WO2019189614A1 - 鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法 - Google Patents

鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法 Download PDF

Info

Publication number
WO2019189614A1
WO2019189614A1 PCT/JP2019/013687 JP2019013687W WO2019189614A1 WO 2019189614 A1 WO2019189614 A1 WO 2019189614A1 JP 2019013687 W JP2019013687 W JP 2019013687W WO 2019189614 A1 WO2019189614 A1 WO 2019189614A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
soft magnetic
based soft
magnetic powder
crystallinity
Prior art date
Application number
PCT/JP2019/013687
Other languages
English (en)
French (fr)
Inventor
泰志 木野
慎吾 林
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201980023114.9A priority Critical patent/CN111971761A/zh
Priority to JP2020511004A priority patent/JP7024859B2/ja
Priority to KR1020207019919A priority patent/KR102574343B1/ko
Publication of WO2019189614A1 publication Critical patent/WO2019189614A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Definitions

  • the present invention relates to an iron-based soft magnetic powder exhibiting good magnetic properties even under stress and a method for producing the same, and an article containing the iron-based soft magnetic alloy powder and a method for producing the same.
  • a dust core in a choke coil, a reactor coil or the like is manufactured by adding an insulating binder such as an epoxy resin to soft magnetic powder and molding the powder into a predetermined shape by injection molding or press molding. At this time, the dust core is manufactured in a state where stress is applied to the soft magnetic powder.
  • an iron-based nanocrystalline alloy powder described in Patent Document 1 has been used as a soft magnetic powder used in the production of a dust core.
  • Such an iron-based nanocrystalline alloy powder is produced by producing an alloy having an amorphous phase as a whole and then subjecting it to a nanocrystallization by heat treatment.
  • Such a magnetic powder is used, for example, by performing a heat treatment for precipitating the bcc phase on the iron-based soft magnetic alloy powder as disclosed in Patent Document 2 and adjusting the coercive force to be minimized. It is done.
  • Patent Document 1 JP-A-1-79342
  • Patent Document 2 JP-A-2010-280956
  • the present invention provides an iron-based soft magnetic powder that exhibits optimum core magnetic properties as a dust core even in a state in which stress is applied by injection molding, press molding, or the like, and a method for producing the same, and
  • An object of the present invention is to provide an article containing an iron-based soft magnetic alloy powder and a method for producing the same.
  • the inventors of the present invention have developed an iron-based soft magnetic powder having excellent magnetostatic characteristics and optimized magnetostatic characteristics to form a powder magnetic core by applying stress by injection molding or press molding with pressurization. When found, it was found that the optimum core magnetic characteristics were not necessarily exhibited. And, as a result of intensive studies, the inventors have adjusted the crystallinity so that even if stress is applied to the iron-based soft magnetic powder by injection molding or press molding with pressurization, etc. As a result, the inventors have obtained the knowledge that optimum magnetic core characteristics can be obtained as a dust core, and have completed the present invention.
  • the present invention is an iron-based soft magnetic powder obtained by crystallizing a part of an amorphous phase by heat treatment to precipitate crystallites, and the iron-based soft magnetic powder includes Si, B, Cu, Nb and An iron-based soft magnetic powder comprising inevitable impurities and having a crystallinity higher than the crystallinity when coercive force is minimized.
  • the iron-based soft magnetic powder is Fe 100- (x + y + z + r) Si x B y Cu z Nb r [Wherein, x, y, z and r are at%, 3.0 ⁇ x ⁇ 16.0 6.0 ⁇ y ⁇ 13.0 0.5 ⁇ z ⁇ 2.0 0.5 ⁇ r ⁇ 4.0 1.5 ⁇ z + r ⁇ 4.5 11.5 ⁇ y + r ⁇ 14.5 Satisfy the relationship]
  • the above iron-based soft magnetic powder having the following composition is provided:
  • the above iron-based soft magnetic powder having a crystallinity of 80 to 95%.
  • the iron-based soft magnetic powder described above wherein the hardness of the powder measured according to ISO 14577-1 is 1000 to 1250 HV.
  • the iron-based soft magnetic powder having a substantially spherical shape.
  • the above iron-based soft magnetic powder having an average particle diameter of 0.5 to 50 ⁇ m is provided.
  • the above iron-based soft magnetic powder in which 0.5 to 2.0 at% of Fe is replaced with Cr.
  • an article including the iron-based soft magnetic powder that is stressed by pressure molding is provided.
  • the above article that is a dust core.
  • a method for producing an iron-based soft magnetic powder including the following steps.
  • -1st process The process which weighs and melt
  • -2nd process The process of obtaining substantially spherical amorphous particle
  • the first step there is provided a method for producing the above iron-based soft magnetic powder, wherein raw materials are weighed so as to have the following composition and melted to obtain a molten alloy.
  • x, y, z and r are at%, 3.0 ⁇ x ⁇ 16.0 6.0 ⁇ y ⁇ 13.0 0.5 ⁇ z ⁇ 2.0 0.5 ⁇ r ⁇ 4.0 1.5 ⁇ z + r ⁇ 4.5 11.5 ⁇ y + r ⁇ 14.5 Satisfy the relationship.
  • x, y, z and r are at%, 3.0 ⁇ x ⁇ 16.0 6.0 ⁇ y ⁇ 13.0 0.5 ⁇ z ⁇ 2.0 0.5 ⁇ r ⁇ 4.0 1.5 ⁇ z + r ⁇ 4.5 11.5 ⁇ y + r ⁇ 14.5 Satisfy the relationship.
  • the heat treatment temperature in the third step is higher than the heat treatment temperature when the coercive force is minimized, and lower than the crystallization temperature of the amorphous phase.
  • the method for producing the iron-based soft magnetic powder wherein the crystallinity in the third step is 80 to 95%.
  • the hardness of the powder is 1000 to 1250 HV as measured according to ISO 14577-1.
  • the above iron-based soft magnetic powder manufacturing method wherein 0.5 to 2.0 at% of Fe is replaced with Cr in the above-described iron-based soft magnetic powder manufacturing method. Is done.
  • an article manufacturing method including a pressure molding step after the iron-based soft magnetic powder manufacturing method.
  • the iron-based soft magnetic powder of the present invention containing Si, B, Cu, and Nb and crystallizing a part of the amorphous phase by heat treatment to precipitate crystallites.
  • the crystallinity higher than when the coercive force is minimized, it is good as a dust core even when stress is applied to the iron-based soft magnetic powder by injection molding or press molding.
  • Iron-based soft magnetic powder that exhibits excellent magnetic properties.
  • a to B means “A or more and B or less”.
  • the iron-based soft magnetic powder of the present embodiment is an iron-based soft magnetic powder containing Si, B, Cu, and Nb and crystallizing a part of the amorphous phase by heat treatment to precipitate crystallites.
  • a crystallite having a body-centered cubic structure containing Fe as a main component (bcc phase) and a crystallite having a face-centered cubic structure containing Cu as a main component (fcc phase) by heat treatment. ) can be formed, and excellent magnetostatic properties can be obtained.
  • the magnetostatic characteristics of the iron-based soft magnetic powder can be adjusted to a desired state.
  • the iron-based soft magnetic powder when the iron-based soft magnetic powder has the following composition, it exhibits better magnetic properties when used in a state where stress is applied by pressure molding such as injection molding or press molding, such as a dust core. Iron-based soft magnetic powder.
  • the Si improves the amorphous phase forming ability.
  • the Si amount x has a sufficient ability to form an amorphous phase, and in order to obtain good magnetic properties, the amount ratio Si / Fe with Fe is preferably substantially constant, and is preferably 3.0 to 16.0 at%. .
  • B and Nb improve the ability to form an amorphous phase.
  • Nb is an essential component when an iron-based soft magnetic powder is produced by an atomizing method.
  • the amount of B is 6.0 at% or more, the amorphous phase forming ability increases, and if it is 13.0 at% or less, good magnetic characteristics are exhibited, which is preferable.
  • the sum y + r of the B amount y and the Nb amount r is preferably 11.5 ⁇ y + r ⁇ 14.5 (at%). If it is 11.5 at% or more, the ability to form an amorphous phase increases, and if it is 14.5 at% or less, good magnetic properties are exhibited.
  • Cu and Nb are elements that have an effect of controlling the particle size of the deposited nanocrystallites.
  • the effect of controlling the particle size of the nanocrystallite is greatly influenced by the amount of Cu.
  • the amount of Cu z is 0.5 at% or more
  • it can be set as the iron group soft magnetic powder which shows a favorable magnetic characteristic after heat processing.
  • the sum z + r of the Cu amount z and the Nb amount r is preferably 1.5 ⁇ z + r ⁇ 4.5 (at%). If it is 1.5 at% or more, it effectively acts on the control of the particle size of the nanocrystallite, and if it is 4.5 at% or less, good magnetic properties are exhibited.
  • the crystallinity of the iron-based soft magnetic powder is higher than the crystallinity when the coercive force is minimized in the powder state by heat treatment described later.
  • the crystallinity of the iron-based soft magnetic powder is preferably 80 to 95%. According to this, even if it uses for the magnetic component manufactured in the state where the compressive stress was loaded, it can be set as the iron group soft magnetic powder which shows a favorable magnetic characteristic.
  • the “crystallinity” in the present invention is the ratio of the crystal phase precipitated in the powder.
  • “crystallinity 80%” is the ratio of the crystal phase is 80% and the remaining 20% is the amorphous phase. It shows that.
  • the “crystallinity” in the present invention was calculated by the following peak separation using an X-ray diffraction method. (Rigaku Corporation (issued in 2010). X-ray analysis handbook (6th edition) Rigaku Corporation)
  • a dust core in a choke coil, a reactor coil or the like is manufactured by adding an insulating binder such as an epoxy resin to soft magnetic powder and molding the powder into a predetermined shape by injection molding or press molding. At this time, the dust core is manufactured in a state where stress is applied to the soft magnetic powder.
  • the hardness of the iron-based soft magnetic powder is preferably 1000 to 1250 HV. According to this, since fluidity
  • the iron-based soft magnetic powder is formed in a substantially spherical shape. According to this, since the filling rate of the iron-based soft magnetic powder in the dust core can be increased when performing injection molding or press molding, the magnetic characteristics can be improved.
  • not all of the powder shapes may be substantially spherical. For example, when the major axis of the particles is a and the minor axis is b, 70% or more of the particles satisfy the relationship of 1 ⁇ a / b ⁇ 1.2. There should be.
  • the average particle diameter of the iron-based soft magnetic powder is set to 0.5 to 50 ⁇ m, when the dust core is made, the insulation of the dust core can be secured and the filling rate of the iron-based soft magnetic powder can be increased. As a result, the magnetic properties can be improved.
  • the particle diameter is small, the eddy current loss is small when the dust core is used in a high frequency band, so the loss can be reduced.
  • the particle diameter is too small, a sufficient magnetic permeability ⁇ cannot be obtained. The above is preferable.
  • the average particle diameter of the iron-based soft magnetic powder is 10 ⁇ m or less, eddy current loss can be reduced when a dust core is used in a high frequency band of 1 MHz or more, and a necessary and sufficient magnetic permeability ⁇ is obtained. More preferably.
  • the article according to this embodiment includes the iron-based soft magnetic powder that is stressed by pressure molding.
  • the article according to the present embodiment is a soft magnetic part used for various purposes such as electronics and automotive parts, and is particularly a dust core. Due to the characteristics of the iron-based soft magnetic powder described above, an article including the iron-based soft magnetic powder that is stressed by pressure molding such as injection molding or press molding, particularly a dust core, has good core magnetic characteristics. (Permeability, core loss) is expressed.
  • raw materials are weighed and melted to obtain a molten alloy of Fe, Si, B, Cu, and Nb so as to have a predetermined composition, for example, the following preferable composition.
  • substantially spherical amorphous particles are obtained from the molten alloy obtained in the first step by an atomizing method.
  • a known water atomization method is employed.
  • the molten alloy obtained in the first step is dropped from the molten orifice, and the raw material melted by the water film sprayed from the atomizing nozzle is rapidly cooled and solidified.
  • the powder is recovered, dried, and classified to obtain amorphous particles having a predetermined particle size and having a substantially spherical particle shape.
  • the amorphous particles obtained in the second step are heat-treated to crystallize a part of the amorphous phase.
  • the crystallinity of the powder is set higher than the crystallinity when the coercive force is minimized.
  • the heat treatment in the present invention is performed in order to adjust the magnetic characteristics by isothermally maintaining a predetermined temperature in a nitrogen atmosphere, crystallizing a part of the amorphous phase, and precipitating nanocrystallites of several tens of nanometers.
  • heat treatment can be performed in the air.
  • the low-temperature exothermic peak temperature Tx is the bcc phase precipitation temperature at which the body-centered cubic crystal phase precipitates
  • the high-temperature exothermic peak temperature T1 is the amorphous phase crystallization temperature.
  • a crystallite having a body-centered cubic structure containing Fe as a main component (bcc phase) and a crystallite having a face-centered cubic structure containing Cu as a main component (fcc phase) by heat treatment. ) can be formed, and excellent magnetostatic properties can be obtained.
  • the magnetostatic characteristics of the iron-based soft magnetic powder can be adjusted to a desired state.
  • Permeability ⁇ and core loss Pcv are important as magnetic characteristics reflecting the characteristics of the dust core.
  • the magnetic permeability ⁇ is high and the core loss Pcv is low.
  • the heat treatment temperature exceeds the heat treatment temperature T2 at which the coercive force Hc is minimized, the coercive force Hc is increased and the magnetostatic characteristics of the powder are not optimal. At this time, the crystallinity increases and the hardness decreases.
  • the present inventors set the heat treatment temperature to T3 higher than the heat treatment temperature T2 when the coercive force Hc is minimized and lower than the crystallization temperature T1 of the amorphous phase, and adjust the crystallinity, hardness, etc.
  • the present inventors have found an iron-based soft magnetic powder that exhibits optimum core magnetic properties (permeability, core loss).
  • the heat treatment temperature T3 is preferably set so that the crystallinity of the iron-based soft magnetic powder is 80 to 95%.
  • the heat treatment temperature T3 is preferably set to be 1000 to 1250 HV.
  • the method for manufacturing an article according to this embodiment includes a pressure molding step after the above-described method for manufacturing an iron-based soft magnetic powder.
  • Articles obtained by the method for manufacturing a dust core according to the present embodiment, particularly a dust core exhibit good core magnetic properties (permeability, core loss) due to the properties of the iron-based soft magnetic powder described above.
  • Example of change When using a dust core for electronic parts, a material having high corrosion resistance against moisture and the like is required. In the iron-based soft magnetic powder, 0.5 to 2.0 at% of Fe can be replaced with Cr. According to this, corrosion resistance can be improved while maintaining good magnetic properties.
  • atomizing method a gas atomizing method, an oil atomizing method, or the like can be adopted.
  • the iron-based soft magnetic powder of the present invention can be obtained by injection molding or press molding by making the crystallinity higher than the crystallinity when the coercive force is minimized. Even when stress is applied to the iron-based soft magnetic powder, the powder magnetic core can exhibit good core magnetic properties.
  • the mixed materials prepared in the respective compositions shown in Table 1 were melted in a high frequency induction furnace, and soft magnetic powder was obtained by a water atomization method.
  • the measurement results of the bcc phase precipitation temperature Tx and the saturation magnetization (Bs) are also shown. Evaluation powder preparation conditions are as follows.
  • the obtained soft magnetic powder was collected and dried with a vibration vacuum dryer (VU-60: manufactured by Chuo Kako Co., Ltd.). Since drying is performed in a reduced pressure atmosphere, drying can be performed in a low oxygen atmosphere as compared with a drying method performed in an atmospheric pressure atmosphere, and drying can be performed in a short time at a low temperature. Further, by applying vibration to the soft magnetic powder during drying, drying can be performed in a shorter time, and aggregation and oxidation of the powder can be prevented.
  • the drying temperature was 100 ° C.
  • the pressure in the drying chamber was ⁇ 0.1 MPa (gauge pressure)
  • the drying time was 60 minutes.
  • the obtained soft magnetic powder was classified by an airflow classifier (turbo classifier: manufactured by Nisshin Engineering Co., Ltd.) to obtain a powder material (6 ⁇ m, 2 ⁇ m) having a target average particle diameter.
  • the particle size distribution of the powder material was measured with a laser diffraction type particle size distribution measuring device (MT3300EXII: manufactured by Microtrack Bell Co., Ltd.).
  • the crystallite diameter and crystallinity measuring devices and measurement conditions are as follows.
  • Measurement device Powder X-ray diffraction device (MinFlex 600: manufactured by Rigaku Corporation) Measurement conditions: voltage 40 kV, current 15 mA, step 0.01 deg, speed 1 deg / min
  • the crystallite diameter was calculated by using the Scherrer equation shown below for the bcc FeSi peak. Here, a peak around 78 ° was used as the FeSi peak.
  • the hardness measuring device and measuring method are as follows.
  • -Measuring device Nanoindenter (ENT-2000: manufactured by Elionix Co., Ltd.)
  • Measurement method Based on ISO 14577-1, the powder hardness was calculated by measuring the size of the indentation after applying a load of 5 ⁇ N to 100 mN to the particle cross section.
  • the measuring method and measuring method of the coercive force Hc are as follows.
  • ⁇ Measuring device Vibrating sample magnetometer (VSM-C7: manufactured by Toei Kogyo Co., Ltd.)
  • Measurement method VSM measurement capsules filled with 200 mg of the obtained powder material having each particle size distribution, fixed with paraffin, applied with a maximum magnetic field of 10000 Oe, saturation magnetization measurement (Bs) and coercive force measurement (Hc) went.
  • the obtained powder material having each particle size distribution was mixed with an epoxy resin (binder) and toluene (organic solvent) to obtain a mixture.
  • the addition amount of the epoxy resin was 3 wt% with respect to the soft magnetic powder material.
  • the mixture thus prepared was dried by heating at a temperature of 80 ° C. for 30 minutes to obtain a lump-like dried body.
  • the dried product was passed through a sieve having an opening of 200 ⁇ m to prepare a powder material (granulated product).
  • the powder material was filled into a mold, and a molded body (dust core) was obtained under the following conditions.
  • ⁇ Measurement conditions and evaluation> The core magnetic characteristics ( ⁇ , Pcv) of the choke coil manufactured under the above conditions were evaluated under the following conditions.
  • compositions 7 and 8 the heat treatment conditions were set to the following six levels, and the coercive force Hc and hardness HV in the powder state and the core magnetic properties (permeability ⁇ , core loss) of the powder magnetic core were used. evaluated.
  • the results are shown in Table 2 and FIGS.
  • test 1 corresponds to the result of composition 7
  • test 2 corresponds to the result of composition 8.
  • the degree of crystallinity increased with increasing heat treatment temperature, and all amorphous phases were crystallized at 600 ° C.
  • the crystallization temperature of the amorphous phase is considered to be about 600 ° C.
  • the reason why crystallization has started from 500 ° C. below the bcc phase precipitation temperature Tx is presumed to be a portion where the temperature is locally higher than the set temperature due to the exothermic reaction of the powder.
  • the best magnetic characteristics with a low coercive force Hc were obtained when heat treatment was performed at 530 ° C. (Test 1-3, Test 2-3). At this time, the crystallinity was 76 in Test 1-3 and 74 in Test 2-3. The hardness HV was 1250 HV in Test 1-3 and 1270 HV in Test 2-3, and each showed the highest value.
  • this state is the target state, and the heat treatment temperature is set to 530 ° C.
  • the heat treatment temperature exceeds 530 ° C., which is the heat treatment temperature at which the coercive force Hc is minimized, the coercive force Hc is increased and the magnetostatic characteristics of the powder are not optimal.
  • the heat treatment temperature exceeds 530 ° C.
  • the crystallinity increases.
  • the grain size of the precipitated crystallites increases and the hardness HV decreases.
  • the magnetic permeability ⁇ showed the maximum value and the core loss showed the minimum value at the heat treatment temperature of 570 ° C.
  • the crystallinity showing the same permeability as that of the crystallinity at which the coercive force Hc is minimum (heat treatment temperature 530 ° C.) is 94% in Test 1 and 93% in Test 2. It was.
  • the crystallinity showing the same core loss as the crystallinity having the minimum coercive force Hc was 91% in both Test 1 and Test 2.
  • the conditions under which the core magnetic properties of the dust core are optimal are that the heat treatment temperature is higher than the heat treatment temperature when the coercive force is minimized, lower than the crystallization temperature of the amorphous phase, and the crystallinity is the coercive force Hc. It was confirmed that the crystallinity was higher than the crystallinity at the time of minimum. It was also confirmed that when the heat treatment was performed at an excessive temperature, the degree of crystallinity became too high and the core magnetic properties deteriorated. Accordingly, it was confirmed that the crystallinity is preferably 80 to 95%.
  • the iron-based soft magnetic powder becomes a material having optimum core magnetic properties when it becomes a dust core in the composition, crystallinity, and hardness defined in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

熱処理によりアモルファス相の一部を結晶化させて結晶子を析出させてなる鉄基軟磁性粉末であって、当該鉄基軟磁性粉末は、Si、B、Cu、Nb及び不可避不純物を含み、結晶化度が、保磁力が最小となるときの結晶化度より高いことを特徴とする鉄基軟磁性粉末。 (選択図) なし

Description

鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法
 本発明は、応力が負荷された状態であっても良好な磁気特性を示す鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法に関する。
 チョークコイルやリアクトルコイル等における圧粉磁心は、軟磁性粉末にエポキシ系樹脂等、絶縁性の結合剤を添加し、射出成型やプレス成型等により所定の形状に成型されて製造される。このとき、軟磁性粉末には応力が負荷された状態で、圧粉磁心が製造される。
 圧粉磁心の製造に用いられる軟磁性粉末として、従来、例えば、特許文献1に記載のような鉄基ナノ結晶合金粉末が用いられてきた。このような鉄基ナノ結晶合金粉末は、全体がアモルファス相である合金を製造した後、熱処理を施してナノ結晶化させることにより製造される。
 そして、このような磁性粉体は、例えば、特許文献2に開示されているように鉄基軟磁性合金粉末にbcc相を析出させる熱処理を行い、保磁力が最小となるように調整されて用いられる。
 [特許文献1]特開平1-79342号公報
 [特許文献2]特開2010-280956号公報
 しかし、得られた磁性粉末の静磁気特性(保磁力)を最適化した場合でも、射出成型やプレス成型等の加圧を伴う圧粉磁心製造プロセスを経て磁性粉末に応力が負荷され圧粉磁心となったときには、必ずしも最適なコア磁気特性(透磁率、コアロス)を発現するものではないという問題があった。
 そこで、本発明では、射出成型やプレス成型等により応力が負荷された状態においても、圧粉磁心として最適なコア磁気特性を発現する鉄基軟磁性粉末及びその製造方法を提供すること、更には、鉄基軟磁性合金粉末を含む物品及びその製造方法を提供することを目的とする。
 本発明者らは、優れた静磁気特性を有し、更に静磁気特性を最適化した鉄基軟磁性粉末が、加圧を伴う射出成型やプレス成型等により応力が負荷され圧粉磁心となったときには、必ずしも最適なコア磁気特性を発現するものではないことを見出した。そして、本発明者らは、鋭意研究の結果、結晶化度を調整することにより、加圧を伴う射出成型やプレス成型等により、鉄基軟磁性粉末に応力が負荷された状態であっても、圧粉磁心等として最適なコア磁気特性を発現するとの知見を得て、本発明を完成するに至った。
 すなわち、本発明は、熱処理によりアモルファス相の一部を結晶化させて結晶子を析出させてなる鉄基軟磁性粉末であって、当該鉄基軟磁性粉末は、Si、B、Cu、Nb及び不可避不純物を含み、結晶化度が、保磁力が最小となるときの結晶化度より高いことを特徴とする鉄基軟磁性粉末である。
 本発明の一態様によれば、鉄基軟磁性粉末が、
Fe100―(x+y+z+r)SiCuNb
[式中、x、y、z、rはat%で、
3.0≦x≦16.0
6.0≦y≦13.0
0.5≦z≦2.0
0.5≦r≦4.0
1.5≦z+r≦4.5
11.5≦y+r≦14.5
の関係を満たす]
の組成を有する、上記の鉄基軟磁性粉末が提供される。
 本発明の一態様によれば、結晶化度が、80~95%である、上記の鉄基軟磁性粉末が提供される。
 本発明の一態様によれば、ISO14577-1に準拠して測定した粉末の硬度が、1000~1250HVである、上記の鉄基軟磁性粉末が提供される。
 本発明の一態様によれば、略球形である、上記の鉄基軟磁性粉末が提供される。
 本発明の一態様によれば、平均粒子径が0.5~50μmである、上記の鉄基軟磁性粉末が提供される。
 本発明の一態様によれば、Feのうち0.5~2.0at%がCrで置換されている、上記の鉄基軟磁性粉末が提供される。
 本発明の一態様によれば、加圧成型により応力が負荷されている上記の鉄基軟磁性粉末を含む物品が提供される。
 本発明の一態様によれば、圧粉磁心である、上記の物品が提供される。
 本発明の一態様によれば、以下の工程を含む、鉄基軟磁性粉末の製造方法が提供される。
・第1工程
 鉄基軟磁性粉末を構成するFe、Si、B、Cu、Nbを所定の組成となるように原料を秤量し、溶解して合金溶湯を得る工程。
・第2工程
 第1工程で得られた合金溶湯からアトマイズ法により略球形のアモルファス粒子を得る工程。
・第3工程
 第2工程で得られたアモルファス粒子に熱処理を行い、アモルファス相の一部を結晶化させて結晶子を析出させる工程であって、結晶化度を、保磁力が最小となるときの結晶化度より高くする工程。
 本発明の一態様によれば、第1工程では、以下の組成となるように原料を秤量し、溶解して合金溶湯を得る、上記の鉄基軟磁性粉末の製造方法が提供される。
Fe100―(x+y+z+r)SiCuNb
[式中、x、y、z、rはat%で、
3.0≦x≦16.0
6.0≦y≦13.0
0.5≦z≦2.0
0.5≦r≦4.0
1.5≦z+r≦4.5
11.5≦y+r≦14.5
の関係を満たす。]
 本発明の一態様によれば、前記第3工程における熱処理温度を、保磁力が最小となるときの熱処理温度より高く、アモルファス相の結晶化温度より低くする、上記の鉄基軟磁性粉末の製造方法が提供される。
 本発明の一態様によれば、第3工程における結晶化度を80~95%とする、上記の鉄基軟磁性粉末の製造方法が提供される。
 本発明の一態様によれば、粉末の硬度を、保磁力が最小となるときの硬度より小さくする、上記の鉄基軟磁性粉末の製造方法が提供される。
 本発明の一態様によれば、粉末の硬度を、ISO14577-1に準拠して測定した粉末の硬度で1000~1250HVとする、上記の鉄基軟磁性粉末の製造方法が提供される。
 本発明の一態様によれば、平均粒子径を0.5~50μmとする、上記の鉄基軟磁性粉末の製造方法が提供される。
 本発明の一態様によれば、上記の鉄基軟磁性粉末の製造方法において、Feのうち0.5~2.0at%をCrで置換する、上記の鉄基軟磁性粉末の製造方法が提供される。
 本発明の一態様によれば、上記の鉄基軟磁性粉末の製造方法の後に、加圧成型工程を含む、物品の製造方法が提供される。
 本発明の一態様によれば、物品が圧粉磁心である、上記の物品の製造方法が提供される。
 本発明の鉄基軟磁性粉末及びその製造方法によれば、Si、B、Cu、Nbを含み、熱処理によりアモルファス相の一部を結晶化させて結晶子を析出させてなる鉄基軟磁性粉末において、保磁力が最小となるときの結晶化度より高くすることで、射出成型やプレス成型などにより、鉄基軟磁性粉末に応力が負荷された状態であっても、圧粉磁心等として良好な磁性特性を発現する鉄基軟磁性粉末とすることができる。
実施例における結晶化度と透磁率との関係を示す説明図である。 実施例における結晶化度とコアロスとの関係を示す説明図である。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。なお、以下の説明において、「A~B」は、「A以上かつB以下」を意味する。
 本実施形態の鉄基軟磁性粉末は、Si、B、Cu、Nbを含み、熱処理によりアモルファス相の一部を結晶化させて結晶子を析出させてなる鉄基軟磁性粉末である。このような鉄基軟磁性粉末では、熱処理により、アモルファス相にFeを主成分とする体心立方構造の結晶子(bcc相)、Cuを主成分とする面心立方構造の結晶子(fcc相)が分散した合金を形成することができ、優れた静磁気特性が得られる。
 そして、熱処理温度により、ナノ結晶子の析出形態を変えることができるので、鉄基軟磁性粉末の静磁気特性を所望の状態に調整することができる。
 特に、鉄基軟磁性粉末が下記の組成を有するときに、圧粉磁心等、射出成形やプレス成型等の加圧成型により応力が負荷された状態で用いる際に、より良好な磁性特性を発現する鉄基軟磁性粉末とすることができる。
Fe100―(x+y+z+r)SiCuNb
[式中、x、y、z、rはat%で、
3.0≦x≦16.0
6.0≦y≦13.0
0.5≦z≦2.0
0.5≦r≦4.0
1.5≦z+r≦4.5
11.5≦y+r≦14.5
の関係を満たす。]
 Siは、アモルファス相形成能を向上させる。Si量xは、十分なアモルファス相形成能を有するとともに、良好な磁気特性を得るために、Feとの量比Si/Feはほぼ一定とし、3.0~16.0at%とすることが好ましい。
 B及びNbは、アモルファス相形成能を向上させる。特に、Nbはアトマイズ法により鉄基軟磁性粉末を製造するときには必須成分となる。ここで、B量は、6.0at%以上とするとアモルファス相形成能が大きくなり、13.0at%以下とすると良好な磁気特性を示すため好ましい。
 B量yとNb量rとの和y+rは、11.5≦y+r≦14.5(at%)であることが好ましい。11.5at%以上とすると、アモルファス相の形成能が大きくなり、14.5at%以下とすると良好な磁気特性を示す。
 Cu及びNbは、析出するナノ結晶子の粒径を制御する効果がある元素である。ここで、ナノ結晶子の粒径を制御する効果は、Cu量の影響が大きく、Cu量zは、0.5at%以上とすると、アモルファス相中に粒径数10nmに制御されたナノ結晶子が分散した組織を容易に得ることができる。これにより、熱処理後に良好な磁気特性を示す鉄基軟磁性粉末とすることができる。また、2.0at%以下とすると良好な磁気特性を示すため好ましい。
 更に、Cu量zとNb量rとの和z+rは、1.5≦z+r≦4.5(at%)であることが好ましい。1.5at%以上とするとナノ結晶子の粒径制御に有効に作用し、4.5at%以下とすると良好な磁気特性を示す。
 鉄基軟磁性粉末の結晶化度は、後述する熱処理により、粉末の状態で保磁力が最小となるときの結晶化度より高く形成されている。
 鉄基軟磁性粉末の結晶化度は、80~95%とすることが好ましい。これによれば、圧縮応力が負荷された状態で製造される磁性部品に用いても良好な磁気特性を示す鉄基軟磁性粉末とすることができる。
 本発明における「結晶化度」は、粉末中に析出した結晶相の割合であり、例えば、「結晶化度80%」とは、結晶相の割合が80%で残部20%がアモルファス相であることを示す。本発明における「結晶化度」は、X線回折法を用い、下記のピーク分離により算出した。(株式会社リガク(2010年発行).X線解析ハンドブック(第6版) 株式会社リガク)
(1)バックグラウンドの分離
 低角度側から高角度側に直線近似により直線を引き、当該直線の下方の面積をバックグラウンドとして設定する。
(2)ハローの分離
 アモルファス成分によるハローパターンを推定し、バックグラウンドを減じた散乱曲線からハロー部分を分離する。
(3)結晶性回折線の分離
 上記(2)と同様の方法により、結晶性回折線を分離する。
(4)結晶化度の算出
 全散乱曲線から分離した、非晶成分及び結晶成分の回折曲線の曲線下の面積(積分強度)を用い、下式により結晶化度を算出する。
(数1)
 Xc=Ic/(Ic+Ia)
 Xc:結晶化度、Ic:結晶性散乱強度、Ia:非晶性散乱強度
 チョークコイルやリアクトルコイル等における圧粉磁心は、軟磁性粉末にエポキシ系樹脂等、絶縁性の結合剤を添加し、射出成型やプレス成型等により所定の形状に成型されて製造される。このとき、軟磁性粉末には応力が負荷された状態で、圧粉磁心が製造される。
 鉄基軟磁性粉末の硬度は、1000~1250HVとすることが好ましい。これによれば、射出成形やプレス成型を行うときに流動性が良いので、圧粉磁心等としたときに良好な磁気特性を示す鉄基軟磁性粉末とすることができる。
 鉄基軟磁性粉末は略球形に形成されている。これによれば、射出成形やプレス成型を行うときに、圧粉磁心での鉄基軟磁性粉末の充填率を高くすることができるので、磁気特性を向上させることができる。ここで、すべての粉末形状が略球形でなくてもよく、例えば、粒子の長径をa、短径をbとした場合、1≦a/b≦1.2の関係を満たす粒子が70%以上あるとよい。
 鉄基軟磁性粉末の平均粒子径を0.5~50μmにすると、圧粉磁心等とした時に、圧粉磁心等の絶縁を確保しつつ、且つ鉄基軟磁性粉末の充填率高くすることができるので、磁気特性を向上させることができる。粒子径が小さいと、圧粉磁心を高周波帯で用いるときに渦電流損失が小さくなるため、低損失とすることができるが、小さ過ぎると十分な透磁率μが得られなくなるため、0.5μm以上とすることが好ましい。また、鉄基軟磁性粉末の平均粒子径を10μm以下にすると、1MHz以上の高周波帯で圧粉磁心を使用するときに、渦電流損失を低減させる事ができ、必要十分な透磁率μを得ることができるので更に好ましい。
 本実施形態に係る物品は、加圧成型により応力が負荷されている上記の鉄基軟磁性粉末を含む。本実施形態に係る物品は、エレクトロニクスや自動車用の部品など様々な用途で用いられる軟磁性を有する部品等であり、特に圧粉磁心である。上述の鉄基軟磁性粉末の特性により、射出成形やプレス成型等の加圧成型により応力が負荷されている上述の鉄基軟磁性粉末を含む物品、特に圧粉磁心は、良好なコア磁性特性(透磁率、コアロス)を発現する。
(製造方法)
 上述の鉄基軟磁性粉末の製造方法について説明する。
 第1工程では、Fe、Si、B、Cu、Nbを所定の組成、例えば、以下の好ましい組成となるように原料を秤量し、溶解して合金溶湯を得る。
Fe100―(x+y+z+r)SiCuNb
[式中、x、y、z、rはat%で、
3.0≦x≦16.0
6.0≦y≦13.0
0.5≦z≦2.0
0.5≦r≦4.0
1.5≦z+r≦4.5
11.5≦y+r≦14.5
の関係を満たす。]
 続く第2工程では、第1工程で得られた合金溶湯からアトマイズ法により略球形のアモルファス粒子を得る。
 本実施形態では、公知の水アトマイズ法を採用する。第1工程で得られた合金溶湯を溶湯オリフィスより落下させ、アトマイズノズルから噴射される水膜にて溶融した原材料を急冷凝固させる。この粉末を回収し、乾燥、および分級を経て、粒子形状が略球形である所定の粒径のアモルファス粒子を得ることができる。
 続く第3工程では、第2工程で得られたアモルファス粒子に熱処理を行い、アモルファス相の一部を結晶化させる。このとき、粉末の結晶化度を、保磁力が最小となるときの結晶化度より高くする。
 本発明における熱処理は、窒素雰囲気にて所定の温度に等温保持し、アモルファス相の一部を結晶化させて、数10nmのナノ結晶子を析出させて、磁気特性を調整するために行う。ここで、粉末酸化防止等を考慮する必要がない場合であれば大気中で熱処理することもできる。
 鉄基軟磁性粉末の熱分析(DSC)曲線を行うと、2つの発熱ピークが認められる。低温側の発熱ピークの温度Txは体心立方構造の結晶相が析出するbcc相析出温度であり、高温側の発熱ピークの温度T1はアモルファス相結晶化温度である。
 本発明の鉄基軟磁性粉末では、熱処理により、アモルファス相にFeを主成分とする体心立方構造の結晶子(bcc相)、Cuを主成分とする面心立方構造の結晶子(fcc相)が分散した合金を形成することができ、優れた静磁気特性が得られる。
 そして、熱処理温度により、ナノ結晶子の析出形態を変えることができるので、鉄基軟磁性粉末の静磁気特性を所望の状態に調整することができる。
 圧粉磁心の特性を反映する磁気特性として、透磁率μ、コアロスPcvが重要である。ここで、透磁率μは高い方がよく、コアロスPcvは低い方がよい。
 粉末体の状態では、保磁力Hcが低いと透磁率μは高くなり、コアロスを低くすることができるため、従来は、保持力Hcが最小となるように熱処理が行われてきた。
 しかし、得られた磁性粉末の静磁気特性(保磁力)を最適化した場合でも、射出成型やプレス成型等の圧粉磁心製造プロセスを経て磁性粉末に応力が負荷され圧粉磁心となったときには、必ずしも最適なコア磁気特性(透磁率、コアロス)を発現するものではないという問題があった。
 熱処理温度が、保磁力Hcが最小となる熱処理温度T2を超えると、保持力Hcは増大し、粉末の静磁気特性としては最適条件ではなくなる。このとき、結晶化度は増大し、硬度は低下する。
 一方、保磁力Hcが最小となる熱処理温度T2以上の熱処理温度で、圧粉磁心のコア磁気特性を示す透磁率μが最大値を示し、コアロスが最小値を示す熱処理温度T3が存在する。
 本発明者らは、熱処理温度を、保磁力Hcが最小となるときの熱処理温度T2より高く、アモルファス相の結晶化温度T1より低いT3に設定し、結晶化度、硬度などを調整することにより、最適なコア磁気特性(透磁率、コアロス)を発現する鉄基軟磁性粉末を見出した。
 熱処理温度T3は、鉄基軟磁性粉末の結晶化度が、80~95%となるように設定することが好ましい。
 また、熱処理温度T3は、1000~1250HVとなるように設定することが好ましい。
 これによれば、圧粉磁心製造プロセスである射出成型やプレス成型等により応力が負荷され、圧粉磁心となったときに、最適なコア磁気特性を有する鉄基軟磁性粉末とすることができる。
 本実施形態に係る物品の製造方法は、上述の鉄基軟磁性粉末の製造方法の後に、加圧成型工程を含む。本実施形態に係る圧粉磁心の製造方法により得られる物品、特に圧粉磁心は、上述の鉄基軟磁性粉末の特性により、良好なコア磁性特性(透磁率、コアロス)を発現する。
(変更例)
 電子部品等で圧粉磁心を使用する場合、湿気等に対する耐食性が高い材料が求められる。鉄基軟磁性粉末において、Feの0.5~2.0at%をCrで置換することもできる。これによれば、良好な磁気特性を維持しつつ、耐食性を向上させることができる。
 アトマイズ法として、ガスアトマイズ法、油アトマイズ法、など採用することもできる。
 本発明の鉄基軟磁性粉末及びその製造方法によれば、結晶化度を、保磁力が最小となるときの結晶化度より高くすることで、射出成型やプレス成型により、鉄基軟磁性粉末に応力が負荷された状態であっても、圧粉磁心が良好なコア磁性特性を発現する鉄基軟磁性粉末とすることができる。
 以下に本発明の実施例を示す。本発明の内容はこれらの実施例により限定して解釈されるものではない。
 表1に示される各組成に調製した混合材料を高周波誘導炉にて溶融し水アトマイズ法にて軟磁性粉末を得た。表中には、bcc相析出温度Tx及び飽和磁化(Bs)の測定結果を併せて示す。評価粉末作製条件は以下の通りである。
<水アトマイズ条件>
 ・水圧:100MPa
 ・水量:100L/min
 ・水温:20℃
 ・オリフィス径:φ4mm
 ・溶湯原材料温度:1800℃
Figure JPOXMLDOC01-appb-T000001
 次に、得られた軟磁性粉末を回収し、振動真空乾燥機(VU―60:中央化工機株式会社製)により乾燥をおこなった。減圧雰囲気下で乾燥を行うため、大気圧雰囲気下で行う乾燥方法に比べ低酸素雰囲気で乾燥を行うことができ、また低温で短時間に乾燥を行うことができる。さらに、乾燥中に軟磁性粉末に振動を加えることでさらに短時間での乾燥が可能となり、粉末の凝集や酸化を防ぐことができる。本実施例では、乾燥温度:100℃、乾燥室内の圧力:-0.1MPa(ゲージ圧)、乾燥時間:60分とした。
 次に得られた軟磁性粉末を気流分級装置(ターボクラシファイア:日清エンジニアリング株式会社製)により分級して目的の平均粒径を有する粉末材(6μm、2μm)を得た。該粉末材の粒度分布測定はレーザ回折方式の粒度分布測定装置(MT3300EXII:マイクロトラックベル株式会社製)にて行った。
 次に得られた軟磁性粉末について、結晶子径、結晶化度、硬度及び保磁力Hcを評価した。
 結晶子径及び結晶化度の測定装置、測定条件は以下のとおりである。
 ・測定装置:粉末X線回折装置(MinFlex600:株式会社リガク製)
 ・測定条件:電圧40kV、電流15mA、ステップ0.01deg、スピード1deg/min
 結晶子径は、bcc FeSiピークを下記に示すScherrerの式を用いて算出した。ここで、FeSiピークとして78°付近のピークを用いた。
Figure JPOXMLDOC01-appb-M000002
 硬度測定装置及び測定方法は以下のとおりである。
 ・測定装置:ナノインデンター(ENT-2000:株式会社エリオニクス製)
 ・測定方法:ISO14577-1に準拠し、5μN~100mNの荷重を粒子断面にかけた後に圧痕のサイズを測定することで粉末硬度を算出した。
 保磁力Hcの測定方法及び測定方法は以下のとおりである。
 ・測定装置:振動式試料型磁力計(VSM-C7:東英工業株式会社製)
 ・測定方法:得られた各粒度分布を有する粉末材を、VSM測定用カプセルに200mg充填しパラフィンにて固定し、最大磁界10000Oeを印加し飽和磁化測定(Bs)及び保磁力測定(Hc)を行った。
 次に得られた各粒度分布を有する粉末材を、エポキシ樹脂(バインダ)およびトルエン(有機溶媒)と混合して混合物を得た。なお、エポキシ樹脂の添加量は軟磁性粉末材に対して3wt%とした。
 こうして調製した混合物を温度80℃で30分加熱して乾燥させ塊状の乾燥体を得た。次いで、乾燥体を目開き200μmの篩にかけ、粉末材(造粒体)を調製した。
 該粉末材を成形型に充填し、下記の条件で成型体(圧粉磁心)を得た。
<成形条件>
 ・成形方法:プレス成形
 ・成形体の形状:リング状
 ・成形体寸法:外形13mm、内径8mm、厚さ2mm
 ・成形圧力:5t/cm2(490MPa)
 ・成形体硬化条件:150℃、30分
<コイル作製条件>
 上述した成型体に導線を下記の条件で巻き付け、チョークコイルを作製した。
 ・導線材料:Cu
 ・導線線径:0.2mm
 ・巻き線数:1次45ターン、2次45ターン
<測定条件・評価>
 上記条件で作製したチョークコイルのコア磁気特性(μ、Pcv)を以下の条件で評価した。
 ・測定装置:交流磁気特性測定装置(岩通計測製  B-HアナライザSY8258)
 ・測定周波数:1MHz
 ・透磁率μ測定条件:印加磁界10mT
 ・コアロス測定条件:印加磁界25mT
 評価結果を以下に示す。 組成7、8については、熱処理条件を下記6水準とし、異なる結晶化度としたものについて、粉末状態での保磁力Hc及び硬度HV、圧粉磁心のコア磁気特性(透磁率μ、コアロス)を評価した。結果を表2、図1、2に示す。ここで、表2において、試験1が組成7の結果に、試験2が組成8の結果に相当する。
Figure JPOXMLDOC01-appb-T000003
 試験1、2ともに、結晶化度は熱処理温度の上昇とともに増大し、600℃ではアモルファス相がすべて結晶化した。ここで、アモルファス相の結晶化温度は約600℃と考えられる。なお、bcc相析出温度Tx以下の500℃から結晶化が始まっている理由としては、粉末の発熱反応により局所的に設定温度より温度が高くなる部分があることなどが推定される。
 また、粉末の静磁気特性として、保磁力Hcが低く最も良好な磁気特性を示すのは、530℃で熱処理を行ったとき(試験1-3、試験2-3)であった。このとき、結晶化度は、試験1-3で76、試験2-3で74であった。また、硬度HVは、試験1-3で1250HV、試験2-3で1270HVであり、それぞれ最高値を示した。
 従来は、この状態を目的の状態とし、熱処理温度が530℃と設定されていた。
 熱処理温度が保磁力Hcが最小となる熱処理温度である530℃を超えると、保持力Hcは増大し、粉末の静磁気特性としては最適条件ではなくなる。
 ここで、熱処理温度である530℃を超えると、結晶化度は増大する。また、析出する結晶子の粒径が大きくなり硬度HVが低下する。
 一方、圧粉磁心のコア磁気特性は、熱処理温度570℃において、透磁率μは最大値を示し、コアロスは最小値を示した。
 図1に示すように、保磁力Hcが最小(熱処理温度530℃)となる結晶化度の透磁率と同じ透磁率を示す結晶化度は、試験1で94%、試験2で93%となった。
 図2に示すように、保磁力Hcが最小となる結晶化度のコアロスと同じコアロスを示す結晶化度は、試験1、試験2ともに91%となった。
 つまり、圧粉磁心のコア磁気特性が最適となる条件は、熱処理温度が、保磁力が最小となるときの熱処理温度より高く、アモルファス相の結晶化温度より低く、結晶化度が、保磁力Hcが最小となるときの結晶化度より高い、ということが確認された。また、過剰な温度で熱処理を行うと結晶化度が高くなりすぎ、コア磁気特性が悪化することも確認された。これにより、結晶化度は80~95%とすることが好適であることも確認された。
 また、組成1~6においても同様の傾向が認められることを確認した。
 以上より、鉄基軟磁性粉末が、本発明で規定した組成、結晶化度、硬度において、圧粉磁心となったときに最適なコア磁気特性を有する材料となることが確認された。

 

Claims (19)

  1.  熱処理によりアモルファス相の一部を結晶化させて結晶子を析出させてなる鉄基軟磁性粉末であって、
     Si、B、Cu、Nb及び不可避不純物を含み、
     結晶化度が、保磁力が最小となるときの結晶化度より高いことを特徴とする鉄基軟磁性粉末。
  2.  前記鉄基軟磁性粉末が、Fe100―(x+y+z+r)SiCuNb
    [式中、x、y、z、rはat%で、
    3.0≦x≦16.0
    6.0≦y≦13.0
    0.5≦z≦2.0
    0.5≦r≦4.0
    1.5≦z+r≦4.5
    11.5≦y+r≦14.5
    の関係を満たす]の組成を有することを特徴とする請求項1に記載の鉄基軟磁性粉末。
  3.  前記結晶化度が、80~95%であることを特徴とする請求項1または請求項2に記載の鉄基軟磁性粉末。
  4.  ISO14577-1に準拠して測定した粉末の硬度が、1000~1250HVであることを特徴とする請求項1ないし請求項3のいずれか1つに記載の鉄基軟磁性粉末。
  5.  略球形であることを特徴とする請求項1ないし請求項4のいずれか1つに記載の鉄基軟磁性粉末。
  6.  平均粒子径が0.5~50μmであることを特徴とする請求項1ないし請求項5のいずれか1つに記載の鉄基軟磁性粉末。
  7.  Feのうち0.5~2.0at%がCrで置換されていることを特徴とする請求項1ないし請求項6のいずれか1つに記載の鉄基軟磁性粉末。
  8.  加圧成型により応力が負荷されている請求項1ないし請求項7のいずれか1つに記載の鉄基軟磁性粉末を含む、物品。
  9.  圧粉磁心である、請求項8に記載の物品。
  10.  以下の工程を含むことを特徴とする、鉄基軟磁性粉末の製造方法:
    ・第1工程
     鉄基軟磁性粉末を構成するFe、Si、B、Cu、Nbを所定の組成となるように原料を秤量し、溶解して合金溶湯を得る工程。
    ・第2工程
     第1工程で得られた合金溶湯からアトマイズ法により略球形のアモルファス粒子を得る工程。
    ・第3工程
     第2工程で得られたアモルファス粒子に熱処理を行い、アモルファス相の一部を結晶化させて結晶子を析出させる工程であって、結晶化度を、保磁力が最小となるときの結晶化度より高くする工程。
  11.  前記第1工程において、以下の組成となるように原料を秤量し、溶解して合金溶湯を得ることを特徴とする請求項10に記載の鉄基軟磁性粉末の製造方法。
    Fe100―(x+y+z+r)SiCuNb
    [式中、x、y、z、rはat%で、
    3.0≦x≦16.0
    6.0≦y≦13.0
    0.5≦z≦2.0
    0.5≦r≦4.0
    1.5≦z+r≦4.5
    11.5≦y+r≦14.5
    の関係を満たす。]
  12.  前記第3工程における熱処理温度を、保磁力が最小となるときの熱処理温度より高く、アモルファス相の結晶化温度より低くすることを特徴とする請求項10または請求項11に記載の鉄基軟磁性粉末の製造方法。
  13.  前記第3工程における結晶化度を80~95%とすることを特徴とする請求項10ないし請求項12のいずれか1つに記載の鉄基軟磁性粉末の製造方法。
  14.  粉末の硬度を、保磁力が最小となるときの硬度より小さくすることを特徴とする請求項10ないし請求項13のいずれか1つに記載の鉄基軟磁性粉末の製造方法。
  15.  粉末の硬度を、ISO14577-1に準拠して測定した粉末の硬度で1000~1250HVとすることを特徴とする請求項14に記載の鉄基軟磁性粉末の製造方法。
  16.  平均粒子径を0.5~50μmとすることを特徴とする請求項10ないし請求項15のいずれか1つに記載の鉄基軟磁性粉末の製造方法。
  17.  Feのうち0.5~2.0at%をCrで置換することを特徴とする請求項9ないし請求項16のいずれか1つに記載の鉄基軟磁性粉末の製造方法。
  18.  請求項10ないし請求項17のいずれか1つに記載の鉄基軟磁性粉末の製造方法の後に、加圧成型工程を含む、物品の製造方法。
  19.  物品が圧粉磁心である、請求項18に記載の物品の製造方法。

     
PCT/JP2019/013687 2018-03-29 2019-03-28 鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法 WO2019189614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023114.9A CN111971761A (zh) 2018-03-29 2019-03-28 铁基软磁性粉末及其制造方法、以及包含铁基软磁性合金粉末的物品及其制造方法
JP2020511004A JP7024859B2 (ja) 2018-03-29 2019-03-28 鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法
KR1020207019919A KR102574343B1 (ko) 2018-03-29 2019-03-28 철기 연자성 분말 및 그 제조 방법과, 철기 연자성 합금 분말을 포함하는 물품 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063624 2018-03-29
JP2018063624 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189614A1 true WO2019189614A1 (ja) 2019-10-03

Family

ID=68058224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013687 WO2019189614A1 (ja) 2018-03-29 2019-03-28 鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法

Country Status (5)

Country Link
JP (1) JP7024859B2 (ja)
KR (1) KR102574343B1 (ja)
CN (1) CN111971761A (ja)
TW (1) TWI834652B (ja)
WO (1) WO2019189614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021141267A (ja) * 2020-03-09 2021-09-16 セイコーエプソン株式会社 磁性粉末、磁性粉末成形体、および磁性粉末の製造方法
JP2023506960A (ja) * 2019-12-19 2023-02-20 アルセロールミタル 付加製造用の金属粉末

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940502A (ja) * 1982-08-28 1984-03-06 Matsushita Electric Works Ltd 非晶質コアの熱処理方法
JPH02258957A (ja) * 1988-12-20 1990-10-19 Toshiba Corp Fe基軟磁性合金
JPH05335129A (ja) * 1992-05-29 1993-12-17 Mitsui Petrochem Ind Ltd Fe基軟磁性合金粉末およびその製造方法
JPH07232926A (ja) * 1993-12-27 1995-09-05 Alps Electric Co Ltd 微細結晶粒フェライト及びその製造方法
JP2006118040A (ja) * 2004-09-27 2006-05-11 Tohoku Univ 結晶粒方位配向ナノ結晶磁性材料の製造方法
JP2010280956A (ja) * 2009-06-05 2010-12-16 Alps Electric Co Ltd Fe基軟磁性合金粉末の製造方法
JP2013067863A (ja) * 2005-09-16 2013-04-18 Hitachi Metals Ltd 軟磁性合金粉末およびこれを用いた磁性部品
JP2016025352A (ja) * 2014-07-18 2016-02-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. 軟磁性金属粉末及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
CN101841404B (zh) 2009-03-16 2013-08-07 上海贝尔股份有限公司 中继通信方法及其***和装置
JP5940502B2 (ja) 2013-09-17 2016-06-29 日本電信電話株式会社 ルータ、通信システム、管理方法、および、管理プログラム
TWI518932B (zh) * 2014-07-24 2016-01-21 茂迪股份有限公司 太陽能電池及其模組
JP6651082B2 (ja) * 2015-07-31 2020-02-19 Jfeスチール株式会社 軟磁性圧粉磁芯の製造方法
EP3981827A4 (en) * 2019-10-07 2022-08-10 LG Chem, Ltd. METHOD FOR PRODUCING A SUPERABSORBENT POLYMER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940502A (ja) * 1982-08-28 1984-03-06 Matsushita Electric Works Ltd 非晶質コアの熱処理方法
JPH02258957A (ja) * 1988-12-20 1990-10-19 Toshiba Corp Fe基軟磁性合金
JPH05335129A (ja) * 1992-05-29 1993-12-17 Mitsui Petrochem Ind Ltd Fe基軟磁性合金粉末およびその製造方法
JPH07232926A (ja) * 1993-12-27 1995-09-05 Alps Electric Co Ltd 微細結晶粒フェライト及びその製造方法
JP2006118040A (ja) * 2004-09-27 2006-05-11 Tohoku Univ 結晶粒方位配向ナノ結晶磁性材料の製造方法
JP2013067863A (ja) * 2005-09-16 2013-04-18 Hitachi Metals Ltd 軟磁性合金粉末およびこれを用いた磁性部品
JP2010280956A (ja) * 2009-06-05 2010-12-16 Alps Electric Co Ltd Fe基軟磁性合金粉末の製造方法
JP2016025352A (ja) * 2014-07-18 2016-02-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. 軟磁性金属粉末及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023506960A (ja) * 2019-12-19 2023-02-20 アルセロールミタル 付加製造用の金属粉末
JP7503137B2 (ja) 2019-12-19 2024-06-19 アルセロールミタル 付加製造用の金属粉末
JP2021141267A (ja) * 2020-03-09 2021-09-16 セイコーエプソン株式会社 磁性粉末、磁性粉末成形体、および磁性粉末の製造方法
US11948712B2 (en) 2020-03-09 2024-04-02 Seiko Epson Corporation Magnetic powder, magnetic powder molded body, and method for manufacturing magnetic powder

Also Published As

Publication number Publication date
TW201942389A (zh) 2019-11-01
TWI834652B (zh) 2024-03-11
CN111971761A (zh) 2020-11-20
JPWO2019189614A1 (ja) 2021-04-22
KR20200129089A (ko) 2020-11-17
KR102574343B1 (ko) 2023-09-04
JP7024859B2 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
JP6482718B1 (ja) 軟磁性材料およびその製造方法
US11081266B2 (en) Soft magnetic alloy powder, dust core, and magnetic component
US10847291B2 (en) Soft magnetic powder, dust core, magnetic compound and method of manufacturing dust core
CN110225801B (zh) 软磁性粉末、Fe基纳米晶合金粉末、磁性部件及压粉磁芯
US11145448B2 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP6669304B2 (ja) 結晶質Fe基合金粉末及びその製造方法
JP6088192B2 (ja) 圧粉磁芯の製造方法
JP6493639B1 (ja) Fe基ナノ結晶合金粉末及びその製造方法、Fe基アモルファス合金粉末、並びに、磁心
CN111128504B (zh) 软磁性合金粉末、压粉磁芯、磁性部件及电子设备
CN112004625B (zh) 合金粉末、Fe基纳米结晶合金粉末和磁芯
JP2016104900A (ja) 金属軟磁性合金と磁心、およびその製造方法
US11276516B2 (en) Magnetic powder for high-frequency applications and magnetic resin composition containing same
WO2019189614A1 (ja) 鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法
TWI778112B (zh) 鐵基合金、結晶鐵基合金粉化粉末及磁芯
CN111681846B (zh) 软磁性合金和磁性零件
JP2016162947A (ja) 軟磁性材料、軟磁性粉末、圧粉磁心、およびこれらの製造方法
JPH0448004A (ja) Fe基軟磁性合金粉末とその製造方法およびそれを用いた圧粉磁心
JP2021150555A (ja) 圧粉磁心及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774397

Country of ref document: EP

Kind code of ref document: A1