WO2020015287A1 - 转子组件及电机 - Google Patents

转子组件及电机 Download PDF

Info

Publication number
WO2020015287A1
WO2020015287A1 PCT/CN2018/120892 CN2018120892W WO2020015287A1 WO 2020015287 A1 WO2020015287 A1 WO 2020015287A1 CN 2018120892 W CN2018120892 W CN 2018120892W WO 2020015287 A1 WO2020015287 A1 WO 2020015287A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
filling
rotor
rotor body
groove
Prior art date
Application number
PCT/CN2018/120892
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
史进飞
肖勇
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/054,818 priority Critical patent/US11777346B2/en
Priority to KR1020207032694A priority patent/KR102660064B1/ko
Priority to JP2020563977A priority patent/JP7196198B2/ja
Priority to EP18927034.1A priority patent/EP3780346A4/en
Publication of WO2020015287A1 publication Critical patent/WO2020015287A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to the technical field of motors, and in particular, to a rotor assembly and a motor.
  • the direct-start synchronous reluctance motor combines the structural characteristics of an induction motor and a synchronous reluctance motor.
  • the torque is generated by squirrel cage induction, and the magnetoresistive torque is generated by the rotor inductance gap to achieve constant speed operation. It can be directly connected to the power supply for start-up operation. .
  • direct-start synchronous reluctance motors have no rare-earth permanent magnet materials and no demagnetization problems.
  • the motor has low cost and good reliability. Compared with asynchronous motors, it has high efficiency and constant speed.
  • the traditional synchronous reluctance motor requires a driver to start and control operation, which is costly and difficult to control, and the driver occupies a part of the loss, which reduces the efficiency of the entire motor system.
  • the patent No. CN1255925C provides an inexpensive and easy-to-start synchronous induction motor and a manufacturing apparatus and method for the synchronous induction motor.
  • the groove is filled with a conductive material.
  • the slit portion is formed in a linear shape, and the slit portions are radially arranged at regular intervals in the circumferential direction.
  • the slots are radially arranged at equal intervals, so that the direction of the magnetic flux between the slots is perpendicular to the radial direction of the rotor surface, and the slots prevent the magnetic flux from flowing in the q-axis direction, especially the closer to d In the slot portion of the shaft, the q-axis magnetic flux obstruction becomes more obvious, and the d-axis magnetic flux flows more smoothly. Therefore, the d and q-axis magnetic fluxes are not significantly different, and the salient pole ratio is not large, resulting in low output power and efficiency.
  • the main purpose of the present disclosure is to provide a reasonable design and low cost rotor assembly and motor, which can make the q-axis magnetic flux smoother and make the difference between the d and q-axis magnetic fluxes more obvious, thereby improving the output power and efficiency.
  • the present disclosure provides a rotor assembly including a rotor body
  • the rotor body has magnetic poles centered on the axis of the rotor and arranged uniformly along the circumferential direction of the rotor;
  • the magnetic pole includes a filling groove provided with a conductive magnetically insulating material therein.
  • the filling grooves of the plurality of magnetic poles are sequentially arranged along a circumferential direction of the rotor body, and in the circumferential direction of the rotor, the filling groove
  • the two ends have a first side wall and a second side wall.
  • the first side wall of the filling groove is parallel to the second side wall of the adjacent filling groove, and together forms a magnetic flux channel parallel to the q axis.
  • the magnetic pole further includes a slit groove separated from the filling groove, and the filling groove includes a first filling groove;
  • the slot grooves and the first filling groove are arranged along the d-axis direction of the rotor body, and the slot grooves are located at Between the first filling groove and an axis of the rotor body.
  • the first filling slot and the slot slot are both axisymmetric patterns with the d-axis as a symmetry axis.
  • the number of the slit grooves is at least two, and at least two of the slit grooves are sequentially arranged along the d-axis direction.
  • a distance between the first filling groove and the slit groove adjacent thereto is smaller than a distance between the adjacent slit grooves.
  • the number of the slit slots is at least three, and in a direction away from the axis of the rotor body, the distance between adjacent slit slots decreases in order. .
  • the filling tank includes a second filling tank
  • the number of the second filling grooves is twice the number of the slot grooves.
  • one of the second filling grooves is provided at each end of the slot grooves.
  • the two second filling grooves provided at both ends of the slit groove are symmetrical to each other with the d-axis as a symmetry axis.
  • a distance between the first filling groove and an adjacent second filling groove in a circumferential direction of the rotor body is smaller than two adjacent ones. The distance between the second filling grooves.
  • the number of the slit slots is at least three, and in a direction away from the axis of the rotor body, the distance between adjacent slit slots decreases in order.
  • an area of the second filling groove in a cross section perpendicular to the axis of the rotor body increases sequentially.
  • a length of the second filling groove extending from an outer peripheral wall of the rotor body toward the slit groove is sequentially increased.
  • the slit slot extends along a straight line or an arc in a cross section perpendicular to the axis of the rotor body.
  • a conductive ring is further included;
  • the conductive ring is fixedly connected to the axial end of the rotor body, and can be abutted against the conductive magnetic isolation material provided in the filling groove, and all the conductive magnetic isolation material in the filling groove can pass through the filling groove.
  • the conductive ring is conducting.
  • the material of the conductive ring is the same as the conductive magnetic isolation material provided in the filling groove.
  • a magnetic barrier material is disposed in the slot.
  • the conductive ring has a heat dissipation hole
  • the slot On a projection along the axis direction of the rotor body, the slot is located inside the heat dissipation hole.
  • the outer contour of the conductive ring is cylindrical, and / or the shape of the heat dissipation hole is cylindrical.
  • Another aspect of the present disclosure provides a motor including a rotor assembly of any of the above technical features.
  • a stator is further included;
  • the stator has a mounting hole, and the rotor body in the rotor assembly passes through the mounting hole and is coaxial with the mounting hole, and in a radial direction of the rotor body, the rotor body
  • the distance between the outer wall and the inner wall of the mounting hole is H;
  • the smallest gap between the slit groove and the second filling groove corresponding to both ends of the slit groove The distance is L, and H ⁇ L ⁇ 2H.
  • the rotor assembly provided by the present disclosure adopts a technical solution in which a first side wall of the filling groove is parallel to a second side wall of the adjacent filling groove and collectively forms a magnetic flux channel parallel to the q axis.
  • FIG. 1 is a schematic structural diagram of an embodiment of a rotor assembly according to the present disclosure
  • FIG. 2 is a schematic diagram of a first end surface of the rotor body in FIG. 1;
  • FIG. 3 is a schematic diagram of a second end surface of the rotor body in FIG. 1;
  • FIG. 4 is a schematic view of the conductive ring in FIG. 1.
  • Rotor body 11. Filling groove; 111; First side wall; 112; Second side wall; 113; First filling groove; 114; Second filling groove; 12. Magnetic flux channel; Slot; 2, conductive ring; 21, heat dissipation hole.
  • a rotor assembly includes a rotor body 1;
  • the rotor body 1 includes magnetic poles (not shown) centered on the axis of the rotor and uniformly arranged in the circumferential direction of the rotor.
  • the magnetic poles include a filling groove 11 in which a conductive magnetically insulating material (shown in the figure) is disposed.
  • the magnetic material may be aluminum or an aluminum alloy, but is not limited thereto.
  • the filling grooves 11 of the plurality of magnetic poles are sequentially arranged along the circumferential direction of the rotor body 1. In the rotor circumferential direction, the two ends of the filling groove 11 have a first side wall 111 and a second side wall 112.
  • the side wall 111 is parallel to the second side wall 112 of the adjacent filling groove 11, and together forms a magnetic flux channel 12 parallel to the q axis.
  • Adopting such a technical solution not only has a reasonable design and low cost, but also can make the q-axis magnetic flux smoother and make the difference between the d and q-axis magnetic fluxes more obvious than the existing technology, thereby improving output power and efficiency.
  • the magnetic pole further includes a slit groove 13 separated from the filling groove 11, and the filling groove 11 includes a first filling groove 113.
  • the slot 13 and the first filling groove 113 are arranged along the d-axis direction of the rotor body 1, and the slot 13 is located in the first filling groove 113 and the rotor body. 1 between the axes. In this way, air can circulate in the slot 13 so that the rotor body 1 can dissipate heat through the slot 13.
  • the slot 13 may extend along a straight line on a cross section perpendicular to the axis of the rotor body 1, or as shown in FIG. 3, the slot 13 may extend along an arc.
  • the first filling groove 113 and the slit groove 13 are both axisymmetric patterns with the d-axis as a symmetry axis.
  • a magnetic barrier layer can be formed between the first filling groove 113 and the slit groove 13 to block the d-axis magnetic flux, further increase the d-axis magnetic resistance, reduce the d-axis magnetic flux, and further cause the d and q-axis magnetic fluxes to differ. More obviously, the efficiency of the motor is further improved.
  • FIGS. 1 In actual production, as shown in FIGS.
  • the number of the slit grooves 13 is at least two, and the at least two slit grooves 13 are sequentially spaced and arranged along the d-axis direction.
  • a magnetic barrier layer for blocking the d-axis magnetic flux can also be formed between the adjacent slit grooves 13, further increasing the d-axis magnetic resistance, and reducing the d-axis magnetic flux.
  • the slit groove 13 extends along a straight line in a cross section perpendicular to the axis of the rotor body 1, between the first filling groove 113 and the adjacent slit groove 13 in the d-axis direction.
  • the distance is smaller than the distance between the adjacent slit grooves 13.
  • the number of the slit slots 13 is at least three, and the distance between adjacent slit slots 13 decreases in order along the d-axis and in a direction away from the axis of the rotor body 1. That is, d6> d7> d8> d9 as shown in FIG. 2.
  • the width of the magnetic flux channel can correspond to the magnetic channel formed between the filling grooves 11, so that more magnetic flux can flow smoothly on the q axis, increase the q axis inductance, and improve the output and efficiency of the motor.
  • the filling tank 11 includes a second filling tank 114.
  • the number of the second filling grooves 114 is twice the number of the slot grooves 13.
  • a second filling groove 114 is provided at each end of each slot groove 13, and
  • the two second filling grooves 114 at both ends of the slot 13 are symmetrical to each other with the d-axis as a symmetry axis.
  • the distance between the first filling groove 113 and the adjacent second filling groove 114 in the circumferential direction of the rotor body 1 is smaller than that between the two adjacent second filling grooves 114. distance.
  • two second filling grooves are adjacent to each other in the circumferential direction of the rotor body 1 and in a direction away from the first filling groove 113. The distance between 114 increases in order. That is, as shown in FIGS.
  • the width of the magnetic flux channel 12 formed between two adjacent filling grooves gradually decreases in a direction away from the q-axis axis, that is, d1> d2> d3> d4> d5.
  • the width of the magnetic flux channel 12 near the q axis is designed to be wider to allow more magnetic flux to flow in, while also avoiding magnetic flux saturation, which is more effective.
  • the use of magnetic flux increases the q-axis inductance and improves the output and efficiency of the motor.
  • the area of the second filling groove 114 in a cross section perpendicular to the axis of the rotor body 1 increases in sequence. That is, the closer the second filling groove 114 is to the corresponding q axis, the longer the length extending in the direction of the q axis, the larger the area of the second filling groove 114. On the contrary, the farther the second filling groove 114 is from the corresponding q axis, the The shorter the q-axis extension, the smaller the area of the second filling groove 114.
  • the deep and narrow second filling groove 114 has a skin effect, which helps to improve the starting performance of the motor.
  • the length of the second filling groove 114 extending from the outer peripheral wall of the rotor body 1 toward the slit groove 13 increases in order.
  • FIG. 1 it further includes a conductive ring 2.
  • the conductive ring 2 is fixedly connected to the axial end of the rotor body 1 and can be abutted on a conductive magnetically insulating material provided in the filling groove 11.
  • the conductive magnetic isolation material in all the filling grooves 11 can be conducted through the conductive ring 2 so that the conductive magnetic isolation material in all the filling grooves 11 can form a squirrel cage to achieve asynchronous startup.
  • the material of the conductive ring 2 is the same as the conductive magnetic isolation material provided in the filling groove 11.
  • a magnetic barrier material (which may be a non-conductive material) is provided in the slot 13 to prevent the material on the conductive ring 2 from falling off and entering the slot 13.
  • the conductive ring 2 has a heat dissipation hole 21; on a projection along the axis direction of the rotor body 1, the slot 13 is located inside the heat dissipation hole 21. This can prevent the conductive ring 2 from covering the slit groove 13, thereby ensuring the heat dissipation effect.
  • the outer contour of the conductive ring 2 may be cylindrical, but it is not limited thereto, and the shape of the heat dissipation hole 21 may be cylindrical, but is not limited thereto.
  • another aspect of the present disclosure provides a motor including the rotor assembly described in the above embodiments.
  • the motor further includes a stator (not shown in the figure).
  • the stator has a mounting hole.
  • the rotor body 1 in the rotor assembly passes through the mounting hole and is coaxial with the mounting hole and in a radial direction along the rotor body 1.
  • the distance between the outer wall of the rotor body 1 and the inner wall of the mounting hole is H.
  • the minimum distance between the slit groove 13 and the second filling groove 114 corresponding to both ends thereof Is L, and H ⁇ L ⁇ 2H.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

本公开提供一种转子组件及电机。转子组件包括转子本体;转子本体具有以转子的轴线为中心,并沿转子周向均匀排布的磁极;磁极包括内部设置导电隔磁材料的填充槽,多个磁极中的填充槽沿转子本体的周向依次排布,并且在转子周向上,填充槽的两端具有第一侧壁和第二侧壁,填充槽的第一侧壁与相邻的填充槽的第二侧壁平行,并共同形成与q轴平行的磁通通道。本公开具有设计合理,成本低廉,而且能够使q轴的磁通更加顺畅,使d、q轴磁通量相差更明显,进而提高了输出功率及效率的优点。

Description

转子组件及电机
相关申请
本申请是以申请号为201810805393.1,申请日为2018年7月20日,发明名称为“转子组件及电机”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电机技术领域,特别涉及一种转子组件及电机。
背景技术
直接起动同步磁阻电机结合了感应电机与同步磁阻电机的结构特点,通过鼠笼感应产生力矩实现起动,通过转子电感差距产生磁阻转矩实现恒转速运行,能够直接通入电源实现起动运行。直接起动同步磁阻电机与直接起动永磁电机相比,没有稀土永磁材料,也不存在退磁问题,电机成本低,可靠性好;与异步电机电机相比,效率高,转速恒定。
传统的同步磁阻电机需要驱动器进行起动和控制运行,成本高,控制困难,而且驱动器占据一部分损耗,使整个电机***效率下降。
而现有技术中,专利号为CN1255925C的专利提供一种廉价的容易起动的同步感应电动机及同步感应电动机的制造装置和制造方法,在转子上设置磁通容易流过的方向的q轴及作为磁通难以流过的方向的d轴成90度的两极的磁极突起的至少一对狭缝部,以及配置在前述狭缝部的外周侧的多个狭槽部,在狭缝部和前述狭槽部内填充导电性材料。狭缝部制成为直线的形状,狭槽部沿圆周方向等间隔放射状地配置。
但是,该专利中,由于狭槽部等间隔放射状地配置,使得狭槽部之间的磁通方向垂直转子表面径向流动,狭槽部阻碍了磁通q轴方向流通,特别是越靠近d轴的狭槽部,q轴磁通阻碍越明显,而且d轴磁通流通更顺畅,因此d、q轴磁通量相差不明显,凸极比不大,导致输出功率及效率低。
发明内容
本公开的主要目的在于提供一种设计合理、成本低廉的转子组件及电机,其能够 使q轴的磁通更加顺畅,使d、q轴磁通量相差更明显,进而提高了输出功率及效率。
本公开提供了一种转子组件,包括转子本体;
所述转子本体具有以所述转子的轴线为中心,并沿所述转子周向均匀排布的磁极;
所述磁极包括内部设置导电隔磁材料的填充槽,多个所述磁极中的所述填充槽沿所述转子本体的周向依次排布,并且在所述转子周向上,所述填充槽的两端具有第一侧壁和第二侧壁,所述填充槽的第一侧壁与相邻的所述填充槽的第二侧壁平行,并共同形成与q轴平行的磁通通道。
在一些实施例中,所述填充槽和所述转子本体的外周壁存在距离。
在一些实施例中,所述磁极还包括与所述填充槽分隔的狭缝槽,所述填充槽包括第一填充槽;
在垂直于所述转子本体轴线的截面上,同一所述磁极中,所述狭缝槽和所述第一填充槽沿所述转子本体的d轴方向排布,并且所述狭缝槽位于所述第一填充槽和所述转子本体的轴线之间。
在一些实施例中,在垂直于所述转子本体轴线的截面上,所述第一填充槽和所述狭缝槽均为以d轴为对称轴的轴对称图形。
在一些实施例中,在每个所述磁极中,所述狭缝槽的数量为至少两个,并且至少两个所述狭缝槽沿d轴方向依次分隔排布。
在一些实施例中,在沿d轴方向上,所述第一填充槽和与其相邻的所述狭缝槽之间的距离小于相邻的所述狭缝槽之间的距离。
在一些实施例中,在每个所述磁极中,所述狭缝槽的数量为至少三个,沿远离所述转子本体轴线的方向,相邻所述狭缝槽之间的距离依次减小。
在一些实施例中,所述填充槽包括第二填充槽;
所述第二填充槽的数量是所述狭缝槽数量的两倍,在垂直于所述转子本体轴线的截面上,每个所述狭缝槽的两端各设置一个所述第二填充槽,并且设置在所述狭缝槽两端的两个所述第二填充槽以d轴为对称轴相互对称。
在一些实施例中,在每个所述磁极中,沿所述转子本体的周向上所述第一填充槽与相邻的所述第二填充槽之间的距离小于相邻的两个所述第二填充槽之间的距离。
在一些实施例中,在每个所述磁极中,所述狭缝槽的数量为至少三个,沿远离所述转子本体轴线的方向,相邻所述狭缝槽之间的距离依次减小;
在沿远离所述第一填充槽的方向,相邻两个所述第二填充槽之间的距离依次增大。
在一些实施例中,同一磁极中,在沿远离所述第一填充槽的方向,所述第二填充槽在垂直于所述转子本体轴线的截面上的面积依次增大。
在一些实施例中,同一磁极中,在沿远离所述第一填充槽的方向,所述第二填充槽自所述转子本体的外周壁朝向所述狭缝槽延伸的长度依次增大。
在一些实施例中,在垂直于所述转子本体轴线的截面上,所述第一填充槽沿所述转子本体周向的两端与所述转子本体中心连线形成夹角α,并且0.05τ≤α≤0.3τ,其中τ=180°/p,p为极对数。
在一些实施例中,0.15τ≤α≤0.26τ。
在一些实施例中,在垂直于所述转子本体轴线的截面上,所述狭缝槽沿直线或弧线延伸。
在一些实施例中,还包括导电环;
所述导电环固定连接在所述转子本体轴向的端部,并能够贴靠在所述填充槽内设置的导电隔磁材料上,所有所述填充槽内的导电隔磁材料能够通过所述导电环导通。
在一些实施例中,所述导电环的材质与所述填充槽内设置的导电隔磁材料相同。
在一些实施例中,所述狭缝槽内设置隔磁材料。
在一些实施例中,所述导电环具有散热孔;
在沿所述转子本体轴线方向的投影上,所述狭缝槽位于所述散热孔之内。
在一些实施例中,所述导电环的外廓为圆柱形,和/或,所述散热孔的形状为圆柱形。
本公开又一方面提供一种电机,包括以上任意技术特征的转子组件。
在一些实施例中,还包括定子;
所述定子具有安装孔,所述转子组件中的所述转子本体穿设在所述安装孔中,并与所述安装孔同轴,并且在沿所述转子本体的径向上,所述转子本体的外壁与所述安装孔的内壁之间的距离为H;
当在所述转子本体上,每个所述狭缝槽的两端各设置一个所述第二填充槽时,所述狭缝槽与其两端所对应的所述第二填充槽之间的最小距离为L,并且H≤L≤2H。
本公开的提供的转子组件,采用所述填充槽的第一侧壁与相邻的所述填充槽的第二侧壁平行,并共同形成与q轴平行的磁通通道的技术方案,不仅设计合理,成本低 廉,而且能够使q轴的磁通更加顺畅,使d、q轴磁通量相差更明显,进而提高了输出功率及效率。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开转子组件一实施例的结构示意图;
图2是图1中的转子本体第一种形式端面示意图;
图3是图1中的转子本体第二种形式端面示意图;
图4是图1中的导电环示意图。
图中:1、转子本体;11、填充槽;111、第一侧壁;112、第二侧壁;113、第一填充槽;114、第二填充槽;12、磁通通道;13、狭缝槽;2、导电环;21、散热孔。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
如图1、2、3所示,一种转子组件,包括转子本体1;
转子本体1包括以转子的轴线为中心,并沿转子周向均匀排布的磁极(图未示出),磁极包括内部设置导电隔磁材料(图为示出)的填充槽11,其中导电隔磁材料可以是铝或铝合金,但并不仅限于此。多个磁极中的填充槽11沿转子本体1的周向依次排布,并且在转子周向上,填充槽11的两端具有第一侧壁111和第二侧壁112,填充槽11的第一侧壁111与相邻的填充槽11的第二侧壁112平行,并共同形成与q轴平行 的磁通通道12。采用这样的技术方案,不仅设计合理,成本低廉,同时相对于现有技术,能够使q轴的磁通更加顺畅,使d、q轴磁通量相差更明显,进而提高了输出功率及效率。
在实际制作中,填充槽11和转子本体1的外周壁存在距离,这样在向填充槽11填充导电隔磁材料时,导电隔磁材料不会从转子本体1的外周壁凸出,即在填充完导电隔磁材料时,不需要再对转子本体1的外周壁进行加工,进而降低了制作成本。
进一步地,如图1、2、3所示,磁极还包括与填充槽11分隔的狭缝槽13,填充槽11包括第一填充槽113。在垂直于转子本体1轴线的截面上,同一磁极中,狭缝槽13和第一填充槽113沿转子本体1的d轴方向排布,并且狭缝槽13位于第一填充槽113和转子本体1的轴线之间。这样空气可以在狭缝槽13内流通使转子本体1可通过狭缝槽13进行散热。其中,可如图2所示,在垂直于转子本体1轴线的截面上,狭缝槽13沿直线延伸,或者如图3所示,狭缝槽13沿弧线延伸。
具体地,如图2、3所示,并且在垂直于转子本体1轴线的截面上,第一填充槽113和狭缝槽13均为以d轴为对称轴的轴对称图形。这样在第一填充槽113和狭缝槽13之间能够形成用以阻挡d轴磁通的磁障层,进一步增加d轴磁阻,减小d轴磁通,进而使d、q轴磁通量相差更明显,进一步提高了电机的效率。在实际制作中,可如图2、3中所示,在垂直于转子本体1轴线的截面上,第一填充槽113沿转子本体1周向的两端与转子本体1中心连线形成夹角α,并且0.05τ≤α≤0.3τ,优选为0.15τ≤α≤0.26τ,其中τ=180°/p,p为极对数。这样能够避免第一填充槽113所占角度α太大,导致异步转矩较小,电机起动能力变差的问题。
进一步地,如图2、3所示,在每个磁极中,狭缝槽13的数量为至少两个,并且至少两个狭缝槽13沿d轴方向依次分隔排布。这样相邻的狭缝槽13之间也能够形成用以阻挡d轴磁通的磁障层,进一步增加d轴磁阻,减小d轴磁通。
在实际制作中,当在垂直于转子本体1轴线的截面上,狭缝槽13沿直线延伸时,在沿d轴方向上,第一填充槽113和与其相邻的狭缝槽13之间的距离小于相邻的狭缝槽13之间的距离。进一步地,在每个磁极中,狭缝槽13的数量为至少三个,并且沿d轴并朝向远离转子本体1轴线的方向,相邻狭缝槽13之间的距离依次减小。即如图2中所示的d6>d7>d8>d9。这样能够使磁通通道宽度与填充槽11之间形成的磁通道对应,使更多磁通在q轴顺畅流通,增加q轴电感,提升电机出力及效率。
作为一种可实施方式,如图2、3所示,填充槽11包括第二填充槽114。第二填 充槽114的数量是狭缝槽13数量的两倍,在垂直于转子本体1轴线的截面上,每个狭缝槽13的两端各设置一个第二填充槽114,并且设置在狭缝槽13两端的两个第二填充槽114以d轴为对称轴相互对称。
在实际制作中,在每个磁极中,沿转子本体1的周向上第一填充槽113与相邻的第二填充槽114之间的距离小于相邻的两个第二填充槽114之间的距离。进一步地,当在每个磁极中,狭缝槽13的数量为至少三个时,在沿所转子本体1的周向并朝向远离第一填充槽113的方向,相邻两个第二填充槽114之间的距离依次增大。即如图2、3所示,相邻两个填充槽之间形成的磁通通道12的宽度按远离q轴轴线方向逐渐减小,即d1>d2>d3>d4>d5。由于越靠近q轴的磁通通道12,对q轴磁通影响越大,将靠近q轴的磁通通道12宽度设计宽一些,使更多磁通流入,同时也避免磁通饱和,更有效的利用磁通,增加q轴电感,提升电机出力及效率。
同时同一磁极中,在沿转子本体1的周向并朝向远离第一填充槽113的方向,第二填充槽114在垂直于转子本体1轴线的截面上的面积依次增大。也就是说第二填充槽114距离对应q轴越近,往q轴方向延伸长度越长,第二填充槽114面积越大,相反地,第二填充槽114距离对应q轴轴线越远,往q轴方向延伸长度越短,第二填充槽114面积越小。深而窄的第二填充槽114具有集肤效应,有助于提升电机起动性能。同一磁极中,在沿远离第一填充槽113的方向,第二填充槽114自转子本体1的外周壁朝向狭缝槽13延伸的长度依次增大。
作为一种可实施方式,如图1所示,还包括导电环2,导电环2固定连接在转子本体1轴向的端部,并能够贴靠在填充槽11内设置的导电隔磁材料上,所有填充槽11内的导电隔磁材料能够通过导电环2导通,以使所有填充槽11内的导电隔磁材料能够形成鼠笼,以实现异步启动。
具体地,导电环2的材质与填充槽11内设置的导电隔磁材料相同。此时狭缝槽13内设置隔磁材料(可以是不导电材料),以避免导电环2上的材料脱落而进入狭缝槽13。
作为一种可实施方式,如图4所示,导电环2具有散热孔21;在沿转子本体1轴线方向的投影上,狭缝槽13位于散热孔21之内。这样能够避免导电环2对狭缝槽13形成覆盖,进而保证散热效果。在实际制作中,导电环2的外廓可为圆柱形,但并不仅限于此,并且散热孔21的形状可为圆柱形,但并不仅限于此。
为实现本公开目的,本公开又一方面提供一种电机,包括以上实施例所描述的转 子组件。
具体地,电机还包括定子(图未示出),定子具有安装孔,转子组件中的转子本体1穿设在安装孔中,并与安装孔同轴,并且在沿转子本体1的径向上,转子本体1的外壁与安装孔的内壁之间的距离为H。参照图2,当在转子本体1上,每个狭缝槽13的两端各设置一个第二填充槽114时,狭缝槽13与其两端所对应的第二填充槽114之间的最小距离为L,并且H≤L≤2H。
以上实施例使本公开具有设计合理,成本低廉,而且能够使q轴的磁通更加顺畅,使d、q轴磁通量相差更明显,进而提高了输出功率及效率的优点。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (22)

  1. 一种转子组件,包括转子本体(1),其中,
    所述转子本体(1)具有以所述转子的轴线为中心,并沿所述转子周向均匀排布的磁极;
    所述磁极包括内部设置导电隔磁材料的填充槽(11),多个所述磁极中的所述填充槽(11)沿所述转子本体(1)的周向依次排布,并且在所述转子周向上,所述填充槽(11)的两端具有第一侧壁(111)和第二侧壁(112),所述填充槽(11)的第一侧壁(111)与相邻的所述填充槽(11)的第二侧壁(112)平行,并共同形成与q轴平行的磁通通道(12)。
  2. 根据权利要求1所述的转子组件,其中,
    所述填充槽(11)和所述转子本体(1)的外周壁存在距离。
  3. 根据权利要求1所述的转子组件,其中,
    所述磁极还包括与所述填充槽(11)分隔的狭缝槽(13),所述填充槽(11)包括第一填充槽(113);
    在垂直于所述转子本体(1)轴线的截面上,同一所述磁极中,所述狭缝槽(13)和所述第一填充槽(113)沿所述转子本体(1)的d轴方向排布,并且所述狭缝槽(13)位于所述第一填充槽(113)和所述转子本体(1)的轴线之间。
  4. 根据权利要求3所述的转子组件,其中,
    在垂直于所述转子本体(1)轴线的截面上,所述第一填充槽(113)和所述狭缝槽(13)均为以d轴为对称轴的轴对称图形。
  5. 根据权利要求4所述的转子组件,其中,
    在每个所述磁极中,所述狭缝槽(13)的数量为至少两个,并且至少两个所述狭缝槽(13)沿d轴方向依次分隔排布。
  6. 根据权利要求5所述的转子组件,其中,
    在沿d轴方向上,所述第一填充槽(113)和与其相邻的所述狭缝槽(13)之间的距离小于相邻的所述狭缝槽(13)之间的距离。
  7. 根据权利要求6所述的转子组件,其中,
    在每个所述磁极中,所述狭缝槽(13)的数量为至少三个,沿远离所述转子本体(1)轴线的方向,相邻所述狭缝槽(13)之间的距离依次减小。
  8. 根据权利要求4所述的转子组件,其中,
    所述填充槽(11)包括第二填充槽(114);
    所述第二填充槽(114)的数量是所述狭缝槽(13)数量的两倍,在垂直于所述转子本体(1)轴线的截面上,每个所述狭缝槽(13)的两端各设置一个所述第二填充槽(114),并且设置在所述狭缝槽(13)两端的两个所述第二填充槽(114)以d轴为对称轴相互对称。
  9. 根据权利要求8所述的转子组件,其特征在于
    在每个所述磁极中,沿所述转子本体(1)的周向上所述第一填充槽(113)与相邻的所述第二填充槽(114)之间的距离小于相邻的两个所述第二填充槽(114)之间的距离。
  10. 根据权利要求9所述的转子组件,其中,
    在每个所述磁极中,所述狭缝槽(13)的数量为至少三个,沿远离所述转子本体(1)轴线的方向,相邻所述狭缝槽(13)之间的距离依次减小;
    在沿远离所述第一填充槽(113)的方向,相邻两个所述第二填充槽(114)之间的距离依次增大。
  11. 根据权利要求8所述的转子组件,其中,
    同一磁极中,在沿远离所述第一填充槽(113)的方向,所述第二填充槽(114)在垂直于所述转子本体(1)轴线的截面上的面积依次增大。
  12. 根据权利要求8所述的转子组件,其中,
    同一磁极中,在沿远离所述第一填充槽(113)的方向,所述第二填充槽(114)自所述转子本体(1)的外周壁朝向所述狭缝槽(13)延伸的长度依次增大。
  13. 根据权利要求3所述的转子组件,其中,
    在垂直于所述转子本体(1)轴线的截面上,所述第一填充槽(113)沿所述转子本体(1)周向的两端与所述转子本体(1)中心连线形成夹角α,并且0.05τ≤α≤0.3τ,其中τ=180°/p,p为极对数。
  14. 根据权利要求13所述的转子组件,其中,
    0.15τ≤α≤0.26τ。
  15. 根据权利要求3所述的转子组件,其中,
    在垂直于所述转子本体(1)轴线的截面上,所述狭缝槽(13)沿直线或弧线延伸。
  16. 根据权利要求1至15任意一项所述的转子组件,其中,
    所述转子组件还包括导电环(2);
    所述导电环(2)固定连接在所述转子本体(1)轴向的端部,并能够贴靠在所述填充槽(11)内设置的导电隔磁材料上,所有所述填充槽(11)内的导电隔磁材料能够通过所述导电环(2)导通。
  17. 根据权利要求16所述的转子组件,其中,
    所述导电环(2)的材质与所述填充槽(11)内设置的导电隔磁材料相同。
  18. 根据权利要求17所述的转子组件,其中,
    所述狭缝槽(13)内设置隔磁材料。
  19. 根据权利要求18所述的转子组件,其中,
    所述导电环(2)具有散热孔(21);
    在沿所述转子本体(1)轴线方向的投影上,所述狭缝槽(13)位于所述散热孔 (21)之内。
  20. 根据权利要求19所述的转子组件,其中,
    所述导电环(2)的外廓为圆柱形,和/或,所述散热孔(21)的形状为圆柱形。
  21. 一种电机,包括权利要求1至20任意一项所述的转子组件。
  22. 根据权利要求21所述的电机,其中,
    所述电机还包括定子;
    所述定子具有安装孔,所述转子组件中的所述转子本体(1)穿设在所述安装孔中,并与所述安装孔同轴,并且在沿所述转子本体(1)的径向上,所述转子本体(1)的外壁与所述安装孔的内壁之间的距离为H;
    当在所述转子本体(1)上,每个所述狭缝槽(13)的两端各设置一个所述第二填充槽(114)时,所述狭缝槽(13)与其两端所对应的所述第二填充槽(114)之间的最小距离为L,并且H≤L≤2H。
PCT/CN2018/120892 2018-07-20 2018-12-13 转子组件及电机 WO2020015287A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/054,818 US11777346B2 (en) 2018-07-20 2018-12-13 Rotor assembly and motor
KR1020207032694A KR102660064B1 (ko) 2018-07-20 2018-12-13 로터 어셈블리 및 전기 모터
JP2020563977A JP7196198B2 (ja) 2018-07-20 2018-12-13 ロータ・アセンブリ及びモータ
EP18927034.1A EP3780346A4 (en) 2018-07-20 2018-12-13 ROTOR ARRANGEMENT AND ELECTRIC MOTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810805393.1 2018-07-20
CN201810805393.1A CN108768015B (zh) 2018-07-20 2018-07-20 转子组件及电机

Publications (1)

Publication Number Publication Date
WO2020015287A1 true WO2020015287A1 (zh) 2020-01-23

Family

ID=63970527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120892 WO2020015287A1 (zh) 2018-07-20 2018-12-13 转子组件及电机

Country Status (6)

Country Link
US (1) US11777346B2 (zh)
EP (1) EP3780346A4 (zh)
JP (1) JP7196198B2 (zh)
KR (1) KR102660064B1 (zh)
CN (1) CN108768015B (zh)
WO (1) WO2020015287A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN108768015B (zh) * 2018-07-20 2020-04-17 珠海格力电器股份有限公司 转子组件及电机
CN110149015A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN110138117B (zh) 2019-06-19 2023-12-08 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
CN110635591A (zh) * 2019-09-27 2019-12-31 珠海格力电器股份有限公司 同步磁阻电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231230A (ja) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp 誘導同期型リラクタンスモータ
CN1255925C (zh) 2001-11-12 2006-05-10 三菱电机株式会社 同步感应电动机,压缩机
CN102047531A (zh) * 2007-03-09 2011-05-04 Lg电子株式会社 电动机和包括电动机的压缩机
CN108011459A (zh) * 2017-11-30 2018-05-08 珠海格力节能环保制冷技术研究中心有限公司 转子结构、异步起动同步磁阻电机及压缩机
CN108768015A (zh) * 2018-07-20 2018-11-06 珠海格力电器股份有限公司 转子组件及电机

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA920197A (en) * 1969-05-19 1973-01-30 B. Honsinger Vernon Synchronous reluctance motor
JP3431991B2 (ja) * 1994-05-02 2003-07-28 オークマ株式会社 同期電動機
JP3051340B2 (ja) * 1996-06-18 2000-06-12 オークマ株式会社 同期電動機
JP2000050542A (ja) * 1998-07-23 2000-02-18 Okuma Corp リラクタンスモータ
JP3801477B2 (ja) * 2001-10-11 2006-07-26 三菱電機株式会社 同期誘導電動機のロータ及び同期誘導電動機及びファンモータ及び圧縮機及び空気調和機及び冷蔵庫
JP3764375B2 (ja) * 2001-11-15 2006-04-05 三菱電機株式会社 同期誘導電動機の回転子及び電動機の回転子及び同期誘導電動機及び誘導電動機及び直流ブラシレスモータ及び密閉型圧縮機及び冷蔵庫及び空気調和機和機及び同期誘導電動機の回転子の製造方法
JP2003259615A (ja) 2002-03-04 2003-09-12 Mitsubishi Electric Corp リラクタンスモータ
JP3775328B2 (ja) * 2002-03-27 2006-05-17 三菱電機株式会社 同期誘導電動機の回転子、圧縮機、同期誘導電動機の回転子の製造方法、同期誘導電動機の回転子用金型
JP4019838B2 (ja) * 2002-07-22 2007-12-12 三菱電機株式会社 同期誘導電動機、及び圧縮機
KR100539151B1 (ko) * 2002-12-12 2005-12-26 엘지전자 주식회사 단상 기동형 릴럭턴스 모터의 회전자
JP4574297B2 (ja) * 2004-09-13 2010-11-04 日産自動車株式会社 回転電機のロータ
KR101082929B1 (ko) * 2005-04-28 2011-11-11 가부시키가이샤 덴소 Ac 모터
US20070152527A1 (en) * 2005-12-23 2007-07-05 Okuma Corporation Reluctance motor
US7598645B2 (en) * 2007-05-09 2009-10-06 Uqm Technologies, Inc. Stress distributing permanent magnet rotor geometry for electric machines
KR101021120B1 (ko) * 2009-07-14 2011-03-14 한양대학교 산학협력단 고속모터용 회전자
JP5401204B2 (ja) * 2009-08-07 2014-01-29 日立アプライアンス株式会社 自己始動型永久磁石同期電動機、及び、これを用いた圧縮機と冷凍サイクル
ES2635600T3 (es) * 2011-03-31 2017-10-04 Daikin Industries, Ltd. Rotor y máquina eléctrica rotatoria que usa el mismo
JP2013021840A (ja) * 2011-07-12 2013-01-31 Honda Motor Co Ltd リラクタンスモータのロータ
US8917004B2 (en) * 2011-12-07 2014-12-23 Rotonix Hong Kong Limited Homopolar motor-generator
BR112015003256B1 (pt) * 2012-08-16 2021-03-30 Mitsuba Corporation Motor sem escova
DE102014215304A1 (de) * 2014-08-04 2016-02-04 Ksb Aktiengesellschaft Rotor, Reluktanzmaschine und Herstellungsverfahren für Rotor
DE102014215303A1 (de) 2014-08-04 2016-02-04 Ksb Aktiengesellschaft Rotor und Reluktanzmaschine
JP2016073023A (ja) * 2014-09-26 2016-05-09 東芝三菱電機産業システム株式会社 永久磁石式回転子および永久磁石式同期回転電機
EP3128647B1 (en) * 2015-08-05 2018-06-06 ABB Schweiz AG Rotor for rotating electric machine
JP6796449B2 (ja) * 2016-10-21 2020-12-09 東芝産業機器システム株式会社 同期リラクタンス型回転電機
IT201600110554A1 (it) * 2016-11-03 2018-05-03 Bonfiglioli Riduttori Spa Motore sincrono a riluttanza autoavviante
CN208596974U (zh) * 2018-07-20 2019-03-12 珠海格力电器股份有限公司 转子组件及电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231230A (ja) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp 誘導同期型リラクタンスモータ
CN1255925C (zh) 2001-11-12 2006-05-10 三菱电机株式会社 同步感应电动机,压缩机
CN102047531A (zh) * 2007-03-09 2011-05-04 Lg电子株式会社 电动机和包括电动机的压缩机
CN108011459A (zh) * 2017-11-30 2018-05-08 珠海格力节能环保制冷技术研究中心有限公司 转子结构、异步起动同步磁阻电机及压缩机
CN108768015A (zh) * 2018-07-20 2018-11-06 珠海格力电器股份有限公司 转子组件及电机

Also Published As

Publication number Publication date
EP3780346A4 (en) 2021-08-18
CN108768015A (zh) 2018-11-06
EP3780346A1 (en) 2021-02-17
US11777346B2 (en) 2023-10-03
CN108768015B (zh) 2020-04-17
JP7196198B2 (ja) 2022-12-26
US20210218298A1 (en) 2021-07-15
KR102660064B1 (ko) 2024-04-24
JP2021531715A (ja) 2021-11-18
KR20210034541A (ko) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020015287A1 (zh) 转子组件及电机
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
WO2019114803A1 (zh) 异步起动同步磁阻电机转子、电机及压缩机
CN109510345B (zh) 转子结构、异步起动同步磁阻电机及压缩机
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
WO2020253198A1 (zh) 直接起动同步磁阻电机转子结构、电机
CN110112847B (zh) 直接起动同步磁阻电机转子结构及具有其的电机
CN204794628U (zh) 同步磁阻电机和压缩机
WO2020253192A1 (zh) 异步起动同步磁阻电机转子结构、电机及压缩机
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
WO2020253195A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
WO2019174322A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN210839094U (zh) 直接起动同步磁阻电机转子结构、电机
US10291087B2 (en) Electric motor
CN106374712A (zh) 同步磁阻电机和压缩机
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
CN208596974U (zh) 转子组件及电机
CN209805523U (zh) 自起动同步磁阻电机转子结构、电机及压缩机
CN113193674A (zh) 转子组件和自起动永磁同步磁阻电机
CN207504658U (zh) 交替极电机及具有其的压缩机
CN108711969B (zh) 转子组件及电机
JP2019022257A (ja) 回転電機
KR200413099Y1 (ko) 모터 고정자용 인슐레이터
CN105576918A (zh) 一种具有三层永磁体励磁的永磁电机
CN112968555A (zh) 转子组件和自起动永磁同步磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563977

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018927034

Country of ref document: EP

Effective date: 20201113

NENP Non-entry into the national phase

Ref country code: DE