WO2019196144A1 - 一种碱金属插层制备石墨烯的方法 - Google Patents

一种碱金属插层制备石墨烯的方法 Download PDF

Info

Publication number
WO2019196144A1
WO2019196144A1 PCT/CN2018/085135 CN2018085135W WO2019196144A1 WO 2019196144 A1 WO2019196144 A1 WO 2019196144A1 CN 2018085135 W CN2018085135 W CN 2018085135W WO 2019196144 A1 WO2019196144 A1 WO 2019196144A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
alkali metal
graphene
composite material
intercalating
Prior art date
Application number
PCT/CN2018/085135
Other languages
English (en)
French (fr)
Inventor
李彬
杨树斌
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2019196144A1 publication Critical patent/WO2019196144A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the invention belongs to the field of inorganic non-metal materials, and in particular relates to a method for preparing graphene.
  • Graphene has excellent material properties, including a large specific surface area, a high Young's modulus, electron mobility, and an extremely high thermal conductivity.
  • Graphene is composed of a single layer of sp 2 hybridized carbon atoms. It is the thinnest and hardest nano carbon material known at present, and it is almost completely transparent, light in weight, excellent in flexibility and superior thermal conductivity. It has a wide range of applications in the fields of energy storage, catalysis, and composite materials.
  • the production methods of graphene mainly include a top-down method and a bottom-up method.
  • Bottom-up growth methods such as traditional chemical vapor deposition methods, but chemical vapor deposition methods require graphene to grow in harsh environments, such as higher temperatures and high vacuum, and the addition of catalysts during the deposition process. Catalytic growth consumes a large amount of energy during the growth process. In addition, the growth rate of the method is slow and the production cost is greatly increased, which greatly limits the application fields of such grown graphene.
  • Top-down methods such as liquid phase stripping, starting from natural graphite, using a stripping method to prepare graphene oxide, and further reducing the preparation of graphene, such methods generally require higher energy or strong oxides in the preparation process. Pre-treatment, post-reduction method to prepare graphene, the graphene prepared by this method will cause many defects in the redox process, and the preparation cycle is also long.
  • the object of the present invention is to propose a high-efficiency method for preparing graphene by intercalating alkali metal, using graphite carbon material as raw material and metal lithium or other high active alkali metal as intercalation material.
  • the single-layer or oligo-layer graphene is obtained by expanding the intercalated metal based on metal intercalated graphite and rapidly reacting.
  • Another object of the present invention is to provide graphene obtained by the production method.
  • a method for preparing graphene by intercalating alkali metal comprising the following steps:
  • a graphite-based material and an alkali metal are mixed to obtain a uniformly mixed graphite-based carbon material-alkali metal composite material, and allowed to stand in an inert environment to cause a metal intercalation reaction until the composite material From black to golden yellow;
  • the obtained composite material is placed in a liquid medium capable of reacting therewith to carry out a reaction, the intercalation material is removed, and the graphene material is obtained by shaking, washing and separating.
  • the alkali metal is one or more of lithium, sodium and potassium
  • the graphite material may be natural graphite or artificial graphite, specifically graphite paper, graphite powder, flake graphite, expanded graphite, spherical graphite One or more of highly oriented pyrolytic graphite.
  • the mass ratio of the graphite material to the alkali metal in the step (1) is 1 to 10:1; the graphite material and the alkali metal are mixed and repeatedly folded and rolled until the mixture is uniformly mixed; or the alkali metal is melted by heating and then added. The graphite material is stirred and mixed evenly.
  • the inert environment is an argon atmosphere and/or a helium atmosphere, and is allowed to stand in an inert environment until the graphite turns golden yellow, generally 10 hours or more, and can be placed in an inert environment all the time. Further changes.
  • the liquid medium is one or more of water, methanol, ethanol, propanol, n-butanol, ethylene glycol, formic acid, acetic acid, propionic acid and hydrochloric acid.
  • the oscillation in the step (2) may be ultrasonic vibration.
  • the concentration of hydrochloric acid may be, but not limited to, 0.05 to 0.5 mol/L.
  • An optional technical solution of the present invention is that after the step (1), the operation is performed:
  • the non-inert environment is one or more of air, nitrogen, carbon dioxide, ammonia, water vapor, argon-organic acid mixture, and argon-organic alcohol mixture.
  • the operation is performed: the obtained composite material is placed in a container, and one of water vapor, argon-acetic acid mixed gas and argon-ethanol mixed gas is slowly introduced into the container. The golden yellow color of the composite material is completely removed, and the composite material is taken out, and the step (2) is carried out.
  • the mass ratio of acetic acid or ethanol in the mixed gas may be 1-20%.
  • the obtained graphene has the following features: the graphene layer has a thickness of 1-10 layers and a lateral dimension of 0.2-100 ⁇ m.
  • the graphene obtained by the method of the present invention is prepared.
  • the gold-yellow composite material after intercalation reaction of lithium or other high-activity alkali metal and graphite-based carbon material is used as a precursor, and the preparation of graphene in the later stage can be at room temperature. It is carried out under conditions of air and the like, and is suitable for the preparation of graphene on a large scale.
  • the preparation method of the present invention abandons the conventional high-pollution preparation method of the redox agent, and the high-energy preparation method such as mechanical shearing and arc discharge, and the method for processing the intercalated metal by intercalating reaction of lithium and graphite-based carbon materials
  • the high-quality graphene is obtained, the method has high yield of graphene, the obtained graphene product has high single layer rate, and the preparation method is fast and efficient, low in energy consumption and small in pollution, and is suitable for industrial large-scale production.
  • Figure 1 is an optical photograph of the graphite powder-lithium composite prepared in Example 1 after standing in an inert environment for 24 hours.
  • Example 2 is an XRD diffraction pattern of the graphite powder-lithium composite material prepared in Example 1 after standing in an inert environment for 24 hours.
  • Example 3 is a scanning electron micrograph of graphene obtained in Example 1.
  • Example 4 is a scanning electron micrograph of graphene obtained in Example 4.
  • Fig. 5 is an atomic force microscope photograph of graphene obtained in Example 1.
  • the XRD diffraction pattern of the material is shown in Fig. 2, and the gold-yellow material obtained by the analysis is an alkali metal intercalated graphite.
  • the graphene was examined by scanning electron microscopy to 10 layers with a lateral dimension of 10 microns (see Figure 3).
  • the graphene material obtained was examined by atomic force microscopy to obtain a graphene material having a thickness of 3.5 nm (see Fig. 5).
  • the composite material was placed in a different solvent such as ethanol, formic acid, acetic acid, water or dilute hydrochloric acid, and there was no significant difference in the severity of the reaction, but it was slightly slowed down as the acidity decreased.
  • a different solvent such as ethanol, formic acid, acetic acid, water or dilute hydrochloric acid
  • the invention provides a method for preparing graphene by intercalating an alkali metal.
  • a graphite-based material and an alkali metal in an inert environment to obtain a uniformly mixed graphite-based carbon material-alkali-metal composite material, and allowing to stand in an inert environment to cause a metal intercalation reaction,
  • the obtained composite material is placed in a liquid medium capable of reacting therewith to carry out a reaction, the intercalation material is removed, and the graphene material is obtained by shaking, washing and separating.
  • high-quality graphene is obtained by intercalating a lithium metal and a graphite-based carbon material to obtain a high-quality graphene, and the obtained graphene has high yield and obtained graphite.
  • the olefin product has a high single layer rate, and the preparation method is fast and efficient, low in energy consumption and small in pollution, and is suitable for industrial large-scale production, and has good economic value and application prospect.

Abstract

提供了一种碱金属插层制备石墨烯的方法,包括以下步骤:(1)在惰性环境中,将石墨类材料和碱金属进行混合,获得混合均匀的石墨类碳材料-碱金属复合材料,并在惰性环境中静置,使发生金属插层反应,(2)经所得的复合材料放入能与其发生反应的液态介质中进行反应,去除插层物,经过震荡、清洗、分离,获得石墨烯材料。还提供所述方法制备得到的石墨烯。所述方法采用了锂或其他高活性碱金属和石墨类碳材料混合发生插层反应后的金黄色复合材料为前驱体,后期石墨烯的制备过程中可以在室温、空气等条件下进行,适合大规模制备石墨烯。

Description

一种碱金属插层制备石墨烯的方法 技术领域
本发明属于无机非金属材料领域,具体涉及一种石墨烯的制备方法。
背景技术
石墨烯具有优异的材料性质,包括具有巨大的比表面积,较高的杨氏模量,电子迁移率以及超高的热导率等。石墨烯由单层sp 2杂化碳原子排列组成,是目前已知的最薄且最坚硬的纳米碳材料,而且它几乎完全透明,质轻,具有优异的柔韧性和超强的导热导电性能,在储能、催化、复合材料等领域有着较为广泛的应用。
目前石墨烯的生产制备方法主要有自上而下法和自下而上法。自下而上生长法,比如传统的化学气相沉积方法,但是化学气相沉积方法生长石墨烯需要严苛的生长环境,比如较高的温度以及高的真空度,而且在沉积过程中还需要加入催化剂催化生长,在生长过程中消耗大量的能量,另外该方法生长速度缓慢,生产成本大大提高,这极大地限制了这类生长的石墨烯的应用领域。自上而下法,例如液相剥离法,从天然石墨出发,采用剥离的方法制备氧化石墨烯,进一步还原制备石墨烯,这类方法在制备过程中一般需要较高的能量或者强氧化物的前期处理,后经过还原的方法制备石墨烯,这种方法制备出的石墨烯会在氧化还原过程中造成很多的缺陷,制备周期也较长。
为了实现石墨烯的大规模制备、商业化应用,以及符合当前的环保要求,如何在低能耗、大规模、环保、高效地制备出高质量石墨烯,目前仍是一个极大的挑战,同时也是石墨烯发展的机遇。
发明内容
针对本领域存在的不足之处,本发明的目的是提出一种高效的碱金属插层制备石墨烯的方法,以石墨类碳材料为原材料,以金属锂或其他高活性碱金属为插层材料,基于金属插层石墨膨胀并快速反应去除插层金属获 得单层或寡层石墨烯。
本发明的另一目的是提出所述制备方法得到的石墨烯。
实现本发明目的的技术方案为:
一种碱金属插层制备石墨烯的方法,包括以下步骤:
(1)在惰性环境中,将石墨类材料和碱金属进行混合,获得混合均匀的石墨类碳材料-碱金属复合材料,并在惰性环境中静置,使发生金属插层反应,直至复合材料由黑色变成金黄色;
(2)将所得的复合材料放入能与其发生反应的液态介质中进行反应,去除插层物,经过震荡、清洗、分离,获得石墨烯材料。
其中,所述碱金属为锂、钠、钾中的一种或几种;所述的石墨类材料可以为天然石墨或人造石墨,具体为石墨纸、石墨粉、鳞片石墨、膨胀石墨、球形石墨、高定向热解石墨中的一种或多种。
进一步地,步骤(1)所述的石墨类材料和碱金属的质量比为1~10:1;石墨类材料和碱金属混合后反复折叠辊压至混合均匀;或加热将碱金属融化后加入石墨类材料搅拌混合均匀。
其中,步骤(1)中,所述惰性环境为氩气气氛和/或氦气气氛,在惰性环境中静置至石墨变成金黄色,一般为10h以上,可一直放置在惰性环境中不会进一步发生变化。
其中,步骤(2)中,所述的液态介质为水、甲醇、乙醇、丙醇、正丁醇、乙二醇、甲酸、乙酸、丙酸、盐酸中的一种或多种。
步骤(2)中所述震荡可以是超声震荡。
对于液态介质为盐酸溶液的操作,盐酸的浓度可以但不限于0.05~0.5mol/L。
本发明的一种可选技术方案为,步骤(1)后,进行操作:
将所获得的金黄色复合材料转移至非惰性环境中处理一段时间,上述复合材料的金黄色完全褪去;
所述的非惰性环境为空气,氮气,二氧化碳,氨气,水蒸气,氩气- 有机酸混合气,氩气-有机醇混合气中的一种或多种。
其中,步骤(1)后,进行操作:将所获得的复合材料放在容器中,向所述容器缓慢通入水蒸气、氩气-乙酸混合气、氩气-乙醇混合气中的一种,待所述复合材料的金黄色完全褪去,取出复合材料,进行步骤(2)。
实施混合气中乙酸或乙醇的质量比例可以为1-20%。
所得的石墨烯具有如下特征:石墨烯层厚为1-10层,横向尺寸为0.2-100微米。
本发明所述方法制备得到的石墨烯。
本发明的有益效果在于:
本发明高质量石墨烯的制备方法中,采用了锂或其他高活性碱金属和石墨类碳材料混合发生插层反应后的金黄色复合材料为前驱体,后期石墨烯的制备过程中可以在室温、空气等条件下进行,适合大规模制备石墨烯。且本发明的制备方法摈弃了传统的氧化还原剂高污染的制备方法,以及机械剪切、电弧放电等高能耗的制备方法,采用锂和石墨类碳材料插层反应后处理插层金属的方法得到高质量的石墨烯,该方法制石墨烯产率高、所获得的石墨烯产品单层率高,且制备方法快捷高效、低能耗、污染小,适合工业化大规模生产。
附图说明
图1为实施例1所制备的石墨粉-锂复合材料在惰性环境中静置24小时后的光学照片。
图2为实施例1所制备的石墨粉-锂复合材料在惰性环境中静置24小时后的XRD衍射花样。
图3为实施例1获得的石墨烯的扫描电子显微镜照片。
图4为实施例4获得的石墨烯的扫描电子显微镜照片。
图5为实施例1获得的石墨烯的原子力显微镜照片。
具体实施方式
以下通过具体实施例说明本发明的技术方案。应该理解,本发明提到 的一个或者多个步骤不排斥在所述组合步骤前后还存在其他方法和步骤,或者这些明确提及的步骤间还可以***其他方法和步骤。还应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的目的,而非限制每个方法的排列次序或限定本发明的实施范围,其相对关系的改变或调整,在无实质技术内容变更的条件下,亦可视为本发明可实施的范畴。
实施例中所采用的原料和仪器,对其来源没有特定限制,在市场购买或者按照本领域内技术人员熟知的常规方法制备的即可。
实施例1:
(1)将石墨粉和金属锂在惰性环境氩气中以质量比6:1的比例进行混合,先通过加热将锂融化后加入石墨粉搅拌混合,至石墨粉和金属锂均匀混合后置于惰性气氛中放置24小时后待上述混合物变成金黄色(附图1);
(2)将上述金黄色复合材料从惰性环境中取出,放入乙醇(分析纯)中,插层金属快速和乙醇反应生成气体,复合材料迅速膨胀,分散在乙醇中。反应完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料。
材料的XRD衍射花样见附图2,分析可得金黄色材料为碱金属插层石墨。经扫描电子显微镜检测石墨烯为10层,横向尺寸为10微米(见附图3)。在原子力显微镜检测所获得的石墨烯材料,得到石墨烯材料的厚度为3.5纳米(见附图5)。
实施例2:
(1)将鳞片石墨和金属锂在惰性环境氩气中以质量比5:1的比例进行混合,反复折叠辊压,至鳞片石墨和金属锂均匀混合后置于惰性气氛中放置48小时后待上述混合物变成金黄色;
(2)将上述金黄色复合材料从惰性环境中取出,放入0.1mol/L的盐酸水溶液中,插层金属快速和溶液反应生成气体,复合材料迅速膨胀,分 散在盐酸水溶液中。反应完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料。
实施例3:
(1)将膨胀石墨和金属锂在惰性环境氩气中以质量比3:1的比例进行混合,反复折叠辊压,至鳞片石墨和金属锂均匀混合后置于惰性气氛中放置48小时后待上述混合物变成金黄色;
(2)将上述金黄色复合材料从惰性环境中取出,放入乙酸(分析纯)中,插层金属快速和乙酸反应生成气体,复合材料迅速膨胀,分散在乙酸中。反应完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料。
实施例4:
(1)将鳞片石墨和金属锂在惰性环境氩气中以质量比5:1的比例进行混合,用辊压机反复折叠辊压,至鳞片石墨和金属锂均匀混合后置于惰性气氛中放置48小时后待上述混合物变成金黄色;
(2)将上述金黄色复合材料从惰性环境中取出,放入水中,插层金属快速和水反应生成气体,复合材料迅速膨胀,分散在水中。反应30s完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料(见附图4)。
比较实施例1-4,复合材料放于不同溶剂如乙醇,甲酸,乙酸,水或稀盐酸中,反应剧烈程度没有明显的区别,但会随着酸性的降低而略微减慢。
实施例5:
(1)将石墨粉和金属锂在惰性环境氩气中以质量比8:1的比例进行混合,反复折叠辊压,至石墨粉和金属锂均匀混合后置于惰性气氛中放置48小时后待上述混合物变成金黄色;
(2)将上述金黄色复合材料从惰性环境中取出,放入烧瓶中,向烧瓶中缓慢通入水蒸气,待水蒸气与插层金属缓慢反应生氢氧化锂后体积进 一步膨胀,约经2h后取出;
(3)将上述产物放入甲酸(分析纯)中,插层与甲酸发生反应,复合材料膨胀分散在甲酸中30s。反应完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料。
实施例6:
(1)将膨胀石墨和金属锂在惰性环境氩气中以质量比10:1的比例进行混合,反复折叠滚压,至膨胀石墨和金属锂均匀混合后置于惰性气氛中放置48小时后待上述混合物变成金黄色;
(2)将上述金黄色复合材料从惰性环境中取出,放入烧瓶中,向烧瓶中缓慢通入氩气-乙酸混合气(乙酸是用Ar带入的,估算乙酸占总进气体积比在1%~10%之间),待混合气中乙酸与插层金属缓慢反应生乙酸锂后体积进一步膨胀;
(3)将上述产物放入水中,插层与水发生反应,约1min后复合材料膨胀分散在水中。反应完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料。
实施例7:
(1)将膨胀石墨和金属锂在惰性环境氩气中以质量比10:1的比例进行混合,反复折叠滚压,至膨胀石墨和金属锂均匀混合后置于惰性气氛中放置48小时后待上述混合物变成金黄色;
(2)将上述金黄色复合材料从惰性环境中取出,放入烧瓶中,向烧瓶中缓慢通入氩气-乙醇混合气(乙酸占总进气体积比为1%~10%之间),待混合气中乙醇与插层金属缓慢反应生乙醇锂后体积进一步膨胀;
(3)将上述产物放入水中,插层与水发生反应,复合材料膨胀分散在水中。反应完成后将溶液超声处理一小时后对溶液进行反复清洗,抽滤分离得到石墨烯材料。
以上的实施例仅仅是对本发明的具体实施方式进行描述,并非对本发明的范围进行限定,本领域技术人员在现有技术的基础上还可做多种修改 和变化,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。
工业实用性
本发明提供一种碱金属插层制备石墨烯的方法。通过(1)在惰性环境中,将石墨类材料和碱金属进行混合,获得混合均匀的石墨类碳材料-碱金属复合材料,并在惰性环境中静置,使发生金属插层反应,(2)将所得的复合材料放入能与其发生反应的液态介质中进行反应,去除插层物,经过震荡、清洗、分离,获得石墨烯材料。本发明提供的高质量石墨烯的制备方法中,采用锂和石墨类碳材料插层反应后处理插层金属的方法得到高质量的石墨烯,该方法制石墨烯产率高、所获得的石墨烯产品单层率高,且制备方法快捷高效、低能耗、污染小,适合工业化大规模生产,具有较好的经济价值和应用前景。

Claims (9)

  1. 一种碱金属插层制备石墨烯的方法,其特征在于,包括以下步骤:
    (1)在惰性环境中,将石墨类原材料和碱金属进行混合,获得石墨-碱金属混合材料,并在惰性环境中静置,使石墨发生金属插层反应,直至复合材料由黑色变成金黄色;
    (2)将所得的复合材料放入能与其发生反应的液态介质中进行反应,去除插层物,经过震荡、清洗、分离,获得石墨烯。
  2. 根据权利要求1所述碱金属插层制备石墨烯的方法,其特征在于,所述碱金属为锂,钠,钾中的一种或者多种;所述的石墨类材料为天然石墨或人造石墨,具体为石墨纸、石墨粉、鳞片石墨、膨胀石墨、球形石墨、高定向热解石墨中的一种或多种。
  3. 根据权利要求1所述碱金属插层制备石墨烯的方法,其特征在于,步骤(1)所述的石墨类材料和碱金属的质量比为1~10:1。
  4. 根据权利要求1所述碱金属插层制备石墨烯的方法,其特征在于,步骤(1)中,石墨类材料和碱金属混合后反复折叠辊压至混合均匀;或加热将碱金属融化后加入石墨类材料搅拌混合均匀。
  5. 根据权利要求1所述碱金属插层制备石墨烯的方法,其特征在于,步骤(1)中,所述惰性环境为氩气气氛和/或氦气气氛,在惰性环境中静置至样品变成金黄色,静置时间在10h以上。
  6. 根据权利要求1所述碱金属插层制备石墨烯的方法,其特征在于,步骤(2)中,所述的液态介质为水、甲醇、乙醇、丙醇、正丁醇、乙二醇、甲酸、乙酸、丙酸、盐酸中的一种或多种。
  7. 根据权利要求1~6任一项所述碱金属插层制备石墨烯的方法,其特征在于,步骤(1)后,进行操作:
    将所获得的金黄色复合材料转移至非惰性环境中处理,待上述金黄色完全褪去;所述的非惰性环境为空气,氮气,二氧化碳,氨气,水蒸气,氩气-有机酸混合气,氩气-有机醇混合气中的一种或多种。
  8. 根据权利要求7所述碱金属插层制备石墨烯的方法,其特征在于,步骤(1)后,进行操作:将所获得的复合材料放在容器中,向所述容器缓慢通入水蒸气、氩气-乙酸混合气、氩气-乙醇混合气中的一种,待所述复合材料的金黄色完全褪去,取出复合材料,进行步骤(2)。
  9. 权利要求1~8任一项所述方法制备得到的石墨烯。
PCT/CN2018/085135 2018-04-09 2018-04-28 一种碱金属插层制备石墨烯的方法 WO2019196144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810312337.4A CN110357081A (zh) 2018-04-09 2018-04-09 一种碱金属插层制备石墨烯的方法
CN201810312337.4 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019196144A1 true WO2019196144A1 (zh) 2019-10-17

Family

ID=68163868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085135 WO2019196144A1 (zh) 2018-04-09 2018-04-28 一种碱金属插层制备石墨烯的方法

Country Status (2)

Country Link
CN (1) CN110357081A (zh)
WO (1) WO2019196144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408916B (zh) * 2021-12-16 2023-07-07 广东邦普循环科技有限公司 一种膨胀石墨及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626165A (zh) * 2012-08-28 2014-03-12 海洋王照明科技股份有限公司 石墨烯的制备方法
CN104003372A (zh) * 2013-02-21 2014-08-27 海洋王照明科技股份有限公司 一种石墨烯材料及其制备方法
CN107416809A (zh) * 2017-06-01 2017-12-01 黄凯 一种制备石墨烯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815694A (zh) * 2012-03-13 2012-12-12 华东理工大学 一种石墨烯的制备方法和使用该方法制备的石墨烯

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626165A (zh) * 2012-08-28 2014-03-12 海洋王照明科技股份有限公司 石墨烯的制备方法
CN104003372A (zh) * 2013-02-21 2014-08-27 海洋王照明科技股份有限公司 一种石墨烯材料及其制备方法
CN107416809A (zh) * 2017-06-01 2017-12-01 黄凯 一种制备石墨烯的方法

Also Published As

Publication number Publication date
CN110357081A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
CN112265981B (zh) 一种木质素纳米胶束制备碳纳米管的方法
CN106975489B (zh) 一种氧化镍原位包覆石墨烯纳米复合材料的制备方法
CN103153870A (zh) 二氧化锰纳米棒的制备方法和应用
CN106145097B (zh) 一种亲疏水性可控的还原氧化石墨烯的制备方法
CN102496480A (zh) 石墨烯/镍铝双金属氢氧化物复合材料的制备方法及其应用
Yuan et al. Electrosynthesis and catalytic properties of magnesium oxide nanocrystals with porous structures
CN106629682B (zh) 一种限域催化制备中空石墨烯纳米球的方法
CN110970630B (zh) 一种CuO纳米片及其自上而下的制备方法与应用
CN111252760B (zh) 一种氧化石墨烯纳米卷及其复合材料的制备方法
CN110104623B (zh) 一种不同形貌的富磷过渡金属磷化物四磷化钴的制备方法
CN105905908A (zh) 一种基于埃洛石原料制备纳米硅的方法
CN103346299A (zh) 原位刻蚀制备中空锡基氧化物/碳复合纳米材料的方法
CN109650381B (zh) 一种海胆状石墨烯及其制备方法
CN108557883B (zh) 一种纳米三氧化二锑的制备方法
CN107161989A (zh) 一种蜂窝状三维石墨烯的制备方法
CN111233048A (zh) 一种双壳层MnCo2O4中空纳米球材料及其合成方法
CN107572509B (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
CN109755485A (zh) 一种SnO2/石墨烯锂离子电池负极材料制备方法
CN106745282A (zh) 一种具有蛋黄‑蛋壳结构三氧化二锰的制备方法
WO2019196144A1 (zh) 一种碱金属插层制备石墨烯的方法
Ilango et al. Facile synthesis of self-organized single crystalline TiOF2 nanotubes for photocatalytic hydrogen evolution
CN112225209B (zh) 一种利用可膨胀石墨制备石墨烯的方法
CN113798503A (zh) 一种制备金属钴纳米片的方法
CN103482617A (zh) 一种二氧化锡/石墨烯复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914173

Country of ref document: EP

Kind code of ref document: A1