is a method suitable for forming an extremely fine circuit, and is performed using a copper foil with a carrier in order to take advantage of its features. For example, as shown in FIGS. 1 and 2, an ultra-thin copper foil 10 is pressed and adhered on an insulating resin substrate 11 provided with a lower circuit 11 b on a base material 11 a using a prepreg 12 and a primer layer 13. After the carrier (not shown) is peeled off (step (a)), a via hole 14 is formed by laser drilling as needed (step (b)).
  • step (c) After performing chemical copper plating 15 (step (c)), masking is performed in a predetermined pattern by exposure and development using a dry film 16 (step (d)), and electrolytic copper plating 17 is performed (step (e)). )).
  • step (f) After removing the dry film 16 to form the wiring portion 17a (step (f)), unnecessary ultra-thin copper foil and the like between the wiring portions 17a and 17a adjacent to each other are removed by etching over their entire thickness ( Step (g)), a wiring 18 formed in a predetermined pattern is obtained.
  • the surface of the ultra-thin copper foil 10 is generally subjected to a roughening treatment.
  • Patent Document 1 International Publication No. WO 2016/117587
  • the average distance between the surface peaks on the surface on the release layer side is 20 ⁇ m or less
  • the maximum height difference of the undulation on the surface on the side opposite to the release layer is described.
  • a copper foil with a carrier provided with an ultra-thin copper foil having a thickness of 1.0 ⁇ m or less is disclosed, and according to such an embodiment, it is said that both fine circuit formability and laser workability can be achieved.
  • Patent Document 2 Japanese Patent Application Laid-Open No.
  • a shear strength is one of physical indices of physical contact between a circuit and a substrate, and in order to effectively avoid the above-described circuit peeling, it is required to maintain the shear strength at or above a certain level.
  • the roughened particles of the copper foil must be enlarged, and there is a problem that it is difficult to achieve compatibility with the etching property.
  • the present inventors have recently provided a surface profile in which the maximum height Sz, the interface development area ratio Sdr, and the peak vertex density Spd specified in ISO25178 are controlled to predetermined ranges in the roughened copper foil. As a result, it has been found that in etching a copper-clad laminate or manufacturing a printed wiring board, it is possible to achieve both excellent etching properties and high shear strength.
  • an object of the present invention is to provide a roughened copper foil capable of achieving both excellent etching properties and high shear strength in processing a copper-clad laminate or manufacturing a printed wiring board.
  • a roughened copper foil having a roughened surface on at least one side,
  • the roughened surface has a maximum height Sz measured according to ISO25178 of 0.65 to 1.00 ⁇ m, and a developed area ratio Sdr of the interface measured according to ISO25178 of 1.50 to 4. .20, and a roughened copper foil having a peak vertex density Spd of 6.50 ⁇ 10 6 to 8.50 ⁇ 10 6 pieces / mm 2 measured according to ISO25178.
  • a carrier a release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outward.
  • a copper foil with a carrier.
  • a copper-clad laminate including the roughened copper foil.
  • a printed wiring board provided with the roughened copper foil.
  • FIG. 3 is a process flow chart for explaining the MSAP method, showing the first half of the process (steps (a) to (d)).
  • FIG. 3 is a process flow chart for explaining the MSAP method, showing the latter half of the process (steps (e) to (g)). It is a schematic diagram for explaining the measuring method of the shear strength.
  • the “maximum height Sz” is a parameter that is measured according to ISO25178 and that represents the distance from the highest point to the lowest point on the surface.
  • the maximum height Sz can be calculated by measuring the surface profile of a predetermined measurement area (for example, a 6812 ⁇ m 2 two-dimensional area) on the roughened surface with a commercially available laser microscope.
  • the “interface development area ratio Sdr” indicates how much the development area (surface area) of the defined area, measured in accordance with ISO25178, is increased with respect to the area of the defined area. Parameter. The smaller this value is, the more nearly flat the surface shape is, and the Sdr of the completely flat surface is 0. On the other hand, a larger value indicates a surface shape with more irregularities. For example, a surface having an Sdr of 0.4 indicates that the surface has increased by 40% surface area from a perfectly flat surface.
  • the interface development area ratio Sdr can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 6812 ⁇ m 2 ) on the roughened surface with a commercially available laser microscope.
  • the “peak vertex density Spd” is a parameter that is measured according to ISO25178 and represents the number of peaks per unit area. A large value indicates that the number of contact points with other objects is large.
  • the peak vertex density Spd can be calculated by measuring the surface profile of a predetermined measurement area (for example, a 6812 ⁇ m 2 two-dimensional area) on the roughened surface with a commercially available laser microscope.
  • the “electrode surface” of the carrier refers to the surface that was in contact with the cathode when the carrier was manufactured.
  • the “deposited surface” of the carrier refers to a surface on which electrolytic copper is deposited during the production of the carrier, that is, a surface not in contact with the cathode.
  • the copper foil according to the present invention is a roughened copper foil.
  • This roughened copper foil has a roughened surface on at least one side.
  • the roughened surface has a maximum height Sz of 0.65 to 1.00 ⁇ m, an interface development area ratio Sdr of 1.50 to 4.20, and a peak vertex density Spd of 6.50 ⁇ 10 5. 6 to 8.50 ⁇ 10 6 pieces / mm 2 .
  • the maximum height Sz, the developed area ratio Sdr of the interface, and the peak density Spd of the peaks are given a surface profile controlled to a predetermined range, thereby processing the copper-clad laminate.
  • Excellent etching properties and high shear strength are inherently incompatible. This is because, as described above, in order to improve the etching property of the copper foil, it is generally required to reduce the size of the roughened particles. Is required to be large.
  • unexpectedly excellent etching properties and high shear strength can both be achieved. That is, the shear strength is not simply proportional to the specific surface area, the roughened height, etc., which have been conventionally used for evaluation, and it has been difficult to control the shear strength.
  • the present inventors evaluated the evaluation by combining the development area ratio Sdr of the interface and the peak vertex density Spd in addition to the maximum height Sz in order to correlate with the physical properties such as the etching property and the shear strength. It was found that it was effective to do so.
  • the edge height and the edge density, and the specific surface area which are favorable for securing a high shear strength, while having a fine surface excellent in etching property, are provided.
  • the roughened copper foil has a maximum height Sz of the roughened surface of 0.65 to 1.00 ⁇ m, preferably 0.65 to 0 ⁇ m. .90 ⁇ m, more preferably 0.65 to 0.80 ⁇ m.
  • the roughened copper foil has a development area ratio Sdr of an interface of the roughened surface of 1.50 to 4.20, preferably 1.80 to 3.50, more preferably 2.00 to 3.20. 00.
  • the roughened copper foil has a peak vertex density Spd of the roughened surface of 6.50 ⁇ 10 6 to 8.50 ⁇ 10 6 / mm 2 , and preferably 7.65 ⁇ 10 6 to 8 It is 0.50 ⁇ 10 6 pieces / mm 2 , more preferably 7.80 ⁇ 10 6 to 8.30 ⁇ 10 6 pieces / mm 2 .
  • the roughened copper foil has Sz ⁇ Sdr ⁇ Spd, which is a product of the maximum height Sz on the roughened surface, the developed area ratio Sdr of the interface, and the peak vertex density Spd, of 7.50 ⁇ 10 6 to 2.70 ⁇ . It is preferably 10 7 ( ⁇ m ⁇ piece / mm 2 ), more preferably 9.00 ⁇ 10 6 to 2.60 ⁇ 10 7 ( ⁇ m ⁇ piece / mm 2 ), and still more preferably 1.00 ⁇ 10 7. 2.00 ⁇ 10 7 ( ⁇ m ⁇ piece / mm 2 ). Within such a range, it becomes easier to achieve both excellent etching properties and high shear strength.
  • the thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 to 35 ⁇ m, more preferably 0.5 to 5.0 ⁇ m, and further preferably 1.0 to 3.0 ⁇ m.
  • the roughened copper foil is not limited to a copper foil having a surface roughened, but may be a copper foil with a carrier that has been roughened.
  • the roughened copper foil has a roughened surface on at least one side. That is, the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side.
  • the roughened surface typically includes a plurality of roughened particles (cob), and each of the plurality of roughened particles is preferably made of copper particles.
  • the copper particles may be made of metallic copper or may be made of a copper alloy.
  • the roughening treatment for forming the roughened surface can be preferably performed by forming roughened particles of copper or a copper alloy on a copper foil.
  • a roughening treatment is performed according to a plating method that includes at least two types of plating steps including a baking plating step of depositing and depositing fine copper particles on a copper foil and a cover plating step of preventing falling of the fine copper particles. Is preferably performed.
  • the baking plating step 30 to 50 ppm (more preferably 35 to 50 ppm) of carboxybenzotriazole (CBTA) is added to a copper sulfate solution containing a copper concentration of 5 to 20 g / L and a sulfuric acid concentration of 180 to 240 g / L,
  • the electrodeposition is preferably performed at a temperature of 15 to 35 ° C. and 12 to 24 A / dm 2 (more preferably 12 to 18 A / dm 2 ).
  • the overplating step is performed in a copper sulfate solution containing a copper concentration of 50 to 100 g / L and a sulfuric acid concentration of 200 to 250 g / L at a temperature of 40 to 60 ° C.
  • the baking plating step by adding carboxybenzotriazole within the above concentration range to the plating solution, while maintaining the etching properties close to pure copper, a bump that is favorable to satisfy the above-described surface parameters on the treated surface. It is easy to form. Furthermore, in the baking plating step and the cover plating step, by performing electrodeposition at a lower current density than in the conventional method, it becomes easier to form a favorable bump on the treated surface to satisfy the above-mentioned surface parameters.
  • the roughened copper foil may be subjected to a rust-proof treatment to form a rust-proof treatment layer.
  • the rust prevention treatment preferably includes a plating treatment using zinc.
  • the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
  • the zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further include other elements such as Sn, Cr, and Co.
  • the adhesion ratio of Ni / Zn in the zinc-nickel alloy plating is preferably 1.2 to 10, more preferably 2 to 7, and further preferably 2.7 to 4 by mass ratio.
  • the rust prevention treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the zinc-containing plating after the plating treatment using zinc. By doing so, rust prevention can be further improved.
  • a particularly preferred rust preventive treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
  • the roughened copper foil may be one in which the surface is subjected to a silane coupling agent treatment to form a silane coupling agent layer.
  • a silane coupling agent treatment to form a silane coupling agent layer.
  • the silane coupling agent layer can be formed by appropriately diluting the silane coupling agent, applying the diluted silane coupling agent, and then drying.
  • silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-2 (amino Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Functional silane coupling agent, or mercapto-functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane or olefin-functional silane coupling agent such as vinyltrimethoxysilane or vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Trimming Acrylic-functional silane coupling agent such as Kishishiran, or imi
  • the roughened copper foil preferably further includes a rust-proofing layer and / or a silane coupling agent layer on the roughened surface, and more preferably a rust-proofing layer and a silane coupling agent layer. It has both.
  • the rust preventive layer and the silane coupling agent layer may be formed not only on the roughened surface of the roughened copper foil but also on the side where the roughened surface is not formed.
  • the roughened copper foil of the present invention may be provided in the form of a copper foil with a carrier. That is, according to a preferred embodiment of the present invention, a carrier, a release layer provided on the carrier, comprising the roughened copper foil provided on the release layer with a roughened surface outside, A copper foil with a carrier is provided.
  • a known layer configuration can be adopted for the copper foil with a carrier, except that the roughened copper foil of the present invention is used.
  • the carrier is a support for supporting the roughened copper foil to improve its handleability
  • a typical carrier includes a metal layer.
  • a carrier include an aluminum foil, a copper foil, a stainless steel (SUS) foil, a resin film whose surface is metal-coated with copper or the like, a glass, and the like, and preferably a copper foil.
  • the copper foil may be a rolled copper foil or an electrolytic copper foil, but is preferably an electrolytic copper foil.
  • the thickness of the carrier is typically less than 250 ⁇ m, preferably 9-200 ⁇ m.
  • the surface of the carrier on the release layer side is preferably smooth. That is, in the manufacturing process of the copper foil with a carrier, an extremely thin copper foil (before performing the roughening treatment) is formed on the surface of the carrier on the release layer side. Therefore, by keeping the surface on the release layer side of the carrier smooth, the outer surface of the ultra-thin copper foil can also be smooth, and by performing a roughening treatment on the smooth surface of this ultra-thin copper foil, A roughened surface having the maximum height Sz within the predetermined range, the developed area ratio Sdr of the interface, and the peak vertex density Spd can be easily realized.
  • the surface of the carrier on the release layer side can be smoothed, for example, by adjusting the surface roughness by polishing the surface of the cathode used for electrolytically forming the carrier with a buff of a predetermined count. That is, the surface profile of the cathode adjusted in this way is transferred to the electrode surface of the carrier, and the ultra-thin copper foil is formed on the electrode surface of the carrier via a release layer, so that the outer surface of the ultra-thin copper foil is formed.
  • a smooth surface state that can easily realize the above-described roughened surface can be provided.
  • Preferred buff counts are # 2000 to # 3000, more preferably # 2000 to # 2500.
  • the release layer is a layer having a function of reducing the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing a possible interdiffusion between the carrier and the copper foil during press molding at a high temperature.
  • the release layer is generally formed on one surface of the carrier, but may be formed on both surfaces.
  • the release layer may be either an organic release layer or an inorganic release layer.
  • the organic component used in the organic release layer include a nitrogen-containing organic compound, a sulfur-containing organic compound, and a carboxylic acid.
  • the nitrogen-containing organic compound include a triazole compound, an imidazole compound, and the like. Among them, a triazole compound is preferable because the releasability is easily stabilized.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N ', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole and the like.
  • sulfur-containing organic compound examples include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazole thiol, and the like.
  • carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like.
  • examples of the inorganic component used for the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film.
  • the release layer may be formed by, for example, bringing a solution containing a release layer component into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier. When the carrier is brought into contact with the release layer component-containing solution, this contact may be performed by dipping in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like.
  • a method of forming a film of the release layer component by a vapor phase method such as vapor deposition or sputtering can also be adopted.
  • the fixation of the release layer component to the carrier surface may be performed by adsorption and drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the release layer is typically from 1 nm to 1 ⁇ m, preferably from 5 nm to 500 nm.
  • another functional layer may be provided between the release layer and the carrier and / or the roughened copper foil.
  • auxiliary metal layers include nickel and / or cobalt.
  • the auxiliary metal layer comprises nickel and / or cobalt.
  • the roughened copper foil of the present invention is preferably used for producing a copper-clad laminate for a printed wiring board. That is, according to a preferred aspect of the present invention, there is provided a copper-clad laminate provided with the roughened copper foil.
  • This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil.
  • the roughened copper foil may be provided on one side of the resin layer, or may be provided on both sides.
  • the resin layer contains a resin, preferably an insulating resin.
  • the resin layer is preferably a prepreg and / or a resin sheet.
  • the prepreg is a general term for a composite material in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin.
  • Preferred examples of the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin.
  • the insulating resin forming the resin sheet include an insulating resin such as an epoxy resin, a polyimide resin, and a polyester resin.
  • the resin layer may contain filler particles composed of various inorganic particles such as silica and alumina from the viewpoint of improving insulation.
  • the thickness of the resin layer is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 2 to 400 ⁇ m, and further preferably 3 to 200 ⁇ m.
  • the resin layer may be composed of a plurality of layers.
  • a resin layer such as a prepreg and / or a resin sheet may be provided on the roughened copper foil via a primer resin layer previously applied to the copper foil surface.
  • the roughened copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, there is provided a printed wiring board provided with the roughened copper foil.
  • the printed wiring board according to this aspect has a layer configuration in which a resin layer and a copper layer are stacked.
  • the copper layer is a layer derived from the roughened copper foil of the present invention.
  • the resin layer is as described above for the copper clad laminate.
  • the printed wiring board can adopt a known layer configuration except that the roughened copper foil of the present invention is used.
  • the printed wiring board a single-sided or double-sided printed wiring board formed with a circuit after forming a cured laminate by bonding the roughened copper foil of the present invention to one or both sides of the prepreg, or a multilayer of these.
  • Examples include a multilayer printed wiring board.
  • Other specific examples include a flexible printed wiring board, a COF, a TAB tape, and the like, which form a circuit by forming the roughened copper foil of the present invention on a resin film.
  • a resin-coated copper foil (RCC) in which the above-described resin layer is applied to the roughened copper foil of the present invention is formed, and the resin layer is laminated on the above-described printed board as an insulating adhesive layer.
  • the roughened copper foil is removed by using the roughened copper foil as a whole or a part of the wiring layer to form a circuit by a modified semi-additive (MSAP) method, a subtractive method, or the like, or the roughened copper foil.
  • MSAP modified semi-additive
  • An electronic material for glass, an electromagnetic shielding film obtained by applying a conductive adhesive to the roughened copper foil of the present invention, and the like are also included.
  • the roughened copper foil of the present invention is suitable for the MSAP method. For example, when a circuit is formed by the MSAP method, a configuration as shown in FIG. 2 can be adopted.
  • Examples 1 to 8 and 12 to 14 A copper foil with a carrier provided with a roughened copper foil was prepared and evaluated as follows.
  • auxiliary metal layer Formation of auxiliary metal layer
  • the carrier on which the organic release layer was formed was immersed in a solution containing nickel concentration of 20 g / L prepared using nickel sulfate, at a liquid temperature of 45 ° C., pH 3, and a current density of 5 A / L. Under the condition of dm 2 , nickel having a thickness equivalent to 0.001 ⁇ m was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • Roughening treatment The surface of the ultra-thin copper foil thus formed was subjected to a roughening treatment.
  • This roughening treatment includes a baking plating step of depositing and depositing fine copper particles on an ultra-thin copper foil, and a cover plating step for preventing the fine copper particles from falling off.
  • carboxybenzotriazole (CBTA) having a concentration shown in Table 1 was added to an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 200 g / L at a liquid temperature of 25 ° C.
  • Roughening treatment was performed at the current density.
  • electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 240 g / L under a smooth plating condition of a liquid temperature of 52 ° C. and a current density shown in Table 1. .
  • various samples having different characteristics of the roughened surface were produced by appropriately changing the CBTA concentration and the current density in the baking plating step, and the current density in the covering plating step as shown in Table 1.
  • the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment under the conditions of pH 12 and current density of 1 A / dm 2 .
  • a laminate for evaluation was prepared using the obtained copper foil with a carrier. That is, a roughened copper foil with a carrier is laminated on the surface of the inner substrate via a prepreg (GHPL-830NSF, manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness: 0.1 mm), and the pressure is set to 4.0 MPa and the temperature is increased. After thermocompression bonding at 220 ° C. for 90 minutes, the carrier was peeled off to obtain a copper-clad laminate as a laminate for evaluation.
  • GHPL-830NSF manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness: 0.1 mm
  • a plurality of the evaluation laminates were prepared, and each of the evaluation laminates was etched with a sulfuric acid-hydrogen peroxide-based etchant at different times, and an etching amount required for completely eliminating copper on the surface ( Depth) was measured. The measurement was performed by confirming with an optical microscope (500 times).
  • the control of the etching time was performed by changing the transport speed of the etching apparatus. More specifically, under the condition that the etching amount is 1.60 ⁇ m when the transport speed of the etching apparatus is 1.0 m / min, the transport speed is gradually reduced so that the etching amount is increased by 0.1 ⁇ m (that is, the etching speed is increased).
  • the evaluation laminate was etched with the time being gradually increased).
  • the etching amount calculated from the transport speed when the residual copper was no longer detected by the optical microscope was defined as the etching amount necessary for completely removing the copper.
  • etching amount required for completely removing the copper obtained by the above measurement was rated and evaluated based on the following criteria, and the evaluations A and B were judged to be acceptable. The results were as shown in Table 1. ⁇ Etching evaluation criteria> -Evaluation A: Required etching amount is 2.7 ⁇ m or less. -Evaluation B: Required etching amount is more than 2.7 ⁇ m and 3.0 ⁇ m or less. -Evaluation C: Required etching amount is more than 3.0 ⁇ m.
  • Adhesion of plating circuit (shear strength) A dry film was adhered to the above-described laminate for evaluation, and exposure and development were performed. After depositing a copper layer having a thickness of 13.5 ⁇ m by pattern plating on the layered product masked with the developed dry film, the dry film was peeled off. The exposed copper portion was etched with a sulfuric acid-hydrogen peroxide-based etchant to produce a shear strength measuring circuit sample having a height of 15 ⁇ m, a width of 10 ⁇ m, and a length of 150 ⁇ m. Using a bonding strength tester (4000 Plus Bondtester, manufactured by Nordson DAGE), the shear strength when the circuit sample for shear strength measurement was pushed down from the side was measured.
  • a bonding strength tester 4000 Plus Bondtester, manufactured by Nordson DAGE
  • the stacked body 134 on which the circuit 136 is formed is placed on the movable stage 132, and the stage 132 is moved together with the stage 132 in the direction of the arrow in FIG.
  • a lateral force was applied to the side surface of the circuit 136 to push it down, and the force (gf) at that time was measured by the detector 138, and the measured value was adopted as the shear strength.
  • the test type was a destruction test, and the measurement was performed under the conditions of a test height of 10 ⁇ m, a descent speed of 0.050 mm / s, a test speed of 100.0 ⁇ m / s, a tool moving amount of 0.05 mm, and a fracture recognition point of 10%. .
  • the obtained shear strength was rated and evaluated based on the following criteria, and the evaluations A and B were determined to be acceptable. The results were as shown in Table 1.
  • Example 9 (comparison) Except that the preparation of the carrier was performed according to the procedure shown below, and that the ultra-thin copper foil was roughened by the black plating step shown below instead of the baking plating step and the cover plating step, Preparation and evaluation of a copper foil with a carrier were performed in the same manner as in Example 1. The results were as shown in Table 1.
  • ⁇ Sulfuric acid acidic copper sulfate solution composition > -Copper concentration: 80g / L -Free sulfuric acid concentration: 140g / L -Bis (3-sulfopropyl) disulfide concentration: 30 mg / L -Diallyldimethylammonium chloride polymer concentration: 50 mg / L -Chlorine concentration: 40mg / L
  • Electrolysis is performed on the deposition surface of the ultra-thin copper foil using the following black roughening copper electrolytic solution having the following composition at a solution temperature of 30 ° C., a current density of 50 A / dm 2 , and a time of 4 sec. Was performed.
  • Example 10 Comparison
  • Preparation and evaluation of a copper foil with a carrier were performed in the same manner as in Example 1, except that the surface of the ultrathin copper foil was not subjected to a roughening treatment.
  • the results were as shown in Table 1.
  • Example 11 Comparison
  • Preparation and evaluation of a copper foil with a carrier were performed in the same manner as in Example 1, except that the baking plating step and the cover plating step were performed as follows. The results were as shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立可能な、粗化処理銅箔が提供される。この粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、粗化処理面は、ISO25178に準拠して測定される最大高さSzが0.65~1.00μmであり、ISO25178に準拠して測定される界面の展開面積比Sdrが1.50~4.20であり、ISO25178に準拠して測定される山の頂点密度Spdが6.50×10~8.50×10個/mmである。

Description

粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
 本発明は、粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板に関する。
 近年、回路の微細化に適したプリント配線板の製造工法として、MSAP(モディファイド・セミ・アディティブ・プロセス)法が広く採用されている。MSAP法は、極めて微細な回路を形成するのに適した手法であり、その特徴を活かすため、キャリア付銅箔を用いて行われている。例えば、図1及び2に示されるように、極薄銅箔10を、下地基材11a上に下層回路11bを備えた絶縁樹脂基板11上にプリプレグ12とプライマー層13を用いてプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール14を形成する(工程(b))。次いで、化学銅めっき15を施した(工程(c))後に、ドライフィルム16を用いた露光及び現像により所定のパターンでマスキングし(工程(d))、電気銅めっき17を施す(工程(e))。ドライフィルム16を除去して配線部分17aを形成した後(工程(f))、互いに隣り合う配線部分17aと17a間の不要な極薄銅箔等をそれらの厚み全体にわたってエッチングにより除去して(工程(g))、所定のパターンで形成された配線18を得る。ここで、回路-基板間の物理的密着性を向上すべく、極薄銅箔10の表面に粗化処理を行うことが一般的に行われている。
 実際、MSAP法等による微細回路形成性に優れたキャリア付銅箔が幾つか提案されている。例えば、特許文献1(国際公開第2016/117587号)には、剥離層側の面の表面ピーク間平均距離が20μm以下であり、かつ、剥離層と反対側の面のうねりの最大高低差が1.0μm以下である極薄銅箔を備えたキャリア付銅箔が開示されており、かかる態様によれば微細回路形成性とレーザー加工性とを両立できるとされている。また、特許文献2(特開2018-26590号公報)には、微細回路形成性を向上することを目的として、極薄銅層側表面のISO25178に準拠した最大山高さSpと突出山部高さSpkとの比Sp/Spkが3.271~10.739であるキャリア付銅箔が開示されている。
国際公開第2016/117587号 特開2018-26590号公報
 近年、上述したMSAP法等により更なる微細回路を形成するため、銅箔に対してより一層の平滑化及び粗化粒子の微小化が求められている。しかしながら、銅箔の平滑化及び粗化粒子の微小化により、回路の微細化に関わる銅箔のエッチング性は向上するものの、銅箔と基板樹脂等との物理的密着力は低下することになる。特に、回路の細線化が進むにつれて、プリント配線板の実装工程において、回路に横方向からの物理的な応力(すなわちシェア応力)が加わることで回路が剥がれやすくなり、歩留まりが低下するという課題が顕在化している。この点、回路と基板の物理密着指標の一つにシェア強度(せん断強度)があり、上述の回路剥がれを効果的に回避するためには、シェア強度を一定以上に保つことが求められる。しかしながら、一定以上のシェア強度を確保するためには銅箔の粗化粒子を大きくせざるを得ず、エッチング性との両立を図るのが困難という問題がある。
 本発明者らは、今般、粗化処理銅箔において、ISO25178に規定される最大高さSz、界面の展開面積比Sdr及び山の頂点密度Spdをそれぞれ所定の範囲に制御した表面プロファイルを付与することにより、銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立できるとの知見を得た。
 したがって、本発明の目的は、銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立可能な、粗化処理銅箔を提供することにある。
 本発明の一態様によれば、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
 前記粗化処理面は、ISO25178に準拠して測定される最大高さSzが0.65~1.00μmであり、ISO25178に準拠して測定される界面の展開面積比Sdrが1.50~4.20であり、ISO25178に準拠して測定される山の頂点密度Spdが6.50×10~8.50×10個/mmである、粗化処理銅箔が提供される。
 本発明の他の一態様によれば、キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた前記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。
 本発明の更に別の一態様によれば、前記粗化処理銅箔を備えた、銅張積層板が提供される。
 本発明の更に別の一態様によれば、前記粗化処理銅箔を備えた、プリント配線板が提供される。
MSAP法を説明するための工程流れ図であり、前半の工程(工程(a)~(d))を示す図である。 MSAP法を説明するための工程流れ図であり、後半の工程(工程(e)~(g))を示す図である。 シェア強度の測定方法を説明するための模式図である。
 定義
 本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
 本明細書において、「最大高さSz」とは、ISO25178に準拠して測定される、表面の最も高い点から最も低い点までの距離を表すパラメータである。最大高さSzは、粗化処理面における所定の測定面積(例えば6812μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。
 本明細書において、「界面の展開面積比Sdr」とは、ISO25178に準拠して測定される、定義領域の展開面積(表面積)が、定義領域の面積に対してどれだけ増大しているかを表すパラメータである。この値が小さいほど、平坦に近い表面形状であることを示し、完全に平坦な表面のSdrは0となる。一方、この値が大きいほど、凹凸が多い表面形状であることを示す。例えば、表面のSdrが0.4である場合、この表面は完全に平坦な表面から40%表面積が増大していることを示す。界面の展開面積比Sdrは、粗化処理面における所定の測定面積(例えば6812μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。
 本明細書において、「山の頂点密度Spd」とは、ISO25178に準拠して測定される、単位面積当たりの山頂点の数を表すパラメータである。この値が大きいと他の物体との接触点の数が多いことを示唆する。山の頂点密度Spdは、粗化処理面における所定の測定面積(例えば6812μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。
 本明細書において、キャリアの「電極面」とは、キャリア作製時に陰極と接していた側の面を指す。
 本明細書において、キャリアの「析出面」とは、キャリア作製時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。
 粗化処理銅箔
 本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。この粗化処理面は、最大高さSzが0.65~1.00μmであり、界面の展開面積比Sdrが1.50~4.20であり、山の頂点密度Spdが6.50×10~8.50×10個/mmである。このように、粗化処理銅箔において、最大高さSz、界面の展開面積比Sdr及び山の頂点密度Spdをそれぞれ所定の範囲に制御した表面プロファイルを付与することにより、銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立することが可能となる。
 優れたエッチング性と高いシェア強度とは本来的には両立し難いものである。これは、前述したとおり、銅箔のエッチング性を向上させるためには、一般的に粗化粒子を小さくすることが求められるところ、回路のシェア強度を高めるためには、一般的に粗化粒子を大きくすることが求められるためである。一方、本発明によれば予想外にも優れたエッチング性と高いシェア強度とが両立可能となる。すなわち、シェア強度は従来から評価に用いられてきた比表面積や粗化高さ等に単純には比例せず、その制御を行うことが困難であった。この点、本発明者らは、エッチング性やシェア強度等の物性との相関をとるためには、最大高さSzに加え、界面の展開面積比Sdr及び山の頂点密度Spdを組み合わせて評価を行うことが有効であることを知見した。そして、これらの表面パラメータをそれぞれ上記所定範囲内に制御することで、エッチング性に優れた微細な表面でありながら、高いシェア強度を確保するのに好都合なコブ高さ及びコブ密度、並びに比表面積を有する粗化処理銅箔が得られることを見出した。このように、本発明の粗化処理銅箔によれば、優れたエッチング性及び高いシェア強度を実現することができ、それ故、優れた微細回路形成性とシェア強度という観点での高い回路密着性とを両立することが可能となる。
 優れたエッチング性及び高いシェア強度をバランス良く実現する観点から、粗化処理銅箔は、粗化処理面の最大高さSzが0.65~1.00μmであり、好ましくは0.65~0.90μm、より好ましくは0.65~0.80μmである。また、粗化処理銅箔は、粗化処理面の界面の展開面積比Sdrが1.50~4.20であり、好ましくは1.80~3.50、より好ましくは2.00~3.00である。さらに、粗化処理銅箔は、粗化処理面の山の頂点密度Spdが6.50×10~8.50×10個/mmであり、好ましくは7.65×10~8.50×10個/mm、より好ましくは7.80×10~8.30×10個/mmである。
 粗化処理銅箔は、粗化処理面における最大高さSz、界面の展開面積比Sdr及び山の頂点密度Spdの積であるSz×Sdr×Spdが7.50×10~2.70×10(μm・個/mm)であるのが好ましく、より好ましくは9.00×10~2.60×10(μm・個/mm)、さらに好ましくは1.00×10~2.00×10(μm・個/mm)である。このような範囲内であると優れたエッチング性と高いシェア強度との両立をより一層実現しやすくなる。
 粗化処理銅箔の厚さは特に限定されないが、0.1~35μmが好ましく、より好ましくは0.5~5.0μm、さらに好ましくは1.0~3.0μmである。なお、粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。
 粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する。すなわち、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。粗化処理面は、典型的には複数の粗化粒子(コブ)を備えてなり、これら複数の粗化粒子はそれぞれ銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。
 粗化処理面を形成するための粗化処理は、銅箔の上に銅又は銅合金で粗化粒子を形成することにより好ましく行うことができる。例えば、銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とを含む少なくとも2種類のめっき工程を経るめっき手法に従って粗化処理が行われるのが好ましい。この場合、焼けめっき工程は、銅濃度5~20g/L及び硫酸濃度180~240g/Lを含む硫酸銅溶液にカルボキシベンゾトリアゾール(CBTA)を30~50ppm(より好ましくは35~50ppm)添加し、15~35℃の温度で、12~24A/dm(より好ましくは12~18A/dm)にて電着を行うのが好ましい。また、被せめっき工程は、銅濃度50~100g/L及び硫酸濃度200~250g/Lを含む硫酸銅溶液中、40~60℃の温度で、2.3~4A/dm(より好ましくは2.5~3.5A/dm)にて電着を行うのが好ましい。とりわけ、焼けめっき工程において、上記濃度範囲内のカルボキシベンゾトリアゾールをめっき液に添加することで、純銅に近いエッチング性を保持しながら、上述した表面パラメータを満足するのに好都合なコブを処理表面に形成しやすくなる。さらに、焼けめっき工程及び被せめっき工程において、従来の手法よりも電流密度を下げて電着を行うことで、上述した表面パラメータを満足するために好都合なコブを処理表面により一層形成しやすくなる。
 所望により、粗化処理銅箔は防錆処理が施され、防錆処理層が形成されたものであってもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2~10が好ましく、より好ましくは2~7、さらに好ましくは2.7~4である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。
 所望により、粗化処理銅箔は表面にシランカップリング剤処理が施され、シランカップリング剤層が形成されたものであってもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。
 上述した理由から、粗化処理銅箔は、粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えることが好ましく、より好ましくは防錆処理層及びシランカップリング剤層の両方を備える。防錆処理層及びシランカップリング剤層は、粗化処理銅箔の粗化処理面側のみならず、粗化処理面が形成されていない側に形成されてもよい。
 キャリア付銅箔
 上述したように、本発明の粗化処理銅箔はキャリア付銅箔の形態で提供されてもよい。すなわち、本発明の好ましい態様によれば、キャリアと、キャリア上に設けられた剥離層と、剥離層上に粗化処理面を外側にして設けられた上記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。もっとも、キャリア付銅箔は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。
 キャリアは、粗化処理銅箔を支持してそのハンドリング性を向上させるための支持体であり、典型的なキャリアは金属層を含む。このようなキャリアの例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス等が挙げられ、好ましくは、銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよいが、好ましくは電解銅箔である。キャリアの厚さは典型的には250μm以下であり、好ましくは9~200μmである。
 キャリアの剥離層側の面は平滑であるのが好ましい。すなわち、キャリア付銅箔の製造プロセスにおいて、キャリアの剥離層側の面には(粗化処理を行う前の)極薄銅箔が形成されることになる。したがって、キャリアの剥離層側の面を平滑にしておくことで、極薄銅箔の外側の面も平滑にすることができ、この極薄銅箔の平滑面に粗化処理を施すことで、上記所定範囲内の最大高さSz、界面の展開面積比Sdr及び山の頂点密度Spdを有する粗化処理面を実現しやすくなる。キャリアの剥離層側の面を平滑にするには、例えばキャリアを電解製箔する際に用いる陰極の表面を所定の番手のバフで研磨して表面粗さを調整することにより行うことができる。すなわち、こうして調整された陰極の表面プロファイルがキャリアの電極面に転写され、このキャリアの電極面上に剥離層を介して極薄銅箔を形成することで、極薄銅箔の外側の面に上述した粗化処理面を実現しやすい平滑な表面状態を付与することができる。好ましいバフの番手は#2000~#3000であり、より好ましくは#2000~#2500である。
 剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定させること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm~1μmであり、好ましくは5nm~500nmである。
 所望により、剥離層とキャリア及び/又は粗化処理銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリアの表面側及び/又は粗化処理銅箔の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリアと粗化処理銅箔の間で起こりうる相互拡散を抑制し、キャリアの引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001~3μmとするのが好ましい。
 銅張積層板
 本発明の粗化処理銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔を用いることで、銅張積層板の加工において、優れたエッチング性と高いシェア強度とを両立することができる。この銅張積層板は、本発明の粗化処理銅箔と、粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1~1000μmが好ましく、より好ましくは2~400μmであり、さらに好ましくは3~200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔に設けられていてもよい。
 プリント配線板
 本発明の粗化処理銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板が提供される。本発明の粗化処理銅箔を用いることで、プリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。銅層は本発明の粗化処理銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミ・アディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の粗化処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明の粗化処理銅箔はMSAP法に適している。例えば、MSAP法により回路形成した場合には図2に示されるような構成が採用可能である。
 本発明を以下の例によってさらに具体的に説明する。
 例1~8及び12~14
 粗化処理銅箔を備えたキャリア付銅箔を以下のようにして作製及び評価した。
(1)キャリアの準備
 以下に示される組成の銅電解液と、陰極と、陽極としてのDSA(寸法安定性陽極)とを用いて、溶液温度50℃、電流密度70A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして作製した。このとき、陰極として、表面を表1に示される番手のバフで研磨して表面粗さを整えた電極を用いた。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ 塩素濃度:30mg/L
‐ 膠濃度:5mg/L
(2)剥離層の形成
 酸洗処理されたキャリアの電極面を、カルボキシベンゾトリアゾール(CBTA)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/Lを含むCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面にCBTA層を有機剥離層として形成した。
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lを含む溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして、有機剥離層上にニッケル層を補助金属層として形成した。
(4)極薄銅箔の形成
 補助金属層が形成されたキャリアを、以下に示される組成の銅溶液に浸漬して、溶液温度50℃、電流密度5~30A/dmで電解し、厚さ1.5μmの極薄銅箔を補助金属層上に形成した。
<溶液の組成>
‐ 銅濃度:60g/L
‐ 硫酸濃度:200g/L
(5)粗化処理
 こうして形成された極薄銅箔の表面に粗化処理を行った。この粗化処理は、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度200g/Lを含む液温25℃の酸性硫酸銅溶液に表1に示される濃度のカルボキシベンゾトリアゾール(CBTA)を添加し、表1に示される電流密度で粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度240g/Lを含む酸性硫酸銅溶液を用いて、液温52℃及び表1に示される電流密度の平滑めっき条件で電着を行った。このとき、焼けめっき工程におけるCBTA濃度及び電流密度、並びに被せめっき工程における電流密度を表1に示されるように適宜変えることで、粗化処理表面の特徴が異なる様々なサンプルを作製した。
(6)防錆処理
 得られたキャリア付銅箔の粗化処理表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度1g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度80g/Lを含む溶液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/Lを含む水溶液を用い、pH12、電流密度1A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(7)シランカップリング剤処理
 3-グリシドキシプロピルトリメトキシシラン5g/Lを含む水溶液をキャリア付銅箔の粗化処理銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(8)評価
 こうして得られたキャリア付銅箔について、各種特性の評価を以下のとおり行った。
(8a)粗化処理面の表面性状パラメータ
 レーザー顕微鏡(株式会社キーエンス製、VK-X200)を用いた表面粗さ解析により、粗化処理銅箔の粗化処理面の測定をISO25178に準拠して行った。具体的には、粗化処理銅箔の粗化処理面における面積6812μmの領域の表面プロファイルを上記レーザー顕微鏡にて倍率3000倍で測定した。得られた粗化処理面の表面プロファイルに対して面傾き補正を行った後、表面性状解析により最大高さSz、界面の展開面積比Sdr及び山の頂点密度Spdの測定を実施した。このとき、Szの測定は、Sフィルターによるカットオフ波長を5.0μmとし、Lフィルターによるカットオフ波長を0.025mmとして計測した。一方、Sdr及びSpdの測定は、Sフィルター及びLフィルターによるカットオフを行わずに数値を計測した。結果は表1に示されるとおりであった。
(8b)回路形成性(エッチング性評価)
 得られたキャリア付銅箔を用いて評価用積層体を作製した。すなわち、内層基板の表面に、プリプレグ(三菱ガス化学株式会社製、GHPL-830NSF、厚さ0.1mm)を介してキャリア付銅箔の粗化処理銅箔を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリアを剥離し、評価用積層体としての銅張積層板を得た。この評価用積層体を複数個用意し、それぞれの評価用積層体に対して硫酸-過酸化水素系エッチング液によるエッチングを異なる時間で行い、表面の銅が完全になくなるのに必要なエッチング量(深さ)を計測した。計測は光学顕微鏡(500倍)で確認することにより行った。エッチング時間の制御は、エッチング装置の搬送速度を変更することにより行った。より詳しくは、エッチング装置の搬送速度が1.0m/minのときにエッチング量が1.60μmとなる条件で、エッチング量が0.1μmずつ大きくなるように搬送速度を段階的に遅く(すなわちエッチング時間を段階的に長く)して評価用積層体のエッチングを行った。そして、光学顕微鏡で残存銅が検出されなくなったときの搬送速度から算出したエッチング量を、銅を完全に除去するのに必要なエッチング量とした。例えば、搬送速度が0.5m/minの条件でエッチングを行ったところで、光学顕微鏡で残存銅が検出されなくなった場合、必要なエッチング量は3.20μmとなる(すなわち[(1.0m/min)/(0.5m/min)]×1.60μm=3.20μm)。すなわち、この値が小さいほど少ないエッチングで表面の銅を除去できることを意味する。換言すれば、この値が小さいほどエッチング性が良好であることを意味する。上記計測により得られた銅を完全に除去するのに必要なエッチング量を以下の基準で格付け評価し、評価A及びBを合格と判定した。結果は表1に示されるとおりであった。
<エッチング性評価基準>
‐評価A:必要なエッチング量が2.7μm以下
‐評価B:必要なエッチング量が2.7μm超3.0μm以下
‐評価C:必要なエッチング量が3.0μm超
(8c)めっき回路密着性(シェア強度)
 上述の評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで厚さ13.5μmの銅層を析出させた後、ドライフィルムを剥離した。硫酸-過酸化水素系エッチング液で表出している銅部分をエッチングし、高さ15μm、幅10μm、長さ150μmのシェア強度測定用回路サンプルを作製した。接合強度試験機(Nordson DAGE社製、4000Plus Bondtester)を用い、シェア強度測定用回路サンプルを横から押し倒した際のシェア強度を測定した。すなわち、図3に示されるように、回路136が形成された積層体134を可動ステージ132上に載置し、ステージ132ごと図中矢印方向に移動させて、予め固定されている検出器138に回路136を押し当てることで、回路136の側面に対して横方向の力を与えて押し倒し、その時の力(gf)を検出器138にて測定し、その測定値をシェア強度として採用した。このとき、テスト種類は破壊試験とし、テスト高さ10μm、降下スピード0.050mm/s、テストスピード100.0μm/s、ツール移動量0.05mm、破壊認識点10%の条件で測定を行った。得られたシェア強度を以下の基準で格付け評価し、評価A及びBを合格と判定した。結果は表1に示されるとおりであった。
<シェア強度評価基準>
‐評価A:シェア強度が6.00gf以上
‐評価B:シェア強度が5.00gf以上6.00gf未満
‐評価C:シェア強度が5.00gf未満
 例9(比較)
 キャリアの準備を以下に示される手順で行ったこと、並びに焼けめっき工程及び被せめっき工程に代えて、以下に示される黒色めっき工程により極薄銅箔の粗化処理を行ったこと以外は、例1と同様にしてキャリア付銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
(キャリアの準備)
 銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極に表面粗さRaが0.20μmのチタン製の電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmの電解銅箔をキャリアとして得た。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ フリー硫酸濃度:140g/L
‐ ビス(3-スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
(黒色めっき工程)
 極薄銅箔の析出面に対して、以下に示される組成の黒色粗化用銅電解溶液を用い、溶液温度30℃、電流密度50A/dm、時間4secの条件で電解して、黒色粗化を行った。
<黒色粗化用銅電解溶液の組成>
‐ 銅濃度:13g/L
‐ フリー硫酸濃度:70g/L
‐ 塩素濃度:35mg/L
‐ ポリアクリル酸ナトリウム濃度:400ppm
 例10(比較)
 極薄銅箔の表面に粗化処理を行わなかったこと以外は、例1と同様にしてキャリア付銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
 例11(比較)
 焼けめっき工程及び被せめっき工程を以下のようにして行ったこと以外は、例1と同様にしてキャリア付銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
(粗化処理)
 焼けめっき工程では、銅濃度10g/L及び硫酸濃度120g/Lを含む液温25℃の酸性硫酸銅溶液にカルボキシベンゾトリアゾール(CBTA)を2ppm添加し、電流密度15A/dmで粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温40℃及び電流密度15A/dmの平滑めっき条件で電着を行った。
Figure JPOXMLDOC01-appb-T000001
 

Claims (9)

  1.  少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
     前記粗化処理面は、ISO25178に準拠して測定される最大高さSzが0.65~1.00μmであり、ISO25178に準拠して測定される界面の展開面積比Sdrが1.50~4.20であり、ISO25178に準拠して測定される山の頂点密度Spdが6.50×10~8.50×10個/mmである、粗化処理銅箔。
  2.  前記最大高さSzが0.65~0.90μmである、請求項1に記載の粗化処理銅箔。
  3.  前記界面の展開面積比Sdrが1.80~3.50である、請求項1又は2に記載の粗化処理銅箔。
  4.  前記山の頂点密度Spdが7.65×10~8.50×10個/mmである、請求項1~3のいずれか一項に記載の粗化処理銅箔。
  5.  前記最大高さSz、前記界面の展開面積比Sdr及び前記山の頂点密度Spdの積であるSz×Sdr×Spdが、7.50×10~2.70×10(μm・個/mm)である、請求項1~4のいずれか一項に記載の粗化処理銅箔。
  6.  前記粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えた、請求項1~5のいずれか一項に記載の粗化処理銅箔。
  7.  キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた請求項1~6のいずれか一項に記載の粗化処理銅箔とを備えた、キャリア付銅箔。
  8.  請求項1~6のいずれか一項に記載の粗化処理銅箔を備えた、銅張積層板。
  9.  請求項1~6のいずれか一項に記載の粗化処理銅箔を備えた、プリント配線板。

     
PCT/JP2019/029224 2018-08-10 2019-07-25 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板 WO2020031721A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980047289.3A CN112424399B (zh) 2018-08-10 2019-07-25 粗糙化处理铜箔、带载体的铜箔、覆铜层叠板及印刷电路板
MYPI2021000356A MY186454A (en) 2018-08-10 2019-07-25 Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP2020536455A JP6905157B2 (ja) 2018-08-10 2019-07-25 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
KR1020217000738A KR102480377B1 (ko) 2018-08-10 2019-07-25 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018152072 2018-08-10
JP2018-152072 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031721A1 true WO2020031721A1 (ja) 2020-02-13

Family

ID=69414103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029224 WO2020031721A1 (ja) 2018-08-10 2019-07-25 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板

Country Status (6)

Country Link
JP (1) JP6905157B2 (ja)
KR (1) KR102480377B1 (ja)
CN (1) CN112424399B (ja)
MY (1) MY186454A (ja)
TW (1) TWI719567B (ja)
WO (1) WO2020031721A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051988B1 (ja) 2020-11-27 2022-04-11 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
WO2022215330A1 (ja) * 2021-04-09 2022-10-13 福田金属箔粉工業株式会社 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
US20230043755A1 (en) * 2019-12-24 2023-02-09 Nippon Denkai, Ltd. Surface-treated copper foil and method for manufacturing same
WO2023054398A1 (ja) * 2021-09-30 2023-04-06 三井金属鉱業株式会社 粗化処理銅箔及び銅張積層板、並びにプリント配線板の製造方法
WO2023189839A1 (ja) * 2022-03-31 2023-10-05 三井金属鉱業株式会社 キャリア付金属箔
KR20240009403A (ko) 2021-05-20 2024-01-22 미쓰이금속광업주식회사 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
KR20240009404A (ko) 2021-05-20 2024-01-22 미쓰이금속광업주식회사 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
KR20240009937A (ko) 2021-05-20 2024-01-23 미쓰이금속광업주식회사 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163962A1 (ja) * 2018-02-23 2019-08-29 古河電気工業株式会社 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板
CN115038819A (zh) * 2020-02-04 2022-09-09 三井金属矿业株式会社 粗糙化处理铜箔、带载体的铜箔、覆铜层叠板及印刷电路板
JP7177956B2 (ja) * 2020-02-04 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048277A (ja) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd キャリア箔付電解銅箔及びそのキャリア箔付電解銅箔の製造方法
WO2016117587A1 (ja) * 2015-01-22 2016-07-28 三井金属鉱業株式会社 キャリア付極薄銅箔及びその製造方法
JP2018026590A (ja) * 2015-08-06 2018-02-15 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842077B1 (ja) * 2015-07-01 2016-01-13 三井金属鉱業株式会社 キャリア付銅箔、銅張積層板及びプリント配線板
MY177676A (en) * 2015-07-03 2020-09-23 Mitsui Mining & Smelting Co Ltd Roughened copper foil, copper-clad laminate and printed wiring board
WO2017018232A1 (ja) * 2015-07-29 2017-02-02 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板
CN109072472B (zh) * 2016-04-14 2020-10-16 三井金属矿业株式会社 表面处理铜箔、带载体铜箔、以及使用它们的覆铜层叠板及印刷电路板的制造方法
KR102268478B1 (ko) * 2016-12-14 2021-06-22 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박 및 동 클래드 적층판
JP7177956B2 (ja) * 2020-02-04 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048277A (ja) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd キャリア箔付電解銅箔及びそのキャリア箔付電解銅箔の製造方法
WO2016117587A1 (ja) * 2015-01-22 2016-07-28 三井金属鉱業株式会社 キャリア付極薄銅箔及びその製造方法
JP2018026590A (ja) * 2015-08-06 2018-02-15 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230043755A1 (en) * 2019-12-24 2023-02-09 Nippon Denkai, Ltd. Surface-treated copper foil and method for manufacturing same
US11952675B2 (en) * 2019-12-24 2024-04-09 Nippon Denkai, Ltd. Surface-treated copper foil and method for manufacturing same
WO2022113806A1 (ja) * 2020-11-27 2022-06-02 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
JP2022085378A (ja) * 2020-11-27 2022-06-08 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
JP7051988B1 (ja) 2020-11-27 2022-04-11 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
CN116917552A (zh) * 2021-04-09 2023-10-20 福田金属箔粉工业株式会社 表面处理铜箔及使用该表面处理铜箔的覆铜层压板以及印刷线路板
JP7273883B2 (ja) 2021-04-09 2023-05-15 福田金属箔粉工業株式会社 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
JP2022161636A (ja) * 2021-04-09 2022-10-21 福田金属箔粉工業株式会社 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
WO2022215330A1 (ja) * 2021-04-09 2022-10-13 福田金属箔粉工業株式会社 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
KR20240009403A (ko) 2021-05-20 2024-01-22 미쓰이금속광업주식회사 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
KR20240009404A (ko) 2021-05-20 2024-01-22 미쓰이금속광업주식회사 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
KR20240009937A (ko) 2021-05-20 2024-01-23 미쓰이금속광업주식회사 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
WO2023054398A1 (ja) * 2021-09-30 2023-04-06 三井金属鉱業株式会社 粗化処理銅箔及び銅張積層板、並びにプリント配線板の製造方法
WO2023189839A1 (ja) * 2022-03-31 2023-10-05 三井金属鉱業株式会社 キャリア付金属箔
JP7427846B1 (ja) 2022-03-31 2024-02-05 三井金属鉱業株式会社 キャリア付金属箔

Also Published As

Publication number Publication date
TWI719567B (zh) 2021-02-21
KR20210019518A (ko) 2021-02-22
CN112424399B (zh) 2023-07-25
KR102480377B1 (ko) 2022-12-23
JP6905157B2 (ja) 2021-07-21
CN112424399A (zh) 2021-02-26
MY186454A (en) 2021-07-22
JPWO2020031721A1 (ja) 2021-04-30
TW202009329A (zh) 2020-03-01

Similar Documents

Publication Publication Date Title
WO2020031721A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP6529640B2 (ja) キャリア付極薄銅箔及びその製造方法
WO2017179416A1 (ja) 表面処理銅箔、キャリア付銅箔、並びにそれらを用いた銅張積層板及びプリント配線板の製造方法
TWI613940B (zh) 附載體之銅箔、印刷配線板、積層體、電子機器及印刷配線板之製造方法
JP7453154B2 (ja) 表面処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
CN111886367B (zh) 粗糙化处理铜箔、带载体铜箔、覆铜层叠板及印刷电路板
JP7259093B2 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2021157363A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP6650923B2 (ja) キャリア付極薄銅箔、その製造方法、銅張積層板及びプリント配線板
WO2020195748A1 (ja) プリント配線板用金属箔、キャリア付金属箔及び金属張積層板、並びにそれらを用いたプリント配線板の製造方法
WO2022244827A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022244826A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2023189566A1 (ja) キャリア付金属箔、金属張積層板及びプリント配線板
WO2022202539A1 (ja) キャリア付銅箔、銅張積層板及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536455

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846156

Country of ref document: EP

Kind code of ref document: A1