WO2019244370A1 - 誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム - Google Patents

誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム Download PDF

Info

Publication number
WO2019244370A1
WO2019244370A1 PCT/JP2018/043946 JP2018043946W WO2019244370A1 WO 2019244370 A1 WO2019244370 A1 WO 2019244370A1 JP 2018043946 W JP2018043946 W JP 2018043946W WO 2019244370 A1 WO2019244370 A1 WO 2019244370A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction motor
motor
phase angle
overheating
resistance
Prior art date
Application number
PCT/JP2018/043946
Other languages
English (en)
French (fr)
Inventor
広斌 周
岩路 善尚
金子 悟
戸張 和明
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to EP18923193.9A priority Critical patent/EP3813251A4/en
Priority to US17/048,633 priority patent/US11303236B2/en
Priority to CN201880090742.4A priority patent/CN111801885B/zh
Publication of WO2019244370A1 publication Critical patent/WO2019244370A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H6/00Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g. using thermal images
    • H02H6/005Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g. using thermal images using digital thermal images
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Definitions

  • the present invention relates to an overheating monitoring method for an induction motor, an overheating monitoring device, and an induction motor control system using the overheating monitoring device.
  • Induction motors that are installed in industrial hoist drive systems and start and stop frequently have startup currents several times higher than the rated motor current.
  • the rotor since the next starting operation starts in a state where the rotor inside is not sufficiently cooled compared to the stator, the rotor becomes overheated and insulation breakdown of the windings and iron core of the motor, and furthermore, burnout is possible. The nature becomes high.
  • Patent Document 1 An overheat monitoring device using a speed sensor, a current sensor, and a temperature sensor information of a motor has been reported (Patent Document 1). Further, an estimation method for estimating a temperature rise of a rotor from an environmental temperature and a stator temperature measured by a temperature sensor has been reported (Patent Document 2).
  • Patent Document 1 requires a speed sensor in addition to the current sensor for each monitoring target. Further, in the technique of Patent Document 2, a temperature sensor is required in addition to the current sensor for each monitoring target. For this reason, the number of related devices including sensors increases, and the cost of the entire equipment increases.
  • An object of the present invention is to provide an overheating monitoring method for an induction motor, an overheating monitoring device for an induction motor, and a control system for an induction motor, which estimate the temperature of the motor from a detection value of a current sensor and monitor an overheating state. .
  • An example of the present invention is a motor overheating state monitoring method in a motor control system including at least one induction motor, an inverter that supplies an alternating current to the induction motor, and a control unit that controls the inverter.
  • resistance calculation relationship data indicating the relationship between the resistance of the induction motor and the characteristic amount at startup, and a criterion value for determining the temperature overheating are stored, and the current of the induction motor is detected,
  • a phase angle is obtained from the detected current
  • a signal related to a phase angle difference is calculated from a difference between the phase angle and a signal obtained by synchronizing the phase angle
  • a signal related to the phase angle difference is calculated.
  • the temperature of the guide motor is calculated, a superheat monitoring method for an induction motor which is adapted to determine whether compared to overheating and temperature and the criterion value of the computed the induction motor.
  • an overheat monitoring device for an induction motor in an electric motor control system including at least one induction motor, an inverter that supplies an alternating current to the induction motor, and a control unit that controls the inverter.
  • a resistance calculating relation data indicating a relation between the resistance of the induction motor and the characteristic amount at the time of starting, a data storage unit storing a judgment reference value for judging overheating, and a current of the induction motor.
  • a motor information calculation unit a feature calculation unit for calculating a feature of the motor obtained from the signal relating to the phase angle difference, a feature calculation of the motor and the resistance calculation relationship data. And a temperature calculating unit for calculating the temperature of the induction motor from the calculated resistance, and comparing the calculated reference temperature with the calculated temperature of the induction motor. And an overheating determination unit for determining whether the overheating state is present.
  • the temperature of the induction motor can be estimated based on the detected value of the alternating current, and the overheating state can be monitored.
  • FIG. 1 is a diagram showing an induction motor control system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating details of the motor information calculation unit according to the first embodiment.
  • FIG. 3 is a diagram showing a proportional signal waveform when the current phase angle is phase-synchronized when the motor is started.
  • FIG. 4 is a diagram illustrating a relationship between the gradient obtained from two output signal waveforms of the phase synchronization circuit when the motor is started and the stator resistance.
  • FIG. 5 is a diagram illustrating a relationship between a phase difference obtained from two output signal waveforms of the phase locked loop circuit when the motor is started, and a rotor resistance.
  • FIG. 1 is a diagram showing an induction motor control system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating details of the motor information calculation unit according to the first embodiment.
  • FIG. 3 is a diagram showing a proportional signal waveform when the current phase angle is phase-synchronized when the
  • FIG. 6 is a diagram illustrating an example of detecting overheating of an induction motor that frequently starts and stops.
  • FIG. 7 is a flowchart of an abnormality detection routine executed in the first embodiment.
  • FIG. 8 is a diagram illustrating an induction motor control system according to the second embodiment.
  • FIG. 9 is a diagram illustrating an induction motor control system according to the third embodiment.
  • FIG. 10 is a diagram showing an induction motor control system according to the fourth embodiment.
  • FIG. 11 is a diagram illustrating an induction motor control system according to the fifth embodiment.
  • FIG. 1 is a block diagram of an induction motor control system showing a first embodiment of the present invention.
  • the induction motor control system 111 includes an induction motor 10, a driving device 20, a monitoring device 40 (motor monitoring device), and a plurality of current sensors 41.
  • the drive device 20 includes an inverter 22 and a control unit 30.
  • the rotating shaft 14 of the induction motor 10 is connected to a driving mechanism 16 via mechanical parts such as gears (not shown) or directly.
  • Inverter 22 applies a three-phase AC voltage to induction motor 10 under the control of control unit 30.
  • the induction motor may be referred to as an electric motor.
  • the drive device 20 controls the speed and torque of the electric motor 10, and here, the control unit 30 is described as controlling the inverter using a known vector control method.
  • the control unit 30 includes hardware as a general computer such as a CPU (Central Processing Unit) and a RAM (Random Access Memory), and stores a control program and various data.
  • the monitoring device 40 also includes hardware as a general computer. However, in FIG. 1, the functions of the control unit 30 and the monitoring device 40 are described as a block diagram for easy understanding.
  • the control unit 30 includes a command generation unit 32, a deviation calculation unit 33, a vector control unit 34, a dq / 3 ⁇ conversion unit 36, and a 3 ⁇ / dq conversion unit 38. With these configurations, the control unit 30 performs vector control on the electric motor 10 to improve the responsiveness of the electric motor 10.
  • Inverter 22 outputs a three-phase AC current of U-phase, V-phase, and W-phase to electric motor 10.
  • the current sensor 41 detects any two-phase current. That is, in the illustrated example, U-phase and W-phase currents are detected, and the results are output as current detection values Ius and Iws .
  • the detection value of the current sensor 41 is also used in the monitoring device 40 described later.
  • a rotational coordinate rotating at the frequency f is assumed, axes orthogonal to the rotational coordinate are called a d-axis and a q-axis, and a current supplied to the electric motor 10 is expressed as a DC amount in the rotational coordinate.
  • the current on the q-axis is a current component that determines the torque of the electric motor 10, and is hereinafter referred to as a torque current.
  • the current on the d-axis is a component that becomes an exciting current of the electric motor 10, and is hereinafter referred to as an exciting current.
  • 3 [phi] / dq conversion section 38 the current detection value I us, on the basis of the I ws, and outputs the excitation current detection value I d, the torque current detection value I q.
  • the command generation unit 32 receives a torque command value ⁇ * from a higher-level device (not shown), and generates an excitation current command value Id * and a torque current command value Iq * based on the torque command ⁇ *. I do.
  • Deviation calculation unit 33 * current command value I d, and I q *, the detection value I d, based on the I q, deviation I d * -I d, and outputs the I q * -I q.
  • Vector control unit 34 on the basis the deviation I d * -I d, the I q * -I q like, and the excitation voltage command value V d *, and outputs the torque voltage command value V q *.
  • the dq / 3 ⁇ conversion unit 36 outputs a PWM signal for driving the inverter 22 based on the voltage command values V d * and V q * of the rotating coordinate system.
  • the inverter 22 switches the supplied DC voltage (not shown) based on the supplied PWM signal, outputs U-phase, V-phase, and W-phase voltages to drive the electric motor 10.
  • the monitoring device 40 includes a motor information calculation unit 42, a feature value calculation unit 44, a temperature calculation unit 45, a data storage unit 46 that stores data required for calculation, and an overheat determination unit 48.
  • the description of the operation and the processing contents of each configuration of the monitoring device 40 will be described after the description of the motor temperature estimation method.
  • is the reciprocal of the temperature coefficient of resistance of the wound copper wire
  • R0 is the motor resistance reference value, that is, the motor resistance value at the reference temperature T0.
  • the motor resistance value RT becomes approximately 1.1 times the motor resistance reference value R0.
  • the electric motor resistance value RT becomes approximately 1.2 times the electric motor resistance reference value R0.
  • FIG. 2 is a diagram showing a specific circuit configuration of the motor information calculation unit 42 in FIG.
  • the motor information calculation unit 42 includes a 3 ⁇ / ⁇ converter 52, an arctangent converter 54, a subtractor 56, a phase synchronization calculation unit 60, an integrator 72, and a multiplier 74.
  • the phase synchronization calculation unit 60 includes multipliers 62 and 64, an integrator 66, and an adder 68.
  • the motor information calculation unit 42 calculates the phase angle of the current flowing through the motor.
  • the 3 ⁇ / ⁇ converter 52 converts the current detection values I u , I w into orthogonal two-phase alternating currents I ⁇ , I ⁇ .
  • the arctangent converter 54 calculates the AC current phase angle ⁇ i * based on the AC currents I ⁇ and I ⁇ .
  • the phase angle ⁇ i * is input to the phase synchronization circuit, and a phase angle difference signal which is a difference ( ⁇ i * ⁇ i) from the phase angle ⁇ i phase-synchronized by the phase synchronization circuit is calculated. Is done.
  • phase angle difference signal ( ⁇ i * ⁇ i) is multiplied by a predetermined proportional gain Kp by the multiplier 62 to output a proportional signal Kp ( ⁇ i * ⁇ 0 ) of the phase difference difference signal.
  • the inventor has stated that the characteristic amount obtained from the proportional signal Kp ( ⁇ i * ⁇ 0 ) of the phase difference difference signal at the time of starting the motor (at the time of starting) greatly varies depending on the resistance value of the motor. Obtained knowledge.
  • the resistance of the motor is obtained by utilizing this knowledge, and the temperature of the motor is calculated from the resistance of the motor. The details will be described later.
  • a proportional signal of the phase angle difference signal at the time of starting the motor is output and used for calculating the resistance, but instead of the proportional signal of the phase angle difference signal, the output of the subtractor 56 is used.
  • a phase angle difference signal may be used. This is because the phase angle difference signal and the proportional signal of the phase angle difference signal are in a proportional relationship, so that the feature amount of the signal waveform at the time of startup is the same. Therefore, any one of the phase angle difference signal and the proportional signal of the phase angle difference signal is referred to as a “signal related to the phase angle difference”.
  • the phase angle difference signal ( ⁇ i * ⁇ i) output from the subtractor 56 shown in FIG. 2 is input to the multiplier 64, where it is multiplied by a predetermined integral gain Ki.
  • the integrator 66 integrates the result of the multiplication.
  • the adder 68 adds the output of the multiplier 62 and the output of the integrator 66, and outputs the addition result as a frequency signal ⁇ 1s .
  • the integrator 72 integrates the frequency signal ⁇ 1s and outputs an AC current phase angle ⁇ i .
  • the AC current phase angle ⁇ i is supplied to a subtractor 56.
  • the multiplier 74 multiplies the frequency signal ⁇ 1s by “2 / P” (where P is the number of poles of the electric motor 10), and outputs the multiplication result as a mechanical frequency ⁇ rs .
  • the mechanical frequency ⁇ rs is a signal corresponding to the actual speed (speed including slip) of the electric motor 10 (see FIG. 1).
  • the subtracter 56, the phase synchronization operation unit 60, and the integrator 72 function as a phase synchronization circuit, and the difference value “ ⁇ i * ⁇ i ” output by the subtractor 56 approaches “0”. , And outputs the frequency signal ⁇ 1s and the AC current phase angle ⁇ i .
  • FIG. 3 is a diagram illustrating a change in a signal related to a phase angle difference when the electric motor starts.
  • a broken-line waveform indicates a waveform at the time of startup of the motor resistance (stator resistance R1 and rotor resistance R2) when the motor is at the reference temperature T0, and a solid-line waveform indicates an operation in which startup and stop are frequently repeated.
  • 7 shows a waveform at the time of startup in the middle.
  • the gradient ⁇ and the phase difference ⁇ of both waveforms are different.
  • the waveform gradient ⁇ and the phase difference ⁇ are collectively referred to as “motor characteristic amount”.
  • “at the time of start-up” refers to not only the time of start-up but also a period during which the vehicle is accelerating from the start-up. Also, the terms “starting” and “starting” have the same meaning here.
  • FIG. 3 when comparing the waveform of the phase-locked proportional signal at the time of starting with the reference stator resistance, the gradient of the waveform is ⁇ , and the phase difference is ⁇ .
  • FIG. 4 is a diagram showing a relationship between the gradient ⁇ and the stator resistance R1.
  • FIG. 5 is a diagram showing a relationship between the phase difference ⁇ and the rotor resistance R2.
  • the gradient ⁇ is inversely proportional to the stator resistance R1 (the larger the gradient, the smaller the R1).
  • the phase difference ⁇ is proportional to the rotor resistance R2 (the larger the phase difference, the larger the R2). That is, the influence of the stator resistance R1 is dominant on the gradient ⁇ of the signal relating to the phase angle difference obtained based on the phase angle with respect to the rising reference value at startup. Further, it can be seen that the phase difference ⁇ of the signal relating to the phase angle difference is dominated by the influence of the rotor resistance R2.
  • the relations of FIGS. 4 and 5 are obtained in advance and stored in the memory, and at each start-up during the operation continuation, the characteristic amount at the time is applied to the relation stored in the memory to obtain the relation at that time.
  • Motor resistance can be obtained.
  • the relationship between the resistance of the electric motor and the characteristic amount as shown in FIGS. 4 and 5 is hereinafter referred to as “resistance calculation relation data”.
  • the motor current phase advances from the reference value, and the phase of the signal related to the phase angle difference also advances in proportion to the rotor resistance R2.
  • I1 V1 / R1 Equation (2)
  • S s (R2 ⁇ Iq) / (L2 ⁇ Id) (3)
  • Iq is the motor torque current
  • L2 is the motor rotor side inductance
  • Id is the motor excitation current.
  • the stator resistance R1 and the rotor resistance R2 of the induction motor based on the characteristic amounts (gradient ⁇ and phase difference ⁇ ) of the motor in the signal related to the phase angle difference at the time of starting the motor. It can. That is, the relationship shown in FIGS. 4 and 5 is obtained and stored in advance by experiments, simulations, and the like, and during the continuous operation of repeated start / stop, the characteristic amount of the motor in the signal related to the phase angle difference at each start (Gradient ⁇ and phase difference ⁇ ) are obtained. Then, when the characteristic amount of the electric motor is compared with the resistance calculation relation data (the relation data shown in FIGS.
  • stator resistance R1 with respect to ⁇ at that time and the rotor resistance R2 with respect to ⁇ at that time are obtained. Can be calculated.
  • stator temperature and the rotor temperature can be calculated by applying the respective resistances to the relational expression of the equation (1).
  • the temperature of the electric motor is obtained by using the above-described temperature estimation calculation method, and the overheat is monitored by comparing the obtained temperature with a reference value for determining overheating.
  • the operation of the monitoring device 40 having the temperature estimating function according to the above-described method and the function of determining the overheating state of the electric motor using the estimated temperature will be described.
  • the monitoring device 40 detects a current flowing from the current sensor 41 to the electric motor. That is, the motor information calculation unit 42 acquires a current detection value I u of the U phase from the corresponding current sensor 41, a current detection value I w of the W phase. Then, based on the detected values, the motor information calculation unit 42 outputs a signal (a waveform as shown by a solid line in FIG. 3) relating to the phase angle difference at each start of the motor during the continuation of the operation. Obtaining the signal relating to the phase angle difference is as described above, and the description thereof is omitted.
  • the characteristic amount calculation unit 44 receives a signal relating to the phase angle difference at the time of startup from the motor information calculation unit 42, and as shown in FIG. And phase difference ⁇ ).
  • the temperature calculation unit 45 calculates the temperature of the motor (stator temperature R1, rotor temperature R2) based on the motor characteristic amounts (gradient ⁇ and phase difference ⁇ ) output from the characteristic amount calculation unit 44. I do. Specifically, the resistance calculation relation data (the relation between the gradient ⁇ and R1 shown in FIG. 4 and the relation between the phase difference ⁇ and R2 shown in FIG. 5) recorded in advance in the data storage unit 46 are compared with the current time. By performing the matching by applying the characteristic amount at the time of starting, the resistance (the stator resistance R1 and the rotor resistance R2) of the electric motor at the time of starting this time can be calculated.
  • the resistance calculation relation data can be easily collated by storing the relations of FIGS. 4 and 5 as tables.
  • Reference data which is a reference necessary for the calculation and processing of the temperature calculation unit 45, is stored in the data storage unit 46.
  • the reference data includes resistance calculation-related data and data necessary for calculating R1, R2 and the motor temperature.
  • the reason why the motor speed is input to the temperature calculation unit 45 is to detect the start and stop states of the motor. Since the information on the speed can determine whether or not the electric motor has been started and the subsequent acceleration state, it is possible to obtain the timing of starting the calculation.
  • the overheat judging section 48 receives the temperature of the electric motor obtained by the temperature calculating section 45 and detects whether the stator or the rotor of the electric motor 10 is overheated. Specifically, the reference values (threshold values T1 and T2) of the stator temperature and the rotor temperature for determining whether or not overheating is performed, and the stator temperature and the rotor temperature of the electric motor obtained by the temperature calculation unit 45 Are compared. This determination reference value is stored in the data storage unit 46 in advance. If any one of the temperatures exceeds the determination reference value, it is determined that the electric motor is in an overheated state. When the overheating state is determined, the overheating determination section 48 outputs an alarm signal to the outside.
  • the alarm signal may be any means that can notify the administrator, such as turning on a lamp, sounding an alarm, or transmitting radio waves by wireless communication means.
  • the monitoring device 40 When the monitoring device 40 according to the present embodiment is installed in a severe environment, it is preferable that the monitoring device 40 be housed in a monitoring device case that is provided with dustproof and waterproof measures. Furthermore, when the monitoring device 40 is installed near a device that generates noise such as the inverter 22, it is preferable that the monitoring device 40 be provided with noise countermeasures.
  • FIG. 6 shows a state in which starting and stopping are repeated while the motor is running, and a state of a change in the temperature of the stator and a change in the temperature of the rotor.
  • T1 is a threshold used to determine whether the stator is overheating.
  • T2 is a threshold used to determine whether the rotor is overheated.
  • FIG. 6 shows a case where the temperature of the rotor exceeds the determination reference value of the rotor by T2 and overheating is detected.
  • the monitoring device 40 can estimate and calculate the motor temperature based on the detected value of the motor current detected by the current sensor, and use the result to detect an overheated state. Further, speed information in variable speed driving can also be detected in the conversion process, so that the correlation with the rotation speed can be easily analyzed. Further, since conversion from AC to DC is possible by a simple algorithm, edge processing for determining an abnormality can be executed in the monitoring device. As a result, the data amount can be significantly reduced, and the analysis / diagnosis work is also facilitated.
  • FIG. 7 is an explanatory diagram of an overheat detection routine executed in the monitoring device 40. This overheat detection routine is executed at a predetermined sampling period when the electric motor 10 is started (during acceleration from the start of the start).
  • step S2 when the process proceeds to step S2, a current measurement process is executed. That is, as shown in FIG. 1, the monitoring device 40 acquires the current detection values I u and I w from the current sensor 41.
  • step S3 the motor information calculation unit 42 calculates a signal related to the speed ⁇ rs of the motor 10 and the phase angle difference.
  • the characteristic amount calculation unit 44 extracts the characteristic amounts (gradient ⁇ and phase difference ⁇ ) of the electric motor in the signal related to the phase angle difference obtained during the current acceleration.
  • the temperature calculation unit 45 uses the reference value data shown in step S6 and the characteristic amounts (gradient ⁇ , phase difference ⁇ ) obtained in step S4 to generate the resistance ( The stator resistance R1 and the rotor resistance R2) are obtained, and then the motor temperature (stator temperature, rotor temperature) is estimated and calculated based on the motor resistance. Specifically, based on the motor characteristic amounts (gradient ⁇ and phase difference ⁇ ) obtained in step S4 and resistance calculation relation data (relation data shown in FIGS. 4 and 5) stored in advance, the resistance of the motor is calculated.
  • the reference data required for the processing in step S6 is a data table including a data table of gradient ⁇ and R1 shown in FIG. 4, a data table of phase difference ⁇ and R2 shown in FIG. 5, and a data table of R1, R2 and temperature shown in FIG. And so on.
  • step S7 If it is determined in step S7 that the stator temperature Ts exceeds the determination reference value T1 and that the motor is in a transient state of starting ( ⁇ rs > 0), that is, if it is determined “Yes” in step S7, the process proceeds. Proceed to step S9. If the determination of "Yes” is made in step S7, it indicates that the stator temperature of the electric motor is in an overheated state. If "NO” in the step S7, the process of this routine is ended, and a preparation is made for the next process start timing.
  • step S9 a motor overheat alarm signal indicating that the stator of the motor 10 is overheated is output to the outside.
  • step S8 If it is determined in step S8 that the rotor temperature Tr exceeds the determination reference value T2 and the motor is in a transient state ( ⁇ rs > 0), that is, if it is determined “Yes” in step S8, the process proceeds. Proceed to step S10. If the determination of "Yes” is made in step S8, it indicates that the stator temperature of the electric motor is overheated. If "NO” in the step S8, the process of this routine is ended, and a preparation is made for the next process start timing.
  • step S10 a motor overheat alarm signal indicating that the rotor of the motor 10 is overheated is output to the outside.
  • the stator overheating state or the rotor overheating state of the electric motor 10 can be detected based on at least two-phase current values I u and I w . That is, since the temperature sensor, the speed sensor, and the like can be omitted, a trouble can be prevented beforehand while saving labor for maintenance.
  • the overheat judging section 48 detects an overheat state of the electric motor 10, it outputs an alarm signal, so that various abnormalities can be notified to the manager.
  • the alarm of this embodiment may be any means that can notify the administrator, such as a lamp, an alarm, or a wireless communication means.
  • both the stator temperature and the rotor temperature of the electric motor are calculated, and the overheating state of both temperatures is monitored.
  • it is not always necessary to obtain both the stator temperature and the rotor temperature and it is also possible to calculate one of the temperatures and monitor that temperature. If any one of the temperature states is monitored, it is better to judge from a safety point of view, to judge an overheating state of the rotor temperature which is difficult to cool.
  • FIG. 8 is a diagram showing a second embodiment of the present invention.
  • portions corresponding to the respective portions of the above-described embodiment will be denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.
  • an induction motor control system 112 includes N (N is a natural number of 2 or more) electric motors 101 to 10N, and N driving mechanisms 161 to 16N coupled to the motors 101 to 10N via rotation shafts 141 to 14N. , And a load 12 driven by the N motors (in this example, the load is a conveyed object conveyed by the driving force of the motors).
  • Two current sensors (total of 2N) 411 to 41N are attached to the U and W phases of the electric motors 101 to 10N, respectively, and the detected current values I u1 to I uN and I w1 to I w1 to I N are used.
  • wN is supplied to the monitoring device 150.
  • the configuration of the monitoring device 150 is basically the same as the configuration of the monitoring device 40 of the first embodiment (see FIG. 1), and thus a detailed description thereof is omitted. That is, the monitoring device 40 of the first embodiment is configured to monitor one motor, whereas the monitoring device 150 monitors the overheating state of N motors.
  • FIG. 9 is a diagram showing a third embodiment of the present invention.
  • portions corresponding to the respective portions of the other embodiments described above are denoted by the same reference numerals, detailed description thereof will be omitted, and different contents will be mainly described.
  • the induction motor control system 113 in FIG. 9 and the induction motor control system 111 in FIG. 1 have basically the same configuration.
  • the configuration of the monitoring device 160 in FIG. 9 is almost the same as the configuration of the monitoring device 40 in the first embodiment, the monitoring device 160 shown in FIG. Are different. That is, the monitoring device 160 is configured to supply a control command for reducing the temperature of the motor to the induction motor control system 113 instead of outputting an alarm signal.
  • the control command is provided to the command generation unit 32, and the command is changed.
  • the control command is, for example, a command to stop or decelerate the electric motor 10.
  • the detection of the phase current necessary for the control system 113 is detected by the current sensor 24 separately provided.
  • this current sensor may be shared by the control unit 30 and the monitoring device 150 as in FIG.
  • the control unit 30 when at least one of the stator and the rotor of the electric motor 10 is overheated, the control unit 30 outputs a control command to change the control state to the control unit 30. Thereby, the control state in the control unit 30 can be changed to an appropriate state.
  • FIG. 10 is a diagram showing a fourth embodiment of the present invention.
  • portions corresponding to the respective portions of the other embodiments described above are denoted by the same reference numerals, detailed description thereof will be omitted, and description will be centered on contents different from the above-described embodiments.
  • the induction motor control system 114 in FIG. 10 includes a drive / monitoring device 170, the electric motors 101 and 102, and drive mechanisms 161 and 162 coupled to these via rotation shafts 141 and 142.
  • the driving mechanisms 161 and 162 move the transported object 12 in a tangential direction (upward or downward on the paper).
  • a rail for a railway may be provided in place of the transported object 12, and the drive mechanisms 151 and 162 themselves may move in a tangential direction on the rail.
  • the drive / monitoring device 170 includes the control unit 30, the inverter 22, the overheat detection unit 180, and the average value calculation unit 182.
  • the average value calculation unit 182 calculates the average value of the current detection values I u1 and I u2 and the average value of the current detection values I w1 and I w2 , and outputs these as the current detection values I us and I ws .
  • the configurations of the control unit 30 and the inverter 22 are the same as those of the first embodiment (see FIG. 1).
  • the configuration of the overheat detector 180 is the same as the configuration of the monitoring device 160 (see FIG. 9) of the third embodiment. Therefore, the driving / monitoring device 170 of the present embodiment has a function combining the functions of the driving device 20 and the monitoring device 160 in the third embodiment. Note that the present embodiment can also be configured by adding an overheat detection unit 180 and an average value calculation unit 182 to the existing drive device 20 (see FIG. 9).
  • FIG. 11 is a diagram showing a fifth embodiment of the present invention.
  • FIG. 11 shows an example of an induction motor control system that drives the roller table 200.
  • portions corresponding to the respective portions of the other embodiments described above are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.
  • the induction motor control system 115 in FIG. 11 includes N (N is a natural number of 2 or more) electric motors 101 to 10N, rotating shafts 141 to 14N, N driving mechanisms 161 to 16N, a driving device 20, And an apparatus 150. Further, the induction motor control system 115 includes a roller table 200 including a plurality of horizontally arranged rollers.
  • the roller table 200 includes bearings 211 to 21N and drive mechanisms 161 to 16N.
  • the above-described drive mechanisms 161 to 16N include bearings 211 to 21N and a plurality of rollers 221 to 22N, respectively.
  • the electric motor control system 115 drives, for example, a transport roller that transports a steel sheet rolled by a rolling mill (not shown).
  • the rollers 221 to 22N are all driven at the same speed. Therefore, the motors 101 to 10N that are the driving sources of the rollers 221 to 22N have the same specifications.
  • the configuration of the present embodiment other than that described above is the same as that of the second embodiment (see FIG. 8).
  • the steel plate conveyed on the roller table 200 is at a considerably high temperature, and the bearings 211 to 21N, couplings (not shown), electric motors 101 to 10N are provided.
  • a sensor such as a temperature sensor or a speed sensor is mounted for each individual diagnosis target such as a bearing unit, an electric motor, and the like, and the detection signal is analyzed. It was common to diagnose abnormalities.
  • it is not necessary to attach a temperature sensor, a speed sensor, and the like to each electric motor. For this reason, it is possible to prevent a situation such as a stop of the line from occurring.
  • the hardware of the control unit 30, the monitoring devices 40, 150, 160, and the overheat detection unit 180 in the above embodiment can be realized by a general computer. Therefore, the algorithm shown in FIGS. 2 and 5, the program shown in FIG. 7, and the like may be stored in a storage medium or distributed via a transmission path.
  • the algorithm shown in FIGS. 2 and 5 or the program shown in FIG. 7 has been described as software processing using a program in each of the above embodiments, part or all of the algorithm is described as ASIC (Application). Specific integrated circuits (ICs for specific applications) or hardware-based processing using FPGAs (field-programmable gate arrays) may be used.
  • ASIC Application-specific integrated circuits
  • FPGAs field-programmable gate arrays
  • Multiplier 64: Multiplier, 66: Integrator, 72: Integrator, 74: Multiplier, 101 to 10N: Induction motor, 111 to 115: Induction motor control system, 150: Monitoring device, 160: Monitoring device, 180 ... Overheat detector, 401 to 40N... Current sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Abstract

従来のように多くのセンサを必要とせず、電流センサの検出値のみから誘導電動機の過熱検知を行えるようにした誘導電動機の過熱監視方法および装置を提供する。 まず、誘導電動機の抵抗と起動時の特徴量との関係を示す抵抗演算関係データと、過熱を判断するための判断基準値とを予め記憶しておく。電動機の起動と停止を頻繁に繰り返す運転期間中には、各起動時において、誘導電動機の電流を検出し、検出した電流から位相角を求めて位相角差分に関する信号を演算し、該位相角差分に関する信号から電動機の特徴量を演算する。さらに、この電動機の特徴量と予め記憶しておいた抵抗演算基準データとを用いて誘導電動機の抵抗を演算する。そして、誘導電動機の抵抗から誘導電動機の温度を演算し、この演算された前記誘導電動機の温度と前記判断基準値とを比較し過熱状態かどうかを判定するようにした。

Description

誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム
 本発明は、誘導電動機の過熱監視方法、過熱監視装置および過熱監視装置を用いた誘導電動機の制御システムに関する。
 産業用の巻上機駆動システムなどに搭載され、頻繁に起動・停止を行う誘導電動機は、起動電流が電動機定格電流の数倍にもなる。特に、固定子に比べ内部にある回転子はまだ十分に冷却されない状態で次の起動動作が始まるため、回転子が過熱になり電動機の巻線や鉄芯の絶縁破壊、さらには、焼損の可能性が高くなる。
 このような故障を事前に防ぐために、電動機の速度センサ、電流センサ、温度センサ情報を用いた過熱監視装置が報告されている(特許文献1)。また、温度センサにより計測される環境温度および固定子温度から回転子の温度上昇分を推定する推定方法も報告されている(特許文献2)。
特開2017-175820号公報 特開平1-274685号公報
 しかし、特許文献1では、監視対象毎に電流センサの他に速度センサを必要とする。また、特許文献2の技術では、監視対象毎に電流センサの他に温度センサを必要とする。このため、センサを含む関連機器の数が増え、設備全体のコストが高くなる。
 また、電動機設置場所に寸法制約がある場合や、過酷な環境条件においては、センサを設置することが難しいといった課題もある。さらにセンサの数が増えれば増えるほどセンサ群の信頼性を確保することが困難となり、監視精度が低下する。このため、できる限りセンサを使わない誘導電動機の過熱監視装置が求められている。センサの数が減ると、メンテナンス性、信頼性が大幅に向上する。具体的に、センサの保守点検作業が削減できるほか、センサの故障に伴うシステムダウンを未然に防ぐことができる。また、センサ用システム艤装配線が削減できるので作業コストを削減できる上に、配線トラブルなどの懸念もなくなる。
 本発明の目的は、電流センサの検出値から電動機の温度を推定し、過熱状態を監視する誘導電動機の過熱監視方法、誘導電動機の過熱監視装置、および誘導電動機の制御システムを提供することである。
 本発明は、その一例を挙げると、少なくとも1台の誘導電動機と前記誘導電動機に交流電流を供給するインバータと前記インバータを制御する制御部とを備えた電動機制御システムにおける電動機過熱状態監視方法であって、誘導電動機の抵抗と起動時の特徴量との関係を示す抵抗演算関係データと、前記温度過熱を判断するための判断基準値とを記憶しておき、前記誘導電動機の電流を検出し、運転期間中における各起動時において、該検出された電流から位相角を求め、該位相角と該位相角を位相同期した信号との差から位相角差分に関する信号を演算し、該位相角差分に関する信号から電動機の特徴量を演算し、該電動機の特徴量と前記抵抗演算基準データとを用いて前記誘導電動機の抵抗を演算し、次いで該演算した抵抗から前記誘導電動機の温度を演算し、該演算された前記誘導電動機の温度と前記判断基準値とを比較し過熱状態かどうかを判定するようにした誘導電動機の過熱監視方法である。
 また、本発明の他の一例を挙げると、少なくとも1台の誘導電動機と前記誘導電動機に交流電流を供給するインバータと前記インバータを制御する制御部とを備える電動機制御システムにおける誘導電動機の過熱監視装置であって、前記誘導電動機の抵抗と起動時の特徴量との関係を示す抵抗演算関係データと、過熱を判断するための判断基準値とを記憶するデータ記憶部と、前記誘導電動機の電流を検出する電流センサと、運転期間中における各起動時において、該検出された電流から位相角を求め、該位相角と該位相角を位相同期した信号との差から位相角差分に関する信号を演算する電動機情報演算部と、前記位相角差分に関する信号から得られる電動機の特徴量を演算する特徴量演算部と、該電動機の特徴量と前記抵抗演算関係データとを用いて前記誘導電動機の抵抗を演算し、次いで該演算した抵抗から前記誘導電動機の温度を演算する温度演算部と、該演算された前記誘導電動機の温度と前記判断基準値とを比較し過熱状態かどうかを判定する過熱判定部と、を備えた誘導電動機の過熱監視装置である。
 本発明によれば、交流電流の検出値に基づいて誘導電動機の温度を推定し、過熱状態を監視することができる。
図1は、本発明の第1実施形態による誘導電動機制御システムを示す図である。 図2は、第1の実施形態における電動機情報演算部の詳細を示すブロック図である。 図3は、電動機起動時における電流位相角を位相同期した際の比例信号波形を示す図である。 図4は、電動機を起動した際の位相同期回路の2つの出力信号波形から得られる勾配と、固定子抵抗との関係を示す図である。 図5は、電動機を起動した際の位相同期回路の2つの出力信号波形から得られる位相差と、回転子抵抗との関係を示図である。 図6は、頻繁に起動・停止を行う誘導電動機の過熱検知例を示す図である。 図7は、第1の実施形態において実行される異常検知ルーチンのフロー図である。 図8は、第2の実施形態による誘導電動機制御システムを示す図である。 図9は、第3の実施形態による誘導電動機制御システムを示す図である。 図10は、第4の実施形態による誘導電動機制御システムを示す図である。 図11は、第5の実施形態による誘導電動機制御システムを示す図である。
 以下、本発明の種々の実施形態を図面に従い説明する。なお、各実施態様の図面において、同一構成物は同一の数番を付し、その詳細な説明を省略することがある。
 <第1の実施形態>
 図1は、本発明の第1の実施形態を示す誘導電動機制御システムのブロック図である。図1において、誘導電動機制御システム111は、誘導電動機10と、駆動装置20と、監視装置40(電動機監視装置)と、複数の電流センサ41と、を備えている。駆動装置20は、インバータ22と、制御部30と、を備えている。そして、誘導電動機10の回転軸14は、ギア等の機械部品(図示せず)を介して、または直結で駆動機構16に接続されている。インバータ22は、制御部30の制御に基づいて、誘導電動機10に対して三相交流電圧を印加する。なお、以下の説明では、誘導電動機を、電動機と称する場合がある。
 図1において、駆動装置20は、電動機10の速度やトルクを制御するものであり、ここでは、制御部30は公知のベクトル制御方式を使ってインバータを制御するものとして記載している。
 制御部30は、CPU(Central Processing Unit)、RAM(Random Access Memory)等、一般的なコンピュータとしてのハードウエアを備えており、制御プログラムおよび各種データ等が格納されている。また、監視装置40も同様に、一般的なコンピュータとしてのハードウエアを備えている。ただし、図1では、理解を容易にするために、制御部30および監視装置40の機能をブロック図として記載している。
 (制御部30の動作説明)
 制御部30は、指令生成部32と、偏差演算部33と、ベクトル制御部34と、dq/3Φ変換部36と、3Φ/dq変換部38と、を備えている。制御部30は、これらの構成により、電動機10に対してベクトル制御を行い、電動機10の応答性を向上させようとするものである。インバータ22は、電動機10に対してU相、V相、W相の三相交流電流を出力する。電流センサ41は、そのうち任意の二相の電流を検出する。すなわち、図示の例では、U相、W相の電流を検出し、その結果を電流検出値Ius,Iwsとして出力する。なお、電流センサ41の検出値は、後述する監視装置40においても使用する。ここで、周波数fで回転する回転座標を想定し、この回転座標において直交する軸をd軸およびq軸と呼び、電動機10に供給される電流をこの回転座標における直流量として表現する。q軸における電流は、電動機10のトルクを決定する電流成分であり、以下、これをトルク電流と呼ぶ。
 また、d軸における電流は、電動機10の励磁電流になる成分であり、以下、これを励磁電流と呼ぶ。3Φ/dq変換部38は、電流検出値Ius,Iwsに基づいて、励磁電流検出値Idと、トルク電流検出値Iqとを出力する。指令生成部32は、図示せぬ上位装置から、トルク指令値τ*を受信し、トルク指令τ*に基づいて、励磁電流指令値Id*と、トルク電流指令値Iq*と、を生成する。偏差演算部33は、電流指令値Id*,Iq*と、検出値Id,Iqとに基づいて、偏差Id*-Id,Iq*-Iqを出力する。ベクトル制御部34は、偏差Id*-Id,Iq*-Iq等に基づいて、励磁電圧指令値Vd*と、トルク電圧指令値Vq*とを出力する。dq/3Φ変換部36は、回転座標系の電圧指令値Vd*,Vq*に基づいて、インバータ22を駆動するためのPWM信号を出力する。インバータ22は、供給されたPWM信号に基づいて、供給された直流電圧(図示せず)をスイッチングし、U相、V相、W相の電圧を出力して電動機10を駆動する。
 (監視装置40の構成)
 監視装置40は、電動機情報演算部42と、特徴量演算部44と、温度演算部45と、演算に必要なデータを記憶するデータ記憶部46と、過熱判定部48とを備えている。なお、監視装置40の各構成における動作の説明および処理内容は、電動機温度推定方法を説明した後で説明する。
 (電動機温度推定方法)
 次に、この実施形態における電動機温度推定方法を説明する。
  一般によく知られているように、電動機10の電動機抵抗値等は、動作温度によって変動する。ここで、ある温度T0を「基準温度T0」とし、基準温度における抵抗値等のパラメータを「基準値」と呼ぶ。電動機10に温度上昇が生じると、電動機抵抗値が大きくなる。電動機温度Tと、電動機抵抗値RTとの関係は、下式(1)のようになる。
   RT=R0×(δ+T)/(δ+T0)     ……式(1)
 式(1)において、δは巻線銅線の抵抗温度係数の逆数であり、R0は電動機抵抗基準値、すなわち基準温度T0における電動機抵抗値である。式(1)によれば、例えば、基準温度に対して、40℃の温度上昇が生じると、電動機抵抗値RTは電動機抵抗基準値R0の約1.1倍になる。また、基準温度に対して、70℃の温度上昇が生じると、電動機抵抗値RTは、電動機抵抗基準値R0の約1.2倍になる。なお、巻線がアルミ線等の場合も、同様の計算式が適用できる。
 次に、本発明の第1の実施形態における電動機の抵抗の求め方を図2を用いて説明する。図2は、図1における電動機情報演算部42の具体的な回路構成を示す図である。電動機情報演算部42は、3Φ/αβ変換器52と、逆正接変換器54と、減算器56と、位相同期演算部60と、積分器72と、乗算器74と、を備えている。位相同期演算部60は、乗算器62,64と、積分器66と、加算器68とで構成される。
 まず、電動機情報演算部42は電動機に流れる電流の位相角を演算する。3Φ/αβ変換器52は、電流検出値Iu,Iwを、直交する二相の交流電流Iα,Iβに変換する。逆正接変換器54は、これら交流電流Iα,Iβに基づいて、交流電流位相角θi*を計算する。次に、位相角θi*は、位相同期回路に入力され、位相同期回路により位相同期化された位相角θiとの差分(θi*-θi))である位相角差分信号が演算される。
 この位相角差分信号(θi*-θi))は、乗算器62により所定の比例ゲインKpが乗算され、位相差差分信号の比例信号Kp(θi*-θ0)を出力する。
 ところで、発明者は、電動機を起動する際(起動時)の位相差差分信号の比例信号Kp(θi*-θ0)から得られた特徴量が、電動機の抵抗の値により大きく変動するという知見を得た。本発明の実施形態では、この知見を利用して電動機の抵抗を求め、さらにその電動機の抵抗から電動機の温度を演算する。この詳細は後述する。
 なお、図2の場合、電動機の起動時における位相角差分信号の比例信号を出力し、抵抗の演算に用いているが、位相角差分信号の比例信号の代わりに、減算器56の出力である位相角差分信号を用いても良い。なぜなら、位相角差分信号と位相角差分信号の比例信号とは比例関係にあることから、起動時における信号波形の特徴量自体は同様であるからである。このため、位相角差分信号と位相角差分信号の比例信号のいずれかの信号のことを、「位相角差分に関する信号」と称する。
 また、図2の減算器56の出力である位相角差分信号(θi*-θi))は、乗算器64に入力され、ここで所定の積分ゲインKiを乗算される。積分器66は、この乗算結果を積分する。
  加算器68は、乗算器62の出力と、積分器66の出力を加算し、加算結果を周波数信号ω1sとして出力する。積分器72は、周波数信号ω1sを積分し、交流電流位相角θiを出力する。交流電流位相角θiは、減算器56に供給される。また、乗算器74は、周波数信号ω1sに「2/P」(ここで、Pは電動機10の極数)を乗算し、乗算結果を機械周波数ωrsとして出力する。ここで、機械周波数ωrsは、電動機10(図1参照)の実速度(すべりを含んだ速度)に対応する信号になる。
 このように、減算器56、位相同期演算部60および積分器72は、位相同期回路として機能し、減算器56が出力する差分値「θi*-θi」が「0」に近づくような、周波数信号ω1sおよび交流電流位相角θiを出力する。
 ここで、電動機の固定子抵抗R1、回転子抵抗R2が変化した場合の位相角差分に関する信号の変化をシミュレーションにより評価した結果について説明する。図3は、電動機が起動する際の位相角差分に関する信号の変動を示す図である。図3において、破線の波形は電動機が基準温度T0の場合における電動機の抵抗(固定子抵抗R1、回転子抵抗R2)の起動時の波形を示し、実線の波形は起動・停止を頻繁に繰り返す運転中における起動時の波形を示す。この図3から分かるように、基準となる波形(破線で示す波形)と運転中の波形(実線の波形)とを比較すると、その両者の波形の勾配αと位相差βが異なっている。なお、ここでは、波形の勾配αと位相差βを総称して、「電動機の特徴量」と称することにする。また、「起動時」とは、起動開始時点のみでなく起動開始から加速中である期間を指す。また、起動時と起動の際とは、ここでは同様の意味で用いる。
 電動機の特徴量と電動機の抵抗との関係を図4と図5に示す。図3において、基準となる固定子抵抗における起動時の位相同期比例信号の波形とを比較した場合において、波形の勾配をαとし、位相差をβとしている。図4は、勾配αと固定子抵抗R1との関係を示す図である。また、図5は、位相差βと回転子抵抗R2との関係を示す図である。
 図4から分かるように、勾配αは固定子抵抗R1と反比例(勾配が大きいほうがR1が小さい)の関係になっている。また、図5から分かるように、位相差βは回転子抵抗R2と比例関係(位相差が大きいほうがR2が大きい)になっている。つまり、位相角度に基づいて得られる位相角差分に関する信号の起動時の立上りの基準値に対する勾配αは、固定子抵抗R1の影響が支配的である。また、位相角差分に関する信号の位相差βは回転子抵抗R2の影響が支配であることが分かる。
 したがって、この図4、図5の関係を予め求めてメモリに記憶させておき、運転継続中における各起動時において、そのメモリに記憶した関係に対しその時点の特徴量を当てはめることによって、その時点の電動機の抵抗を得ることができる。この図4、図5に示すような電動機の抵抗と特徴量との関係のことを、以下では「抵抗演算関係データ」と称する。
 なお、上記の関係が生じる理由は正確には把握できていないが、発明者は以下に考察するようなものと考えている。まず、電動機固定子電流I1は式(2)のように固定子抵抗R1が大きくなると、電動機電圧V1が一定のため,I1が小さくなるため電流の立ち上がりが遅くなった結果、起動時の位相角差分に関する信号の勾配αが小さくなっている。一方、誘導電動機のすべり周波数Ssが式(3)のように回転子抵抗R2に比例し、回転子抵抗R2が大きくなるとSsが大きくなり、速度を上げるための電動機トルクが要求されるため、結果的により大きいトルク電流を供給する必要がある。つまり、電動機電流位相が基準値より進み、位相角差分に関する信号の位相も回転子抵抗R2に比例し進むことが示唆される。
  I1 = V1/R1          ……式(2)
  Ss = (R2×Iq)/(L2×Id)  ……式(3)
  ここで、Iqは電動機トルク電流、L2は電動機回転子側インダクタンス、Idは電動機励磁電流である。
 以上述べたように、電動機の起動時の位相角差分に関する信号における電動機の特徴量(勾配αおよび位相差β)に基づいて、誘導電動機の固定子抵抗R1および回転子抵抗R2を推定することができる。すなわち、実験やシミュレーション等により、図4、図5に示す関係を予め求めて記憶しておき、起動・停止を繰り返す運転継続中においては、各起動時の位相角差分に関する信号における電動機の特徴量(勾配αおよび位相差β)を求める。そして、この電動機の特徴量を、抵抗演算関係データ(図4および図5に示す関係データ)と照合すれば、そのときのαに対する固定子抵抗R1と、そのときのβに対する回転子抵抗R2とを演算することができる。そして、固定子抵抗R1と回転子抵抗R2が求まれば、それぞれの抵抗を式(1)の関係式に当てはめることにより、固定子温度と回転子温度をそれぞれ演算することができる。
 (監視装置40の動作説明)
 図1の実施形態では、上述した温度推定演算方法を利用して電動機の温度を求め、この求められた温度と過熱判断用の基準値とを比較することにより過熱監視を行う。次に、上述した方法による温度推定機能と、推定された温度を用いて電動機の過熱状態を判断する機能を有する監視装置40の動作を説明する。
 図1において、監視装置40は、電流センサ41から電動機に流れる電流を検出する。すなわち、電動機情報演算部42は、対応する電流センサ41からU相の電流検出値Iuと、W相の電流検出値Iwとを取得する。そして、電動機情報演算部42は、これら検出値に基づいて、運転継続中における電動機の各起動時において、位相角差分に関する信号(図3の実線に示すような波形)を出力する。この位相角差分に関する信号を得ることについては上述したとおりであり、その説明は省略する。
 特徴量演算部44は、電動機情報演算部42から起動時における位相角差分に関する信号を入力し、図3に示すように起動時における基準値からの波形のずれである電動機の特徴量(勾配αおよび位相差β)を抽出する演算を行う。
 次に、温度演算部45は、特徴量演算部44の出力である電動機の特徴量(勾配αおよび位相差β)に基づいて、電動機の温度(固定子温度R1、回転子温度R2)を演算する。具体的には、データ記憶部46に予め記録されている抵抗演算関係データ(図4に示す勾配αとR1との関係、図5に示す位相差βとR2との関係)に対し、今回の起動時の特徴量を当てはめて照合することにより、今回起動時における電動機の抵抗(固定子抵抗R1,回転子抵抗R2)を演算できる。抵抗演算関係データは、図4、図5の関係をテーブルとして記憶しておくと照合が容易である。この電動機抵抗が求まると、式(1)の関係を利用して、今回起動時における電動機固定子および回転子の温度を演算する。温度演算部45の演算や処理に必要な基準となる基準データはデータ記憶部46に記憶しておく。この基準データは、抵抗演算関係データ、およびR1、R2と電動機温度の演算に必要なデータなどである。
 なお、温度演算部45に、電動機速度を入力しているのは、電動機の起動、停止の状態を検出するためである。この速度の情報により、電動機を起動したかどうかの判断およびその後の加速状況が得られるので、演算開始のタイミングを得ることが可能となる。
 過熱判定部48は、温度演算部45により得られた電動機の温度を入力し、電動機10の固定子または回転子の過熱状態の有無を検出する。具体的には、過熱かどうかを判定するための固定子温度および回転子温度の判定基準値(閾値T1およびT2)と、温度演算部45により得られた電動機の固定子温度と回転子温度とをそれぞれ比較する。この判定基準値は、予めデータ記憶部46に記憶しておく。そして、いずれかの温度が判定基準値を超えている場合には、電動機が過熱状態にあると判定する。過熱状態が判定されると、過熱判定部48は外部にアラーム信号を出力する。
 なお、アラーム信号は、ランプの点灯、警報機の発音、または無線通信手段による電波送信等、管理者に通知できる手段であればよい。本実施形態における監視装置40は、過酷な環境に設置する場合には、防塵防水対策を施した監視装置ケースに収納することが好ましい。さらに、監視装置40をインバータ22等、ノイズを発生するデバイスの近くに設置する場合には、監視装置40にノイズ対策を施すことが好ましい。
 図6に、電動機運転継続中における起動・停止が繰り返されている状態と、固定子の温度と回転子の温度変化の状況を示す。T1は固定子が過熱しているかどうかの判断を行うために使用する閾値である。また、T2は、回転子が過熱しているかどうかを判断するために使用する閾値である。この図6では、回転子の温度が回転子の判断基準値をT2を超えて、過熱を検知した場合を示している。
 以上のように、監視装置40は、電流センサにより検出された電動機電流の検出値に基づいて、電動機温度を推定演算し、その結果を用いて過熱状態を検知することができる。また、可変速駆動における速度情報も、変換過程にて検出することができるため、回転速度との相関関係も容易に分析できる。さらに、簡単なアルゴリズムによって、交流から直流への変換が可能であるため、異常と判断するためのエッジ処理も監視装置内で実行することができる。これにより、結果として、データ量が大幅に削減でき、分析/診断作業も容易となる。
 (第1の実施形態における過熱検知ルーチンの説明)
 図7は、監視装置40において実行される過熱検知ルーチンの説明図である。この過熱検知ルーチンは、電動機10の起動時(起動開始から加速中である期間)に、所定のサンプリング周期毎に実行される。
 図7において処理がステップS2に進むと、電流計測処理が実行される。すなわち、図1に示すように、監視装置40は、電流センサ41から、電流検出値Iu、Iwを取得する。
 次に、処理がステップS3に進むと、電動機情報演算部42は、電動機10の速度ωrsおよび位相角差分に関する信号を演算する。
 次に、処理がステップS4に進むと、特徴量演算部44は、今回の加速時に得られた位相角差分に関する信号における電動機の特徴量(勾配αおよび位相差β)を抽出する。
 次に、処理がステップS5に進むと、温度演算部45は、ステップS6に示す基準値データとステップS4で得られた特徴量(勾配α、位相差β)とを用いて、電動機の抵抗(固定子抵抗R1、回転子抵抗R2)を求め、次いでこの電動機抵抗に基づいて電動機の温度(固定子温度、回転子温度)を推定演算する。具体的には、ステップS4で得られた電動機の特徴量(勾配αおよび位相差β)と、予め記憶している抵抗演算関係データ(図4、図5に示す関係データ)とから電動機の抵抗(固定子抵抗R1および回転子抵抗R2)を推定演算し、次いでこの演算された電動機の抵抗から電動機の温度(固定子温度Tsおよび回転子温度Tr)を演算する。なお、ステップS6の処理に必要な基準データは、図4に示す勾配αとR1のデータテーブル、図5に示す位相差βとR2のデータテーブル、およびR1、R2と温度のデータテーブルを含むデータなどである。
 ステップS7において固定子温度Tsが判断基準値T1を超え、かつ電動機起動の過渡状態にある(ωrs>0)と判断されると、つまりステップS7で「Yes」と判定されると、処理はステップS9に進む。ステップS7で「Yes」の判定となる場合は、電動機の固定子温度が過熱状態であることを示す。ステップS7で「NO」の場合は、本ルーチンの処理を終了とし、次の処理開始タイミングに備える。
 ステップS9では、電動機10の固定子が過熱状態であることを表す電動機過熱アラーム信号を外部に出力する。
 ステップS8において回転子温度Trが判断基準値T2を超え、かつ電動機起動の過渡状態にある(ωrs>0)と判断されると、つまりステップS8で「Yes」と判定されると、処理はステップS10に進む。ステップS8で「Yes」の判定となる場合は、電動機の固定子温度が過熱状態であることを示す。ステップS8で「NO」の場合は、本ルーチンの処理を終了とし、次の処理開始タイミングに備える。
 ステップS10では、電動機10の回転子が過熱状態であることを表す電動機過熱アラーム信号を外部に出力する。
 (第1の実施形態の効果)
 以上のように第1の実施形態によれば、少なくとも2相の電流値Iu,Iwに基づいて電動機10の固定子過熱状態または回転子過熱状態を検知することができる。すなわち、温度センサや速度センサ等を省略できることにより、メンテナンスの省力化を実現しつつ故障を未然に防止できる。
 また、過熱判定部48は、電動機10の過熱状態を検知するとアラーム信号を出力するので、管理者に対して、各種の異常を報知することができる。本実施形態のアラームは、ランプ、警報器、または無線通信手段など管理者に通知できる手段であればよい。
 また、過酷な環境に設置する場合、監視装置ケースの防塵防水対策を行うのが望ましい。さらに、インバータなどノイズ発生するデバイスの近くに設置する場合、監視装置のノイズ対策を実施することが望ましい。
 なお、第1の実施形態においては、電動機の固定子温度および回転子温度の両方を演算し、両方の温度の過熱状態を監視している。しかし、本発明では、固定子温度と回転子温度の両方を求めることは必ずしも必要ではなく、いずれか一方の温度を演算し、その温度を監視することでも成立する。もし、いずれかの温度の状態を監視する場合は、安全性の面から判断して冷却しにくい回転子温度の過熱状態を判断する方が良い。
 <第2の実施形態>
 図8は、本発明の第2の実施形態を示す図である。なお、以下の説明において、上述した実施形態の各部に対応する部分には同一の符号を付しその詳細な説明を省略し、異なる内容を中心に説明する。
 図8において、誘導電動機制御システム112は、N台(Nは2以上の自然数)の電動機101~10Nと、これらに回転軸141~14Nを介して結合されたN台の駆動機構161~16Nと、N台の電動機により駆動される負荷12(この例では、負荷は、電動機の駆動力により搬送される搬送物とする。)とを備えている。また、各電動機101~10NのU相、W相には、各2個の(合計2N個の)電流センサ411~41Nが装着され、これらの電流検出値Iu1~IuN,Iw1~IwNは、監視装置150に供給される。
 監視装置150の構成は、第1実施形態の監視装置40(図1参照)と基本的に同様の構成なので、その詳細な説明は省略する。すなわち、第1実施形態の監視装置40が1台の電動機の監視を行う構成であったのに対し、監視装置150がN台の電動機の過熱状態を監視している点が異なっている。
 <第3の実施形態>
 図9は、本発明の第3の実施形態を示す図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付してその詳細な説明を省略し、異なる内容を中心に説明する。
 図9における誘導電動機制御システム113と図1の誘導電動機制御システム111とは、基本的にほぼ同様の構成となっている。図9における監視装置160の構成と、第1の実施形態における監視装置40の構成とはほぼ同じであるが、図9に示す監視装置160は、電動機の過熱状態を検出した場合の対処の方法が異なる。すなわち、監視装置160は、アラーム信号を出力することに代え、電動機の温度を低減させるための制御コマンドを誘導電動機制御システム113に供給する構成になっている。制御コマンドは、指令生成部32に与えられ、この指令が変更される。ここで、制御コマンドとは、例えば、電動機10の停止または減速を指令するものである。これによって、電動機10の過熱状態がなくなり、より安全かつ高効率に運転することができる。なお、このほか、図9の実施形態では、制御システム113に必要な相電流の検出を別に設けた電流センサ24により検出している。しかし、この電流センサは、別に設置するのではなく、図1と同様に制御部30と監視装置150とで共用するようにしても良い。
 このように、第3の実施形態によれば、電動機10の固定子または回転子の過熱状態のうち少なくとも一方を検知すると、制御部30に対して、制御状態を変更させる制御コマンドを出力する。これにより、制御部30における制御状態を適切な状態に変更することができる。
 <第4の実施形態>
 図10は、本発明の第4の実施形態を示す図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付してその詳細な説明を省略し、上述の実施形態と異なる内容を中心に説明する。
 図10における誘導電動機制御システム114は、駆動・監視装置170と、電動機101,102と、これらに回転軸141、142を介して結合された駆動機構161、162と、を備えている。駆動機構161,162は、回転輪の場合、搬送物12を接線方向(紙面では、上または下方向)に移動させる。あるいは、搬送物12に代えて鉄道用のレールを設け、レールの上を駆動機構151,162自体が接線方向に移動するようにしてもよい。
 駆動・監視装置170は、制御部30と、インバータ22と、過熱検知部180と、平均値演算部182と、を備えている。平均値演算部182は、電流検出値Iu1,Iu2の平均値および電流検出値Iw1,Iw2の平均値を求め、これらを電流検出値Ius,Iwsとして出力する。
 制御部30、インバータ22の構成は上記第1実施形態のもの(図1参照)と同様である。過熱検知部180の構成は、第3実施形態の監視装置160(図9参照)の構成と同様である。従って、本実施形態の駆動・監視装置170は、第3実施形態における駆動装置20および監視装置160の機能を合わせた機能を有する。なお、本実施形態は、既設の駆動装置20(図9参照)に対して、過熱検知部180および平均値演算部182を増設することによって構成することもできる。
 <第5の実施形態>
 図11は、本発明の第5実施形態を示す図である。図11は、ローラーテーブル200を駆動する誘導電動機制御システムの例を示している。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付しその詳細な説明を省略し、異なる部分を中心に説明する。
 図11における誘導電動機制御システム115は、N台(Nは2以上の自然数)の電動機101~10Nと、回転軸141~14Nと、N台の駆動機構161~16Nと、駆動装置20と、監視装置150とを備えている。さらに、誘導電動機制御システム115は、水平に配置された複数のローラーからなるローラーテーブル200を備えている。ローラーテーブル200は、軸受部211~21Nと、駆動機構161~16Nで構成されている。上述した駆動機構161~16Nは、それぞれ軸受部211~21Nと、複数のローラー221~22Nを備えている。電動機制御システム115は、例えば、圧延機(図示せず)により圧延された鋼板を搬送する搬送ローラーを駆動するものである。ローラー221から22Nは、全て同一速度で駆動される。従って、ローラー221~22Nの駆動源である電動機101~10Nは、同一仕様のものが適用される。上述した以外の本実施形態の構成は、第2実施形態のもの(図8参照)と同様である。
 熱間圧延機システムに使用されるローラーテーブルの場合、ローラーテーブル200上を搬送される鋼板は相当高温となっており、各軸受部211~21N、カップリング(図示せず)、電動機101~10Nは、過酷な稼働状況に置かれる。このため、ライン停止等の事態が発生することを防止するため、従来から、軸受部、電動機、等の個別診断対象毎に温度センサ、速度センサ等のセンサを装着し、その検出信号を解析して異常診断を行うことが一般的であった。これに対して、本実施形態によれば、各電動機に温度センサや速度センサ等を装着することが不要になる。そのため、ラインが停止する等の事態が発生することを防止することができる。
 <その他の実施形態の例>
 以上いくつかの実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
 (1)上記実施形態における制御部30、監視装置40,150,160、および過熱検知部180のハードウエアは、一般的なコンピュータによって実現できる。そのため、図2、図5に示したアルゴリズム、図7に示したプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
  (2)図2、図5に示したアルゴリズム、または図7に示したプログラムは、上記各実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。
  (3)図8等の構成において、インバータ22は1台のみ設けられているが、複数のインバータを設けてもよい。
 10…誘導電動機、20…駆動装置、22…インバータ、24…電流センサ、30…制御部、40…監視装置、41…電流センサ、42…電動機情報演算部、44…特徴量演算部、45…温度演算部、46…データ記憶部、48…過熱判定部、52…3Φ/αβ変換器、54…逆正接変換器、56…減算器、60…位相同期演算部、55…積分器、62…乗算器、64…乗算器、66…積分器、72…積分器、74…乗算器、101~10N…誘導電動機、111~115…誘導電動機制御システム、150…監視装置、160…監視装置、180…過熱検知部、401~40N…電流センサ

Claims (13)

  1.  少なくとも1台の誘導電動機と前記誘導電動機に交流電流を供給するインバータと前記インバータを制御する制御部とを備えた誘導電動機制御システムにおける過熱監視方法であって、
     前記誘導電動機の抵抗と起動時の特徴量との関係を示す抵抗演算関係データと、過熱状態を判断するための判断基準値とを記憶しておき、
     前記誘導電動機の電流を検出し、
     運転期間中における起動時において、該検出された電流から位相角を求め、該位相角と該位相角を位相同期した信号との差から位相角差分に関する信号を演算し、
     該位相角差分に関する信号から電動機の特徴量を演算し、
     前記電動機の特徴量と前記抵抗演算関係データとを用いて前記誘導電動機の抵抗を演算し、次いで該演算された抵抗から前記誘導電動機の温度を演算し、
     該演算された前記誘導電動機の温度と前記判断基準値とを比較し過熱状態かどうかを判定する誘導電動機の過熱監視方法。
  2.  請求項1に記載した誘導電動機の過熱監視方法において、
     前記電動機の特徴量は、基準となる前記位相角差分に関する信号と前記起動時の前記位相角差分に関する信号とを比較して得られる波形の勾配と位相差である誘導電動機の過熱監視方法。
  3.  請求項1に記載の誘導電動機した過熱監視方法において、
     前記過熱状態を検知すると、外部にアラーム信号を出力する誘導電動機の過熱監視方法。
  4.  請求項1に記載した誘導電動機の過熱監視方法において、
     前記過熱状態を検知すると、前記制御部に対して前記誘導電動機の温度を低減させるための制御コマンドを出力する誘導電動機の過熱監視方法。
  5.  請求項1に記載した誘導電動機の過熱監視方法において、
     前記電動機制御システムは前記誘導電動機と前記インバータを複数台有し、複数台の誘導電動機の電流をそれぞれ検出し、前記位相角差分に関する信号は前記複数台の誘導電動機に対して演算し、前記誘導電動機の温度は前記複数台の誘導電動機に対して演算し、前記判定は前記複数台の誘導電動機の過熱状態を判定するようにした誘導電動機の過熱監視方法。
  6.  少なくとも1台の誘導電動機と前記誘導電動機に交流電流を供給するインバータと前記インバータを制御する制御部とを備える電動機制御システムにおける誘導電動機の過熱監視装置であって、
     前記誘導電動機の抵抗と起動時の特徴量との関係を示す抵抗演算関係データと、過熱を判断するための判断基準値とを記憶するデータ記憶部と、
     前記誘導電動機の電流を検出する電流センサと、
     運転期間中における起動時において、該検出された電流から位相角を求め、該位相角と該位相角を位相同期した信号との差から位相角差分に関する信号を演算する電動機情報演算部と、
     前記位相角差分に関する信号から得られる電動機の特徴量を演算する特徴量演算部と、
     該電動機の特徴量と前記抵抗演算関係データとを用いて前記誘導電動機の抵抗を演算し、次いで該演算した抵抗から前記誘導電動機の温度を演算する温度演算部と、
     該演算された前記誘導電動機の温度と前記判断基準値とを比較し過熱状態かどうかを判定する過熱判定部と、
    を備えた誘導電動機の過熱監視装置。
  7.  請求項6に記載した誘導電動機の過熱監視装置において、
     前記電流の前記位相角度から得られる特徴量は、基準となる前記位相角に関する信号と前記起動時の前記位相角差分に関する信号とを比較して得られる波形の勾配と位相差である誘導電動機の過熱監視装置。
  8.  請求項6に記載の誘導電動機の過熱監視装置において、
     前記過熱判定部は過熱状態の検知によりアラーム信号を出力する誘導電動機の過熱監視装置。
  9.  請求項6に記載した誘導電動機の過熱監視装置において、
     前記過熱判定部は、過熱状態の検知により前記制御部に対して前記誘導電動機の温度を低減させるための制御コマンドを出力する誘導電動機の過熱監視装置。
  10.  前記誘導電動機を複数台有し、前記複数台の誘導電動機をそれぞれ駆動するために前記インバータが複数台設けられている電動機制御システムに用いる誘導電動機の過熱監視装置であって、
     前記複数の誘導電動機を流れる電流をそれぞれ検出する複数組の電流センサを設け、
     前記それぞれの電流センサの検出値を用いて、前記電動機情報演算部、前記特徴量演算部、前記温度演算部がそれぞれ演算を行い、前記過熱判定部は、前記複数台の前記誘導電動機の過熱状態をそれぞれ判定する請求項6記載の誘導電動機の過熱監視装置。
  11.  少なくとも1台の誘導電動機と、前記誘導電動機に交流電流を供給するインバータと、該インバータを制御する制御部と、該誘導電動機の温度の過熱状態を検知する過熱検知部とを備えた誘導電動機の制御システムであって、
     前記過熱検知部は、
     前記誘導電動機の抵抗と起動時の特徴量との関係を示す抵抗演算関係データと、前記過熱を判断するための判断基準値とを記憶するデータ記憶部と、
     前記誘導電動機の電流を検出する電流センサと、
     運転期間中における起動時において、該検出された電流から位相角を求め、該位相角と該位相角を位相同期した信号との差から位相角差分に関する信号を演算する電動機情報演算部と、
     前記位相角差分に関する信号から得られる電動機の特徴量を演算する特徴量演算部と、
     該電動機の特徴量と前記抵抗演算関係データとを用いて前記誘導電動機の抵抗を演算し、次いで該演算した抵抗から前記誘導電動機の温度を演算する温度演算部と、
     該演算された前記誘導電動機の温度と前記判断基準値とを比較し過熱状態かどうかを判定する過熱判定部と、
    を備えた誘導電動機の制御システム。
  12.  請求項11に記載した誘導電動機の制御システムにおいて、
     前記過熱部は、過熱状態を判定した場合、前記制御部に対し過熱状態を低減するための制御コマンドを出力する誘導電動機の制御システム。
  13.  請求項11に記載した誘導電動機の制御システムにおいて、
     前記誘導電動機はローラーテーブルを駆動する誘導電動機の制御システム。
PCT/JP2018/043946 2018-06-21 2018-11-29 誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム WO2019244370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18923193.9A EP3813251A4 (en) 2018-06-21 2018-11-29 ELECTRIC INDUCTION MOTOR OVERHEATING MONITORING METHOD, ELECTRIC INDUCTION MOTOR MONITORING DEVICE AND ELECTRIC INDUCTION MOTOR CONTROL SYSTEM
US17/048,633 US11303236B2 (en) 2018-06-21 2018-11-29 Induction motor overheat monitoring method, induction motor monitoring device, and induction motor control system
CN201880090742.4A CN111801885B (zh) 2018-06-21 2018-11-29 感应电动机的过热监视方法、感应电动机监视装置和感应电动机的控制***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117614A JP7033505B2 (ja) 2018-06-21 2018-06-21 誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム
JP2018-117614 2018-06-21

Publications (1)

Publication Number Publication Date
WO2019244370A1 true WO2019244370A1 (ja) 2019-12-26

Family

ID=68982848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043946 WO2019244370A1 (ja) 2018-06-21 2018-11-29 誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム

Country Status (5)

Country Link
US (1) US11303236B2 (ja)
EP (1) EP3813251A4 (ja)
JP (1) JP7033505B2 (ja)
CN (1) CN111801885B (ja)
WO (1) WO2019244370A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883079A1 (en) * 2020-03-20 2021-09-22 Schneider Electric USA, Inc. Rotor resistance based motor thermal protection
EP4002681A1 (en) * 2020-11-12 2022-05-25 Valeo Siemens eAutomotive Germany GmbH Inverter, electric drive, vehicle and method for controlling controllable switches of an inverter and corresponding computer program product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218103B2 (en) * 2019-10-12 2022-01-04 Schweitzer Engineering Laboratories, Inc. Induction motor slip calculation
CN112511043B (zh) * 2020-11-20 2022-07-29 北京精密机电控制设备研究所 一种基于重复运动多轴控制的同步控制***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274685A (ja) 1988-04-26 1989-11-02 Yaskawa Electric Mfg Co Ltd 誘導電動機のロータ温度推定方法
JPH03107327A (ja) * 1989-09-19 1991-05-07 Matsushita Electric Ind Co Ltd 過熱防止装置
US20100156338A1 (en) * 2008-12-22 2010-06-24 Bin Lu System and method for monitoring and controlling stator winding temperature in a de-energized ac motor
JP2017175820A (ja) 2016-03-25 2017-09-28 株式会社日立産機システム 制御装置およびそれを備える巻上機ならびに巻上機の制御方法
WO2017195301A1 (ja) * 2016-05-11 2017-11-16 三菱電機株式会社 モータ制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614481B1 (fr) * 1987-02-13 1990-08-31 Pk I Procede de commande d'un moteur asynchrone et entrainement electrique mettant ce procede en application
JP3107327B2 (ja) 1992-04-03 2000-11-06 鈴木総業株式会社 身体装着品における耐摩耗構造並びにこれを使用した靴
JP3502040B2 (ja) * 2000-12-27 2004-03-02 本田技研工業株式会社 ブラシレスdcモータの定数検出装置およびブラシレスdcモータの制御装置およびブラシレスdcモータの定数検出用プログラム
JP3107327U (ja) * 2004-07-29 2005-02-03 株式会社 渡辺測量事務所 名刺
JP4895939B2 (ja) * 2007-07-27 2012-03-14 株式会社キトー 巻上機の電動機巻線温度測定方法、電動機制御装置
JP2010058865A (ja) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp エレベーターの制御装置
JP5502925B2 (ja) * 2012-04-04 2014-05-28 ファナック株式会社 推定したモータ温度によりモータの過熱保護を行うモータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274685A (ja) 1988-04-26 1989-11-02 Yaskawa Electric Mfg Co Ltd 誘導電動機のロータ温度推定方法
JPH03107327A (ja) * 1989-09-19 1991-05-07 Matsushita Electric Ind Co Ltd 過熱防止装置
US20100156338A1 (en) * 2008-12-22 2010-06-24 Bin Lu System and method for monitoring and controlling stator winding temperature in a de-energized ac motor
JP2017175820A (ja) 2016-03-25 2017-09-28 株式会社日立産機システム 制御装置およびそれを備える巻上機ならびに巻上機の制御方法
WO2017195301A1 (ja) * 2016-05-11 2017-11-16 三菱電機株式会社 モータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813251A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883079A1 (en) * 2020-03-20 2021-09-22 Schneider Electric USA, Inc. Rotor resistance based motor thermal protection
EP4002681A1 (en) * 2020-11-12 2022-05-25 Valeo Siemens eAutomotive Germany GmbH Inverter, electric drive, vehicle and method for controlling controllable switches of an inverter and corresponding computer program product
US11722091B2 (en) 2020-11-12 2023-08-08 Valeo Siemens Eautomotive Germany Gmbh Inverter, electric drive, vehicle and method for controlling controllable switches of an inverter and corresponding computer program product

Also Published As

Publication number Publication date
JP7033505B2 (ja) 2022-03-10
EP3813251A4 (en) 2022-05-04
US20210152111A1 (en) 2021-05-20
CN111801885B (zh) 2023-07-04
US11303236B2 (en) 2022-04-12
JP2019221084A (ja) 2019-12-26
CN111801885A (zh) 2020-10-20
EP3813251A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019244370A1 (ja) 誘導電動機の過熱監視方法、誘導電動機監視装置、および誘導電動機の制御システム
US6906491B2 (en) Motor control equipment
US9054617B2 (en) Control device of permanent magnet synchronous motor for preventing irreversible demagnetization of permanent magnet and control system including the same
US9825579B2 (en) Temperature estimating apparatus for synchronous motor
JP4155196B2 (ja) 回転電機制御装置および発電システム
JP4860012B2 (ja) 電気車の電力変換装置
JP4854993B2 (ja) 永久磁石式回転電機の制御装置および永久磁石式回転電機の温度推定方法
WO2015093128A1 (ja) 電力変換器の制御装置及び電気車
JP5858058B2 (ja) モータ制御装置
WO2014045407A1 (ja) 電動機制御装置及び電動機制御方法
JP5403243B2 (ja) 永久磁石同期モータの制御装置
JP2002010677A (ja) モータ制御装置
JP5731355B2 (ja) 車両駆動用誘導電動機の制御装置
JP6997226B2 (ja) 電動機監視装置、電動機制御システム、鉄鋼圧延システムおよび電動機監視方法
WO2016157382A1 (ja) 保護装置およびサーボモータ
WO2011064846A1 (ja) 電気車の電力変換装置
JP2009254191A (ja) モータ制御装置、圧縮装置、冷凍装置および空調装置
JP2010124552A (ja) 電気車制御装置
JP2019205243A (ja) インバータ装置
EP3012964B1 (en) Method and apparatus for estimating torque
EP4344053A1 (en) Method for controlling motor and device for controlling motor
KR100976309B1 (ko) 인버터의 제어장치
JP2009296678A (ja) 出力推定装置、それを用いたモータ制御装置およびモータ制御システム
CN115425885A (zh) 旋转电机控制装置
JP2022116488A (ja) 永久磁石同期電動機の回転子磁石温度推定装置および回転子磁石温度推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018923193

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018923193

Country of ref document: EP

Effective date: 20210121