WO2019171517A1 - Holding member control device - Google Patents

Holding member control device Download PDF

Info

Publication number
WO2019171517A1
WO2019171517A1 PCT/JP2018/008871 JP2018008871W WO2019171517A1 WO 2019171517 A1 WO2019171517 A1 WO 2019171517A1 JP 2018008871 W JP2018008871 W JP 2018008871W WO 2019171517 A1 WO2019171517 A1 WO 2019171517A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding member
component
mounting position
time
mounting
Prior art date
Application number
PCT/JP2018/008871
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 山中
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2018/008871 priority Critical patent/WO2019171517A1/en
Priority to JP2020504573A priority patent/JP6967137B2/en
Publication of WO2019171517A1 publication Critical patent/WO2019171517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • This specification discloses the technique regarding a holding member control apparatus.
  • the component mounting machine described in Patent Literature 1 includes a control unit that controls a moving speed while the suction nozzle moving unit moves the suction nozzle from a component recognition position to a predetermined position based on a recognition processing time by image processing.
  • the suction nozzle moving means is a rotary head equipped with a plurality of suction nozzles at equal intervals on the circumference.
  • the suction nozzle moving means moves the suction nozzles intermittently at intervals, and moves each suction nozzle from the component supply position to the component mounting position via the component recognition position.
  • the control means controls the moving speed while the suction nozzle moving means intermittently rotates the suction nozzle by the arrangement interval based on the recognition processing time.
  • a plurality of mounting heads rotate by intermittent rotation of an intermittent rotating disk, receive electronic components from a component supply device at a component receiving position, and electronically print on a printed wiring board at the component mounting position. Install the parts. While the intermittent turntable rotates, the component supply table moving device moves the component supply table to supply electronic components, and the X-axis slide, Y-axis slide, and Z-axis slide moving devices position the printed wiring board. .
  • a device that is an extension factor of the mounting cycle time is determined, and the acceleration when the operating device other than the device is operated Etc. are selected smaller than the maximum acceleration etc. to reduce vibration.
  • the component placement machine obtains the holding posture of the component with respect to the holding member by performing image processing on an image obtained by capturing the holding member holding the component, and corrects the mounting position of the component on the board based on the acquired holding posture.
  • the mounting position for actually mounting the component is set.
  • the component mounting machine moves the holding member from the imaging position toward the planned mounting position during image processing, and changes the target position of the holding member from the planned mounting position to the mounting position when the mounting position is set. ing.
  • the component mounting machine is trying to improve the component mounting accuracy and reduce the time required from holding the component to mounting.
  • the inventions described in the above patent documents are all directed to a device that intermittently moves the suction nozzle, which is a holding member, at an arrangement interval. That is, the invention described in the above-mentioned patent document is intended to control the movement of the holding member in accordance with the stop of the holding member, and is not intended to avoid the stop of the holding member at the planned mounting position.
  • the time required for image processing may vary, and the holding member may reach the planned mounting position before the mounting position is set. Even in such a case, the holding member temporarily stops at the planned mounting position, and moves toward the mounting position after the mounting position is set.
  • the initial speed of the holding member becomes zero, and the time required to move the holding member from the imaging position to the mounting position may be longer than when the holding member is not paused. There is.
  • the present specification discloses a holding member control device capable of continuing the movement of the holding member holding the component from the imaging position to the mounting position.
  • a holding member control device including an acquisition unit, a correction unit, and a movement control unit.
  • the acquisition unit performs image processing on an image obtained by imaging a holding member holding a component at an imaging position, and acquires a holding posture of the component with respect to the holding member.
  • the correction unit corrects a planned mounting position of the component on the board based on the holding posture of the component acquired by the acquisition unit, and sets a mounting position for actually mounting the component.
  • the movement control unit moves the holding member holding the component from the imaging position toward the mounting planned position, and when the mounting position is set by the correction unit, a target of the holding member The position is changed from the planned mounting position to the mounting position.
  • the movement control unit controls movement of the holding member so that a second timing at which the holding member reaches the planned mounting position is delayed with respect to a first timing at which the setting of the mounting position by the correction unit is expected. Then, the movement of the holding member from the imaging position to the mounting position is continued.
  • the movement control unit holds the holding member so that the second timing at which the holding member reaches the planned mounting position is delayed with respect to the first timing at which the setting of the mounting position by the correction unit is expected. Control the movement of. Thereby, said holding member control apparatus can continue the movement from the imaging position of a holding member to a mounting position.
  • FIG. 2 is a plan view illustrating a configuration example of a component mounting machine 10 and a simulation machine 100.
  • FIG. 3 is a block diagram illustrating an example of a control block of a holding member control device 40.
  • FIG. It is a top view for demonstrating an example of the mounting state of the components 80 when a mounting position is not correct
  • FIG. It is a schematic diagram for demonstrating an example of the relationship between 1st time T1 and 2nd time T2. It is a schematic diagram for demonstrating another example of the relationship between 1st time T1 and 2nd time T2. It is a schematic diagram for demonstrating the example of a setting of detour BY1.
  • Embodiment 1-1 Configuration Example of Board Production Line 10L
  • the board production line 10L includes a plurality (six in this embodiment) of component mounting machines 10, a board production line management device 10H, and a parts database 10DB.
  • a plurality (six) of component mounting machines 10 are provided along the conveyance direction (X-axis direction) of the substrate 90, and the substrate 90 is directed from the upstream component mounting device 10 toward the downstream component mounting device 10. Are sequentially conveyed, and a plurality of components 80 are mounted on the substrate 90.
  • the board production line management apparatus 10H controls a plurality of (six) component mounting machines 10 to manage board production.
  • the component database 10DB stores component information related to a plurality of components 80 mounted on the board 90.
  • a plurality (six) of component mounting machines 10, a board production line management device 10H, and a component database 10DB are connected to be communicable with each other.
  • each of a plurality (six) of component mounting machines 10 includes a substrate transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a substrate camera 15, and a control device 16. ing.
  • substrate conveyance apparatus 11 is comprised by the belt conveyor etc., for example, and conveys the board
  • the substrate 90 is a circuit board on which an electronic circuit or an electric circuit is formed.
  • the board transfer device 11 carries the board 90 into the machine of the component mounting machine 10 and positions the board 90 at a predetermined position in the machine.
  • the substrate transfer device 11 carries the substrate 90 out of the component mounting machine 10 after the component mounting process by the component mounting machine 10 is completed.
  • a board transfer device similar to the board transfer device 11 is provided between the adjacent component mounting machines 10, and the substrate 90 is directed from the upstream component mounting machine 10 to the downstream component mounting machine 10. Are transported in order.
  • the component supply device 12 supplies a component 80 to be mounted on the substrate 90.
  • the component supply device 12 includes a plurality of feeders 121 provided along the conveyance direction (X-axis direction) of the substrate 90. Each of the plurality of feeders 121 feeds and moves the carrier tape in which the plurality of components 80 are stored, and supplies the components 80 so as to be collected at a supply position located on the front end side of the feeder 121.
  • the component supply device 12 may supply a relatively large electronic component (for example, a lead component) compared to a chip component in a state of being arranged on the tray.
  • the component transfer device 13 includes a head driving device 131 and a moving table 132.
  • the head driving device 131 is configured to be able to move the moving table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism.
  • the component mounting head 20 is detachably (replaceable) provided on the movable table 132 by a clamp member (not shown).
  • the component mounting head 20 collects (holds) the component 80 supplied by the component supply device 12 using at least one holding member 30 and mounts the component 80 on the substrate 90 positioned by the substrate transfer device 11.
  • a suction nozzle or a chuck can be used as the holding member 30.
  • a digital imaging device having an imaging element can be used as the component camera 14 and the substrate camera 15, for example.
  • an image sensor such as a charge coupled device (CCD: Charge Coupled Device) or a complementary metal oxide semiconductor (CMOS) can be used as the imaging device.
  • CCD Charge Coupled Device
  • CMOS complementary metal oxide semiconductor
  • the component camera 14 and the board camera 15 perform imaging based on a control signal sent from the control device 16. Image data of images captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
  • the component camera 14 is fixed to the base of the component mounting machine 10 so that the optical axis is upward (vertically upward) in the Z-axis direction.
  • the component camera 14 can take an image of the component 80 held by the holding member 30 from below.
  • the board camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis is downward (vertically downward) in the Z-axis direction.
  • the substrate camera 15 can image the substrate 90 from above.
  • the control device 16 includes a known central processing unit and storage device, and a control circuit is configured (none of which is shown).
  • the central processing unit is a CPU (Central Processing Unit) and can perform various arithmetic processes.
  • the storage device includes a first storage device and a second storage device.
  • the first storage device is a volatile storage device (RAM: Random Access Memory), and the second storage device is a non-volatile storage device (ROM: Read Only Memory).
  • Information output from various sensors provided in the component mounting machine 10, image data, and the like are input to the control device 16.
  • the control device 16 sends a control signal to the component transfer device 13 based on a control program and predetermined mounting conditions set in advance.
  • control device 16 causes the holding member 30 to collect (hold) the component 80 supplied by the component supply device 12 and cause the component camera 14 to image the holding member 30 holding the component 80.
  • a position where the holding member 30 is imaged is defined as an imaging position P1.
  • the control device 16 performs image processing on the image captured by the component camera 14 and recognizes the holding posture of the component 80 with respect to the holding member 30.
  • the control device 16 can recognize, for example, a part serving as a reference position for positioning, a part characteristic in the appearance of the part 80, and the like by image processing and recognize the holding posture of the part 80.
  • the control device 16 moves the holding member 30 toward the upper side of the planned mounting position P2 set in advance by a control program or the like. Further, the control device 16 corrects the mounting position P2 based on the holding posture of the component 80, and sets the mounting position P3 where the component 80 is actually mounted.
  • the planned mounting position P2 and the mounting position P3 include rotation angles in addition to the positions (X-axis coordinates and Y-axis coordinates).
  • the control device 16 corrects the target position (X-axis coordinates and Y-axis coordinates) and the rotation angle of the holding member 30 in accordance with the mounting position P3.
  • the control device 16 lowers the holding member 30 whose position (X-axis coordinate and Y-axis coordinate) and rotation angle are corrected, and mounts the component 80 on the substrate 90.
  • the control device 16 performs a mounting process for mounting the plurality of components 80 on the substrate 90 by repeating the above-described pick and place cycle.
  • the holding member control device 40 includes an acquisition unit 41, a correction unit 42, and a movement control unit 43 when viewed as a control block. It is preferable that the holding member control device 40 further includes at least a storage unit 44 of the storage unit 44 and the correction unit 45. As shown in FIG. 3, the holding member control device 40 of this embodiment includes an acquisition unit 41, a correction unit 42, a movement control unit 43, a storage unit 44, and a correction unit 45. In the present embodiment, the acquisition unit 41, the correction unit 42, the movement control unit 43, the storage unit 44, and the correction unit 45 are provided in the control device 16.
  • the acquisition unit 41 performs image processing on an image obtained by capturing the holding member 30 holding the component 80 at the imaging position P ⁇ b> 1, and acquires the holding posture of the component 80 with respect to the holding member 30.
  • the imaging of the holding member 30 holding the component 80 can be performed by, for example, the component camera 14.
  • the acquisition unit 41 can cause the component camera 14 to image the holding member 30 when the holding member 30 reaches the imaging position P1 and is stationary at the imaging position P1.
  • the acquisition unit 41 can also cause the component camera 14 to image the holding member 30 while moving the holding member 30 (so-called on-the-fly imaging).
  • the acquisition unit 41 performs image processing on the image captured by the component camera 14 and acquires the holding posture of the component 80 with respect to the holding member 30.
  • the image processing can take various methods.
  • the acquisition unit 41 can acquire the holding posture of the component 80 by performing image processing, for example, by binarization of image data, filtering, and hue extraction.
  • the acquisition unit 41 can also change the image processing method according to the type of the component 80, for example. In this case, the acquisition unit 41 can acquire the holding posture of the component 80 by an appropriate image processing method according to the type of the component 80, and can minimize the time required for image processing.
  • correction unit 42 The correction unit 42 corrects the scheduled mounting position P2 of the component 80 on the substrate 90 based on the holding posture of the component 80 acquired by the acquisition unit 41, and sets the mounting position P3 where the component 80 is actually mounted. For example, the component 80 indicated by a broken line in FIG. 4A is held by the holding member 30 without rotating at the center position 81 of the component 80 and is not corrected by the correction unit 42 (the correction amount is zero and the mounting is performed). It is assumed that it is mounted on the substrate 90).
  • the holding posture at this time is referred to as a first holding posture, and the mounting state at this time is referred to as a first mounting state.
  • the first holding posture is a normal holding posture
  • the first wearing state is a normal wearing state.
  • the component 80 is rotated counterclockwise by an angle ⁇ 1 at a position moved by a deviation ⁇ X from the center position 81 of the component 80 in a direction opposite to the X-axis direction (negative direction of the X-axis). It is assumed that the component 80 is held by the holding member 30 in the state.
  • the holding posture at this time is defined as a second holding posture. If correction by the correction unit 42 is not performed when the holding posture is the second holding posture, the component 80 is mounted on the substrate 90 in the state indicated by the solid line in FIG. 4A.
  • the correction unit 42 sets a position moved from the planned mounting position P2 by a deviation ⁇ X in the direction opposite to the X-axis direction (the negative direction of the X-axis) as the mounting position P3.
  • the correction unit 42 sets the correction rotation angle of the holding member 30 to an angle ⁇ 1 (clockwise).
  • the holding member 30 is lowered while being rotated clockwise by the angle ⁇ 1 at the mounting position P3.
  • the component 80 is mounted on the substrate 90 as shown by the solid line in FIG. 4B.
  • the mounting state at this time is the same as the first mounting state shown in FIG. 4A. In this way, the correction unit 42 can set the mounting position P3 based on the holding posture of the component 80 acquired by the acquisition unit 41.
  • Movement control unit 43 moves the holding member 30 holding the component 80 from the imaging position P1 toward the planned mounting position P2, and when the mounting position P3 is set by the correction unit 42, the target of the holding member 30 is set. The position is changed from the planned mounting position P2 to the mounting position P3. Further, the movement control unit 43 holds the holding member 30 so that the second timing TM2 at which the holding member 30 reaches the planned mounting position P2 is delayed with respect to the first timing TM1 at which the setting of the mounting position P3 by the correction unit 42 is expected. The movement of the holding member 30 is continued from the imaging position P1 to the mounting position P3.
  • the holding member 30 holding the component 80 is imaged and image processing is started at time T11.
  • the setting of the mounting position P3 by the correction unit 42 is expected at time T12 (first timing TM1).
  • a required time (time from time T11 to time T12) from when the acquisition unit 41 starts image processing to the first timing TM1 is defined as a first time T1.
  • the movement control unit 43 starts to move the holding member 30 from the imaging position P1 toward the planned mounting position P2.
  • T22 second timing TM2
  • a required time (time from time T21 to time T22) from the start of movement of the holding member 30 to the second timing TM2 is defined as a second time T2.
  • the movement control unit 43 controls the movement of the holding member 30 so that the second timing TM2 is delayed with respect to the first timing TM1, so that the correction unit 42 before the holding member 30 reaches the planned mounting position P2.
  • a mounting position P3 is set.
  • the movement control unit 43 changes the target position of the holding member 30 from the planned mounting position P2 to the mounting position P3. Therefore, the movement control unit 43 can continue the movement of the holding member 30 from the imaging position P1 to the mounting position P3 without temporarily stopping the holding member 30 at the planned mounting position P2.
  • the movement control unit 43 When the acquisition unit 41 starts image processing, the movement control unit 43 preferably starts moving the holding member 30 from the imaging position P1 toward the planned mounting position P2. In this case, as shown in FIG. 5B, time T11 and time T21 coincide. Therefore, the movement control unit 43 delays the second timing TM2 with respect to the first timing TM1 by controlling the movement of the holding member 30 so that the second time T2 is longer than the first time T1.
  • the movement control unit 43 gives an operation instruction to the head driving device 131 shown in FIG. 2, and the moving table on which the component mounting head 20 and the holding member 30 are provided. By moving 132 by the head driving device 131, the holding member 30 moves. Therefore, the second timing TM2 is set in consideration of the time required from the movement instruction by the movement control unit 43 until the movement of the holding member 30 is actually controlled.
  • the movement control unit 43 when the acquisition unit 41 starts image processing, the movement control unit 43 starts to move the holding member 30 from the imaging position P1 toward the planned mounting position P2. Accordingly, the movement control unit 43 controls the movement of the holding member 30 so that the second time T2 is longer than the first time T1, thereby setting the second timing TM2 with respect to the first timing TM1. Can be delayed.
  • the movement control unit 43 compared to the case where the movement of the holding member 30 is started after the acquisition unit 41 starts image processing (see FIG. 5A), the movement control unit 43 has a second time T2 (when the second timing TM2 is the same). The time during which the holding member 30 is moving) can be secured for a long time (see FIG. 5B). For this reason, the degree of freedom in controlling the movement of the holding member 30 is increased, and the choice of control is expanded.
  • the movement control unit 43 controls at least one of the speed V1, the acceleration A1, and the route RT1 when the holding member 30 moves from the imaging position P1 toward the mounting position P2, and the first timing TM1.
  • the second time T2 can be calculated by dividing the moving distance when the holding member 30 moves from the imaging position P1 to the planned mounting position P2 by the speed V1.
  • the moving distance is determined by a control program, mounting conditions, and the like. Therefore, the movement control unit 43 can delay the second timing TM2 with respect to the first timing TM1 by controlling the speed V1 so that the second time T2 becomes the predetermined time shown in FIG. 5A or 5B. it can.
  • the movement control unit 43 similarly controls the acceleration A1 so that the second time T2 becomes the predetermined time shown in FIG. 5A or 5B.
  • the second timing TM2 can be delayed with respect to the first timing TM1.
  • the holding member 30 moves linearly from the imaging position P1 to the planned mounting position P2 at a constant acceleration, and moves linearly from the planned mounting position P2 to the mounting position P3 at a constant acceleration.
  • the holding member 30 is stationary at the imaging position P1 before the movement is started (initial speed is zero), and starts moving simultaneously with the start of image processing.
  • the moving distance from the imaging position P1 to the planned mounting position P2 is 40 mm, and the moving distance from the planned mounting position P2 to the mounting position P3 is 1 mm.
  • the first time T1 is set to 6.4 seconds, and the initial acceleration A1 is set to 2 mm / s 2 .
  • the second time T2 is assumed to be 6.5 seconds obtained by adding 0.1 seconds to 6.4 seconds that is the first time T1.
  • the holding member 30 can continue to move from the imaging position P1 to the mounting position P3 without temporarily stopping at the planned mounting position P2.
  • acceleration control is not limited to linear equal acceleration control, and various acceleration controls can be used.
  • the component camera 14 can also perform the above-described on-the-fly imaging (the initial speed of the holding member 30 is not zero).
  • the movement control unit 43 can perform acceleration control in the same manner in both cases of FIGS. 5A and 5B. Further, when the holding member 30 moves from the imaging position P1 to the mounting position P3, it is not always necessary to pass through the planned mounting position P2.
  • the movement control unit 43 makes the movement distance when the holding member 30 moves from the imaging position P1 to the planned mounting position P2 constant, and the second time T2 is as shown in FIG. 5A or 5B.
  • the speed V1 or the acceleration A1 is controlled so as to be the predetermined time shown.
  • the movement control unit 43 can also delay the second timing TM2 with respect to the first timing TM1 by controlling the route RT1 when the holding member 30 moves from the imaging position P1 toward the planned mounting position P2.
  • the movement control unit 43 can control (route control) the route RT1 so that the speed V1 or the acceleration A1 is constant and the second time T2 becomes the predetermined time shown in FIG. 5A or 5B.
  • the movement control unit 43 increases the route length of the route RT1 as the second time T2 shown in FIG. 5A or 5B becomes longer, and the route length of the route RT1 as the second time T2 becomes shorter. To shorten.
  • the movement control unit 43 can also delay the second timing TM2 with respect to the first timing TM1 by controlling a plurality of speeds V1, acceleration A1, and route RT1.
  • the movement control unit 43 controls a plurality of control parameters among the speed V1, the acceleration A1, and the route RT1 so that the second time T2 becomes the predetermined time shown in FIG. 5A or 5B.
  • the movement control unit 43 controls at least one of the speed V1, the acceleration A1, and the route RT1 when the holding member 30 moves from the imaging position P1 toward the planned mounting position P2.
  • the second timing TM2 can be delayed with respect to the first timing TM1.
  • the movement control unit 43 sets at least the route RT1 of the holding member 30 by setting the detour BY1 when there is a possibility that the setting of the mounting position P3 by the correction unit 42 is not performed by the second timing TM2. Control is preferred.
  • the bypass circuit BY1 bypasses the holding member 30 so that the holding member 30 continues to move until the mounting position P3 is set by the correction unit 42. For example, it is assumed that the setting of the mounting position P3 by the correction unit 42 is not performed even after a predetermined time limit has elapsed since the movement of the holding member 30 from the imaging position P1 toward the mounting planned position P2. At this time, the movement control unit 43 can determine that there is a possibility that the setting of the mounting position P3 by the correction unit 42 is not performed by the second timing TM2.
  • FIG. 6 indicates an example of a route RT1 along which the holding member 30 moves when the detour BY1 is set by the movement control unit 43. Even when the detour BY1 is set by the movement control unit 43, the movement control unit 43 can perform at least one of the speed control and the acceleration control described above. In addition, the moving distance of the holding member 30 increases according to the detour BY1. Moreover, the broken line shown in the figure shows an example of a route RT1 along which the holding member 30 moves when the detour BY1 is not set.
  • the movement control unit 43 sets the detour BY1 to be shorter. Can do. Conversely, the longer the elapsed time is, the closer the holding member 30 is to the expected mounting position P2, so the movement control unit 43 needs to set the detour BY1 longer. Therefore, the movement control unit 43 sets a plurality of time limits with different times, sets the detour BY1 to be shorter as the time limit is shorter (shorter elapsed time), and the time limit is longer (longer elapsed time). The detour BY1 can be set longer. Thereby, the movement control part 43 can set the detour BY1 in steps according to the elapsed time, and can control the route RT1 of the holding member 30.
  • the movement control unit 43 sets at least the bypass BY1 when there is a possibility that the setting of the mounting position P3 by the correction unit 42 is not performed by the second timing TM2, thereby at least The path RT1 of the holding member 30 is controlled.
  • the bypass circuit BY1 bypasses the holding member 30 so that the holding member 30 continues to move until the mounting position P3 is set by the correction unit 42. Thereby, the movement control part 43 can avoid the temporary stop of the holding member 30 in the mounting
  • Storage unit 44 The storage unit 44 stores a predicted value of the first time T1 that is set in advance before starting the production of the substrate in which the component 80 is mounted on the substrate 90. It is preferable that the movement control unit 43 predicts the first timing TM1 using the predicted value of the first time T1 stored in the storage unit 44.
  • the first time T1 which is a required time from the start of the image processing by the acquisition unit 41 to the first timing TM1 generally depends on the required time for the image processing. As will be described later, the time required for image processing may vary depending on, for example, the type of the component 80, the holding posture of the component 80, and the like. Therefore, the storage unit 44 may store a preset predicted value of the first time T1 before starting substrate production.
  • the storage unit 44 is preferably a non-volatile storage device (not shown).
  • the predicted value of the first time T1 can be set based on, for example, part information (part 80 shape, image processing method, etc.) regarding the part 80.
  • the movement control unit 43 predicts the first timing TM1 using the predicted value of the first time T1 stored in the storage unit 44. Specifically, the movement control unit 43 reads the predicted value of the first time T1 from the storage unit 44, and predicts the timing at which the read first time T1 (predicted value) elapses as the first timing TM1 ( FIG. 5A and FIG. 5B).
  • the storage unit 44 stores a predicted value of the first time T1 that is set in advance before starting board production in which the component 80 is mounted on the board 90. Further, the movement control unit 43 predicts the first timing TM1 using the predicted value of the first time T1 stored in the storage unit 44. Thereby, the movement control part 43 can acquire the 1st timing TM1 easily.
  • the appearance shape is simple (such as a rectangular parallelepiped shape), and the time required for image processing is relatively short.
  • the component 80 is an electronic component including an integrated circuit
  • the appearance shape is complicated (a shape including a plurality of electrode terminals and protrusions), and the time required for image processing is relatively long.
  • the first time T1 may be different depending on the type of the component 80, and the storage unit 44 preferably stores the predicted value of the first time T1 for each type of the component 80.
  • the storage unit 44 stores the predicted value of the first time T1 for each type of component 80.
  • the storage unit 44 is provided so as to be able to communicate with a plurality (six) of component mounting machines 10, and the predicted value of the first time T1 stored in the storage unit 44 is a plurality (six) of component mounting machines 10 is preferably available.
  • the storage unit 44 is provided in each control device 16 of a plurality (six) of component mounting machines 10.
  • storage part 44 can also be provided in components database 10DB shown in FIG.
  • the storage unit 44 can also be provided in a device (for example, a cloud server) connected to a plurality of (six) component mounting machines 10 via a network.
  • any of these external devices can communicate with a plurality (six) of component mounting machines 10, and the predicted value of the first time T1 stored in the storage unit 44 is a plurality (six) of component mounting machines. 10 can be used. Therefore, each movement control unit 43 of the plurality of (six) component mounting machines 10 can predict the first timing TM1 by sharing the predicted value of the first time T1 stored in the external device. .
  • Correction unit 45 The correction unit 45 measures the first time T1 during board production, and based on the measured value of the first time T1, the predicted value of the first time T1 stored in the storage unit 44 is calculated. Correct it.
  • the correcting unit 45 preferably uses the longest measured value as the predicted value for the first time T1 among the plurality of measured values measured in a plurality of states in which the holding posture of the component 80 is different for the first time T1. .
  • the predicted value of the first time T1 can be set in advance before starting board production based on, for example, component information about the component 80 (shape of the component 80, image processing method, etc.). it can.
  • the first time T1 is actually used by using the component mounting machine 10, the component data generating device (not shown), etc. before starting the board production. It is good to measure and verify.
  • the component data generation device images the component 80 in the same imaging environment as the component mounting machine 10 and automatically generates component data based on the captured image.
  • the measurement and verification of the first time T1 can also be performed using the component mounting machine 10 during board production.
  • the correction unit 45 measures the first time T1 during substrate production, and the storage unit 44 stores the first time T1 based on the measured value of the first time T1. The predicted value for one hour T1 is corrected. Thereby, the movement control unit 43 can predict the first timing TM1 using the predicted value of the first time T1 with higher accuracy corrected by the correcting unit 45.
  • the correcting unit 45 sets the longest measurement value as the predicted value of the first time T1 among the plurality of measurement values measured in a plurality of states in which the holding posture of the component 80 is different for the first time T1. .
  • the correction unit 45 measures the first time T1 in a plurality of states with different holding postures for the same type of component 80.
  • the holding posture can be determined by the position and rotation angle of the component 80 with respect to the holding member 30.
  • the correction unit 45 sets the longest measurement value among the plurality of measurement values as the predicted value for the first time T1.
  • the correcting unit 45 sets the longest measured value among the plurality of measured values measured in the plurality of states in which the holding posture of the component 80 is different for the first time T1 as the predicted value of the first time T1. And thereby, the movement control unit 43 can predict the first timing TM1 by using the predicted value of the longest expected first time T1, and reliably stop the holding member 30 at the planned mounting position P2. It can be avoided.
  • transformation form control apparatus 16 can also be provided with the estimation part (illustration omitted) which estimates 1st timing TM1, after starting the movement of the holding member 30.
  • the prediction unit acquires the progress status of the image processing by the acquisition unit 41, and predicts the first timing TM1 based on the acquired progress status.
  • the movement control unit 43 differs between the first timing TM1 (pre-start timing) set before starting the movement of the holding member 30 and the first timing TM1 (post-start timing) predicted by the prediction unit.
  • the movement control unit 43 advances the second timing TM2 in accordance with the after-start timing. Conversely, the movement control unit 43 delays the second timing TM2 in accordance with the post-start timing when the post-start timing is later than the pre-start timing.
  • the holding member control device 40 can be used in the component mounting machine 10. Further, the holding member control device 40 can also be used in the simulation machine 100.
  • the simulation machine 100 has the same configuration as that of the component mounting machine 10 shown in FIG. 2, and the process of collecting the component 80 by the holding member 30 and mounting the component 80 on the mounting position P3 of the positioned substrate 90 is performed. It can be simulated. Even in the case where the holding member control device 40 is applied to the simulation machine 100, it is possible to obtain the same effects as those described above.
  • Control Method of Holding Member 30 What has been described above about the holding member control device 40 can also be understood as a control method of the holding member 30. Specifically, the control performed by the acquisition unit 41 corresponds to an acquisition process. The control performed by the correction unit 42 corresponds to a correction process. The control performed by the movement control unit 43 corresponds to a movement control process. The control performed by the storage unit 44 corresponds to a storage process. The control performed by the correction unit 45 corresponds to a correction process. Also in the control method of the holding member 30, it is possible to obtain the same operational effects as those already described for the holding member control device 40.
  • the movement control unit 43 causes the holding member 30 to be placed at the planned mounting position P2 with respect to the first timing TM1 at which the setting of the mounting position P3 by the correction unit 42 is expected.
  • the movement of the holding member 30 is controlled so that the reaching second timing TM2 is delayed.
  • the holding member control apparatus 40 can continue the movement of the holding member 30 from the imaging position P1 to the mounting position P3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This holding member control device is provided with an acquisition unit, a correction unit, and a movement control unit. The acquisition unit image-processes an image obtained by imaging, at an image-capturing position, a holding member that holds a component, and acquires a held posture of the component with respect to the holding member. On the basis of the held posture of the component, which is acquired by the acquisition unit, the correction unit corrects a component mounting planned position in a substrate and sets a mounting position at which the component is to be actually mounted. The movement control unit moves the holding member that holds the component from the image-capturing position toward the mounting planned position, and changes a target position of the holding member from the mounting planned position to the mounting position, when the mounting position is set by the correction unit. In addition, the movement control unit controls the movement of the holding member so that a second timing at which the holding member reaches the mounting planned position is delayed relative to a first timing at which the setting of the mounting position by the correction unit is predicted, and causes the holding member to continue to move from the image capturing position to the mounting position.

Description

保持部材制御装置Holding member control device
 本明細書は、保持部材制御装置に関する技術を開示する。 This specification discloses the technique regarding a holding member control apparatus.
 特許文献1に記載の部品実装機は、画像処理による認識処理時間に基づいて、吸着ノズル移動手段が吸着ノズルを部品認識位置から所定位置まで移動させる間の移動速度を制御する制御手段を備えている。吸着ノズル移動手段は、複数の吸着ノズルを円周上に等間隔に装備したロータリヘッドである。吸着ノズル移動手段は、吸着ノズルを配設間隔で間欠回転移動させ、各吸着ノズルを部品供給位置から部品認識位置を経て部品装着位置に移動させる。制御手段は、認識処理時間に基づいて、吸着ノズル移動手段が吸着ノズルを配設間隔分、間欠回転移動させる間の移動速度を制御する。 The component mounting machine described in Patent Literature 1 includes a control unit that controls a moving speed while the suction nozzle moving unit moves the suction nozzle from a component recognition position to a predetermined position based on a recognition processing time by image processing. Yes. The suction nozzle moving means is a rotary head equipped with a plurality of suction nozzles at equal intervals on the circumference. The suction nozzle moving means moves the suction nozzles intermittently at intervals, and moves each suction nozzle from the component supply position to the component mounting position via the component recognition position. The control means controls the moving speed while the suction nozzle moving means intermittently rotates the suction nozzle by the arrangement interval based on the recognition processing time.
 特許文献2に記載の電気部品装着システムは、間欠回転盤の間欠回転により複数の装着ヘッドが旋回して、部品受取位置において部品供給装置から電子部品を受け取り、部品装着位置においてプリント配線板に電子部品を装着する。間欠回転盤が回転する間、部品供給テーブル移動装置が部品供給テーブルを移動させて電子部品を供給し、X軸スライド、Y軸スライドおよびZ軸スライドの各移動装置が、プリント配線板を位置決めする。特許文献2に記載の電気部品装着システムは、複数の作動装置が同時に最大加速度等で作動した場合に装着サイクルタイムの延長要因となる装置を決定し、当該装置以外の作動装置の作動時の加速度等を最大加速度等より小さく選定して、振動を減少させる。 In the electrical component mounting system described in Patent Document 2, a plurality of mounting heads rotate by intermittent rotation of an intermittent rotating disk, receive electronic components from a component supply device at a component receiving position, and electronically print on a printed wiring board at the component mounting position. Install the parts. While the intermittent turntable rotates, the component supply table moving device moves the component supply table to supply electronic components, and the X-axis slide, Y-axis slide, and Z-axis slide moving devices position the printed wiring board. . In the electrical component mounting system described in Patent Document 2, when a plurality of operating devices are simultaneously operated at the maximum acceleration or the like, a device that is an extension factor of the mounting cycle time is determined, and the acceleration when the operating device other than the device is operated Etc. are selected smaller than the maximum acceleration etc. to reduce vibration.
特開2004-040058号公報JP 2004-040058 A 特開2002-344200号公報JP 2002-344200 A
 部品装着機は、部品を保持している保持部材を撮像した画像を画像処理して保持部材に対する部品の保持姿勢を取得し、取得した保持姿勢に基づいて、基板における部品の装着予定位置を補正して実際に部品を装着する装着位置を設定している。また、部品装着機は、画像処理中に保持部材を撮像位置から装着予定位置に向かって移動させ、装着位置が設定されたときに、保持部材の目標位置を装着予定位置から装着位置に変更している。これらにより、部品装着機は、部品の装着精度を向上させるとともに、部品の保持から装着までの所要時間を低減しようとしている。 The component placement machine obtains the holding posture of the component with respect to the holding member by performing image processing on an image obtained by capturing the holding member holding the component, and corrects the mounting position of the component on the board based on the acquired holding posture. Thus, the mounting position for actually mounting the component is set. In addition, the component mounting machine moves the holding member from the imaging position toward the planned mounting position during image processing, and changes the target position of the holding member from the planned mounting position to the mounting position when the mounting position is set. ing. As a result, the component mounting machine is trying to improve the component mounting accuracy and reduce the time required from holding the component to mounting.
 しかしながら、上記特許文献に記載の発明は、いずれも保持部材である吸着ノズルを配設間隔で間欠回転移動させる装置を対象としている。つまり、上記特許文献に記載の発明は、保持部材の停止に合わせて保持部材の移動を制御しようとするものであり、装着予定位置における保持部材の停止を回避しようとするものではない。また、画像処理の所要時間は変動する可能性があり、装着位置が設定される前に、保持部材が装着予定位置に到達してしまう可能性がある。このような場合も、保持部材は、装着予定位置で一時停止し、装着位置が設定された後に、装着位置に向かって移動することになる。保持部材を一時停止した状態から移動させると、保持部材の初速度はゼロとなり、保持部材を撮像位置から装着位置まで移動させるのに要する所要時間は、一時停止しない場合と比べて長くなる可能性がある。 However, the inventions described in the above patent documents are all directed to a device that intermittently moves the suction nozzle, which is a holding member, at an arrangement interval. That is, the invention described in the above-mentioned patent document is intended to control the movement of the holding member in accordance with the stop of the holding member, and is not intended to avoid the stop of the holding member at the planned mounting position. In addition, the time required for image processing may vary, and the holding member may reach the planned mounting position before the mounting position is set. Even in such a case, the holding member temporarily stops at the planned mounting position, and moves toward the mounting position after the mounting position is set. When the holding member is moved from the paused state, the initial speed of the holding member becomes zero, and the time required to move the holding member from the imaging position to the mounting position may be longer than when the holding member is not paused. There is.
 このような事情に鑑みて、本明細書は、部品を保持している保持部材の撮像位置から装着位置までの移動を継続させることが可能な保持部材制御装置を開示する。 In view of such circumstances, the present specification discloses a holding member control device capable of continuing the movement of the holding member holding the component from the imaging position to the mounting position.
 本明細書は、取得部と補正部と移動制御部とを備える保持部材制御装置を開示する。前記取得部は、部品を保持している保持部材を撮像位置において撮像した画像を画像処理して、前記保持部材に対する前記部品の保持姿勢を取得する。前記補正部は、前記取得部によって取得された前記部品の前記保持姿勢に基づいて、基板における前記部品の装着予定位置を補正して実際に前記部品を装着する装着位置を設定する。前記移動制御部は、前記部品を保持している前記保持部材を前記撮像位置から前記装着予定位置に向かって移動させ、前記補正部によって前記装着位置が設定されたときに、前記保持部材の目標位置を前記装着予定位置から前記装着位置に変更する。前記移動制御部は、前記補正部による前記装着位置の設定が見込まれる第一タイミングに対して、前記保持部材が前記装着予定位置に到達する第二タイミングが遅れるように前記保持部材の移動を制御して、前記保持部材の前記撮像位置から前記装着位置までの移動を継続させる。 This specification discloses a holding member control device including an acquisition unit, a correction unit, and a movement control unit. The acquisition unit performs image processing on an image obtained by imaging a holding member holding a component at an imaging position, and acquires a holding posture of the component with respect to the holding member. The correction unit corrects a planned mounting position of the component on the board based on the holding posture of the component acquired by the acquisition unit, and sets a mounting position for actually mounting the component. The movement control unit moves the holding member holding the component from the imaging position toward the mounting planned position, and when the mounting position is set by the correction unit, a target of the holding member The position is changed from the planned mounting position to the mounting position. The movement control unit controls movement of the holding member so that a second timing at which the holding member reaches the planned mounting position is delayed with respect to a first timing at which the setting of the mounting position by the correction unit is expected. Then, the movement of the holding member from the imaging position to the mounting position is continued.
 上記の保持部材制御装置によれば、移動制御部は、補正部による装着位置の設定が見込まれる第一タイミングに対して、保持部材が装着予定位置に到達する第二タイミングが遅れるように保持部材の移動を制御する。これにより、上記の保持部材制御装置は、保持部材の撮像位置から装着位置までの移動を継続させることができる。 According to the above holding member control device, the movement control unit holds the holding member so that the second timing at which the holding member reaches the planned mounting position is delayed with respect to the first timing at which the setting of the mounting position by the correction unit is expected. Control the movement of. Thereby, said holding member control apparatus can continue the movement from the imaging position of a holding member to a mounting position.
基板生産ライン10Lの構成例を示す構成図である。It is a block diagram which shows the structural example of 10L of board | substrate production lines. 部品装着機10、シミュレーション機100の構成例を示す平面図である。2 is a plan view illustrating a configuration example of a component mounting machine 10 and a simulation machine 100. FIG. 保持部材制御装置40の制御ブロックの一例を示すブロック図である。3 is a block diagram illustrating an example of a control block of a holding member control device 40. FIG. 装着位置が補正されないときの部品80の装着状態の一例を説明するための平面図である。It is a top view for demonstrating an example of the mounting state of the components 80 when a mounting position is not correct | amended. 補正部42によって装着位置が補正されているときの部品80の装着状態の一例を説明するための平面図である。It is a top view for demonstrating an example of the mounting state of the components 80 when the mounting position is correct | amended by the correction | amendment part 42. FIG. 第一時間T1および第二時間T2の関係の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the relationship between 1st time T1 and 2nd time T2. 第一時間T1および第二時間T2の関係の他の一例を説明するための模式図である。It is a schematic diagram for demonstrating another example of the relationship between 1st time T1 and 2nd time T2. 迂回路BY1の設定例を説明するための模式図である。It is a schematic diagram for demonstrating the example of a setting of detour BY1.
 1.実施形態
 1-1.基板生産ライン10Lの構成例
 図1に示すように、基板生産ライン10Lは、複数(本実施形態では、6つ)の部品装着機10と、基板生産ライン管理装置10Hと、部品データベース10DBとを備えている。複数(6つ)の部品装着機10は、基板90の搬送方向(X軸方向)に沿って設けられており、上流側の部品装着機10から下流側の部品装着機10に向かって基板90が順に搬送されて、基板90に複数の部品80が装着される。基板生産ライン管理装置10Hは、複数(6つ)の部品装着機10を制御して、基板生産を管理する。部品データベース10DBは、基板90に装着される複数の部品80に関する部品情報を記憶している。複数(6つ)の部品装着機10、基板生産ライン管理装置10Hおよび部品データベース10DBは、互いに通信可能に接続されている。
1. Embodiment 1-1. Configuration Example of Board Production Line 10L As shown in FIG. 1, the board production line 10L includes a plurality (six in this embodiment) of component mounting machines 10, a board production line management device 10H, and a parts database 10DB. I have. A plurality (six) of component mounting machines 10 are provided along the conveyance direction (X-axis direction) of the substrate 90, and the substrate 90 is directed from the upstream component mounting device 10 toward the downstream component mounting device 10. Are sequentially conveyed, and a plurality of components 80 are mounted on the substrate 90. The board production line management apparatus 10H controls a plurality of (six) component mounting machines 10 to manage board production. The component database 10DB stores component information related to a plurality of components 80 mounted on the board 90. A plurality (six) of component mounting machines 10, a board production line management device 10H, and a component database 10DB are connected to be communicable with each other.
 図2に示すように、複数(6つ)の部品装着機10の各々は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。基板搬送装置11は、例えば、ベルトコンベアなどにより構成され、基板90を搬送方向(X軸方向)に搬送する。基板90は、電子回路または電気回路が形成される回路基板である。基板搬送装置11は、部品装着機10の機内に基板90を搬入するとともに、機内の所定位置に基板90を位置決めする。基板搬送装置11は、部品装着機10による部品80の装着処理が終了した後に、基板90を部品装着機10の機外に搬出する。なお、隣接する部品装着機10の間には、基板搬送装置11と同様の基板搬送装置が設けられており、基板90は、上流側の部品装着機10から下流側の部品装着機10に向かって順に搬送される。 As shown in FIG. 2, each of a plurality (six) of component mounting machines 10 includes a substrate transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a substrate camera 15, and a control device 16. ing. The board | substrate conveyance apparatus 11 is comprised by the belt conveyor etc., for example, and conveys the board | substrate 90 in a conveyance direction (X-axis direction). The substrate 90 is a circuit board on which an electronic circuit or an electric circuit is formed. The board transfer device 11 carries the board 90 into the machine of the component mounting machine 10 and positions the board 90 at a predetermined position in the machine. The substrate transfer device 11 carries the substrate 90 out of the component mounting machine 10 after the component mounting process by the component mounting machine 10 is completed. A board transfer device similar to the board transfer device 11 is provided between the adjacent component mounting machines 10, and the substrate 90 is directed from the upstream component mounting machine 10 to the downstream component mounting machine 10. Are transported in order.
 部品供給装置12は、基板90に装着される部品80を供給する。部品供給装置12は、基板90の搬送方向(X軸方向)に沿って設けられる複数のフィーダ121を備えている。複数のフィーダ121の各々は、複数の部品80が収納されているキャリアテープを送り移動させて、フィーダ121の先端側に位置する供給位置において部品80を採取可能に供給する。また、部品供給装置12は、チップ部品などと比べて比較的大型の電子部品(例えば、リード部品など)を、トレイ上に配置した状態で供給してもよい。 The component supply device 12 supplies a component 80 to be mounted on the substrate 90. The component supply device 12 includes a plurality of feeders 121 provided along the conveyance direction (X-axis direction) of the substrate 90. Each of the plurality of feeders 121 feeds and moves the carrier tape in which the plurality of components 80 are stored, and supplies the components 80 so as to be collected at a supply position located on the front end side of the feeder 121. In addition, the component supply device 12 may supply a relatively large electronic component (for example, a lead component) compared to a chip component in a state of being arranged on the tray.
 部品移載装置13は、ヘッド駆動装置131および移動台132を備えている。ヘッド駆動装置131は、直動機構により移動台132を、X軸方向およびY軸方向に移動可能に構成されている。移動台132には、クランプ部材(図示略)により部品装着ヘッド20が着脱可能(交換可能)に設けられている。部品装着ヘッド20は、少なくとも一つの保持部材30を用いて部品供給装置12によって供給される部品80を採取(保持)して、基板搬送装置11によって位置決めされた基板90に部品80を装着する。保持部材30は、例えば、吸着ノズル、チャックなどを用いることができる。 The component transfer device 13 includes a head driving device 131 and a moving table 132. The head driving device 131 is configured to be able to move the moving table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism. The component mounting head 20 is detachably (replaceable) provided on the movable table 132 by a clamp member (not shown). The component mounting head 20 collects (holds) the component 80 supplied by the component supply device 12 using at least one holding member 30 and mounts the component 80 on the substrate 90 positioned by the substrate transfer device 11. For example, a suction nozzle or a chuck can be used as the holding member 30.
 部品カメラ14および基板カメラ15は、例えば、撮像素子を有するデジタル式の撮像装置を用いることができる。撮像素子は、例えば、電荷結合素子(CCD:Charge Coupled Device)または相補型金属酸化膜半導体(CMOS:Complementary Metal Oxide Semiconductor)などのイメージセンサを用いることができる。部品カメラ14および基板カメラ15は、制御装置16から送出される制御信号に基づいて撮像を行う。部品カメラ14および基板カメラ15によって撮像された画像の画像データは、制御装置16に送信される。 As the component camera 14 and the substrate camera 15, for example, a digital imaging device having an imaging element can be used. For example, an image sensor such as a charge coupled device (CCD: Charge Coupled Device) or a complementary metal oxide semiconductor (CMOS) can be used as the imaging device. The component camera 14 and the board camera 15 perform imaging based on a control signal sent from the control device 16. Image data of images captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
 部品カメラ14は、光軸がZ軸方向の上向き(鉛直上方方向)になるように、部品装着機10の基台に固定されている。部品カメラ14は、保持部材30によって保持されている部品80を下方から撮像することができる。基板カメラ15は、光軸がZ軸方向の下向き(鉛直下方方向)になるように、部品移載装置13の移動台132に設けられている。基板カメラ15は、基板90を上方から撮像することができる。 The component camera 14 is fixed to the base of the component mounting machine 10 so that the optical axis is upward (vertically upward) in the Z-axis direction. The component camera 14 can take an image of the component 80 held by the holding member 30 from below. The board camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis is downward (vertically downward) in the Z-axis direction. The substrate camera 15 can image the substrate 90 from above.
 制御装置16は、公知の中央演算装置および記憶装置を備えており、制御回路が構成されている(いずれも図示略)。中央演算装置は、CPU(Central Processing Unit)であり、種々の演算処理を行うことができる。記憶装置は、第一記憶装置および第二記憶装置を備えている。第一記憶装置は、揮発性の記憶装置(RAM:Random Access Memory)であり、第二記憶装置は、不揮発性の記憶装置(ROM:Read Only Memory)である。制御装置16には、部品装着機10に設けられている各種センサから出力される情報、画像データなどが入力される。制御装置16は、制御プログラムおよび予め設定されている所定の装着条件などに基づいて、部品移載装置13に対して制御信号を送出する。 The control device 16 includes a known central processing unit and storage device, and a control circuit is configured (none of which is shown). The central processing unit is a CPU (Central Processing Unit) and can perform various arithmetic processes. The storage device includes a first storage device and a second storage device. The first storage device is a volatile storage device (RAM: Random Access Memory), and the second storage device is a non-volatile storage device (ROM: Read Only Memory). Information output from various sensors provided in the component mounting machine 10, image data, and the like are input to the control device 16. The control device 16 sends a control signal to the component transfer device 13 based on a control program and predetermined mounting conditions set in advance.
 具体的には、制御装置16は、部品供給装置12によって供給される部品80を保持部材30に採取(保持)させて、部品80を保持している保持部材30を部品カメラ14に撮像させる。保持部材30が撮像される位置を撮像位置P1とする。制御装置16は、部品カメラ14によって撮像された画像を画像処理して、保持部材30に対する部品80の保持姿勢を認識する。制御装置16は、例えば、位置決めの基準位置となる部位、部品80の外観で特徴的な部位などを画像処理によって把握して、部品80の保持姿勢を認識することができる。 Specifically, the control device 16 causes the holding member 30 to collect (hold) the component 80 supplied by the component supply device 12 and cause the component camera 14 to image the holding member 30 holding the component 80. A position where the holding member 30 is imaged is defined as an imaging position P1. The control device 16 performs image processing on the image captured by the component camera 14 and recognizes the holding posture of the component 80 with respect to the holding member 30. The control device 16 can recognize, for example, a part serving as a reference position for positioning, a part characteristic in the appearance of the part 80, and the like by image processing and recognize the holding posture of the part 80.
 制御装置16は、制御プログラムなどによって予め設定される装着予定位置P2の上方に向かって、保持部材30を移動させる。また、制御装置16は、部品80の保持姿勢に基づいて、装着予定位置P2を補正して、実際に部品80を装着する装着位置P3を設定する。装着予定位置P2および装着位置P3は、位置(X軸座標およびY軸座標)の他に回転角度を含む。制御装置16は、装着位置P3に合わせて、保持部材30の目標位置(X軸座標およびY軸座標)および回転角度を補正する。制御装置16は、位置(X軸座標およびY軸座標)および回転角度が補正された保持部材30を下降させて、基板90に部品80を装着する。制御装置16は、上記のピックアンドプレースサイクルを繰り返すことによって、基板90に複数の部品80を装着する装着処理を実行する。 The control device 16 moves the holding member 30 toward the upper side of the planned mounting position P2 set in advance by a control program or the like. Further, the control device 16 corrects the mounting position P2 based on the holding posture of the component 80, and sets the mounting position P3 where the component 80 is actually mounted. The planned mounting position P2 and the mounting position P3 include rotation angles in addition to the positions (X-axis coordinates and Y-axis coordinates). The control device 16 corrects the target position (X-axis coordinates and Y-axis coordinates) and the rotation angle of the holding member 30 in accordance with the mounting position P3. The control device 16 lowers the holding member 30 whose position (X-axis coordinate and Y-axis coordinate) and rotation angle are corrected, and mounts the component 80 on the substrate 90. The control device 16 performs a mounting process for mounting the plurality of components 80 on the substrate 90 by repeating the above-described pick and place cycle.
 1-2.保持部材制御装置40
 保持部材制御装置40は、制御ブロックとして捉えると、取得部41、補正部42および移動制御部43を備えている。保持部材制御装置40は、記憶部44および修正部45のうちの少なくとも記憶部44をさらに備えていると好適である。図3に示すように、本実施形態の保持部材制御装置40は、取得部41、補正部42、移動制御部43、記憶部44および修正部45を備えている。また、本実施形態では、取得部41、補正部42、移動制御部43、記憶部44および修正部45は、制御装置16に設けられている。
1-2. Holding member control device 40
The holding member control device 40 includes an acquisition unit 41, a correction unit 42, and a movement control unit 43 when viewed as a control block. It is preferable that the holding member control device 40 further includes at least a storage unit 44 of the storage unit 44 and the correction unit 45. As shown in FIG. 3, the holding member control device 40 of this embodiment includes an acquisition unit 41, a correction unit 42, a movement control unit 43, a storage unit 44, and a correction unit 45. In the present embodiment, the acquisition unit 41, the correction unit 42, the movement control unit 43, the storage unit 44, and the correction unit 45 are provided in the control device 16.
 1-2-1.取得部41
 取得部41は、部品80を保持している保持部材30を撮像位置P1において撮像した画像を画像処理して、保持部材30に対する部品80の保持姿勢を取得する。既述したように、部品80を保持している保持部材30の撮像は、例えば、部品カメラ14によって行うことができる。取得部41は、保持部材30が撮像位置P1に到達し、撮像位置P1において静止しているときに、部品カメラ14に対して、当該保持部材30を撮像させることができる。また、取得部41は、当該保持部材30を移動させながら、部品カメラ14に対して、当該保持部材30を撮像させることもできる(いわゆるオンザフライ撮像)。
1-2-1. Acquisition unit 41
The acquisition unit 41 performs image processing on an image obtained by capturing the holding member 30 holding the component 80 at the imaging position P <b> 1, and acquires the holding posture of the component 80 with respect to the holding member 30. As described above, the imaging of the holding member 30 holding the component 80 can be performed by, for example, the component camera 14. The acquisition unit 41 can cause the component camera 14 to image the holding member 30 when the holding member 30 reaches the imaging position P1 and is stationary at the imaging position P1. The acquisition unit 41 can also cause the component camera 14 to image the holding member 30 while moving the holding member 30 (so-called on-the-fly imaging).
 取得部41は、部品カメラ14によって撮像された画像を画像処理して、保持部材30に対する部品80の保持姿勢を取得する。画像処理は、種々の方法をとり得る。取得部41は、例えば、画像データの二値化、フィルタリング、色相抽出などによって画像処理して、部品80の保持姿勢を取得することができる。また、取得部41は、例えば、部品80の種類に応じて、画像処理の方法を変更することもできる。この場合、取得部41は、部品80の種類に応じた適切な画像処理方法によって、部品80の保持姿勢を取得することができ、画像処理の所要時間を最短化することができる。 The acquisition unit 41 performs image processing on the image captured by the component camera 14 and acquires the holding posture of the component 80 with respect to the holding member 30. The image processing can take various methods. The acquisition unit 41 can acquire the holding posture of the component 80 by performing image processing, for example, by binarization of image data, filtering, and hue extraction. The acquisition unit 41 can also change the image processing method according to the type of the component 80, for example. In this case, the acquisition unit 41 can acquire the holding posture of the component 80 by an appropriate image processing method according to the type of the component 80, and can minimize the time required for image processing.
 1-2-2.補正部42
 補正部42は、取得部41によって取得された部品80の保持姿勢に基づいて、基板90における部品80の装着予定位置P2を補正して、実際に部品80を装着する装着位置P3を設定する。例えば、図4Aの破線で示す部品80は、部品80の中心位置81において回転することなく、保持部材30によって保持されて、補正部42による補正が行われることなく(補正量がゼロであり装着予定位置P2に装着する)、基板90に装着されているものとする。このときの保持姿勢を第一保持姿勢とし、このときの装着状態を第一装着状態とする。また、第一保持姿勢が正規の保持姿勢であり、第一装着状態が正規の装着状態とする。
1-2-2. Correction unit 42
The correction unit 42 corrects the scheduled mounting position P2 of the component 80 on the substrate 90 based on the holding posture of the component 80 acquired by the acquisition unit 41, and sets the mounting position P3 where the component 80 is actually mounted. For example, the component 80 indicated by a broken line in FIG. 4A is held by the holding member 30 without rotating at the center position 81 of the component 80 and is not corrected by the correction unit 42 (the correction amount is zero and the mounting is performed). It is assumed that it is mounted on the substrate 90). The holding posture at this time is referred to as a first holding posture, and the mounting state at this time is referred to as a first mounting state. The first holding posture is a normal holding posture, and the first wearing state is a normal wearing state.
 図4Aの実線で示すように、部品80の中心位置81からX軸方向と反対方向(X軸の負の方向)に偏差ΔX分、移動した位置において、角度θ1分、反時計回りに回転した状態で、保持部材30によって部品80が保持されている場合を想定する。このときの保持姿勢を第二保持姿勢とする。保持姿勢が第二保持姿勢のときに、補正部42による補正が行われないと、図4Aの実線で示す状態で、部品80が基板90に装着されてしまう。 As shown by the solid line in FIG. 4A, the component 80 is rotated counterclockwise by an angle θ1 at a position moved by a deviation ΔX from the center position 81 of the component 80 in a direction opposite to the X-axis direction (negative direction of the X-axis). It is assumed that the component 80 is held by the holding member 30 in the state. The holding posture at this time is defined as a second holding posture. If correction by the correction unit 42 is not performed when the holding posture is the second holding posture, the component 80 is mounted on the substrate 90 in the state indicated by the solid line in FIG. 4A.
 そこで、図4Bに示すように、補正部42は、装着予定位置P2から、X軸方向と反対方向(X軸の負の方向)に偏差ΔX分、移動した位置を装着位置P3として設定する。また、補正部42は、保持部材30の補正回転角度を角度θ1(時計回り)とする。これにより、保持部材30は、装着位置P3において、角度θ1分、時計回りに回転された状態で下降される。その結果、部品80は、図4Bの実線で示すように基板90に装着される。このときの装着状態は、図4Aに示す第一装着状態と同じである。このようにして、補正部42は、取得部41によって取得された部品80の保持姿勢に基づいて、装着位置P3を設定することができる。 Therefore, as shown in FIG. 4B, the correction unit 42 sets a position moved from the planned mounting position P2 by a deviation ΔX in the direction opposite to the X-axis direction (the negative direction of the X-axis) as the mounting position P3. The correction unit 42 sets the correction rotation angle of the holding member 30 to an angle θ1 (clockwise). As a result, the holding member 30 is lowered while being rotated clockwise by the angle θ1 at the mounting position P3. As a result, the component 80 is mounted on the substrate 90 as shown by the solid line in FIG. 4B. The mounting state at this time is the same as the first mounting state shown in FIG. 4A. In this way, the correction unit 42 can set the mounting position P3 based on the holding posture of the component 80 acquired by the acquisition unit 41.
 1-2-3.移動制御部43
 移動制御部43は、部品80を保持している保持部材30を撮像位置P1から装着予定位置P2に向かって移動させ、補正部42によって装着位置P3が設定されたときに、保持部材30の目標位置を装着予定位置P2から装着位置P3に変更する。また、移動制御部43は、補正部42による装着位置P3の設定が見込まれる第一タイミングTM1に対して、保持部材30が装着予定位置P2に到達する第二タイミングTM2が遅れるように保持部材30の移動を制御して、保持部材30の撮像位置P1から装着位置P3までの移動を継続させる。
1-2-3. Movement control unit 43
The movement control unit 43 moves the holding member 30 holding the component 80 from the imaging position P1 toward the planned mounting position P2, and when the mounting position P3 is set by the correction unit 42, the target of the holding member 30 is set. The position is changed from the planned mounting position P2 to the mounting position P3. Further, the movement control unit 43 holds the holding member 30 so that the second timing TM2 at which the holding member 30 reaches the planned mounting position P2 is delayed with respect to the first timing TM1 at which the setting of the mounting position P3 by the correction unit 42 is expected. The movement of the holding member 30 is continued from the imaging position P1 to the mounting position P3.
 図5Aに示すように、時刻T11において、部品80を保持している保持部材30が撮像され、画像処理が開始されるものとする。そして、時刻T12(第一タイミングTM1)において、補正部42による装着位置P3の設定が見込まれるものとする。取得部41が画像処理を開始してから第一タイミングTM1までの所要時間(時刻T11から時刻T12までの時間)を第一時間T1とする。また、時刻T21において、移動制御部43は、撮像位置P1から装着予定位置P2に向かって保持部材30の移動を開始させるものとする。そして、時刻T22(第二タイミングTM2)において、保持部材30が装着予定位置P2に到達するものとする。保持部材30が移動を開始してから第二タイミングTM2までの所要時間(時刻T21から時刻T22までの時間)を第二時間T2とする。 As shown in FIG. 5A, it is assumed that the holding member 30 holding the component 80 is imaged and image processing is started at time T11. Then, it is assumed that the setting of the mounting position P3 by the correction unit 42 is expected at time T12 (first timing TM1). A required time (time from time T11 to time T12) from when the acquisition unit 41 starts image processing to the first timing TM1 is defined as a first time T1. In addition, at time T21, the movement control unit 43 starts to move the holding member 30 from the imaging position P1 toward the planned mounting position P2. At time T22 (second timing TM2), it is assumed that the holding member 30 reaches the planned mounting position P2. A required time (time from time T21 to time T22) from the start of movement of the holding member 30 to the second timing TM2 is defined as a second time T2.
 第一タイミングTM1に対して第二タイミングTM2が遅れるように、移動制御部43が保持部材30の移動を制御することにより、保持部材30が装着予定位置P2に到達する前に、補正部42によって装着位置P3が設定される。補正部42によって装着位置P3が設定されると、移動制御部43は、保持部材30の目標位置を装着予定位置P2から装着位置P3に変更する。よって、移動制御部43は、装着予定位置P2において保持部材30を一時停止させることなく、保持部材30の撮像位置P1から装着位置P3までの移動を継続させることができる。 The movement control unit 43 controls the movement of the holding member 30 so that the second timing TM2 is delayed with respect to the first timing TM1, so that the correction unit 42 before the holding member 30 reaches the planned mounting position P2. A mounting position P3 is set. When the mounting position P3 is set by the correction unit 42, the movement control unit 43 changes the target position of the holding member 30 from the planned mounting position P2 to the mounting position P3. Therefore, the movement control unit 43 can continue the movement of the holding member 30 from the imaging position P1 to the mounting position P3 without temporarily stopping the holding member 30 at the planned mounting position P2.
 移動制御部43は、取得部41が画像処理を開始する時に、撮像位置P1から装着予定位置P2に向かって保持部材30の移動を開始させると好適である。この場合、図5Bに示すように、時刻T11と時刻T21が一致する。よって、移動制御部43は、第一時間T1と比べて第二時間T2が長くなるように、保持部材30の移動を制御することにより、第一タイミングTM1に対して、第二タイミングTM2を遅らせることができる。なお、図5Aおよび図5Bのいずれの場合も、移動制御部43が図2に示すヘッド駆動装置131に対して動作指示をして、部品装着ヘッド20および保持部材30が設けられている移動台132がヘッド駆動装置131によって移動されることにより、保持部材30が移動する。よって、第二タイミングTM2は、移動制御部43による動作指示から実際に保持部材30が移動制御されるまでの所要時間を考慮して設定する。 When the acquisition unit 41 starts image processing, the movement control unit 43 preferably starts moving the holding member 30 from the imaging position P1 toward the planned mounting position P2. In this case, as shown in FIG. 5B, time T11 and time T21 coincide. Therefore, the movement control unit 43 delays the second timing TM2 with respect to the first timing TM1 by controlling the movement of the holding member 30 so that the second time T2 is longer than the first time T1. be able to. 5A and 5B, the movement control unit 43 gives an operation instruction to the head driving device 131 shown in FIG. 2, and the moving table on which the component mounting head 20 and the holding member 30 are provided. By moving 132 by the head driving device 131, the holding member 30 moves. Therefore, the second timing TM2 is set in consideration of the time required from the movement instruction by the movement control unit 43 until the movement of the holding member 30 is actually controlled.
 本実施形態によれば、移動制御部43は、取得部41が画像処理を開始する時に、撮像位置P1から装着予定位置P2に向かって保持部材30の移動を開始させる。これにより、移動制御部43は、第一時間T1と比べて第二時間T2が長くなるように、保持部材30の移動を制御することにより、第一タイミングTM1に対して、第二タイミングTM2を遅らせることができる。また、取得部41が画像処理を開始した後に、保持部材30の移動を開始させる場合(図5A参照)と比べて、移動制御部43は、第二タイミングTM2が同じ場合、第二時間T2(保持部材30が移動している時間)を長時間確保することができる(図5B参照)。そのため、保持部材30の移動を制御する際の自由度が高まり、制御の選択余地が広がる。 According to the present embodiment, when the acquisition unit 41 starts image processing, the movement control unit 43 starts to move the holding member 30 from the imaging position P1 toward the planned mounting position P2. Accordingly, the movement control unit 43 controls the movement of the holding member 30 so that the second time T2 is longer than the first time T1, thereby setting the second timing TM2 with respect to the first timing TM1. Can be delayed. In addition, compared to the case where the movement of the holding member 30 is started after the acquisition unit 41 starts image processing (see FIG. 5A), the movement control unit 43 has a second time T2 (when the second timing TM2 is the same). The time during which the holding member 30 is moving) can be secured for a long time (see FIG. 5B). For this reason, the degree of freedom in controlling the movement of the holding member 30 is increased, and the choice of control is expanded.
 また、移動制御部43は、保持部材30が撮像位置P1から装着予定位置P2に向かって移動するときの速度V1、加速度A1および経路RT1のうちの少なくとも一つを制御して、第一タイミングTM1に対して第二タイミングTM2を遅らせると好適である。第二時間T2は、保持部材30が撮像位置P1から装着予定位置P2まで移動する際の移動距離を、速度V1で除して算出することができる。当該移動距離は、制御プログラムおよび装着条件などによって決まる。よって、移動制御部43は、第二時間T2が図5Aまたは図5Bに示す所定時間になるように、速度V1を制御することにより、第一タイミングTM1に対して第二タイミングTM2を遅らせることができる。 In addition, the movement control unit 43 controls at least one of the speed V1, the acceleration A1, and the route RT1 when the holding member 30 moves from the imaging position P1 toward the mounting position P2, and the first timing TM1. However, it is preferable to delay the second timing TM2. The second time T2 can be calculated by dividing the moving distance when the holding member 30 moves from the imaging position P1 to the planned mounting position P2 by the speed V1. The moving distance is determined by a control program, mounting conditions, and the like. Therefore, the movement control unit 43 can delay the second timing TM2 with respect to the first timing TM1 by controlling the speed V1 so that the second time T2 becomes the predetermined time shown in FIG. 5A or 5B. it can.
 加速度A1は、速度V1を微分して算出することができるので、移動制御部43は、同様にして、第二時間T2が図5Aまたは図5Bに示す所定時間になるように、加速度A1を制御することにより、第一タイミングTM1に対して第二タイミングTM2を遅らせることができる。例えば、保持部材30が撮像位置P1から装着予定位置P2まで直線状に等加速度で移動し、装着予定位置P2から装着位置P3まで直線状に等加速度で移動する場合を想定する。但し、保持部材30は、移動開始前に撮像位置P1において静止しており(初速度はゼロ)、画像処理の開始と同時に移動を開始するものとする。また、撮像位置P1から装着予定位置P2までの移動距離を40mmとし、装着予定位置P2から装着位置P3までの移動距離を1mmとする。さらに、第一時間T1を6.4秒とし、当初の加速度A1を2mm/sとする。 Since the acceleration A1 can be calculated by differentiating the velocity V1, the movement control unit 43 similarly controls the acceleration A1 so that the second time T2 becomes the predetermined time shown in FIG. 5A or 5B. Thus, the second timing TM2 can be delayed with respect to the first timing TM1. For example, it is assumed that the holding member 30 moves linearly from the imaging position P1 to the planned mounting position P2 at a constant acceleration, and moves linearly from the planned mounting position P2 to the mounting position P3 at a constant acceleration. However, it is assumed that the holding member 30 is stationary at the imaging position P1 before the movement is started (initial speed is zero), and starts moving simultaneously with the start of image processing. Further, the moving distance from the imaging position P1 to the planned mounting position P2 is 40 mm, and the moving distance from the planned mounting position P2 to the mounting position P3 is 1 mm. Further, the first time T1 is set to 6.4 seconds, and the initial acceleration A1 is set to 2 mm / s 2 .
 加速度A1が2mm/sである場合、保持部材30が撮像位置P1から装着予定位置P2まで移動するのに要する所要時間は、等加速度直線運動の公式から、約6.3(=√(2×40÷2))秒になる。第一時間T1が6.4秒であるので、保持部材30は、装着予定位置P2で一時停止する。保持部材30が装着予定位置P2から装着位置P3まで移動するのに要する時間は、1(=√(2×1÷2))秒であるので、仮に第一時間T1が経過すると同時に保持部材30が移動を開始しても、保持部材30が撮像位置P1から装着位置P3まで移動するのに要する所要時間は、7.4(=6.4+1)秒になる。既述したように、移動制御部43による動作指示から実際に保持部材30が移動制御されるまでに時間を要するので、実際の所要時間は、さらに長くなる。 When the acceleration A1 is 2 mm / s 2 , the time required for the holding member 30 to move from the imaging position P1 to the planned mounting position P2 is about 6.3 (= √ (2 × 40 ÷ 2)) seconds. Since the first time T1 is 6.4 seconds, the holding member 30 temporarily stops at the planned mounting position P2. Since the time required for the holding member 30 to move from the planned mounting position P2 to the mounting position P3 is 1 (= √ (2 × 1/2)) seconds, the holding member 30 is assumed to be simultaneously with the first time T1. Even if the movement starts, the time required for the holding member 30 to move from the imaging position P1 to the mounting position P3 is 7.4 (= 6.4 + 1) seconds. As described above, since it takes time from the operation instruction by the movement control unit 43 until the holding member 30 is actually moved and controlled, the actual required time is further increased.
 移動制御部43は、上述した加速度制御における加速度A1を、例えば、約1.9(=√(2×40÷6.5))mm/sとする。但し、第二時間T2は、第一時間T1である6.4秒に0.1秒を加算した6.5秒を想定している。この場合、保持部材30は、装着予定位置P2で一時停止することなく、撮像位置P1から装着位置P3まで移動を継続することができる。保持部材30が撮像位置P1から装着位置P3まで移動するのに要する所要時間は、約6.6(=√(2×41÷1.9))秒になり、保持部材30が装着予定位置P2で一時停止する場合と比べて、所要時間を短縮することができる。 The movement control unit 43 sets the acceleration A1 in the above-described acceleration control to, for example, about 1.9 (= √ (2 × 40 ÷ 6.5 2 )) mm / s 2 . However, the second time T2 is assumed to be 6.5 seconds obtained by adding 0.1 seconds to 6.4 seconds that is the first time T1. In this case, the holding member 30 can continue to move from the imaging position P1 to the mounting position P3 without temporarily stopping at the planned mounting position P2. The time required for the holding member 30 to move from the imaging position P1 to the mounting position P3 is about 6.6 (= √ (2 × 41 ÷ 1.9)) seconds, and the holding member 30 is mounted on the planned mounting position P2. Compared with the case of temporary stop at, the required time can be shortened.
 なお、上述した例は、説明を簡素化するために説明の便宜上、想定したものである。実際の加速度制御は、直線状の等加速度制御に限定されず、種々の加速度制御をとり得る。また、部品カメラ14は、既述したオンザフライ撮像(保持部材30の初速度がゼロでない)を行うこともできる。さらに、移動制御部43は、図5Aおよび図5Bのいずれの場合においても、同様にして加速度制御を行うことができる。また、保持部材30が撮像位置P1から装着位置P3まで移動する際に、必ずしも装着予定位置P2を経由する必要はない。 Note that the above-described example is assumed for convenience of explanation in order to simplify the explanation. Actual acceleration control is not limited to linear equal acceleration control, and various acceleration controls can be used. The component camera 14 can also perform the above-described on-the-fly imaging (the initial speed of the holding member 30 is not zero). Furthermore, the movement control unit 43 can perform acceleration control in the same manner in both cases of FIGS. 5A and 5B. Further, when the holding member 30 moves from the imaging position P1 to the mounting position P3, it is not always necessary to pass through the planned mounting position P2.
 上述した速度制御または加速度制御では、移動制御部43は、撮像位置P1から装着予定位置P2まで保持部材30が移動する際の移動距離を一定にして、第二時間T2が図5Aまたは図5Bに示す所定時間になるように、速度V1または加速度A1を制御している。移動制御部43は、保持部材30が撮像位置P1から装着予定位置P2に向かって移動するときの経路RT1を制御して、第一タイミングTM1に対して第二タイミングTM2を遅らせることもできる。移動制御部43は、例えば、速度V1または加速度A1を一定にして、第二時間T2が図5Aまたは図5Bに示す所定時間になるように、経路RT1を制御(ルーティング制御)することができる。具体的には、移動制御部43は、図5Aまたは図5Bに示す第二時間T2が長くなる程、経路RT1の経路長を長くし、第二時間T2が短くなる程、経路RT1の経路長を短くする。 In the speed control or acceleration control described above, the movement control unit 43 makes the movement distance when the holding member 30 moves from the imaging position P1 to the planned mounting position P2 constant, and the second time T2 is as shown in FIG. 5A or 5B. The speed V1 or the acceleration A1 is controlled so as to be the predetermined time shown. The movement control unit 43 can also delay the second timing TM2 with respect to the first timing TM1 by controlling the route RT1 when the holding member 30 moves from the imaging position P1 toward the planned mounting position P2. For example, the movement control unit 43 can control (route control) the route RT1 so that the speed V1 or the acceleration A1 is constant and the second time T2 becomes the predetermined time shown in FIG. 5A or 5B. Specifically, the movement control unit 43 increases the route length of the route RT1 as the second time T2 shown in FIG. 5A or 5B becomes longer, and the route length of the route RT1 as the second time T2 becomes shorter. To shorten.
 また、移動制御部43は、速度V1、加速度A1および経路RT1のうちの複数を制御して、第一タイミングTM1に対して第二タイミングTM2を遅らせることもできる。この場合、移動制御部43は、第二時間T2が図5Aまたは図5Bに示す所定時間になるように、速度V1、加速度A1および経路RT1のうちの複数の制御パラメータを制御する。本実施形態によれば、移動制御部43は、保持部材30が撮像位置P1から装着予定位置P2に向かって移動するときの速度V1、加速度A1および経路RT1のうちの少なくとも一つを制御することにより、第一タイミングTM1に対して第二タイミングTM2を遅らせることができる。 Further, the movement control unit 43 can also delay the second timing TM2 with respect to the first timing TM1 by controlling a plurality of speeds V1, acceleration A1, and route RT1. In this case, the movement control unit 43 controls a plurality of control parameters among the speed V1, the acceleration A1, and the route RT1 so that the second time T2 becomes the predetermined time shown in FIG. 5A or 5B. According to the present embodiment, the movement control unit 43 controls at least one of the speed V1, the acceleration A1, and the route RT1 when the holding member 30 moves from the imaging position P1 toward the planned mounting position P2. Thus, the second timing TM2 can be delayed with respect to the first timing TM1.
 移動制御部43は、補正部42による装着位置P3の設定が第二タイミングTM2までに行われない可能性が発生したときに、迂回路BY1を設定することにより、少なくとも保持部材30の経路RT1を制御すると好適である。迂回路BY1は、補正部42によって装着位置P3が設定されるまで保持部材30が移動を継続するように、保持部材30を迂回させる。例えば、撮像位置P1から装着予定位置P2に向かって保持部材30の移動を開始させてから所定の制限時間が経過しても、補正部42による装着位置P3の設定が行われなかったとする。このとき、移動制御部43は、補正部42による装着位置P3の設定が、第二タイミングTM2までに行われない可能性が発生したと判断することができる。 The movement control unit 43 sets at least the route RT1 of the holding member 30 by setting the detour BY1 when there is a possibility that the setting of the mounting position P3 by the correction unit 42 is not performed by the second timing TM2. Control is preferred. The bypass circuit BY1 bypasses the holding member 30 so that the holding member 30 continues to move until the mounting position P3 is set by the correction unit 42. For example, it is assumed that the setting of the mounting position P3 by the correction unit 42 is not performed even after a predetermined time limit has elapsed since the movement of the holding member 30 from the imaging position P1 toward the mounting planned position P2. At this time, the movement control unit 43 can determine that there is a possibility that the setting of the mounting position P3 by the correction unit 42 is not performed by the second timing TM2.
 図6に示す撮像位置P1から装着位置P3に向かう矢印は、移動制御部43によって迂回路BY1が設定されたときに保持部材30が移動する経路RT1の一例を示している。移動制御部43によって迂回路BY1が設定される場合においても、移動制御部43は、既述した速度制御および加速度制御のうちの少なくとも一方を合わせて行うことができる。なお、保持部材30の移動距離は、迂回路BY1に応じて増加する。また、同図に示す破線は、迂回路BY1が設定されないときに保持部材30が移動する経路RT1の一例を示している。 6 indicates an example of a route RT1 along which the holding member 30 moves when the detour BY1 is set by the movement control unit 43. Even when the detour BY1 is set by the movement control unit 43, the movement control unit 43 can perform at least one of the speed control and the acceleration control described above. In addition, the moving distance of the holding member 30 increases according to the detour BY1. Moreover, the broken line shown in the figure shows an example of a route RT1 along which the holding member 30 moves when the detour BY1 is not set.
 保持部材30が移動を開始してから経過した経過時間が短い程、保持部材30が装着予定位置P2に到達するまでに余裕があるので、移動制御部43は、迂回路BY1を短く設定することができる。逆に、経過時間が長くなる程、保持部材30が装着予定位置P2に接近するので、移動制御部43は、迂回路BY1を長く設定する必要がある。そこで、移動制御部43は、時間が異なる複数の制限時間を設けて、制限時間が短い(経過時間が短い)程、迂回路BY1を短く設定し、制限時間が長い(経過時間が長い)程、迂回路BY1を長く設定することもできる。これにより、移動制御部43は、経過時間に応じて段階的に迂回路BY1を設定して、保持部材30の経路RT1を制御することができる。 The shorter the elapsed time since the holding member 30 started moving, the more time it takes for the holding member 30 to reach the planned mounting position P2, so the movement control unit 43 sets the detour BY1 to be shorter. Can do. Conversely, the longer the elapsed time is, the closer the holding member 30 is to the expected mounting position P2, so the movement control unit 43 needs to set the detour BY1 longer. Therefore, the movement control unit 43 sets a plurality of time limits with different times, sets the detour BY1 to be shorter as the time limit is shorter (shorter elapsed time), and the time limit is longer (longer elapsed time). The detour BY1 can be set longer. Thereby, the movement control part 43 can set the detour BY1 in steps according to the elapsed time, and can control the route RT1 of the holding member 30.
 本実施形態によれば、移動制御部43は、補正部42による装着位置P3の設定が第二タイミングTM2までに行われない可能性が発生したときに、迂回路BY1を設定することにより、少なくとも保持部材30の経路RT1を制御する。迂回路BY1は、補正部42によって装着位置P3が設定されるまで保持部材30が移動を継続するように、保持部材30を迂回させる。これにより、移動制御部43は、装着予定位置P2における保持部材30の一時停止を確実に回避することができる。 According to the present embodiment, the movement control unit 43 sets at least the bypass BY1 when there is a possibility that the setting of the mounting position P3 by the correction unit 42 is not performed by the second timing TM2, thereby at least The path RT1 of the holding member 30 is controlled. The bypass circuit BY1 bypasses the holding member 30 so that the holding member 30 continues to move until the mounting position P3 is set by the correction unit 42. Thereby, the movement control part 43 can avoid the temporary stop of the holding member 30 in the mounting | wearing scheduled position P2 reliably.
 1-2-4.記憶部44
 記憶部44は、基板90に部品80を装着する基板生産を開始する前に予め設定された第一時間T1の予測値を記憶する。移動制御部43は、記憶部44に記憶されている第一時間T1の予測値を用いて、第一タイミングTM1を予測すると好適である。
1-2-4. Storage unit 44
The storage unit 44 stores a predicted value of the first time T1 that is set in advance before starting the production of the substrate in which the component 80 is mounted on the substrate 90. It is preferable that the movement control unit 43 predicts the first timing TM1 using the predicted value of the first time T1 stored in the storage unit 44.
 取得部41が画像処理を開始してから第一タイミングTM1までの所要時間である第一時間T1は、概ね、画像処理の所要時間に依存する。後述するように、画像処理の所要時間は、例えば、部品80の種類、部品80の保持姿勢などによって変動する可能性がある。よって、記憶部44は、基板生産を開始する前に予め設定された第一時間T1の予測値を記憶しておくと良い。なお、記憶部44は、不揮発性の記憶装置(図示略)であると好適である。 The first time T1, which is a required time from the start of the image processing by the acquisition unit 41 to the first timing TM1, generally depends on the required time for the image processing. As will be described later, the time required for image processing may vary depending on, for example, the type of the component 80, the holding posture of the component 80, and the like. Therefore, the storage unit 44 may store a preset predicted value of the first time T1 before starting substrate production. The storage unit 44 is preferably a non-volatile storage device (not shown).
 第一時間T1の予測値は、例えば、部品80に関する部品情報(部品80の形状、画像処理の方法など)に基づいて、設定することができる。移動制御部43は、記憶部44に記憶されている第一時間T1の予測値を用いて、第一タイミングTM1を予測する。具体的には、移動制御部43は、記憶部44から第一時間T1の予測値を読み出して、読み出した第一時間T1(予測値)が経過するタイミングを、第一タイミングTM1と予測する(図5Aおよび図5B参照)。 The predicted value of the first time T1 can be set based on, for example, part information (part 80 shape, image processing method, etc.) regarding the part 80. The movement control unit 43 predicts the first timing TM1 using the predicted value of the first time T1 stored in the storage unit 44. Specifically, the movement control unit 43 reads the predicted value of the first time T1 from the storage unit 44, and predicts the timing at which the read first time T1 (predicted value) elapses as the first timing TM1 ( FIG. 5A and FIG. 5B).
 本実施形態によれば、記憶部44は、基板90に部品80を装着する基板生産を開始する前に予め設定された第一時間T1の予測値を記憶する。また、移動制御部43は、記憶部44に記憶されている第一時間T1の予測値を用いて、第一タイミングTM1を予測する。これにより、移動制御部43は、第一タイミングTM1を容易に取得することができる。 According to the present embodiment, the storage unit 44 stores a predicted value of the first time T1 that is set in advance before starting board production in which the component 80 is mounted on the board 90. Further, the movement control unit 43 predicts the first timing TM1 using the predicted value of the first time T1 stored in the storage unit 44. Thereby, the movement control part 43 can acquire the 1st timing TM1 easily.
 例えば、部品80がチップ抵抗器、チップコンデンサなどの場合、外観形状が簡素(直方体形状など)であり、画像処理の所要時間は、比較的短くなる。逆に、部品80が集積回路を含む電子部品などの場合、外観形状が複雑(複数の電極端子、突起部などを備える形状)であり、画像処理の所要時間は、比較的長くなる。このように、部品80の種類によって第一時間T1が異なる可能性があり、記憶部44は、部品80の種類毎に第一時間T1の予測値を記憶すると好適である。本実施形態によれば、記憶部44は、部品80の種類毎に第一時間T1の予測値を記憶する。これにより、移動制御部43は、部品80の種類に応じた第一タイミングTM1を容易に取得することができる。 For example, when the component 80 is a chip resistor, a chip capacitor or the like, the appearance shape is simple (such as a rectangular parallelepiped shape), and the time required for image processing is relatively short. Conversely, when the component 80 is an electronic component including an integrated circuit, the appearance shape is complicated (a shape including a plurality of electrode terminals and protrusions), and the time required for image processing is relatively long. Thus, the first time T1 may be different depending on the type of the component 80, and the storage unit 44 preferably stores the predicted value of the first time T1 for each type of the component 80. According to the present embodiment, the storage unit 44 stores the predicted value of the first time T1 for each type of component 80. Thereby, the movement control part 43 can acquire the 1st timing TM1 according to the kind of component 80 easily.
 また、記憶部44は、複数(6つ)の部品装着機10と通信可能に設けられ、記憶部44が記憶している第一時間T1の予測値は、複数(6つ)の部品装着機10において利用可能であると好適である。本実施形態では、記憶部44は、複数(6つ)の部品装着機10の各々の制御装置16に設けられている。しかしながら、記憶部44は、図1に示す部品データベース10DBに設けることもできる。また、記憶部44は、複数(6つ)の部品装着機10とネットワーク接続される機器(例えば、クラウドサーバなど)に設けることもできる。 The storage unit 44 is provided so as to be able to communicate with a plurality (six) of component mounting machines 10, and the predicted value of the first time T1 stored in the storage unit 44 is a plurality (six) of component mounting machines 10 is preferably available. In the present embodiment, the storage unit 44 is provided in each control device 16 of a plurality (six) of component mounting machines 10. However, the memory | storage part 44 can also be provided in components database 10DB shown in FIG. The storage unit 44 can also be provided in a device (for example, a cloud server) connected to a plurality of (six) component mounting machines 10 via a network.
 これらの外部機器は、いずれも複数(6つ)の部品装着機10と通信可能であり、記憶部44が記憶している第一時間T1の予測値は、複数(6つ)の部品装着機10において利用することができる。よって、複数(6つ)の部品装着機10の各々の移動制御部43は、外部機器に記憶されている第一時間T1の予測値を共用して、第一タイミングTM1を予測することができる。 Any of these external devices can communicate with a plurality (six) of component mounting machines 10, and the predicted value of the first time T1 stored in the storage unit 44 is a plurality (six) of component mounting machines. 10 can be used. Therefore, each movement control unit 43 of the plurality of (six) component mounting machines 10 can predict the first timing TM1 by sharing the predicted value of the first time T1 stored in the external device. .
 1-2-5.修正部45
 修正部45は、基板生産を行っているときに第一時間T1を測定し、測定した第一時間T1の測定値に基づいて、記憶部44が記憶している第一時間T1の予測値を修正する。また、修正部45は、第一時間T1について部品80の保持姿勢が異なる複数の状態において測定された複数の測定値のうち、最長の測定値を第一時間T1の予測値とすると好適である。
1-2-5. Correction unit 45
The correction unit 45 measures the first time T1 during board production, and based on the measured value of the first time T1, the predicted value of the first time T1 stored in the storage unit 44 is calculated. Correct it. The correcting unit 45 preferably uses the longest measured value as the predicted value for the first time T1 among the plurality of measured values measured in a plurality of states in which the holding posture of the component 80 is different for the first time T1. .
 既述したように、第一時間T1の予測値は、例えば、部品80に関する部品情報(部品80の形状、画像処理の方法など)に基づいて、基板生産を開始する前に予め設定することができる。しかしながら、第一時間T1の予測値の精度を向上させるためには、基板生産を開始する前に、部品装着機10、部品データ生成装置(図示略)などを用いて、実際に第一時間T1を測定し検証しておくと良い。なお、部品データ生成装置は、部品装着機10と同じ撮像環境において部品80を撮像し、撮像された画像に基づいて、部品データを自動生成する。また、第一時間T1の測定および検証は、基板生産を行っているときに、部品装着機10を用いて行うこともできる。 As described above, the predicted value of the first time T1 can be set in advance before starting board production based on, for example, component information about the component 80 (shape of the component 80, image processing method, etc.). it can. However, in order to improve the accuracy of the predicted value of the first time T1, the first time T1 is actually used by using the component mounting machine 10, the component data generating device (not shown), etc. before starting the board production. It is good to measure and verify. Note that the component data generation device images the component 80 in the same imaging environment as the component mounting machine 10 and automatically generates component data based on the captured image. The measurement and verification of the first time T1 can also be performed using the component mounting machine 10 during board production.
 本実施形態によれば、修正部45は、基板生産を行っているときに第一時間T1を測定し、測定した第一時間T1の測定値に基づいて、記憶部44が記憶している第一時間T1の予測値を修正する。これにより、移動制御部43は、修正部45によって修正されたより精度が高い第一時間T1の予測値を用いて、第一タイミングTM1を予測することができる。 According to the present embodiment, the correction unit 45 measures the first time T1 during substrate production, and the storage unit 44 stores the first time T1 based on the measured value of the first time T1. The predicted value for one hour T1 is corrected. Thereby, the movement control unit 43 can predict the first timing TM1 using the predicted value of the first time T1 with higher accuracy corrected by the correcting unit 45.
 また、保持部材30によって保持されている部品80の保持姿勢が正規の保持姿勢と異なると、部品80の特定および保持姿勢の取得に時間を要する場合がある。そのため、同種の部品80であっても、画像処理の所要時間は、部品80の保持姿勢によって変動する可能性がある。そこで、修正部45は、第一時間T1について部品80の保持姿勢が異なる複数の状態において測定された複数の測定値のうち、最長の測定値を第一時間T1の予測値とすると好適である。 Also, if the holding posture of the component 80 held by the holding member 30 is different from the normal holding posture, it may take time to specify the component 80 and acquire the holding posture. Therefore, even for the same type of component 80, the time required for image processing may vary depending on the holding posture of the component 80. Therefore, it is preferable that the correcting unit 45 sets the longest measurement value as the predicted value of the first time T1 among the plurality of measurement values measured in a plurality of states in which the holding posture of the component 80 is different for the first time T1. .
 具体的には、修正部45は、同種の部品80について保持姿勢が異なる複数の状態において、第一時間T1を測定する。既述したように、保持姿勢は、保持部材30に対する部品80の位置および回転角度によって判断することができる。修正部45は、複数の測定値のうち、最長の測定値を第一時間T1の予測値とする。 Specifically, the correction unit 45 measures the first time T1 in a plurality of states with different holding postures for the same type of component 80. As described above, the holding posture can be determined by the position and rotation angle of the component 80 with respect to the holding member 30. The correction unit 45 sets the longest measurement value among the plurality of measurement values as the predicted value for the first time T1.
 本実施形態によれば、修正部45は、第一時間T1について部品80の保持姿勢が異なる複数の状態において測定された複数の測定値のうち、最長の測定値を第一時間T1の予測値とする。これにより、移動制御部43は、想定される最長の第一時間T1の予測値を用いて、第一タイミングTM1を予測することができ、装着予定位置P2における保持部材30の一時停止を確実に回避することができる。 According to the present embodiment, the correcting unit 45 sets the longest measured value among the plurality of measured values measured in the plurality of states in which the holding posture of the component 80 is different for the first time T1 as the predicted value of the first time T1. And Thereby, the movement control unit 43 can predict the first timing TM1 by using the predicted value of the longest expected first time T1, and reliably stop the holding member 30 at the planned mounting position P2. It can be avoided.
 1-2-6.変形形態
 制御装置16は、保持部材30の移動を開始させた後に、第一タイミングTM1を予測する予測部(図示略)を備えることもできる。予測部は、取得部41による画像処理の進行状況を取得し、取得した進行状況に基づいて、第一タイミングTM1を予測する。この場合、移動制御部43は、保持部材30の移動を開始させる前に設定した第一タイミングTM1(開始前タイミング)と、予測部によって予測された第一タイミングTM1(開始後タイミング)との差が、所定の許容差を超えているときに、第二タイミングTM2を早めまたは遅らせると好適である。具体的には、移動制御部43は、開始後タイミングが開始前タイミングに対して早い場合に、開始後タイミングに合わせて第二タイミングTM2を早める。逆に、移動制御部43は、開始後タイミングが開始前タイミングに対して遅い場合に、開始後タイミングに合わせて第二タイミングTM2を遅らせる。
1-2-6. The deformation | transformation form control apparatus 16 can also be provided with the estimation part (illustration omitted) which estimates 1st timing TM1, after starting the movement of the holding member 30. FIG. The prediction unit acquires the progress status of the image processing by the acquisition unit 41, and predicts the first timing TM1 based on the acquired progress status. In this case, the movement control unit 43 differs between the first timing TM1 (pre-start timing) set before starting the movement of the holding member 30 and the first timing TM1 (post-start timing) predicted by the prediction unit. However, when the predetermined tolerance is exceeded, it is preferable to advance or delay the second timing TM2. Specifically, when the after-start timing is earlier than the before-start timing, the movement control unit 43 advances the second timing TM2 in accordance with the after-start timing. Conversely, the movement control unit 43 delays the second timing TM2 in accordance with the post-start timing when the post-start timing is later than the pre-start timing.
 2.適用例
 既述したように、保持部材制御装置40は、部品装着機10に用いることができる。また、保持部材制御装置40は、シミュレーション機100に用いることもできる。シミュレーション機100は、図2に示す部品装着機10と同様の構成を備えており、保持部材30によって部品80を採取して、位置決めされた基板90の装着位置P3に部品80を装着する工程をシミュレーションすることができる。保持部材制御装置40がシミュレーション機100に適用される場合においても、既述した作用効果と同様の作用効果を得ることができる。
2. Application Example As described above, the holding member control device 40 can be used in the component mounting machine 10. Further, the holding member control device 40 can also be used in the simulation machine 100. The simulation machine 100 has the same configuration as that of the component mounting machine 10 shown in FIG. 2, and the process of collecting the component 80 by the holding member 30 and mounting the component 80 on the mounting position P3 of the positioned substrate 90 is performed. It can be simulated. Even in the case where the holding member control device 40 is applied to the simulation machine 100, it is possible to obtain the same effects as those described above.
 3.保持部材30の制御方法
 保持部材制御装置40について既述したことは、保持部材30の制御方法として捉えることもできる。具体的には、取得部41が行う制御は、取得工程に相当する。補正部42が行う制御は、補正工程に相当する。移動制御部43が行う制御は、移動制御工程に相当する。記憶部44が行う制御は、記憶工程に相当する。修正部45が行う制御は、修正工程に相当する。保持部材30の制御方法においても、保持部材制御装置40について既述した作用効果と同様の作用効果を得ることができる。
3. Control Method of Holding Member 30 What has been described above about the holding member control device 40 can also be understood as a control method of the holding member 30. Specifically, the control performed by the acquisition unit 41 corresponds to an acquisition process. The control performed by the correction unit 42 corresponds to a correction process. The control performed by the movement control unit 43 corresponds to a movement control process. The control performed by the storage unit 44 corresponds to a storage process. The control performed by the correction unit 45 corresponds to a correction process. Also in the control method of the holding member 30, it is possible to obtain the same operational effects as those already described for the holding member control device 40.
 4.実施形態の効果の一例
 保持部材制御装置40によれば、移動制御部43は、補正部42による装着位置P3の設定が見込まれる第一タイミングTM1に対して、保持部材30が装着予定位置P2に到達する第二タイミングTM2が遅れるように保持部材30の移動を制御する。これにより、保持部材制御装置40は、保持部材30の撮像位置P1から装着位置P3までの移動を継続させることができる。
4). Example of Effect of Embodiment According to the holding member control device 40, the movement control unit 43 causes the holding member 30 to be placed at the planned mounting position P2 with respect to the first timing TM1 at which the setting of the mounting position P3 by the correction unit 42 is expected. The movement of the holding member 30 is controlled so that the reaching second timing TM2 is delayed. Thereby, the holding member control apparatus 40 can continue the movement of the holding member 30 from the imaging position P1 to the mounting position P3.
10:部品装着機、30:保持部材、
40:保持部材制御装置、
41:取得部、42:補正部、43:移動制御部、
44:記憶部、45:修正部、
80:部品、90:基板、
100:シミュレーション機、
P1:撮像位置、P2:装着予定位置、P3:装着位置、
TM1:第一タイミング、TM2:第二タイミング、
T1:第一時間、
V1:速度、A1:加速度、RT1:経路、
BY1:迂回路。
10: component mounting machine, 30: holding member,
40: Holding member control device,
41: acquisition unit, 42: correction unit, 43: movement control unit,
44: storage unit, 45: correction unit,
80: parts, 90: substrate
100: simulation machine,
P1: imaging position, P2: scheduled mounting position, P3: mounting position,
TM1: First timing, TM2: Second timing,
T1: First time,
V1: speed, A1: acceleration, RT1: path,
BY1: Detour.

Claims (10)

  1.  部品を保持している保持部材を撮像位置において撮像した画像を画像処理して、前記保持部材に対する前記部品の保持姿勢を取得する取得部と、
     前記取得部によって取得された前記部品の前記保持姿勢に基づいて、基板における前記部品の装着予定位置を補正して実際に前記部品を装着する装着位置を設定する補正部と、
     前記部品を保持している前記保持部材を前記撮像位置から前記装着予定位置に向かって移動させ、前記補正部によって前記装着位置が設定されたときに、前記保持部材の目標位置を前記装着予定位置から前記装着位置に変更する移動制御部と、
    を備え、
     前記移動制御部は、前記補正部による前記装着位置の設定が見込まれる第一タイミングに対して、前記保持部材が前記装着予定位置に到達する第二タイミングが遅れるように前記保持部材の移動を制御して、前記保持部材の前記撮像位置から前記装着位置までの移動を継続させる保持部材制御装置。
    An acquisition unit that performs image processing on an image obtained by imaging a holding member holding a component at an imaging position, and acquires a holding posture of the component with respect to the holding member;
    Based on the holding posture of the component acquired by the acquisition unit, the correction unit that corrects the planned mounting position of the component on the board and sets the mounting position for actually mounting the component;
    When the holding member holding the component is moved from the imaging position toward the planned mounting position and the mounting position is set by the correction unit, the target position of the holding member is set to the planned mounting position. A movement control unit for changing from the mounting position to the mounting position;
    With
    The movement control unit controls movement of the holding member so that a second timing at which the holding member reaches the planned mounting position is delayed with respect to a first timing at which the setting of the mounting position by the correction unit is expected. A holding member control device that continues the movement of the holding member from the imaging position to the mounting position.
  2.  前記移動制御部は、前記取得部が前記画像処理を開始する時に、前記撮像位置から前記装着予定位置に向かって前記保持部材の移動を開始させる請求項1に記載の保持部材制御装置。 The holding member control device according to claim 1, wherein the movement control unit starts movement of the holding member from the imaging position toward the planned mounting position when the acquisition unit starts the image processing.
  3.  前記移動制御部は、前記保持部材が前記撮像位置から前記装着予定位置に向かって移動するときの速度、加速度および経路のうちの少なくとも一つを制御して、前記第一タイミングに対して前記第二タイミングを遅らせる請求項1または請求項2に記載の保持部材制御装置。 The movement control unit controls at least one of a speed, an acceleration, and a path when the holding member moves from the imaging position toward the installation planned position, and performs the first control with respect to the first timing. The holding member control device according to claim 1 or 2, wherein the two timings are delayed.
  4.  前記移動制御部は、前記補正部による前記装着位置の設定が前記第二タイミングまでに行われない可能性が発生したときに、前記補正部によって前記装着位置が設定されるまで前記保持部材が移動を継続するように前記保持部材を迂回させる迂回路を設定することにより、少なくとも前記保持部材の前記経路を制御する請求項3に記載の保持部材制御装置。 The movement control unit moves the holding member until the mounting position is set by the correction unit when there is a possibility that the mounting position is not set by the correction unit by the second timing. The holding member control device according to claim 3, wherein at least the path of the holding member is controlled by setting a detour that bypasses the holding member so as to continue.
  5.  前記取得部が前記画像処理を開始してから前記第一タイミングまでの所要時間を第一時間とするとき、
     前記基板に前記部品を装着する基板生産を開始する前に予め設定された前記第一時間の予測値を記憶する記憶部を備え、
     前記移動制御部は、前記記憶部に記憶されている前記第一時間の予測値を用いて、前記第一タイミングを予測する請求項1~請求項4のいずれか一項に記載の保持部材制御装置。
    When the time required from the acquisition unit to start the image processing until the first timing is the first time,
    A storage unit for storing the predicted value of the first time set in advance before starting the production of the board for mounting the component on the board;
    The holding member control according to any one of claims 1 to 4, wherein the movement control unit predicts the first timing using a predicted value of the first time stored in the storage unit. apparatus.
  6.  前記記憶部は、前記部品の種類毎に前記第一時間の予測値を記憶する請求項5に記載の保持部材制御装置。 The holding member control device according to claim 5, wherein the storage unit stores the predicted value of the first time for each type of the component.
  7.  前記基板生産を行っているときに前記第一時間を測定し、測定した前記第一時間の測定値に基づいて、前記記憶部が記憶している前記第一時間の予測値を修正する修正部を備える請求項5または請求項6に記載の保持部材制御装置。 A correction unit that measures the first time during the substrate production and corrects the predicted value of the first time stored in the storage unit based on the measured value of the first time measured. A holding member control device according to claim 5 or 6.
  8.  前記修正部は、前記第一時間について前記部品の前記保持姿勢が異なる複数の状態において測定された複数の測定値のうち、最長の測定値を前記第一時間の予測値とする請求項7に記載の保持部材制御装置。 The correction unit uses the longest measurement value among the plurality of measurement values measured in a plurality of states in which the holding postures of the parts are different for the first time as the predicted value of the first time. The holding member control apparatus as described.
  9.  前記記憶部は、複数の部品装着機と通信可能に設けられ、
     前記記憶部が記憶している前記第一時間の予測値は、前記複数の部品装着機において利用可能である請求項5~請求項8のいずれか一項に記載の保持部材制御装置。
    The storage unit is provided to be able to communicate with a plurality of component mounting machines,
    The holding member control device according to any one of claims 5 to 8, wherein the predicted value of the first time stored in the storage unit can be used in the plurality of component mounting machines.
  10.  前記保持部材によって前記部品を採取して、位置決めされた前記基板の前記装着位置に前記部品を装着する工程をシミュレーションするシミュレーション機に用いられる請求項1~請求項6のいずれか一項に記載の保持部材制御装置。 The sample according to any one of claims 1 to 6, wherein the component is collected by the holding member, and used in a simulation machine that simulates a process of mounting the component on the mounting position of the positioned board. Holding member control device.
PCT/JP2018/008871 2018-03-07 2018-03-07 Holding member control device WO2019171517A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/008871 WO2019171517A1 (en) 2018-03-07 2018-03-07 Holding member control device
JP2020504573A JP6967137B2 (en) 2018-03-07 2018-03-07 Holding member control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008871 WO2019171517A1 (en) 2018-03-07 2018-03-07 Holding member control device

Publications (1)

Publication Number Publication Date
WO2019171517A1 true WO2019171517A1 (en) 2019-09-12

Family

ID=67846695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008871 WO2019171517A1 (en) 2018-03-07 2018-03-07 Holding member control device

Country Status (2)

Country Link
JP (1) JP6967137B2 (en)
WO (1) WO2019171517A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135988A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Method for mounting electronic parts
JPH11298198A (en) * 1998-04-14 1999-10-29 Tenryu Technics:Kk Method of mounting electronic components
JP2009140945A (en) * 2007-12-03 2009-06-25 Yamaha Motor Co Ltd Component sucking apparatus, sucking position correcting method thereof and mounter
JP2010147401A (en) * 2008-12-22 2010-07-01 Hitachi High-Tech Instruments Co Ltd Electronic component mounting apparatus and image distortion correcting method
WO2014174598A1 (en) * 2013-04-24 2014-10-30 株式会社日立製作所 Component mounting device, mounting head, and control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135988A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Method for mounting electronic parts
JPH11298198A (en) * 1998-04-14 1999-10-29 Tenryu Technics:Kk Method of mounting electronic components
JP2009140945A (en) * 2007-12-03 2009-06-25 Yamaha Motor Co Ltd Component sucking apparatus, sucking position correcting method thereof and mounter
JP2010147401A (en) * 2008-12-22 2010-07-01 Hitachi High-Tech Instruments Co Ltd Electronic component mounting apparatus and image distortion correcting method
WO2014174598A1 (en) * 2013-04-24 2014-10-30 株式会社日立製作所 Component mounting device, mounting head, and control device

Also Published As

Publication number Publication date
JPWO2019171517A1 (en) 2020-12-03
JP6967137B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP7231706B2 (en) work machine
JP2007305775A (en) Component mounting method, component mounting device and component mounting system
JP2006339392A (en) Component mounting apparatus
JP6411663B2 (en) Component mounting equipment
CN111034387B (en) Component mounting machine and component mounting method
JP6599286B2 (en) Board work equipment
WO2019171517A1 (en) Holding member control device
JP5254875B2 (en) Mounting machine
JP2005150387A (en) Method and device for mounting component
JP6975254B2 (en) Board production line management device and board production line management method
JP6756467B2 (en) Imaging method in component mounting device and component mounting device
WO2019180954A1 (en) Component-mounting device
JP6580419B2 (en) Measuring device and measuring method for camera
JP6590949B2 (en) Mounting head movement error detection device and component mounting device
US11330748B2 (en) Electronic component mounting method and electronic component mounting machine
JP4961745B2 (en) IC chip mounting body manufacturing apparatus and IC chip mounting body transfer position control method
WO2020039569A1 (en) Component mounting machine and component collection method
JP3564191B2 (en) Positioning method and device for mounting machine
JP2002009494A (en) Method and device for recognizing board of part mounting system
JP7040567B2 (en) Control device, control method of control device, information processing program, and recording medium
CN113228846B (en) Component mounting apparatus
JP6985901B2 (en) Component mounting machine and mounting line
TWI823447B (en) Piezoelectric oscillation device manufacturing apparatus and method for manufacturing piezoelectric oscillation device
JPH0766594A (en) Component mounting device
JPH0464288A (en) Component mounting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908866

Country of ref document: EP

Kind code of ref document: A1