WO2019138812A1 - 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 - Google Patents

弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 Download PDF

Info

Publication number
WO2019138812A1
WO2019138812A1 PCT/JP2018/046699 JP2018046699W WO2019138812A1 WO 2019138812 A1 WO2019138812 A1 WO 2019138812A1 JP 2018046699 W JP2018046699 W JP 2018046699W WO 2019138812 A1 WO2019138812 A1 WO 2019138812A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
resonator
sound velocity
piezoelectric layer
wave resonator
Prior art date
Application number
PCT/JP2018/046699
Other languages
English (en)
French (fr)
Inventor
中川 亮
英樹 岩本
努 ▲高▼井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019564599A priority Critical patent/JP6950751B2/ja
Priority to CN201880086018.4A priority patent/CN111602337B/zh
Publication of WO2019138812A1 publication Critical patent/WO2019138812A1/ja
Priority to US16/914,522 priority patent/US11496226B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Definitions

  • the present invention relates generally to elastic wave devices, multiplexers, high frequency front end circuits, and communication devices.
  • the present invention relates to an elastic wave device including a plurality of elastic wave resonators, a multiplexer including the elastic wave device, a high frequency front end circuit including the multiplexer, and a communication device including the high frequency front end circuit.
  • the surface acoustic wave device described in Patent Document 1 includes a support substrate, a high sound velocity film, a low sound velocity film, a piezoelectric film, and an IDT electrode.
  • the high sound velocity film is a film in which the sound velocity of the bulk wave propagating through the high sound velocity film is faster than the sound velocity of the elastic wave propagating through the piezoelectric film.
  • the low sound velocity film is a film which is stacked on the high sound velocity film, and the sound velocity of the bulk wave propagating through the low sound velocity film is slower than the sound velocity of the elastic wave propagating through the piezoelectric film.
  • the piezoelectric film is piezoelectric and is stacked on the low sound velocity film.
  • the IDT electrode is formed on the piezoelectric film.
  • the high-order mode occurs on the high frequency side of the passband. Do. Furthermore, as the temperature changes, the frequency at which the higher order mode occurs changes. Therefore, for example, when an elastic wave device is configured using a plurality of conventional elastic wave resonators, depending on the temperature, the above-mentioned passband of the high frequency side filter commonly connected to the antenna with the elastic wave device is Ripples may occur due to higher order modes.
  • the present invention is an invention made in view of the above-mentioned point, and an object of the present invention is to reduce the change with temperature of the higher order mode generated on the higher frequency side than the passband while suppressing the characteristic degradation of the passband.
  • the elastic wave device is provided between a first terminal which is an antenna terminal and a second terminal different from the first terminal.
  • the elastic wave device comprises a plurality of elastic wave resonators.
  • the plurality of elastic wave resonators include a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the plurality of series arm resonators are provided on a first path connecting the first terminal and the second terminal.
  • the plurality of parallel arm resonators are provided on a plurality of second paths connecting the plurality of nodes on the first path and the ground.
  • the antenna end resonator When the elastic wave resonator electrically closest to the first terminal among the plurality of elastic wave resonators is an antenna end resonator, the antenna end resonator is a first elastic wave resonator. At least one elastic wave resonator other than the antenna end resonator among the plurality of elastic wave resonators is a second elastic wave resonator.
  • Each of the first elastic wave resonator and the second elastic wave resonator includes a piezoelectric layer, an IDT electrode, and a high sound velocity member.
  • the IDT electrode is formed on the piezoelectric layer and has a plurality of electrode fingers.
  • the high sound velocity member is located on the opposite side to the IDT electrode with the piezoelectric layer interposed therebetween.
  • the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the thickness of the piezoelectric layer is 3.5 ⁇ or less, where ⁇ is a wavelength of an elastic wave determined by an electrode finger cycle which is a cycle of the plurality of electrode fingers of the IDT electrode.
  • the first elastic wave resonator and the second elastic wave resonator satisfy at least one of a first condition, a second condition, and a third condition.
  • the first condition is that the first elastic wave resonator further includes a dielectric film, and the second elastic wave resonator does not include the dielectric film, or a dielectric of the first elastic wave resonator.
  • the condition is to further include a dielectric film having a thickness smaller than the thickness of the body film.
  • the dielectric film is provided between the piezoelectric layer and the IDT electrode.
  • the second condition is that the mass per unit length in the electrode finger longitudinal direction of the electrode finger of the IDT electrode of the first elastic wave resonator is the electrode finger of the electrode finger of the IDT electrode of the second elastic wave resonator.
  • the condition is that it is smaller than the mass per unit length in the longitudinal direction of the finger.
  • the third condition is that the cut angle of the piezoelectric layer of the first elastic wave resonator is larger than the cut angle of the piezoelectric layer of the second elastic wave resonator.
  • a multiplexer includes a first filter made of the elastic wave device and a second filter.
  • the second filter is provided between the first terminal and a third terminal different from the first terminal.
  • the passband of the first filter is a lower frequency band than the passband of the second filter.
  • a high frequency front end circuit includes the multiplexer and an amplifier circuit.
  • the amplification circuit is connected to the multiplexer.
  • a communication apparatus includes the high frequency front end circuit and a signal processing circuit.
  • the signal processing circuit processes a high frequency signal received by an antenna.
  • the high frequency front end circuit transmits the high frequency signal between the antenna and the signal processing circuit.
  • the change of the high-order mode due to the temperature generated on the high frequency side of the pass band while suppressing the characteristic degradation of the pass band. Can be made smaller.
  • FIG. 1 is a circuit diagram of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of a communication device provided with the above elastic wave device.
  • FIG. 3A is a cross-sectional view of a first elastic wave resonator in the elastic wave device of the above.
  • FIG. 3B is a cross-sectional view of a second elastic wave resonator in the elastic wave device of the above.
  • FIG. 4A is a plan view of an essential part of a first elastic wave resonator in the elastic wave device of the above.
  • FIG. 4B shows a first elastic wave resonator in the elastic wave device of the above, and is a sectional view taken along the line AA of FIG. 4A.
  • FIG. 5A is a plan view of an essential part of a second elastic wave resonator in the elastic wave device of the above.
  • FIG. 5B shows a second elastic wave resonator in the elastic wave device of the above, and is a sectional view taken along the line AA of FIG. 5A.
  • FIG. 6 is a graph showing the relationship between the thickness of the dielectric film and the temperature coefficient of frequency (TCF) for the first elastic wave resonator of the same.
  • FIG. 7 is a graph showing the relationship between the thickness of the dielectric film and the specific band for the first elastic wave resonator of the same.
  • FIG. 8 is a circuit diagram of a multiplexer according to Variation 1 of Embodiment 1 of the present invention.
  • FIG. 9 is a circuit diagram of an elastic wave device according to a second modification of the first embodiment of the present invention.
  • FIG. 10A is a cross-sectional view of a first elastic wave resonator in an elastic wave device according to a third modification of the first embodiment of the present invention.
  • FIG. 10B is a cross-sectional view of a second elastic wave resonator in the elastic wave device of the above.
  • FIG. 11A is a cross-sectional view of a first elastic wave resonator in an elastic wave device according to a second embodiment of the present invention.
  • FIG. 11B is a cross-sectional view of a second elastic wave resonator in the elastic wave device of the above.
  • FIG. 12 is a graph showing the relationship between the thickness of the IDT electrode and the TCF for the elastic wave resonator in the elastic wave device of the above.
  • FIG. 13A is a cross-sectional view of a first elastic wave resonator in an elastic wave device according to Embodiment 3 of the present invention.
  • FIG. 13B is a cross-sectional view of a second elastic wave resonator in the elastic wave device of the same.
  • FIG. 14 is a graph showing the relationship between the cut angle of the piezoelectric layer and the electromechanical coupling coefficient for the elastic wave resonator in the elastic wave device of the above.
  • FIG. 15 is a graph showing the relationship between the cut angle of the piezoelectric layer and the TCF for the elastic wave resonator in the elastic wave device of the above.
  • FIG. 16 is a graph showing the relationship between the cut angle of the piezoelectric layer and the specific band for the elastic wave resonator of the above.
  • FIGS. 3A, 3B, 4A, 4B, 5A, 5B, 10A, 10A, 11A, 11B, 13A, and 13B described in the following embodiments and the like are all schematic.
  • the ratio of the size and thickness of each component in the figure does not necessarily reflect the actual dimensional ratio.
  • the elastic wave device 1 includes a plurality of (nine in the illustrated example) elastic wave resonators 31 to 39.
  • the plurality of elastic wave resonators 31, 33, 35, 37, 39 are provided on a first path r1 connecting the first terminal 101 (common terminal) and the second terminal 102 (input / output terminal).
  • a plurality of elastic wave resonators 31, 33, 35, 37, 39 are connected in series on the first path r1.
  • Each of the plurality of elastic wave resonators 31, 33, 35, 37, 39 may be configured of a plurality of resonators connected in series or in parallel.
  • an element having a function of an inductor or a capacitor may be disposed on the first path r1 as an element other than the series arm resonator.
  • the plurality of elastic wave resonators 32, 34, 36, 38 respectively have a plurality of second paths r21, r22, r23, r24 connecting the plurality of nodes N1, N2, N3, N4 on the first path r1 and the ground. It is provided on top.
  • Each of the plurality of elastic wave resonators 32, 34, 36, 38 may be configured of a plurality of resonators connected in series or in parallel.
  • an element having a function as an inductor or a capacitor may be disposed as an element other than the parallel arm resonator on each of the second paths r21, r22, r23, r24.
  • the plurality of elastic wave resonators 31 to 39 constitute a ladder type band pass filter with the above-described connection configuration. That is, the elastic wave device 1 is a ladder type filter.
  • An inductor may be connected between the connection point of the elastic wave resonators 32, 34, 36, 38 and the ground.
  • the elastic wave device 1 may have a longitudinally coupled filter structure in which a plurality of elastic wave resonators are arranged in the elastic wave propagation direction.
  • the elastic wave device 1 according to the first embodiment is used, for example, as an elastic wave filter having a predetermined pass band.
  • the elastic wave device 1 according to the first embodiment is used, for example, in a multiplexer 100 as shown in FIG.
  • the elastic wave device 1 includes a plurality of series arm resonators (elastic wave resonators 31, 33, 35, 37, 39) and a plurality of parallel arm resonances as the plurality of elastic wave resonators 31 to 39. And a child (elastic wave resonators 32, 34, 36, 38).
  • Each of the plurality of elastic wave resonators 31 to 39 is a surface acoustic wave (SAW) resonator.
  • SAW surface acoustic wave
  • the elastic wave resonator electrically closest to the first terminal 101 among the plurality of elastic wave resonators 31 to 39 is taken as an antenna end resonator.
  • the elastic wave resonator electrically closest to the first terminal 101 is the elastic wave resonator 31. Therefore, the elastic wave resonator 31 is an antenna end resonator.
  • the elastic wave resonator 31 which is an antenna end resonator is the first elastic wave resonator 3A.
  • the elastic wave resonator 32 electrically closest to the first terminal 101 among the plurality of parallel arm resonators (elastic wave resonators 32, 34, 36, 38) is also the first elastic wave resonator 3A.
  • the first elastic wave resonator 3A includes a high sound velocity member 4A, a low sound velocity film 5A, a piezoelectric layer 6A, an IDT (Interdigital Transducer) electrode 7A, and a dielectric film 8A.
  • a high sound velocity member 4A As shown in FIG. 3A, the first elastic wave resonator 3A includes a high sound velocity member 4A, a low sound velocity film 5A, a piezoelectric layer 6A, an IDT (Interdigital Transducer) electrode 7A, and a dielectric film 8A.
  • the high sound velocity member 4A of the first embodiment is a high sound velocity support substrate 42A.
  • the high sound velocity support substrate 42A is located on the opposite side of the piezoelectric layer 6A to the IDT electrode 7A.
  • the sound velocity of the bulk wave propagating in the high sound velocity support substrate 42A is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer 6A.
  • the high sound velocity support substrate 42A supports the low sound velocity film 5A, the piezoelectric layer 6A, the dielectric film 8A, and the IDT electrode 7A.
  • the bulk wave propagating through the high sound velocity support substrate 42A is the lowest sound velocity bulk wave among the plurality of bulk waves propagating through the high sound velocity support substrate 42A.
  • the high sound velocity support substrate 42A confines the elastic wave in the portion where the piezoelectric layer 6A and the low sound velocity film 5A are stacked, and functions so as not to leak below the high sound velocity support substrate 42A.
  • the material of the high sound velocity support substrate 42A is, for example, silicon, and the thickness of the high sound velocity support substrate 42A is, for example, 125 ⁇ m.
  • the material of the high sound velocity support substrate 42A is not limited to silicon, and silicon carbide, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, or piezoelectric such as quartz, alumina Materials containing various ceramics such as zirconia, cordierite, mullite, steatite, or forsterite, or materials containing magnesia, diamond, or each of the above materials as a main component, or a mixture of the above materials as a main component It may be
  • the low sound velocity film 5A is a film in which the sound velocity of the shear wave bulk wave propagating through the low sound velocity film 5A is slower than the sound velocity of the bulk wave propagating through the piezoelectric layer 6A.
  • the low sound velocity film 5A is provided between the high sound velocity support substrate 42A and the piezoelectric layer 6A.
  • the sound velocity of the elastic wave is reduced.
  • Elastic waves are essentially concentrated in low sound velocity media. Therefore, the effect of confining the energy of the elastic wave in the piezoelectric layer 6A and in the IDT electrode 7A in which the elastic wave is excited can be enhanced. As a result, the loss can be reduced and the Q value can be increased as compared with the case where the low sound velocity film 5A is not provided.
  • the material of the low sound velocity film 5A is, for example, silicon oxide.
  • the material of the low sound velocity film 5A is not limited to silicon oxide, and glass, silicon oxynitride, tantalum oxide, a compound obtained by adding fluorine, carbon, or boron to silicon oxide, or each of the above materials as a main component It may be a material.
  • the thickness of the low sound velocity film 5A is 2.0 ⁇ or less, where ⁇ is a wavelength of an elastic wave determined by the period of the electrode fingers (first electrode finger 73A and second electrode finger 74A described later) of the IDT electrode 7A. Is preferred.
  • is a wavelength of an elastic wave determined by the period of the electrode fingers (first electrode finger 73A and second electrode finger 74A described later) of the IDT electrode 7A.
  • the thickness of the low sound velocity film 5A is 2.0 ⁇ or less, where ⁇ is a wavelength of an elastic wave determined by the period of the electrode fingers (first electrode finger 73A and second electrode finger 74A described later) of the IDT electrode 7A. Is preferred.
  • the thickness of the low sound velocity film 5A is in the range of 0.1 ⁇ or more and 0.5 ⁇ or less, the electromechanical coupling coefficient hardly changes.
  • the piezoelectric layer 6A is formed of, for example, a Y ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal.
  • ⁇ ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal extends from Y-axis to Z-axis direction with X axis as central axis, when three crystal axes of LiTaO 3 piezoelectric single crystal are X-axis, Y-axis and Z-axis It is a LiTaO 3 single crystal cut at a plane whose normal line is the axis rotated ⁇ °, and is a single crystal in which surface acoustic waves propagate in the X-axis direction.
  • ⁇ and ⁇ ⁇ 180 ⁇ n are synonymous (crystallographically equivalent).
  • n is a natural number.
  • the piezoelectric layer 6A is not limited to the Y ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal, and may be, for example, a Y ° Y-cut X-propagation LiTaO 3 piezoelectric ceramic.
  • the piezoelectric layer 6A is provided directly or indirectly on the low sound velocity film 5A.
  • the thickness of the piezoelectric layer 6A in the thickness direction (first direction D1) of the high sound velocity support substrate 42A is 3.5 ⁇ or less.
  • the Q value becomes high.
  • TCF can be reduced.
  • the thickness of the piezoelectric layer 6A to 1.5 ⁇ or less, the adjustment of the acoustic velocity of the elastic wave becomes easy.
  • the dielectric film 8A is provided to reduce the high-order mode even if the thickness of the piezoelectric layer 6A is 3.5 ⁇ or less.
  • the dielectric film 8A will be described later.
  • the first elastic wave resonator 3A in the elastic wave device 1 there are longitudinal waves, SH waves, or SV waves, or modes in which these are combined as modes of elastic waves propagating through the piezoelectric layer 6A.
  • a mode having an SH wave as a main component is used as a main mode.
  • the high-order mode is a spurious mode generated on the higher frequency side than the main mode of the elastic wave propagating through the piezoelectric layer 6A.
  • the main mode having the SH wave as the main component for example, parameters (material, Euler angle, thickness, etc.
  • the displacement distribution is analyzed by the finite element method, and the strain is calculated It can confirm by analyzing.
  • the Euler angle of the piezoelectric layer 6A can be determined by analysis.
  • the material of the piezoelectric layer 6A is not limited to LiTaO 3 (lithium tantalate), and may be, for example, LiNbO 3 (lithium niobate).
  • the first elastic wave resonator 3A uses SH wave as a main component by using love wave as elastic wave. Mode can be used as the main mode.
  • the single crystal material of the piezoelectric layer 6A and the cut angle may be determined appropriately, for example, according to the required specifications of the filter (pass characteristics, attenuation characteristics, filter characteristics such as temperature characteristics and bandwidth), and the like. .
  • the IDT electrode 7A includes a first bus bar 71A, a second bus bar 72A, a plurality of first electrode fingers 73A, and a plurality of second electrodes. And a finger 74A, and is provided on the main surface 81A of the dielectric film 8A.
  • the first bus bar 71A is formed in a long shape having the second direction D2 as a longitudinal direction, and is electrically connected to the plurality of first electrode fingers 73A.
  • the second bus bar 72A is formed in a long shape having the second direction D2 as a longitudinal direction, and is electrically connected to the plurality of second electrode fingers 74A.
  • the second direction D2 is a direction orthogonal to the first direction D1.
  • the plurality of first electrode fingers 73A are arranged side by side in the second direction D2.
  • Each first electrode finger 73A is formed in a long shape whose longitudinal direction is the third direction D3.
  • the plurality of first electrode fingers 73A are arranged in parallel in a state of facing each other in the second direction D2.
  • the plurality of second electrode fingers 74A are arranged side by side in the second direction D2.
  • Each second electrode finger 74A is formed in a long shape whose longitudinal direction is the third direction D3.
  • the plurality of second electrode fingers 74A are arranged in parallel to face each other in the second direction D2.
  • the plurality of first electrode fingers 73A and the plurality of second electrode fingers 74A are alternately arranged one by one.
  • the third direction D3 is a direction orthogonal to both the first direction D1 and the second direction D2.
  • the IDT electrode 7A When the width of the first electrode finger 73A and the second electrode finger 74A is W A (see FIG. 4B), and the space width between the adjacent first electrode finger 73A and the second electrode finger 74A is S A , the IDT electrode 7A
  • the duty ratio is defined as W A / (W A + S A ).
  • the duty ratio of the IDT electrode 7A is, for example, 0.5.
  • the wavelength of the elastic wave determined by the electrode finger cycle of the IDT electrode 7A is ⁇
  • the wavelength ⁇ is equal to the electrode finger cycle.
  • the electrode finger cycle is defined by the repetition cycle P ⁇ A (see FIG. 4B) of the plurality of first electrode fingers 73A or the plurality of second electrode fingers 74A. Therefore, the repetition period P ⁇ A is equal to ⁇ .
  • the duty ratio of the IDT electrode 7A is a ratio of the width W A of the first electrode finger 73A and the second electrode finger 74A to a half value (W A + S A
  • the material of the IDT electrode 7A is an appropriate metal material such as Al, Cu, Pt, Au, Ag, Ti, Ni, Cr, Mo, or W, or an alloy mainly composed of any of these metals. Further, the IDT electrode 7A may have a structure in which a plurality of metal films made of these metals or alloys are stacked.
  • the dielectric film 8A is formed on the piezoelectric layer 6A.
  • An IDT electrode 7A is formed on the dielectric film 8A.
  • the material of the dielectric film 8A is, for example, silicon oxide.
  • the second elastic wave resonator 3B includes a high sound velocity member 4B, a low sound velocity film 5B, a piezoelectric layer 6B, and an IDT electrode 7B. Unlike the first elastic wave resonator 3A (see FIG. 3A), the second elastic wave resonator 3B does not include a dielectric film between the piezoelectric layer 6B and the IDT electrode 7B.
  • the high sound velocity member 4B of the first embodiment is a high sound velocity support substrate 42B.
  • the high sound velocity support substrate 42B is located on the opposite side to the IDT electrode 7B with the piezoelectric layer 6B interposed therebetween.
  • the sound velocity of the bulk wave propagating in the high sound velocity support substrate 42B is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer 6B.
  • the high sound velocity support substrate 42B supports the low sound velocity film 5B, the piezoelectric layer 6B, and the IDT electrode 7B.
  • the high sound velocity support substrate 42B functions to confine the elastic wave in the portion where the piezoelectric layer 6B and the low sound velocity film 5B are stacked, and to prevent leakage below the high sound velocity support substrate 42B.
  • the material of the high sound velocity support substrate 42B is, for example, silicon, and the thickness of the high sound velocity support substrate 42B is, for example, 125 ⁇ m.
  • the material of the high sound velocity support substrate 42B is not limited to silicon, and aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, or piezoelectric such as quartz, alumina, zirconia, Various ceramics such as cordierite, mullite, steatite, or forsterite, or magnesia diamond, or materials containing the above materials as main components, or materials having a mixture of the above materials as main components Good.
  • the low sound velocity film 5B is a film in which the sound velocity of the bulk wave propagating through the low sound velocity film 5B is slower than the sound velocity of the bulk wave propagating through the piezoelectric layer 6B.
  • the low sound velocity film 5B is provided between the high sound velocity support substrate 42B and the piezoelectric layer 6B.
  • the sound velocity of the elastic wave is reduced.
  • Elastic waves are essentially concentrated in low sound velocity media. Therefore, the effect of confining the energy of the elastic wave in the piezoelectric layer 6B and in the IDT electrode 7B in which the elastic wave is excited can be enhanced. As a result, the loss can be reduced and the Q value can be increased as compared with the case where the low sound velocity film 5B is not provided.
  • the material of the low sound velocity film 5B is, for example, silicon oxide.
  • the material of the low sound velocity film 5B is not limited to silicon oxide, and glass, silicon oxynitride, tantalum oxide, a compound obtained by adding fluorine, carbon or boron to silicon oxide, or each of the above materials as the main component It may be a material.
  • the thickness of the low sound velocity film 5B is 2.0 ⁇ or less, where ⁇ is a wavelength of an elastic wave determined by the period of the electrode fingers (first electrode finger 73B and second electrode finger 74B described later) of the IDT electrode 7B. Is preferred.
  • is a wavelength of an elastic wave determined by the period of the electrode fingers (first electrode finger 73B and second electrode finger 74B described later) of the IDT electrode 7B.
  • the thickness of the low sound velocity film 5B is 2.0 ⁇ or less, where ⁇ is a wavelength of an elastic wave determined by the period of the electrode fingers (first electrode finger 73B and second electrode finger 74B described later) of the IDT electrode 7B. Is preferred.
  • piezoelectric layer piezoelectric layers 6B like the piezoelectric layer 6A, for example, is formed from a gamma ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal.
  • the piezoelectric layer 6B is not limited to gamma ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal, for example, it may be a gamma ° Y-cut X-propagation LiTaO 3 piezoelectric ceramics.
  • the piezoelectric layer 6B is laminated directly or indirectly on the low sound velocity film 5B.
  • the thickness of the piezoelectric layer 6B in the thickness direction (first direction D1) of the high sound velocity support substrate 42B is 3.5 ⁇ or less.
  • the Q value becomes high.
  • the thickness of the piezoelectric layer 6B is 3.5 ⁇ or less, the Q value becomes high.
  • the thickness of the piezoelectric layer 6B is 3.5 ⁇ or less, it is possible to reduce the TCF.
  • the thickness of the piezoelectric layer 6B to 1.5 ⁇ or less, the adjustment of the sound velocity of the elastic wave becomes easy.
  • the second elastic wave resonator 3B in the elastic wave device 1 there are longitudinal waves, SH waves, or SV waves, or modes in which these are combined as modes of elastic waves propagating through the piezoelectric layer 6B.
  • a mode having an SH wave as a main component is used as a main mode.
  • the high-order mode is a spurious mode generated on the higher frequency side than the main mode of the elastic wave propagating through the piezoelectric layer 6B.
  • the main mode having the SH wave as the main component for example, parameters (material, Euler angle, thickness, etc.
  • the Euler angle of the piezoelectric layer 6B can be determined by analysis.
  • the material of the piezoelectric layer 6B is not limited to LiTaO 3, for example, it may be a LiNbO 3.
  • the piezoelectric layer 6B is made of, for example, Y-cut X-propagating LiNbO 3 piezoelectric single crystal or piezoelectric ceramic, the first elastic wave resonator 3A and the second elastic wave resonator 3B use love waves as elastic waves.
  • the mode having SH waves as the main component can be used as the main mode.
  • the single crystal material of the piezoelectric layer 6A and the cut angle may be determined appropriately, for example, according to the required specifications of the filter (pass characteristics, attenuation characteristics, filter characteristics such as temperature characteristics and bandwidth), and the like. .
  • the IDT electrode 7B is, like the IDT electrode 7A, as shown in FIGS. 5A and 5B, a first bus bar 71B, a second bus bar 72B, and a plurality of first electrode fingers 73B. And a plurality of second electrode fingers 74B, and is provided on the main surface 61B (see FIG. 3B) of the piezoelectric layer 6B.
  • the first bus bar 71B is formed in a long shape having the second direction D2 as a longitudinal direction, and is electrically connected to the plurality of first electrode fingers 73B.
  • the second bus bar 72B is formed in a long shape having the second direction D2 as a longitudinal direction, and is electrically connected to the plurality of second electrode fingers 74B.
  • the plurality of first electrode fingers 73A are arranged side by side in the second direction D2.
  • Each first electrode finger 73A is formed in a long shape whose longitudinal direction is the third direction D3.
  • the plurality of first electrode fingers 73B are arranged in parallel in a state of facing each other in the second direction D2.
  • the plurality of second electrode fingers 74B are arranged side by side in the second direction D2.
  • Each second electrode finger 74B is formed in a long shape whose longitudinal direction is the third direction D3.
  • the plurality of second electrode fingers 74B are arranged in parallel in a state of facing each other in the second direction D2.
  • the plurality of first electrode fingers 73B and the plurality of second electrode fingers 74B are alternately arranged one by one.
  • the IDT electrode 7B When the width of the first electrode finger 73B and the second electrode finger 74B is W B (see FIG. 5B), and the space width between the adjacent first electrode finger 73B and the second electrode finger 74B is S B , the IDT electrode 7B
  • the duty ratio is defined as W B / (W B + S B ).
  • the duty ratio of the IDT electrode 7B is, for example, 0.5.
  • the wavelength of the elastic wave determined by the electrode finger cycle of the IDT electrode 7B is ⁇
  • the wavelength ⁇ is equal to the electrode finger cycle.
  • the electrode finger cycle is defined by the repetition cycle P ⁇ B (see FIG. 5B) of the plurality of first electrode fingers 73B or the plurality of second electrode fingers 74B. Therefore, the repetition period P ⁇ B is equal to ⁇ .
  • the duty ratio of the IDT electrode 7B is a ratio of the width W B of the first electrode finger 73B and the second electrode finger 74B to a half value (W B + S B
  • the material of the IDT electrode 7B is an appropriate metal material such as Al, Cu, Pt, Au, Ag, Ti, Ni, Cr, Mo, or W, or an alloy mainly composed of any of these metals.
  • the IDT electrode 7B may have a structure in which a plurality of metal films made of these metals or alloys are stacked.
  • the surface 41A of the high sound velocity member 4A made of a silicon substrate is a (111) surface.
  • the thicknesses of the low sound velocity film 5A, the piezoelectric layer 6A and the IDT electrode 7A are normalized using ⁇ , which is the wavelength of an elastic wave determined by the electrode finger cycle of the IDT electrode 7A.
  • is 1.48 ⁇ m.
  • the thickness of the IDT electrode 7A made of aluminum is 0.07 ⁇
  • the thickness of the piezoelectric layer 6A made of 50 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal is 0.
  • the thickness of the low sound velocity film 5A made of silicon oxide is 0.35 ⁇ and the thickness of the dielectric film 8A is changed in the range of 0 nm to 30 nm
  • the thickness of the dielectric film 8A and TCF Shows the relationship between FIG. 7 shows the relationship between the thickness of the dielectric film 8A and the specific band in the first elastic wave resonator 3A.
  • the thickness of the dielectric film 8A is preferably thicker if the thickness is 22 nm or less.
  • the first elastic wave resonator 3A preferably has a thick dielectric film 8A. Further, from FIG. 7, in the first elastic wave resonator 3A, when the thickness of the dielectric film 8A is increased, the specific band tends to be narrowed. The same tendency applies to the case where the surface 41A on the piezoelectric layer 6A side of the high sound velocity member 4A is a (110) surface or a (100) surface.
  • the first elastic wave resonator 3A preferably has a small thickness of the dielectric film 8A, and more preferably does not include the dielectric film 8A, from the viewpoint of widening the specific band of the first elastic wave resonator 3A.
  • the antenna end resonator is the first elastic wave resonator 3A, and the surface 41A of the high acoustic velocity member 4A of the first elastic wave resonator 3A on the piezoelectric layer 6A side (111
  • the high-order mode can be suppressed by the fact that it is a face or a (110) face.
  • at least one elastic wave resonator 33 to 39 other than the antenna end resonator among the plurality of elastic wave resonators 31 to 39 is the second elastic wave resonator 3B, and the second elastic wave is used.
  • the piezoelectric body layer 6A of the first elastic wave resonator 3A is thinner than the piezoelectric body layer 6B of the second elastic wave resonator 3B, whereby the higher order mode can be suppressed.
  • the TCF can be reduced by providing the dielectric film 8A between the piezoelectric layer 6A and the IDT electrode 7A. More specifically, even if the high-order mode is present, the frequency at which the high-order mode is generated changes less depending on the temperature as compared with the configuration in which the dielectric film 8A is not provided. Can. That is, compared to the configuration in which the dielectric film 8A is not provided, the change of the higher order mode due to the temperature can be reduced.
  • the multiplexer 100 includes a first filter 11, a second filter 12, a third filter 21, and a fourth filter 22. Furthermore, the multiplexer 100 includes a first terminal 101, a second terminal 102, a third terminal 103, a fourth terminal 104, and a fifth terminal 105.
  • the first terminal 101 is an antenna terminal that can be electrically connected to the antenna 200 outside the multiplexer 100.
  • the multiplexer 100 is connected to the antenna 200 via the first terminal 101.
  • the first to fourth filters 11, 12, 21, 22 are commonly connected to the first terminal 101.
  • the first filter 11 is a reception filter provided between the first terminal 101 and the second terminal 102.
  • the first filter 11 passes signals in the pass band of the first filter 11 and attenuates signals outside the pass band.
  • the second filter 12 is a reception filter provided between the first terminal 101 and the third terminal 103.
  • the second filter 12 passes signals in the pass band of the second filter 12 and attenuates signals outside the pass band.
  • the first filter 11 and the second filter 12 have different passbands.
  • the passband of the first filter 11 is in a lower frequency range than the passband of the second filter 12. Therefore, in the multiplexer 100, the maximum frequency of the pass band of the first filter 11 is lower than the minimum frequency of the pass band of the second filter 12.
  • the third filter 21 is a transmission filter provided between the first terminal 101 and the fourth terminal 104.
  • the third filter 21 passes signals in the pass band of the third filter 21 and attenuates signals outside the pass band.
  • the fourth filter 22 is a transmission filter provided between the first terminal 101 and the fifth terminal 105.
  • the fourth filter 22 passes signals in the pass band of the fourth filter 22 and attenuates signals outside the pass band.
  • An inductor may be connected in series between the first to fourth filters 11, 12, 21, 22 and the first terminal 101.
  • the inductor is a circuit element for achieving impedance matching between the antenna 200 and the first to fourth filters 11, 12, 21, 22 and is not an essential component.
  • the high frequency front end circuit 300 includes a multiplexer 100, a first switch circuit 301, a second switch circuit 302, a first amplifier circuit 303, and a second amplifier circuit 304.
  • the first switch circuit 301 is provided between the first filter 11 and the second filter 12 and the first amplifier circuit 303.
  • the first switch circuit 301 has two selected terminals individually connected to the second terminal 102 and the third terminal 103 of the multiplexer 100, and a common terminal connected to the first amplifier circuit 303. That is, the first switch circuit 301 is connected to the first filter 11 via the second terminal 102 and to the second filter 12 via the third terminal 103.
  • the first switch circuit 301 switches the filter connected to the first amplifier circuit 303 among the first filter 11 and the second filter 12.
  • the first switch circuit 301 is configured of, for example, a switch of an SPDT (Single Pole Double Throw) type.
  • the first switch circuit 301 is controlled by a control circuit (not shown).
  • the first switch circuit 301 connects the common terminal and the selected terminal in accordance with the control signal from the control circuit.
  • the first switch circuit 301 may be configured by a switch IC (Integrated Circuit).
  • the number of selected terminals connected to the common terminal is not limited to one, and may be plural. That is, the high frequency front end circuit 300 may be configured to support carrier aggregation.
  • the second switch circuit 302 is provided between the third filter 21 and the fourth filter 22 and the second amplifier circuit 304.
  • the second switch circuit 302 has two selected terminals individually connected to the fourth terminal 104 and the fifth terminal 105 of the multiplexer 100, and a common terminal connected to the second amplifier circuit 304. That is, the second switch circuit 302 is connected to the third filter 21 via the fourth terminal 104 and to the fourth filter 22 via the fifth terminal 105.
  • the second switch circuit 302 switches the filter connected to the second amplifier circuit 304 among the third filter 21 and the fourth filter 22.
  • the second switch circuit 302 is configured of, for example, an SPDT switch.
  • the second switch circuit 302 is controlled by the control circuit.
  • the second switch circuit 302 connects the common terminal and the selected terminal in accordance with the control signal from the control circuit.
  • the second switch circuit 302 may be configured by a switch IC. In the second switch circuit 302, the number of selected terminals connected to the common terminal is not limited to one, and may be plural.
  • the first amplification circuit 303 amplifies the high frequency signal (reception signal) passed through the antenna 200, the multiplexer 100, and the first switch circuit 301, and the amplified high frequency signal is transmitted outside the high frequency front end circuit 300 (for example, an RF described later). It outputs to the signal processing circuit 401).
  • the first amplifier circuit 303 is a low noise amplifier circuit.
  • the second amplification circuit 304 amplifies a high frequency signal (transmission signal) output from the outside of the high frequency front end circuit 300 (for example, an RF signal processing circuit 401 described later) and amplifies the high frequency signal. And output to the antenna 200 via the multiplexer 100.
  • the second amplifier circuit 304 is a power amplifier circuit.
  • the communication apparatus 400 includes a high frequency front end circuit 300, an RF signal processing circuit 401, and a baseband signal processing circuit 402.
  • the RF signal processing circuit 401 and the baseband signal processing circuit 402 constitute a signal processing circuit that processes a high frequency signal.
  • the RF signal processing circuit 401 is, for example, a radio frequency integrated circuit (RFIC), and performs signal processing on a high frequency signal including a transmission signal and a reception signal.
  • the RF signal processing circuit 401 performs signal processing such as down conversion on the high frequency signal (reception signal) output from the first amplification circuit 303, and outputs the high frequency signal subjected to the signal processing to the baseband signal processing circuit 402. .
  • the baseband signal processing circuit 402 is, for example, a BBIC (Baseband Integrated Circuit), and performs signal processing on an external transmission signal and a high frequency signal from the RF signal processing circuit 401.
  • BBIC Baseband Integrated Circuit
  • the dielectric film 8A is provided between the piezoelectric layer 6A and the IDT electrode 7A. There is. This makes it possible to reduce the degree to which the frequency at which the high-order mode is generated changes, even if the high-order mode is present. That is, it is possible to reduce the change of the higher order mode due to the temperature.
  • the antenna end resonators are chips different from the elastic wave resonators other than the antenna end resonators in the plurality of elastic wave resonators 31 to 39. Thereby, the dispersion
  • the low sound velocity film 5A, between the high sound velocity members 4A, 4B and the piezoelectric layers 6A, 6B. 5B is provided.
  • the loss can be reduced and the Q value can be increased as compared with the case where the low sound velocity films 5A and 5B are not provided.
  • the elastic wave device 1 is used for the first filter 11. As a result, the influence of the high-order mode generated by the first filter 11 on the second filter 12 can be suppressed.
  • the multiplexer 100b according to the first modification of the first embodiment includes a plurality of resonator groups 30 (only two are shown in FIG. 8) including a plurality of elastic wave resonators 31 to 39.
  • the first terminal 101 is a common terminal
  • the second terminal 102 is an individual terminal.
  • the antenna end resonators (elastic wave resonators 31) of the plurality of resonator groups 30 are integrated in one chip.
  • the elastic wave resonators surrounded by an alternate long and short dash line are integrated in one chip.
  • seven second elastic wave resonators 3B in one resonator group 30 are integrated in one chip.
  • two first elastic wave resonators 3A (in the illustrated example, four first elastic wave resonators 3A) for each resonator group 30 are integrated in one chip.
  • the elastic wave resonators 31 and 32 of the plurality of resonator groups 30 are integrated in one chip, but at least one elastic wave resonator 31 of the plurality of resonator groups 30 is integrated. It may be integrated on the chip.
  • the plurality of resonator groups 30 configure filters having different pass bands.
  • the characteristic variation of the antenna end resonators of the plurality of resonator groups 30 can be reduced, and the multiplexer 100b can be miniaturized.
  • the elastic wave device 1c according to the second modification of the first embodiment is, as shown in FIG. 9, in connection with the elastic wave device 1 according to the first embodiment with respect to the connection relationship of a plurality (eight) of elastic wave resonators 31 to 38. It is different.
  • the same components as those of the elastic wave device 1 according to the first embodiment are designated by the same reference numerals and the description thereof is omitted.
  • One series arm resonator (elastic wave resonator 31) is directly connected to the first terminal 101" means that the first terminal 101 and the first terminal 101 are electrically connected without the other elastic wave resonators 32 to 38.
  • one parallel arm resonator (elastic wave resonator 32) is directly connected to the first terminal 101” means that the first elastic wave resonators 31, 33 to 38 do not intervene. It means that it is electrically connected to the terminal 101.
  • both the one series arm resonator (elastic wave resonator 31) and the one parallel arm resonator (elastic wave resonator 32) serve as an antenna end resonator as a first elastic wave resonator.
  • it comprises 3A, it does not restrict to this.
  • at least one of the one series arm resonator (elastic wave resonator 31) and the one parallel arm resonator (elastic wave resonator 32) is the first antenna end resonator. What is necessary is just to be comprised by elastic wave resonator 3A.
  • the elastic wave device according to the third modification of the first embodiment is the same as that shown in FIG. 10A instead of the first elastic wave resonator 3A and the second elastic wave resonator 3B of the elastic wave device 1 according to the first embodiment. This is different from the elastic wave device 1 according to the first embodiment in that the first elastic wave resonator 3Af and the second elastic wave resonator 3Bf as shown in FIG. 10B are provided.
  • the same components as those of the elastic wave device 1 according to the first embodiment are given the same reference numerals, and the description thereof is omitted.
  • the high sound velocity member 4A of the first elastic wave resonator 3Af includes a high sound velocity film 45A and a support substrate 44A in place of the high sound velocity support substrate 42A.
  • the high sound velocity film 45A is formed on the support substrate 44A.
  • “formed on the support substrate 44A” includes the case where it is formed directly on the support substrate 44A and the case where it is formed indirectly on the support substrate 44A.
  • the sound velocity of the bulk wave propagating in the high sound velocity film 45A is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer 6A.
  • the low sound velocity film 5A is formed on the high sound velocity film 45A.
  • “formed on the high sound velocity film 45A” means the case where it is formed directly on the high sound velocity film 45A, and the case where it is formed indirectly on the high sound velocity film 45A, and including.
  • the sound velocity of the bulk wave propagating in the low sound velocity film 5A is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer 6A.
  • the piezoelectric layer 6A is formed on the low sound velocity film 5A.
  • “formed on the low sound velocity film 5A” means the case where it is formed directly on the low sound velocity film 5A and the case where it is formed indirectly on the low sound velocity film 5A, and including.
  • the high sound velocity member 4B of the second elastic wave resonator 3Bf includes a high sound velocity film 45B and a support substrate 44B in place of the high sound velocity support substrate 42B.
  • the high sound velocity film 45B is formed on the support substrate 44B.
  • “formed on the support substrate 44B” includes the case where it is formed directly on the support substrate 44B and the case where it is formed indirectly on the support substrate 44B.
  • the sound velocity of the bulk wave propagating in the high sound velocity film 45B is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer 6B.
  • the low sound velocity film 5B is formed on the high sound velocity film 45B.
  • “formed on the high sound velocity film 45B” means the case where it is formed directly on the high sound velocity film 45B and the case where it is formed indirectly on the high sound velocity film 45B, and including.
  • the sound velocity of the bulk wave propagating in the low sound velocity film 5B is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer 6B.
  • the piezoelectric layer 6B is formed on the low sound velocity film 5B.
  • “formed on the low sound velocity film 5B” means the case where it is formed directly on the low sound velocity film 5B and the case where it is formed indirectly on the low sound velocity film 5B; including.
  • the material of the support substrates 44A and 44B is, for example, silicon.
  • the material of the support substrates 44A and 44B is not limited to silicon, and piezoelectrics such as sapphire, lithium tantalate, lithium niobate, quartz, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite It may be various ceramics such as mullite, steatite, forsterite, dielectrics such as glass, semiconductors such as gallium nitride, resins, etc.
  • the high sound velocity film 45A functions so that the energy of the elastic wave in the main mode does not leak to the structure below the high sound velocity film 45A.
  • the high sound velocity film 45B functions so that the energy of the elastic wave in the main mode does not leak to the structure below the high sound velocity film 45B.
  • the energy of the main mode elastic wave is distributed to the entire piezoelectric layer 6A and the low sound velocity film 5A. It is also distributed to a part of the low sound velocity film 5A side and is not distributed to the support substrate 44A.
  • the second elastic wave resonator 3Bf when the thickness of the high sound velocity film 45B is sufficiently large, the energy of the main mode elastic wave is distributed over the entire piezoelectric layer 6B and the low sound velocity film 5B, and high sound velocity It is also distributed to a part of the low sound velocity film 5B side of the film 45B and not distributed to the support substrate 44B.
  • the mechanism of confining the elastic wave by the high sound velocity film 45A, 45B is the same mechanism as the case of Love wave type surface wave which is non-leakage SH wave, for example, the document "Introduction to surface acoustic wave device simulation technology", Hashimoto Lab. , Realize, p. 26-28.
  • the above mechanism is different from the mechanism that confines an elastic wave using a Bragg reflector with an acoustic multilayer film.
  • the material of the high sound velocity film 45A, 45B is, for example, diamond like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, quartz, alumina, zirconia, cordierite, mullite And at least one material selected from the group consisting of steatite, forsterite and magnesia diamond.
  • the high sound velocity members 4A and 4B include the high sound velocity membranes 45A and 45B. Thereby, it can suppress that an elastic wave leaks to support substrate 44A, 44B.
  • the multiplexer 100 is not limited to a quadplexer in which four filters are combined.
  • the multiplexer 100 may be a multiplexer combining three or less filters, or may be a multiplexer combining five or more filters.
  • the elastic wave devices 1 and 1c according to the first embodiment or the second and third modifications may be applied not only to the first filter 11 but also to the second to fourth filters 12, 21 and 22.
  • the elastic wave device according to the second embodiment is the first elastic wave resonance as shown in FIG. 11A instead of the first elastic wave resonator 3A and the second elastic wave resonator 3B of the elastic wave device 1 according to the first embodiment.
  • the third embodiment differs from the elastic wave device 1 according to the first embodiment in that the second elastic wave resonator 3Bd as shown in FIG.
  • the circuit configuration of the elastic wave device according to the second embodiment is the same as the circuit configuration of the elastic wave device 1 according to the first embodiment, and thus the illustration and the description thereof will be omitted.
  • the same components of the elastic wave device according to the second embodiment as those of the elastic wave device 1 according to the first embodiment are given the same reference numerals, and the description thereof is omitted.
  • the thickness of the IDT electrode 7A of the first elastic wave resonator 3Ad is different from the thickness of the IDT electrode 7B of the second elastic wave resonator 3Bd.
  • the configuration of the first elastic wave resonator 3Ad is the same as that of the first elastic wave resonator 3A of the elastic wave device 1 according to the first embodiment, and the thicknesses of the IDT electrode 7A, the piezoelectric layer 6A, and the low sound velocity film 5A are It is different.
  • the configuration of the second elastic wave resonator 3Bd is the same as that of the second elastic wave resonator 3B of the elastic wave device 1 according to the first embodiment, and the thicknesses of the IDT electrode 7B, the piezoelectric layer 6B, and the low sound velocity film 5B are It is different.
  • the unit length in the electrode finger longitudinal direction (third direction D3 of FIG. 4A) of the electrode fingers of the IDT electrode 7A (the first electrode finger 73A and the second electrode finger 74A of FIG. 4A).
  • the mass of the contact is greater than the mass per unit length in the electrode finger longitudinal direction (third direction D3 of FIG.
  • a unit length of the electrode finger in the electrode finger length direction is, for example, a region where the first electrode fingers 73A and 73B overlap the second electrode fingers 74A and 74B as viewed from the second direction D2 in FIGS. 4A and 5A.
  • FIG. 12 is a graph showing the relationship between the thickness of the IDT electrodes (IDT electrodes 7A and 7B) and the TCF in the elastic wave resonators (first elastic wave resonator 3Ad and second elastic wave resonator 3Bd).
  • the wavelength ⁇ is 2 ⁇ m
  • the thickness of the low sound velocity film (low sound velocity films 5A and 5B) made of silicon oxide is 0.35 ⁇
  • the piezoelectric formed of 50 ° Y cut X propagation LiTaO 3 piezoelectric single crystal The thickness of the body layer (piezoelectric layers 6A and 6B) is 0.3 ⁇
  • the thickness of the IDT electrodes (IDT electrodes 7A and 7B) is changed in the range of 70 nm to 180 nm.
  • the thickness of the IDT electrode should be in the range of 70 nm to 140 nm, and to 5 ppm or less, the thickness of the IDT electrode It is preferable that the thickness be in the range of 90 nm to 125 nm. Further, in the elastic wave resonator, as the thickness of the IDT electrode is reduced, the resistance value of the IDT electrode is increased and the loss is increased. Therefore, from the viewpoint of reducing the loss, the thicker IDT electrode is preferable.
  • the IDT of the first elastic wave resonator 3Ad in view of suppressing the temperature stability of the high-order mode and the increase of the loss of the filter, as shown in FIGS. 11A and 11B, the IDT of the first elastic wave resonator 3Ad.
  • the mass per unit length in the electrode finger longitudinal direction of the electrode finger of the electrode 7A is smaller than the mass per unit length in the electrode finger longitudinal direction of the electrode finger of the IDT electrode 7B of the second elastic wave resonator 3Bd preferable.
  • the elastic wave device according to the third embodiment is a first elastic wave resonance as shown in FIG. 13A instead of the first elastic wave resonator 3A and the second elastic wave resonator 3B of the elastic wave device 1 according to the first embodiment. It differs from the elastic wave device 1 according to the first embodiment in that the second elastic wave resonator 3Bn as shown in FIG.
  • the circuit configuration of the elastic wave device according to the third embodiment is the same as the circuit configuration of the elastic wave device 1 according to the first embodiment, and thus the illustration and the description thereof will be omitted.
  • the same components as those of the elastic wave device 1 according to the first embodiment are given the same reference numerals, and the description thereof is omitted.
  • the cut angle theta A piezoelectric layer 6A of the first elastic wave resonator 3An is larger than the cut angle theta B of the piezoelectric layer 6B of the second elastic wave resonator 3BN.
  • the surface 41A of the high sound velocity member 4A made of a silicon substrate is a (111) surface.
  • the thicknesses of the low sound velocity film 5A, the piezoelectric layer 6A and the IDT electrode 7A are normalized using ⁇ , which is the wavelength of an elastic wave determined by the electrode finger cycle of the IDT electrode 7A.
  • the wavelength ⁇ is, for example, 1.48 ⁇ m in the first elastic wave resonator 3An.
  • the thickness of the IDT electrodes (IDT electrodes 7A and 7B) made of aluminum is 0.07 ⁇ , and ⁇ °
  • the thickness of the piezoelectric layer (piezoelectric layers 6A and 6B) made of Y-cut X-propagating LiTaO 3 piezoelectric single crystal is 0.3 ⁇
  • FIG. 14 shows the relationship between the cut angle and the electromechanical coupling coefficient when the SH wave is in the main mode is indicated by an alternate long and short dashed line, and the relationship between the cut angle and the electromechanical coupling coefficient when the SV wave is in the main mode is a broken line It is indicated by.
  • FIG. 15 shows the relationship between the cut angle and the TCF in the elastic wave resonators (the first elastic wave resonator 3An and the second elastic wave resonator 3Bn).
  • FIG. 16 shows the relationship between the cut angle and the relative band in the elastic wave resonators (the first elastic wave resonator 3An and the second elastic wave resonator 3Bn).
  • the electromechanical coupling coefficient that sets the SH wave as the main mode tends to decrease as the cut angle increases. It can be seen that the electromechanical coupling coefficient with the SV wave as the main mode tends to increase as the cut angle increases. From the viewpoint of increasing the electromechanical coupling coefficient of the elastic wave resonator, the cut angle is preferably smaller.
  • the absolute value of TCF tends to decrease as the cut angle increases.
  • the cut angle is preferably larger.
  • the relative band tends to be narrower as the cut angle becomes larger.
  • the cut angle is preferably smaller.
  • the cut angle theta A piezoelectric layer 6A of the first elastic wave resonator 3An is, is greater than the cut angle theta B of the piezoelectric layer 6B of the second elastic wave resonator 3Bn
  • the absolute value of TCF of the first elastic wave resonator 3An can be smaller than the absolute value of TCF of the second elastic wave resonator 3Bn.
  • the elastic wave device (1; 1c) according to the first aspect is provided between a first terminal (101) which is an antenna terminal and a second terminal (102) different from the first terminal (101).
  • the elastic wave device (1; 1c) comprises a plurality of elastic wave resonators (31 to 39).
  • the plurality of elastic wave resonators (31 to 39) are a plurality of series arm resonators (elastic wave resonators 31, 33, 35, 37, 39) and a plurality of parallel arm resonators (elastic wave resonators 32 and 34). , 36, 38).
  • the plurality of series arm resonators are provided on a first path (r1) connecting the first terminal (101) and the second terminal (102).
  • the plurality of parallel arm resonators are provided on a plurality of second paths (r21 to r24) connecting the plurality of nodes (N1 to N4) on the first path (r1) to the ground.
  • the antenna end resonator performs the first elastic wave resonance. It is a child (3A; 3Af; 3Ad; 3An).
  • At least one elastic wave resonator other than the antenna end resonator among the plurality of elastic wave resonators (31 to 39) is a second elastic wave resonator (3B; 3Bf; 3Bd; 3Bn).
  • Each of the first elastic wave resonator (3A; 3Af; 3Ad; 3An) and the second elastic wave resonator (3B) has a piezoelectric layer (6A; 6B), an IDT electrode (7A; 7B), and high sound velocity And a member (4A; 4B).
  • the IDT electrodes (7A; 7B) are formed on the piezoelectric layer (6A; 6B), and a plurality of electrode fingers (first electrode finger 73A, second electrode finger 74A; first electrode finger 73B, second electrode) And has a finger 74B).
  • the high sound velocity member (4A; 4B) is located on the opposite side to the IDT electrode (7A; 7B) across the piezoelectric layer (6A; 6B).
  • the sound velocity of the bulk wave propagating in the high sound velocity member (4A; 4B) is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer (6A; 6B).
  • a plurality of electrode fingers (first electrode fingers 73A, second electrode fingers 74A; first electrode fingers 73B, second electrode fingers 74B) of the IDT electrodes (7A; 7B) have a thickness of the piezoelectric layer (6A; 6B) When the wavelength of the elastic wave determined by the electrode finger period which is the period of is ⁇ , it is 3.5 ⁇ or less.
  • the first elastic wave resonator (3A; 3Af; 3Ad; 3An) and the second elastic wave resonator (3B; 3Bf; 3Bd; 3Bn) have at least one of the first condition, the second condition and the third condition. Meet one.
  • the first condition is that the first elastic wave resonator (3A; 3Af; 3Ad; 3An) further includes a dielectric film (8A) provided between the piezoelectric layer (6A) and the IDT electrode (7A).
  • the second elastic wave resonator (3B; 3Bf; 3Bd; 3Bn) does not include the dielectric film.
  • the second condition is the unit length in the electrode finger longitudinal direction of the electrode fingers (first electrode finger 73A, second electrode finger 74A) of the IDT electrode (7A) of the first elastic wave resonator (3A; 3Af; 3Ad; 3An)
  • the condition is that it is smaller than the mass per length.
  • the third condition is that the cut angle of the piezoelectric layer (6A) of the first elastic wave resonator (3A; 3Af; 3Ad; 3An) is the piezoelectric material of the second elastic wave resonator (3B; 3Bf; 3Bd; 3Bn)
  • the condition is that it is larger than the cut angle of the layer (6B).
  • the elastic wave device (1; 1c) according to the first aspect can reduce the degree to which the frequency at which the high-order mode is generated changes, even if the high-order mode is present. That is, it is possible to reduce the change of the higher order mode due to the temperature.
  • the antenna end resonator is an elastic wave resonator other than the antenna end resonator in the plurality of elastic wave resonators (31 to 39). Is a different chip.
  • the elastic wave device (1; 1c) it is possible to suppress variations in the characteristics of elastic wave resonators other than the antenna end resonator.
  • the first elastic wave resonator (3A; 3Af; 3Ad; 3An) or the second elastic wave resonator (3B; 3Bf) 3Bd; 3Bn) include low sound velocity membranes (5A; 5B).
  • the low sound velocity film (5A; 5B) is provided between the high sound velocity member (4A; 4B) and the piezoelectric layer (6A; 6B).
  • the sound velocity of the bulk wave propagating in the low sound velocity film (5A; 5B) is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer (6A; 6B).
  • the elastic wave device (1; 1c) according to the third aspect, it is possible to both expand the ratio band due to the increase of the electromechanical coupling coefficient and to improve the frequency temperature characteristic.
  • the material of the piezoelectric layer (6A; 6B) is lithium tantalate or lithium niobate.
  • the material of the low sound velocity membrane (5A; 5B) is silicon oxide.
  • the material of the high sound velocity member (4A; 4B) is silicon.
  • the loss can be reduced and the Q value can be increased as compared with the case where the low sound velocity film (5A; 5B) is not provided.
  • the high sound velocity member (4A) comprises a high sound velocity film (4A; 4B) and a support substrate (4). 44A; 44B).
  • the high sound velocity film (4A; 4B) is a film in which the sound velocity of the bulk wave propagating through the high sound velocity film (4A; 4B) is faster than the sound velocity of the elastic wave propagating through the piezoelectric layer (6A; 6B).
  • the support substrate (44a; 44B) supports the high sound velocity membrane (4A; 4B).
  • Each of the first elastic wave resonator (3Af) and the second elastic wave resonator (3Bf) includes a low sound velocity film (5A; 5B).
  • the low sound velocity film (5A; 5B) is lower in sound velocity film (5A; 5B) than the sound velocity of the elastic wave propagating on the piezoelectric layer (6A; 6B) formed on the high sound velocity film (4A; 4B). It is a film whose sound velocity of the propagating bulk wave is low.
  • the material of the piezoelectric layer (6A; 6B) is lithium tantalate or lithium niobate.
  • the material of the low sound velocity film (5A; 5B) is at least selected from the group consisting of silicon oxide, glass, silicon oxynitride, tantalum oxide, and a compound in which fluorine, carbon or boron is added to silicon oxide It is one kind of material.
  • the material of the high sound velocity film (4A; 4B) is diamond like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, quartz, alumina, zirconia, cordierite, mullite And at least one material selected from the group consisting of steatite, forsterite and magnesia, and diamond.
  • the first elastic wave resonator (3A; 3Ad; 3An) and the second elastic wave resonator ( Each of 3B; 3Bd; 3Bn) further comprises a low sound velocity membrane (5A; 5B).
  • the low sound velocity film (5A; 5B) is provided between the high sound velocity member (4A; 4B) and the piezoelectric layer (6A; 6B), and is a bulk wave propagating in the piezoelectric layer (6A; 6B). It is a film in which the speed of sound of bulk waves propagating through a film (5A; 5B) lower than the speed of sound is slow.
  • the high sound velocity member (4A; 4B) is a high sound velocity support substrate in which the velocity of the bulk wave propagating through the high sound velocity member (4A; 4B) is faster than the velocity of the elastic wave propagating through the piezoelectric layer (6A; 6B) (42A; 42B).
  • each of the first elastic wave resonator (3A; 3Ad; 3An) and the second elastic wave resonator (3B; 3Bd; 3Bn) has a low sound velocity film ( Compared to the case where 5A; 5B) is not included, loss can be reduced and Q value can be increased.
  • a plurality of series arm resonators (elastic wave resonators 31, 33, 35, 37, 39) according to any one of the first to seventh aspects.
  • One of the series arm resonators (elastic wave resonator 31) is electrically closer to the first terminal (101) than the plurality of parallel arm resonators (elastic wave resonators 32, 34, 36, 38).
  • the one series arm resonator (elastic wave resonator 31) is an antenna end resonator.
  • one of the plurality of series arm resonators (elastic wave resonators 31, 33, 35, 37).
  • the series arm resonator (elastic wave resonator 31) and one parallel arm resonator (elastic wave resonator 32) of the plurality of parallel arm resonators (elastic wave resonators 32, 34, 36, 38) It is directly connected to one terminal (101).
  • At least one of the one series arm resonator (elastic wave resonator 31) and the one parallel arm resonator (elastic wave resonator 32) is an antenna end resonator.
  • the multiplexer (100; 100b) according to the tenth aspect includes a first filter (11) comprising the elastic wave device (1; 1c) according to any one of the first to ninth aspects, and a second filter (12). Equipped with The second filter (12) is provided between the first terminal (101) and the third terminal (103) different from the first terminal (101).
  • the passband of the first filter (11) is a higher frequency range than the passband of the second filter (12).
  • the degree to which the frequency at which the high-order mode is generated changes depending on the temperature even if the high-order mode exists. It can be reduced. That is, it is possible to reduce the change of the higher order mode due to the temperature.
  • the multiplexer (100b) includes, in the tenth aspect, a plurality of resonator groups (30) each including a plurality of elastic wave resonators (31 to 39).
  • the first terminal (101) is a common terminal
  • the second terminal (102) is an individual terminal.
  • Antenna end resonators of a plurality of resonator groups (30) are integrated in one chip.
  • the characteristic variation of the antenna end resonators of the plurality of resonator groups (30) can be reduced, and the elastic wave device (1; 1c) can be miniaturized. .
  • the minimum frequency of the passband of the first filter (11) is higher than the maximum frequency of the passband of the second filter (12). high.
  • a high frequency front end circuit (300) includes the multiplexer (100; 100b) according to any one of the tenth to twelfth aspects and a (first) amplifier circuit (303).
  • the (first) amplifier circuit (303) is connected to the multiplexer (100).
  • the degree to which the frequency at which the high-order mode is generated changes due to temperature even if the high-order mode exists. Can be reduced. That is, it is possible to reduce the change of the higher order mode due to the temperature.
  • a communication apparatus (400) includes the high frequency front end circuit (300) according to the thirteenth aspect, and a signal processing circuit (RF signal processing circuit 401, baseband signal processing circuit 402).
  • the signal processing circuit processes a high frequency signal received by the antenna (200).
  • a high frequency front end circuit (300) transmits high frequency signals between the antenna (200) and the signal processing circuit.
  • the degree to which the frequency at which the higher order mode is generated changes due to temperature It can be done. That is, it is possible to reduce the change of the higher order mode due to the temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

通過帯域の特性劣化を抑えつつ、通過帯域よりも高周波側に発生する高次モードの温度による変化を小さくする。弾性波装置(1)において、第1端子(101)に電気的に最も近いアンテナ端共振子は、第1弾性波共振子(3A)である。第1弾性波共振子(3A)及び第2弾性波共振子(3B)の各々において、圧電体層の厚さが、弾性波の波長をλとしたときに、3.5λ以下である。第1弾性波共振子(3A)と第2弾性波共振子(3B)は、第1条件と第2条件と第3条件とのうちの少なくとも1つを満たす。第1条件は、第1弾性波共振子(3A)が、圧電体層とIDT電極との間に設けられた誘電体膜を更に含み、第2弾性波共振子(3B)が、誘電体膜を含まない、という条件である。

Description

弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
 本発明は、一般に弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置に関する。本発明は、特に、複数の弾性波共振子を備える弾性波装置、この弾性波装置を備えるマルチプレクサ、このマルチプレクサを備える高周波フロントエンド回路、及び、この高周波フロントエンド回路を備える通信装置に関する。
 従来、圧電膜を有する弾性表面波装置(弾性波共振子)が知られている(例えば、特許文献1参照)。
 特許文献1に記載された弾性表面波装置は、支持基板と、高音速膜と、低音速膜と、圧電膜と、IDT電極とを備える。高音速膜は、圧電膜を伝搬する弾性波の音速より、高音速膜を伝搬するバルク波の音速が高速となる膜である。低音速膜は、高音速膜上に積層されており、圧電膜を伝搬する弾性波の音速より、低音速膜を伝搬するバルク波の音速が低速となる膜である。圧電膜は、圧電性を有し、低音速膜上に積層されている。IDT電極は、圧電膜上に形成されている。特許文献1に記載された弾性表面波装置では、Q値を高くすることができる。
国際公開第2012/086639号
 しかしながら、特許文献1に記載された従来の弾性波共振子のように、高音速膜、低音速膜、及び圧電膜の積層構造が用いられる場合、通過帯域よりも高周波側に高次モードが発生する。さらに、温度が変化すると、高次モードが発生する周波数が変化する。このため、例えば、従来の弾性波共振子を複数用いて弾性波装置を構成した場合、温度によっては、アンテナに対して弾性波装置と共通に接続されている高周波側フィルタの通過帯域に、上記高次モードに起因したリップルが発生することがある。
 本発明は上記の点に鑑みてなされた発明であり、本発明の目的は、通過帯域の特性劣化を抑えつつ、通過帯域よりも高周波側に発生する高次モードの温度による変化を小さくすることができる弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置を提供することにある。
 本発明の一態様に係る弾性波装置は、アンテナ端子である第1端子と、前記第1端子とは異なる第2端子との間に設けられる。前記弾性波装置は、複数の弾性波共振子を備える。前記複数の弾性波共振子は、複数の直列腕共振子と、複数の並列腕共振子とを含む。前記複数の直列腕共振子は、前記第1端子と前記第2端子とを結ぶ第1経路上に設けられている。前記複数の並列腕共振子は、前記第1経路上の複数のノードそれぞれとグラウンドとを結ぶ複数の第2経路上に設けられている。前記複数の弾性波共振子のうち前記第1端子に電気的に最も近い弾性波共振子をアンテナ端共振子とした場合に、前記アンテナ端共振子は、第1弾性波共振子である。前記複数の弾性波共振子のうち前記アンテナ端共振子以外の少なくとも1つの弾性波共振子は、第2弾性波共振子である。前記第1弾性波共振子及び前記第2弾性波共振子の各々は、圧電体層と、IDT電極と、高音速部材とを含む。前記IDT電極は、前記圧電体層上に形成されており、複数の電極指を有する。前記高音速部材は、前記圧電体層を挟んで前記IDT電極とは反対側に位置している。前記高音速部材では、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。前記圧電体層の厚さが、前記IDT電極の前記複数の電極指の周期である電極指周期で定まる弾性波の波長をλとしたときに、3.5λ以下である。前記第1弾性波共振子と前記第2弾性波共振子は、第1条件と第2条件と第3条件とのうちの少なくとも1つを満たす。前記第1条件は、前記第1弾性波共振子が、誘電体膜を更に含み、前記第2弾性波共振子が、前記誘電体膜を含まない、若しくは、前記第1弾性波共振子の誘電体膜の厚みより薄い厚みを有する誘電体膜を更に含む、という条件である。前記誘電体膜は、前記圧電体層と前記IDT電極との間に設けられている。前記第2条件は、前記第1弾性波共振子の前記IDT電極の電極指の電極指長手方向における単位長さ当たりの質量が、前記第2弾性波共振子の前記IDT電極の電極指の電極指長手方向における前記単位長さ当たりの質量よりも小さい、という条件である。前記第3条件は、前記第1弾性波共振子の前記圧電体層のカット角が、前記第2弾性波共振子の前記圧電体層のカット角よりも大きい、という条件である。
 本発明の一態様に係るマルチプレクサは、前記弾性波装置からなる第1フィルタと、第2フィルタとを備える。前記第2フィルタは、前記第1端子と前記第1端子とは異なる第3端子との間に設けられている。前記第1フィルタの通過帯域が、前記第2フィルタの通過帯域よりも低周波数域である。
 本発明の一態様に係る高周波フロントエンド回路は、前記マルチプレクサと、増幅回路とを備える。前記増幅回路は、前記マルチプレクサに接続されている。
 本発明の一態様に係る通信装置は、前記高周波フロントエンド回路と、信号処理回路とを備える。前記信号処理回路は、アンテナで受信される高周波信号を処理する。前記高周波フロントエンド回路は、前記アンテナと前記信号処理回路との間で前記高周波信号を伝達する。
 本発明の上記態様に係る弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置によれば、通過帯域の特性劣化を抑えつつ、通過帯域よりも高周波側に発生する高次モードの温度による変化を小さくすることができる。
図1は、本発明の実施形態1に係る弾性波装置の回路図である。 図2は、同上の弾性波装置を備える通信装置の構成図である。 図3Aは、同上の弾性波装置における第1弾性波共振子の断面図である。図3Bは、同上の弾性波装置における第2弾性波共振子の断面図である。 図4Aは、同上の弾性波装置における第1弾性波共振子の要部平面図である。図4Bは、同上の弾性波装置における第1弾性波共振子を示し、図4AのA-A線断面図である。 図5Aは、同上の弾性波装置における第2弾性波共振子の要部平面図である。図5Bは、同上の弾性波装置における第2弾性波共振子を示し、図5AのA-A線断面図である。 図6は、同上の第1弾性波共振子に関し、誘電体膜の厚さとTCF(Temperature Coefficient of Frequency)との関係を示すグラフである。 図7は、同上の第1弾性波共振子に関し、誘電体膜の厚さと比帯域との関係を示すグラフである。 図8は、本発明の実施形態1の変形例1に係るマルチプレクサの回路図である。 図9は、本発明の実施形態1の変形例2に係る弾性波装置の回路図である。 図10Aは、本発明の実施形態1の変形例3に係る弾性波装置における第1弾性波共振子の断面図である。図10Bは、同上の弾性波装置における第2弾性波共振子の断面図である。 図11Aは、本発明の実施形態2に係る弾性波装置における第1弾性波共振子の断面図である。図11Bは、同上の弾性波装置における第2弾性波共振子の断面図である。 図12は、同上の弾性波装置における弾性波共振子に関し、IDT電極の厚さとTCFとの関係を示すグラフである。 図13Aは、本発明の実施形態3に係る弾性波装置における第1弾性波共振子の断面図である。図13Bは、同上の弾性波装置における第2弾性波共振子の断面図である。 図14は、同上の弾性波装置における弾性波共振子に関し、圧電体層のカット角と電気機械結合係数との関係を示すグラフである。 図15は、同上の弾性波装置における弾性波共振子に関し、圧電体層のカット角とTCFとの関係を示すグラフである。 図16は、同上の弾性波共振子に関し、圧電体層のカット角と比帯域との関係を示すグラフである。
 以下、実施形態1~3に係る弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置について、図面を参照して説明する。
 下記の実施形態等において説明する図3A、図3B、図4A、図4B、図5A、図5B、図10A、図10B、図11A、図11B、図13A、及び図13Bは、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態1)
 (1)弾性波装置の全体構成
 まず、実施形態1に係る弾性波装置1の全体構成について、図面を参照して説明する。
 実施形態1に係る弾性波装置1は、図1に示すように、複数(図示例では9つ)の弾性波共振子31~39を備える。複数の弾性波共振子31~39は、複数(図示例では5つ)の直列腕共振子(弾性波共振子31,33,35,37,39)と、複数(図示例では4つ)の並列腕共振子(弾性波共振子32,34,36,38)とを備える。
 複数の弾性波共振子31,33,35,37,39は、第1端子101(共通端子)と第2端子102(入出力端子)とを結ぶ第1経路r1上に設けられている。第1経路r1上において、複数の弾性波共振子31,33,35,37,39は直列に接続されている。なお、複数の弾性波共振子31,33,35,37,39の各々は、直列又は並列に接続された複数の共振子で構成されていてもよい。また、弾性波装置1では、第1経路r1上に直列腕共振子以外の素子として、インダクタ又はキャパシタの機能を有する素子が配置されていてもよい。
 複数の弾性波共振子32,34,36,38は、それぞれ、第1経路r1上の複数のノードN1,N2,N3,N4とグラウンドとを結ぶ複数の第2経路r21,r22,r23,r24上に設けられている。なお、複数の弾性波共振子32,34,36,38の各々は、直列又は並列に接続された複数の共振子で構成されていてもよい。また、弾性波装置1では、第2経路r21,r22,r23,r24上の各々に、並列腕共振子以外の素子としてインダクタ又はキャパシタとしての機能を有する素子が配置されていてもよい。
 複数の弾性波共振子31~39は、上記の接続構成により、ラダー型のバンドパスフィルタを構成している。つまり、弾性波装置1は、ラダー型フィルタである。なお、弾性波共振子32,34,36,38の接続点とグラウンドとの間には、インダクタが接続されてもよい。
 なお、弾性波装置1は、複数の弾性波共振子が弾性波伝搬方向に並んで配置された縦結合型のフィルタ構造を有してもよい。
 実施形態1に係る弾性波装置1は、例えば所定の通過帯域を有する弾性波フィルタとして用いられる。また、実施形態1に係る弾性波装置1は、例えば、図2に示すようなマルチプレクサ100に用いられる。
 (2)弾性波共振子
 次に、実施形態1に係る弾性波装置1の各構成要素について、図面を参照して説明する。
 弾性波装置1は、上述したように、複数の弾性波共振子31~39として、複数の直列腕共振子(弾性波共振子31,33,35,37,39)と、複数の並列腕共振子(弾性波共振子32,34,36,38)とを備える。複数の弾性波共振子31~39の各々は、弾性表面波(Surface Acoustic Wave:SAW)共振子である。
 複数の弾性波共振子31~39のうち第1端子101に電気的に最も近い弾性波共振子をアンテナ端共振子とする。図1の例では、第1端子101に電気的に最も近い弾性波共振子は弾性波共振子31である。したがって、弾性波共振子31がアンテナ端共振子である。
 (2.1)第1弾性波共振子
 複数の弾性波共振子31~39のうち、アンテナ端共振子である弾性波共振子31は、第1弾性波共振子3Aである。また、複数の並列腕共振子(弾性波共振子32,34,36,38)のうち第1端子101に電気的に最も近い弾性波共振子32も第1弾性波共振子3Aである。
 第1弾性波共振子3Aは、図3Aに示すように、高音速部材4Aと、低音速膜5Aと、圧電体層6Aと、IDT(Interdigital Transducer)電極7Aと、誘電体膜8Aとを備える。
 (2.1.1)高音速部材
 実施形態1の高音速部材4Aは、高音速支持基板42Aである。高音速支持基板42Aは、圧電体層6Aを挟んでIDT電極7Aとは反対側に位置している。高音速支持基板42Aでは、圧電体層6Aを伝搬する弾性波の音速よりも、高音速支持基板42Aを伝搬するバルク波の音速が高速である。高音速支持基板42Aは、低音速膜5A、圧電体層6A、誘電体膜8A、及びIDT電極7Aを支持する。
 なお、高音速支持基板42Aを伝搬するバルク波は、高音速支持基板42Aを伝搬する複数のバルク波のうち最も低音速なバルク波である。
 高音速支持基板42Aは、弾性波を圧電体層6A及び低音速膜5Aが積層されている部分に閉じ込め、高音速支持基板42Aより下方に漏れないように機能する。
 高音速支持基板42Aの材料は、例えばシリコンであり、高音速支持基板42Aの厚さは、例えば125μmである。なお、高音速支持基板42Aの材料は、シリコンに限定されず、シリコンカーバイド、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、リチウムタンタレート、リチウムニオベイト、若しくは水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、若しくはフォルステライト等の各種セラミック、若しくは、マグネシア、ダイヤモンド、又は、上記各材料を主成分とする材料、又は、上記各材料の混合物を主成分とする材料であってもよい。
 (2.1.2)低音速膜
 低音速膜5Aは、圧電体層6Aを伝搬するバルク波の音速より、低音速膜5Aを伝搬する横波バルク波の音速が低速となる膜である。低音速膜5Aは、高音速支持基板42Aと圧電体層6Aとの間に設けられている。低音速膜5Aが高音速支持基板42Aと圧電体層6Aとの間に設けられていることにより、弾性波の音速が低下する。弾性波は本質的に低音速な媒質にエネルギーが集中する。したがって、圧電体層6A内及び弾性波が励振されているIDT電極7A内への弾性波のエネルギーの閉じ込め効果を高めることができる。その結果、低音速膜5Aが設けられていない場合に比べて、損失を低減し、Q値を高めることができる。
 低音速膜5Aの材料は、例えば酸化ケイ素である。なお、低音速膜5Aの材料は、酸化ケイ素に限定されず、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素、炭素、若しくはホウ素を加えた化合物、又は、上記各材料を主成分とする材料であってもよい。
 低音速膜5Aの厚さは、IDT電極7Aの電極指(後述の第1電極指73A及び第2電極指74A)の周期で定まる弾性波の波長をλとすると、2.0λ以下であることが好ましい。低音速膜5Aの厚さを2.0λ以下とすることにより、膜応力を低減させることができ、その結果、ウェハの反りを低減させることができ、良品率の向上及び特性の安定化が可能となる。また、低音速膜5Aの厚さが0.1λ以上0.5λ以下の範囲内であれば、電気機械結合係数がほとんど変わらない。
 (2.1.3)圧電体層
 圧電体層6Aは、例えば、Γ°YカットX伝搬LiTaO圧電単結晶から形成されている。Γ°YカットX伝搬LiTaO圧電単結晶は、LiTaO圧電単結晶の3つの結晶軸をX軸、Y軸、Z軸とした場合に、X軸を中心軸としてY軸からZ軸方向にΓ°回転した軸を法線とする面で切断したLiTaO単結晶であって、X軸方向に弾性表面波が伝搬する単結晶である。圧電体層6Aのカット角は、カット角をΓ[°]、圧電体層6Aのオイラー角を(φ,θ,ψ)をすると、Γ=θ+90°である。ただし、Γと、Γ±180×nは同義である(結晶学的に等価である)。ここにおいて、nは、自然数である。圧電体層6Aは、Γ°YカットX伝搬LiTaO圧電単結晶に限定されず、例えば、Γ°YカットX伝搬LiTaO圧電セラミックスであってもよい。
 圧電体層6Aは、低音速膜5A上に直接的又は間接的に設けられている。高音速支持基板42Aの厚さ方向(第1方向D1)における圧電体層6Aの厚さは、3.5λ以下である。圧電体層6Aの厚さが3.5λ以下である場合、Q値が高くなる。また、圧電体層6Aの厚さを2.5λ以下とすることで、TCFを小さくすることができる。さらに、圧電体層6Aの厚さを1.5λ以下とすることで、弾性波の音速の調整が容易になる。
 ところで、圧電体層6Aの厚さが3.5λ以下である場合、上述したようにQ値が高くなるが、高次モードが発生する。実施形態1では、圧電体層6Aの厚さが3.5λ以下であっても、高次モードを低減させるように、誘電体膜8Aが設けられている。誘電体膜8Aについては後述する。
 弾性波装置1における第1弾性波共振子3Aでは、圧電体層6Aを伝搬する弾性波のモードとして、縦波、SH波、若しくはSV波、又はこれらが複合したモードが存在する。第1弾性波共振子3Aでは、SH波を主成分とするモードをメインモードとして使用している。高次モードとは、圧電体層6Aを伝搬する弾性波のメインモードよりも高周波数側に発生するスプリアスモードのことである。圧電体層6Aを伝搬する弾性波のモードが「SH波を主成分とするモードをメインモード」であるか否かについては、例えば、圧電体層6Aのパラメータ(材料、オイラー角及び厚さ等)、IDT電極7Aのパラメータ(材料、厚さ及び電極指周期等)、低音速膜5Aのパラメータ(材料、厚さ等)のパラメータを用いて、有限要素法により変位分布を解析し、ひずみを解析することにより、確認することができる。圧電体層6Aのオイラー角は、分析により求めることができる。
 圧電体層6Aの材料は、LiTaO(リチウムタンタレート)に限定されず、例えば、LiNbO(リチウムニオベイト)であってもよい。圧電体層6Aが、例えば、YカットX伝搬LiNbO圧電単結晶又は圧電セラミックスからなる場合、第1弾性波共振子3Aは、ラブ波を弾性波として利用することにより、SH波を主成分とするモードをメインモードとして使用することができる。なお、圧電体層6Aの単結晶材料、カット角については、例えば、フィルタの要求仕様(通過特性、減衰特性、温度特性及び帯域幅等のフィルタ特性)等に応じて、適宜、決定すればよい。
 (2.1.4)IDT電極
 IDT電極7Aは、図4A及び図4Bに示すように、第1バスバー71Aと、第2バスバー72Aと、複数の第1電極指73Aと、複数の第2電極指74Aとを含み、誘電体膜8Aの主面81Aに設けられている。
 第1バスバー71Aは、第2方向D2を長手方向とする長尺状に形成されており、複数の第1電極指73Aと電気的に接続されている。第2バスバー72Aは、第2方向D2を長手方向とする長尺状に形成されており、複数の第2電極指74Aと電気的に接続されている。第2方向D2は、第1方向D1と直交する方向である。
 複数の第1電極指73Aは、第2方向D2において互いに並んで配置されている。各第1電極指73Aは、第3方向D3を長手方向とする長尺状に形成されている。複数の第1電極指73Aは、第2方向D2において互いに対向する状態で平行に配置されている。複数の第2電極指74Aは、第2方向D2において互いに並んで配置されている。各第2電極指74Aは、第3方向D3を長手方向とする長尺状に形成されている。複数の第2電極指74Aは、第2方向D2において互いに対向する状態で平行に配置されている。実施形態1では、複数の第1電極指73A及び複数の第2電極指74Aが1本ずつ交互に並んで配置されている。第3方向D3は、第1方向D1及び第2方向D2の両方と直交する方向である。
 第1電極指73A及び第2電極指74Aの幅をW(図4B参照)とし、隣り合う第1電極指73Aと第2電極指74Aとのスペース幅をSとした場合、IDT電極7Aにおいて、デューティ比は、W/(W+S)で定義される。IDT電極7Aのデューティ比は、例えば、0.5である。IDT電極7Aの電極指周期で定まる弾性波の波長をλとしたとき、波長λは、電極指周期と等しい。電極指周期は、複数の第1電極指73A又は複数の第2電極指74Aの繰り返し周期PλA(図4B参照)で定義される。したがって、繰り返し周期PλAとλとは等しい。IDT電極7Aのデューティ比は、電極指周期の2分の1の値(W+S)に対する第1電極指73A及び第2電極指74Aの幅Wの比である。
 IDT電極7Aの材料は、Al、Cu、Pt、Au、Ag、Ti、Ni、Cr、Mo、若しくはW、又はこれらの金属のいずれかを主体とする合金等の適宜の金属材料である。また、IDT電極7Aは、これらの金属又は合金からなる複数の金属膜を積層した構造を有してもよい。
 (2.1.5)誘電体膜
 誘電体膜8Aは、図3Aに示すように、圧電体層6A上に形成されている。誘電体膜8A上にIDT電極7Aが形成されている。誘電体膜8Aの材料は、例えば、酸化ケイ素である。
 (2.2)第2弾性波共振子
 複数の弾性波共振子31~39のうち第1弾性波共振子3A以外の弾性波共振子は、図1に示すように、第2弾性波共振子3Bである。図1の例では、複数の弾性波共振子33~39が第2弾性波共振子3Bである。
 第2弾性波共振子3Bは、図3Bに示すように、高音速部材4Bと、低音速膜5Bと、圧電体層6Bと、IDT電極7Bとを備える。第1弾性波共振子3A(図3A参照)とは異なり、第2弾性波共振子3Bは、圧電体層6BとIDT電極7Bとの間に誘電体膜を備えていない。
 (2.2.1)高音速部材
 実施形態1の高音速部材4Bは、高音速支持基板42Bである。高音速支持基板42Bは、圧電体層6Bを挟んでIDT電極7Bとは反対側に位置している。高音速支持基板42Bでは、圧電体層6Bを伝搬する弾性波の音速よりも、高音速支持基板42Bを伝搬するバルク波の音速が高速である。高音速支持基板42Bは、低音速膜5B、圧電体層6B、及びIDT電極7Bを支持する。
 高音速支持基板42Bは、弾性波を圧電体層6B及び低音速膜5Bが積層されている部分に閉じ込め、高音速支持基板42Bより下方に漏れないように機能する。
 高音速支持基板42Bの材料は、例えばシリコンであり、高音速支持基板42Bの厚さは、例えば125μmである。なお、高音速支持基板42Bの材料は、シリコンに限定されず、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、リチウムタンタレート、リチウムニオベイト、若しくは水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、若しくはフォルステライト等の各種セラミック、若しくは、マグネシアダイヤモンド、又は、上記各材料を主成分とする材料、又は、上記各材料の混合物を主成分とする材料であってもよい。
 (2.2.2)低音速膜
 低音速膜5Bは、圧電体層6Bを伝搬するバルク波の音速より、低音速膜5Bを伝搬するバルク波の音速が低速となる膜である。低音速膜5Bは、高音速支持基板42Bと圧電体層6Bとの間に設けられている。低音速膜5Bが高音速支持基板42Bと圧電体層6Bとの間に設けられていることにより、弾性波の音速が低下する。弾性波は本質的に低音速な媒質にエネルギーが集中する。したがって、圧電体層6B内及び弾性波が励振されているIDT電極7B内への弾性波のエネルギーの閉じ込め効果を高めることができる。その結果、低音速膜5Bが設けられていない場合に比べて、損失を低減し、Q値を高めることができる。
 低音速膜5Bの材料は、例えば酸化ケイ素である。なお、低音速膜5Bの材料は、酸化ケイ素に限定されず、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素、炭素、若しくはホウ素を加えた化合物、又は、上記各材料を主成分とする材料であってもよい。
 低音速膜5Bの厚さは、IDT電極7Bの電極指(後述の第1電極指73B及び第2電極指74B)の周期で定まる弾性波の波長をλとすると、2.0λ以下であることが好ましい。低音速膜5Bの厚さを2.0λ以下とすることにより、膜応力を低減させることができ、その結果、ウェハの反りを低減させることができ、良品率の向上及び特性の安定化が可能となる。また、低音速膜5Bの厚さが0.1λ以上0.5λ以下の範囲内であれば、電気機械結合係数がほとんど変わらない。
 (2.2.3)圧電体層
 圧電体層6Bは、圧電体層6Aと同様、例えば、Γ°YカットX伝搬LiTaO圧電単結晶から形成されている。圧電体層6Bのカット角は、カット角をΓ[°]、圧電体層6Bのオイラー角を(φ,θ,ψ)をすると、Γ=θ+90°である。なお、圧電体層6Bは、Γ°YカットX伝搬LiTaO圧電単結晶に限定されず、例えば、Γ°YカットX伝搬LiTaO圧電セラミックスであってもよい。
 圧電体層6Bは、低音速膜5B上に直接的又は間接的に積層されている。高音速支持基板42Bの厚さ方向(第1方向D1)における圧電体層6Bの厚さは、3.5λ以下である。圧電体層6Bの厚さが3.5λ以下である場合、Q値が高くなる。また、圧電体層6Bの厚さを2.5λ以下とすることで、TCFを小さくすることができる。さらに、圧電体層6Bの厚さを1.5λ以下とすることで、弾性波の音速の調整が容易になる。
 弾性波装置1における第2弾性波共振子3Bでは、圧電体層6Bを伝搬する弾性波のモードとして、縦波、SH波、若しくはSV波、又はこれらが複合したモードが存在する。第2弾性波共振子3Bでは、SH波を主成分とするモードをメインモードとして使用している。高次モードとは、圧電体層6Bを伝搬する弾性波のメインモードよりも高周波数側に発生するスプリアスモードのことである。圧電体層6Bを伝搬する弾性波のモードが「SH波を主成分とするモードをメインモード」であるか否かについては、例えば、圧電体層6Bのパラメータ(材料、オイラー角及び厚さ等)、IDT電極7Bのパラメータ(材料、厚さ及び電極指周期等)、低音速膜5Bのパラメータ(材料、厚さ等)のパラメータを用いて、有限要素法により変位分布を解析し、ひずみを解析することにより、確認することができる。圧電体層6Bのオイラー角は、分析により求めることができる。
 圧電体層6Bの材料は、LiTaOに限らず、例えば、LiNbOであってもよい。圧電体層6Bが、例えば、YカットX伝搬LiNbO圧電単結晶又は圧電セラミックスからなる場合、第1弾性波共振子3A及び第2弾性波共振子3Bは、ラブ波を弾性波として利用することにより、SH波を主成分とするモードをメインモードとして使用することができる。なお、圧電体層6Aの単結晶材料、カット角については、例えば、フィルタの要求仕様(通過特性、減衰特性、温度特性及び帯域幅等のフィルタ特性)等に応じて、適宜、決定すればよい。
 (2.2.4)IDT電極
 IDT電極7Bは、IDT電極7Aと同様、図5A及び図5Bに示すように、第1バスバー71Bと、第2バスバー72Bと、複数の第1電極指73Bと、複数の第2電極指74Bとを含み、圧電体層6Bの主面61B(図3B参照)に設けられている。
 第1バスバー71Bは、第1バスバー71Aと同様、第2方向D2を長手方向とする長尺状に形成されており、複数の第1電極指73Bと電気的に接続されている。第2バスバー72Bは、第2バスバー72Aと同様、第2方向D2を長手方向とする長尺状に形成されており、複数の第2電極指74Bと電気的に接続されている。
 複数の第1電極指73Aは、第2方向D2において互いに並んで配置されている。各第1電極指73Aは、第3方向D3を長手方向とする長尺状に形成されている。複数の第1電極指73Bは、第2方向D2において互いに対向する状態で平行に配置されている。複数の第2電極指74Bは、第2方向D2において互いに並んで配置されている。各第2電極指74Bは、第3方向D3を長手方向とする長尺状に形成されている。複数の第2電極指74Bは、第2方向D2において互いに対向する状態で平行に配置されている。実施形態1では、複数の第1電極指73B及び複数の第2電極指74Bが1本ずつ交互に並んで配置されている。
 第1電極指73B及び第2電極指74Bの幅をW(図5B参照)とし、隣り合う第1電極指73Bと第2電極指74Bとのスペース幅をSとした場合、IDT電極7Bにおいて、デューティ比は、W/(W+S)で定義される。IDT電極7Bのデューティ比は、例えば、0.5である。IDT電極7Bの電極指周期で定まる弾性波の波長をλとしたとき、波長λは、電極指周期と等しい。電極指周期は、複数の第1電極指73B又は複数の第2電極指74Bの繰り返し周期PλB(図5B参照)で定義される。したがって、繰り返し周期PλBとλとは等しい。IDT電極7Bのデューティ比は、電極指周期の2分の1の値(W+S)に対する第1電極指73B及び第2電極指74Bの幅Wの比である。
 IDT電極7Bの材料は、Al、Cu、Pt、Au、Ag、Ti、Ni、Cr、Mo、若しくはW、又はこれらの金属のいずれかを主体とする合金など適宜の金属材料である。また、IDT電極7Bは、これらの金属又は合金からなる複数の金属膜を積層した構造を有してもよい。
 (3)弾性波装置の動作
 第1弾性波共振子3Aについては、シリコン基板からなる高音速部材4Aの面41Aを(111)面とする。低音速膜5A、圧電体層6A及びIDT電極7Aの厚さは、IDT電極7Aの電極指周期で定まる弾性波の波長であるλを用いて規格化している。第1弾性波共振子3Aでは、λは、1.48μmとする。図6は、第1弾性波共振子3Aにおいて、アルミニウムからなるIDT電極7Aの厚さを0.07λとし、50°YカットX伝搬LiTaO圧電単結晶からなる圧電体層6Aの厚さを0.3λとし、酸化ケイ素からなる低音速膜5Aの厚さを0.35λとし、誘電体膜8Aの厚さを0nmから30nmの範囲で変化させた場合の、誘電体膜8Aの厚さとTCFとの関係を示している。また、図7は、第1弾性波共振子3Aにおける誘電体膜8Aの厚さと比帯域との関係を示している。
 図6に示すように、第1弾性波共振子3Aでは、TCFが正の値の範囲では誘電体膜8Aの厚さを厚くするほど、TCFが小さくなる傾向にある。この傾向は、高音速部材4Aの圧電体層6A側の面41Aを(110)面、(100)面とした場合も同様である。第1弾性波共振子3Aの共振特性の温度変化に対する周波数変動を抑制する観点では、誘電体膜8Aの厚さは、22nm以下であれば、より厚いほうが好ましい。つまり、第1弾性波共振子3Aは、第1弾性波共振子3AのTCFを小さくする観点では、誘電体膜8Aの厚さが厚いほうが好ましい。また、図7から、第1弾性波共振子3Aでは、誘電体膜8Aの厚さを厚くすると比帯域が狭くなる傾向にある。この傾向は、高音速部材4Aの圧電体層6A側の面41Aを(110)面、(100)面とした場合も同様である。第1弾性波共振子3Aは、第1弾性波共振子3Aの比帯域を広くする観点では、誘電体膜8Aの厚さが薄いほうが好ましく、誘電体膜8Aを含まないのがより好ましい。
 実施形態1に係る弾性波装置1では、アンテナ端共振子が第1弾性波共振子3Aであり、第1弾性波共振子3Aの高音速部材4Aにおける圧電体層6A側の面41Aが(111)面又は(110)面であることにより、高次モードを抑制することができる。また、弾性波装置1では、複数の弾性波共振子31~39のうちアンテナ端共振子以外の少なくとも1つの弾性波共振子33~39が第2弾性波共振子3Bであり、第2弾性波共振子3Bの高音速部材4Bにおける圧電体層6B側の面41Bが(100)面であることにより、特性劣化を抑制することができる。また、弾性波装置1では、第1弾性波共振子3Aの圧電体層6Aが第2弾性波共振子3Bの圧電体層6Bよりも薄いことにより、高次モードを抑制することができる。
 ここで、第1弾性波共振子3Aでは、圧電体層6AとIDT電極7Aとの間に誘電体膜8Aが設けられていることにより、TCFを低減させることができる。より詳細には、たとえ高次モードが存在する場合であっても、誘電体膜8Aが設けられていない構成に比べて、温度によって、高次モードが発生する周波数が変化する度合いを小さくすることができる。つまり、誘電体膜8Aが設けられていない構成に比べて、高次モードの温度による変化を小さくすることができる。
 (4)マルチプレクサ
 次に、実施形態1に係るマルチプレクサ100について、図2を参照して説明する。
 マルチプレクサ100は、図2に示すように、第1フィルタ11と、第2フィルタ12と、第3フィルタ21と、第4フィルタ22とを備える。さらに、マルチプレクサ100は、第1端子101と、第2端子102と、第3端子103と、第4端子104と、第5端子105とを備える。
 第1端子101は、マルチプレクサ100の外部のアンテナ200と電気的に接続可能なアンテナ端子である。マルチプレクサ100は、第1端子101を介して、アンテナ200に接続されている。第1~4フィルタ11,12,21,22は、第1端子101に共通接続されている。
 第1フィルタ11は、第1端子101と第2端子102との間に設けられている受信フィルタである。第1フィルタ11は、第1フィルタ11の通過帯域の信号を通過させ、通過帯域以外の信号を減衰させる。
 第2フィルタ12は、第1端子101と第3端子103との間に設けられている受信フィルタである。第2フィルタ12は、第2フィルタ12の通過帯域の信号を通過させ、通過帯域以外の信号を減衰させる。
 第1フィルタ11と第2フィルタ12とは互いに異なる通過帯域を有している。マルチプレクサ100では、第1フィルタ11の通過帯域が、第2フィルタ12の通過帯域よりも低周波数域である。したがって、マルチプレクサ100では、第1フィルタ11の通過帯域の最大周波数が、第2フィルタ12の通過帯域の最小周波数よりも低い。
 第3フィルタ21は、第1端子101と第4端子104との間に設けられている送信フィルタである。第3フィルタ21は、第3フィルタ21の通過帯域の信号を通過させ、通過帯域以外の信号を減衰させる。
 第4フィルタ22は、第1端子101と第5端子105との間に設けられている送信フィルタである。第4フィルタ22は、第4フィルタ22の通過帯域の信号を通過させ、通過帯域以外の信号を減衰させる。
 なお、第1~4フィルタ11,12,21,22と第1端子101との間には、インダクタが直列接続されていてもよい。インダクタは、アンテナ200と第1~4フィルタ11,12,21,22とのインピーダンス整合をとるための回路素子であって、必須の構成要素ではない。
 弾性波装置1である第1フィルタ11において、上述したように、アンテナ200に最も電気的に近い第1弾性波共振子3A(図1参照)において、圧電体層6AとIDT電極7Aとの間に誘電体膜8Aが設けられている。これにより、TCFを低減させることができる。これにより、たとえ、高次モードが発生したとしても、温度が変化したときに、高次モードの発生周波数の変化が小さい。したがって、第2フィルタ12の通過帯域を、第1フィルタ11で発生する高次モードの発生周波数からあらかじめ外すように設計しておけば、温度が変化しても、高次モードが第2フィルタ12の通過帯域に重なることを抑制することができる。
 (5)高周波フロントエンド回路
 次に、実施形態1に係る高周波フロントエンド回路300について、図2を参照して説明する。
 高周波フロントエンド回路300は、図2に示すように、マルチプレクサ100と、第1スイッチ回路301と、第2スイッチ回路302と、第1増幅回路303と、第2増幅回路304とを備える。
 第1スイッチ回路301は、第1フィルタ11及び第2フィルタ12と第1増幅回路303との間に設けられている。第1スイッチ回路301は、マルチプレクサ100の第2端子102及び第3端子103に個別に接続された2つの被選択端子と、第1増幅回路303に接続された共通端子とを有する。つまり、第1スイッチ回路301は、第2端子102を介して第1フィルタ11と接続され、第3端子103を介して第2フィルタ12と接続される。第1スイッチ回路301は、第1フィルタ11及び第2フィルタ12の中で、第1増幅回路303に接続されるフィルタを切り替える。
 第1スイッチ回路301は、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。第1スイッチ回路301は、制御回路(図示せず)によって制御される。第1スイッチ回路301は、上記制御回路からの制御信号に従って、共通端子と被選択端子とを接続する。第1スイッチ回路301は、スイッチIC(Integrated Circuit)によって構成されてもよい。なお、第1スイッチ回路301では、共通端子と接続される被選択端子は1つに限らず、複数であってもよい。つまり、高周波フロントエンド回路300は、キャリアアグリゲーション(Carrier Aggregation)に対応するように構成されていてもよい。
 第2スイッチ回路302は、第3フィルタ21及び第4フィルタ22と第2増幅回路304との間に設けられている。第2スイッチ回路302は、マルチプレクサ100の第4端子104及び第5端子105に個別に接続された2つの被選択端子と、第2増幅回路304に接続された共通端子とを有する。つまり、第2スイッチ回路302は、第4端子104を介して第3フィルタ21と接続され、第5端子105を介して第4フィルタ22と接続されている。第2スイッチ回路302は、第3フィルタ21及び第4フィルタ22の中で、第2増幅回路304に接続されるフィルタを切り替える。
 第2スイッチ回路302は、例えば、SPDT型のスイッチによって構成される。第2スイッチ回路302は、上記制御回路によって制御される。第2スイッチ回路302は、上記制御回路からの制御信号に従って、共通端子と被選択端子とを接続する。第2スイッチ回路302は、スイッチICによって構成されてもよい。なお、第2スイッチ回路302では、共通端子と接続される被選択端子は1つに限らず、複数であってもよい。
 第1増幅回路303は、アンテナ200、マルチプレクサ100、及び第1スイッチ回路301を経由した高周波信号(受信信号)を増幅し、増幅した高周波信号を高周波フロントエンド回路300の外部(例えば、後述のRF信号処理回路401)へ出力する。第1増幅回路303は、ローノイズアンプ回路である。
 第2増幅回路304は、高周波フロントエンド回路300の外部(例えば、後述のRF信号処理回路401)から出力された高周波信号(送信信号)を増幅し、増幅した高周波信号を、第2スイッチ回路302及びマルチプレクサ100を経由してアンテナ200に出力する。第2増幅回路304は、パワーアンプ回路である。
 (6)通信装置
 次に、実施形態1に係る通信装置400について、図2を参照して説明する。
 通信装置400は、図2に示すように、高周波フロントエンド回路300と、RF信号処理回路401と、ベースバンド信号処理回路402とを備える。RF信号処理回路401及びベースバンド信号処理回路402は、高周波信号を処理する信号処理回路を構成する。
 RF信号処理回路401は、例えばRFIC(Radio Frequency Integrated Circuit)であり、送信信号及び受信信号を含む高周波信号に対する信号処理を行う。RF信号処理回路401は、第1増幅回路303から出力された高周波信号(受信信号)をダウンコンバート等の信号処理を行い、信号処理が行われた高周波信号をベースバンド信号処理回路402へ出力する。
 ベースバンド信号処理回路402は、例えばBBIC(Baseband Integrated Circuit)であり、外部からの送信信号及びRF信号処理回路401からの高周波信号のそれぞれに対する信号処理を行う。
 (7)効果
 以上説明したように、実施形態1に係る弾性波装置1では、第1弾性波共振子3Aにおいて、圧電体層6AとIDT電極7Aとの間に誘電体膜8Aが設けられている。これにより、たとえ高次モードが存在していても、温度によって、高次モードが発生する周波数が変化する度合いを低減させることができる。つまり、高次モードの温度による変化を低減させることができる。
 実施形態1に係る弾性波装置1では、アンテナ端共振子が複数の弾性波共振子31~39におけるアンテナ端共振子以外の弾性波共振子とは異なるチップである。これにより、上記アンテナ端共振子以外の弾性波装置の特性のばらつきを抑制することができる。
 実施形態1に係る弾性波装置1では、第1弾性波共振子3A及び第2弾性波共振子3Bにおいて、高音速部材4A,4Bと圧電体層6A,6Bとの間に低音速膜5A,5Bが設けられている。これにより、電気機械結合係数の増大による比帯域の拡大と、周波数温度特性の改善との双方を図ることができる。
 実施形態1に係る弾性波装置1では、低音速膜5A,5Bが設けられていない場合に比べて、損失を低減し、Q値を高めることができる。
 実施形態1に係るマルチプレクサ100では、第1フィルタ11に弾性波装置1が用いられている。これにより、第1フィルタ11で発生する高次モードが第2フィルタ12へ与える影響を抑制することができる。
 (8)変形例
 以下、実施形態1の変形例について説明する。
 実施形態1の変形例1に係るマルチプレクサ100bは、図8に示すように、複数の弾性波共振子31~39からなる共振子群30を複数(図8では2つのみを図示)備える。複数の共振子群30では、第1端子101が共通端子であり、かつ、第2端子102が個別端子である。マルチプレクサ100bでは、複数の共振子群30のアンテナ端共振子(弾性波共振子31)が1チップに集積されている。これにより、変形例1に係るマルチプレクサ100bは、複数の共振子群30を備えた構成において、小型化を図ることが可能となり、かつ、アンテナ端共振子の特性ばらつきを小さくすることができる。図8では、一点鎖線で囲まれた弾性波共振子が1チップに集積されている。例えば、1つの共振子群30における7つの第2弾性波共振子3Bが1チップに集積されている。また、共振子群30ごとの2つの第1弾性波共振子3A(図示例では、4つの第1弾性波共振子3A)が1チップに集積されている。なお、変形例1に係るマルチプレクサ100bでは、複数の共振子群30の弾性波共振子31,32が1チップに集積されているが、少なくとも複数の共振子群30の弾性波共振子31が1チップに集積されていればよい。
 変形例1に係るマルチプレクサ100bでは、複数の共振子群30は、互いに通過帯域の異なるフィルタを構成する。
 変形例1に係るマルチプレクサ100bでは、複数の共振子群30のアンテナ端共振子の特性ばらつきを低減でき、かつ、マルチプレクサ100bの小型化を図ることができる。
 実施形態1の変形例2に係る弾性波装置1cは、図9に示すように、複数(8つ)の弾性波共振子31~38の接続関係について、実施形態1に係る弾性波装置1と相違する。変形例2に係る弾性波装置1cに関し、実施形態1に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 弾性波装置1cでは、複数の弾性波共振子31~38において、複数(4つ)の直列腕共振子(弾性波共振子31、33、35、37)のうち1つの直列腕共振子(弾性波共振子31)と複数(4つ)の並列腕共振子(弾性波共振子32、34、36、38)のうち1つの並列腕共振子(弾性波共振子32)とが、第1端子101と直接的に接続されている。「1つの直列腕共振子(弾性波共振子31)が第1端子101と直接的に接続されている」とは、他の弾性波共振子32~38を介さずに第1端子101と電気的に接続されていることを意味する。また、「1つの並列腕共振子(弾性波共振子32)が第1端子101と直接的に接続されている」とは、他の弾性波共振子31、33~38を介さずに第1端子101と電気的に接続されていることを意味する。
 弾性波装置1cでは、上記1つの直列腕共振子(弾性波共振子31)と上記1つの並列腕共振子(弾性波共振子32)との両方がアンテナ端共振子として第1弾性波共振子3Aにより構成されているが、これに限らない。例えば、弾性波装置1cでは、上記1つの直列腕共振子(弾性波共振子31)と上記1つの並列腕共振子(弾性波共振子32)との少なくとも一方が、アンテナ端共振子として第1弾性波共振子3Aにより構成されていればよい。
 実施形態1の変形例3に係る弾性波装置は、実施形態1に係る弾性波装置1の第1弾性波共振子3A及び第2弾性波共振子3Bの代わりに、図10Aに示すような第1弾性波共振子3Af及び図10Bに示すような第2弾性波共振子3Bfを備える点で、実施形態1に係る弾性波装置1と相違する。変形例3に係る弾性波装置に関し、実施形態1に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 第1弾性波共振子3Afの高音速部材4Aは、高音速支持基板42Aに代えて、高音速膜45Aと、支持基板44Aとを含む。高音速膜45Aは、支持基板44A上に形成されている。ここにおいて、「支持基板44A上に形成されている」とは、支持基板44A上に直接的に形成されている場合と、支持基板44A上に間接的に形成されている場合と、を含む。高音速膜45Aでは、圧電体層6Aを伝搬する弾性波の音速よりも、高音速膜45Aを伝搬するバルク波の音速が高速である。低音速膜5Aは、高音速膜45A上に形成されている。ここにおいて、「高音速膜45A上に形成されている」とは、高音速膜45A上に直接的に形成されている場合と、高音速膜45A上に間接的に形成されている場合と、を含む。低音速膜5Aでは、圧電体層6Aを伝搬するバルク波の音速よりも、低音速膜5Aを伝搬するバルク波の音速が低速である。圧電体層6Aは、低音速膜5A上に形成されている。ここにおいて、「低音速膜5A上に形成されている」とは、低音速膜5A上に直接的に形成されている場合と、低音速膜5A上に間接的に形成されている場合と、を含む。
 第2弾性波共振子3Bfの高音速部材4Bは、高音速支持基板42Bに代えて、高音速膜45Bと、支持基板44Bとを含む。高音速膜45Bは、支持基板44B上に形成されている。ここにおいて、「支持基板44B上に形成されている」とは、支持基板44B上に直接的に形成されている場合と、支持基板44B上に間接的に形成されている場合と、を含む。高音速膜45Bでは、圧電体層6Bを伝搬する弾性波の音速よりも、高音速膜45Bを伝搬するバルク波の音速が高速である。低音速膜5Bは、高音速膜45B上に形成されている。ここにおいて、「高音速膜45B上に形成されている」とは、高音速膜45B上に直接的に形成されている場合と、高音速膜45B上に間接的に形成されている場合と、を含む。低音速膜5Bでは、圧電体層6Bを伝搬するバルク波の音速よりも、低音速膜5Bを伝搬するバルク波の音速が低速である。圧電体層6Bは、低音速膜5B上に形成されている。ここにおいて、「低音速膜5B上に形成されている」とは、低音速膜5B上に直接的に形成されている場合と、低音速膜5B上に間接的に形成されている場合と、を含む。
 支持基板44A,44Bの材料は、例えばシリコンである。なお、支持基板44A,44Bの材料は、シリコンに限定されず、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体、窒化ガリウム等の半導体、樹脂等であってもよい。
 第1弾性波共振子3Afでは、高音速膜45Aは、メインモードの弾性波のエネルギーが高音速膜45Aより下の構造に漏れないように機能する。同様に、第2弾性波共振子3Bfでは、高音速膜45Bは、メインモードの弾性波のエネルギーが高音速膜45Bより下の構造に漏れないように機能する。
 第1弾性波共振子3Afでは、高音速膜45Aの厚さが十分に厚い場合、メインモードの弾性波のエネルギーは圧電体層6A及び低音速膜5Aの全体に分布し、高音速膜45Aの低音速膜5A側の一部にも分布し、支持基板44Aには分布しないことになる。同様に、第2弾性波共振子3Bfでは、高音速膜45Bの厚さが十分に厚い場合、メインモードの弾性波のエネルギーは圧電体層6B及び低音速膜5Bの全体に分布し、高音速膜45Bの低音速膜5B側の一部にも分布し、支持基板44Bには分布しないことになる。高音速膜45A,45Bにより弾性波を閉じ込めるメカニズムは非漏洩なSH波であるラブ波型の表面波の場合と同様のメカニズムであり、例えば、文献「弾性表面波デバイスシミュレーション技術入門」、橋本研也、リアライズ社、p.26-28に記載されている。上記メカニズムは、音響多層膜によるブラッグ反射器を用いて弾性波を閉じ込めるメカニズムとは異なる。
 高音速膜45A,45Bの材料は、例えば、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト及びマグネシアダイヤモンドからなる群から選択される少なくとも1種の材料である。
 変形例3に係る弾性波装置では、高音速部材4A,4Bが高音速膜45A,45Bを含む。これにより、弾性波が支持基板44A,44Bに漏れるのを抑制することができる。
 また、実施形態1の他の変形例として、マルチプレクサ100は、4つのフィルタを組み合わせたクワッドプレクサに限定されない。マルチプレクサ100は、3つ以下のフィルタを組み合わせたマルチプレクサであってもよいし、5つ以上のフィルタを組み合わせたマルチプレクサであってもよい。
 マルチプレクサ100において、第1フィルタ11だけでなく,第2~4フィルタ12,21,22にも実施形態1又は変形例2,3に係る弾性波装置1,1cが適用されてもよい。
 上記の各変形例に係る弾性波装置1c及びマルチプレクサ100,100bにおいても、実施形態1に係る弾性波装置1及びマルチプレクサ100と同様の効果を奏する。
 (実施形態2)
 実施形態2に係る弾性波装置は、実施形態1に係る弾性波装置1の第1弾性波共振子3A及び第2弾性波共振子3Bの代わりに、図11Aに示すような第1弾性波共振子3Ad及び図11Bに示すような第2弾性波共振子3Bdを備える点で、実施形態1に係る弾性波装置1と相違する。実施形態2に係る弾性波装置の回路構成は、実施形態1に係る弾性波装置1の回路構成と同じなので、図示及び説明を省略する。実施形態2に係る弾性波装置に関し、実施形態1に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態2に係る弾性波装置では、第1弾性波共振子3AdのIDT電極7Aの厚さと、第2弾性波共振子3BdのIDT電極7Bの厚さと、が異なる。第1弾性波共振子3Adの構成は、実施形態1に係る弾性波装置1の第1弾性波共振子3Aと同様であり、IDT電極7A、圧電体層6A、低音速膜5Aの厚さが相違する。第2弾性波共振子3Bdの構成は、実施形態1に係る弾性波装置1の第2弾性波共振子3Bと同様であり、IDT電極7B、圧電体層6B、低音速膜5Bの厚さが相違する。実施形態2に係る弾性波装置では、IDT電極7Aの電極指(図4Aの第1電極指73A,第2電極指74A)の電極指長手方向(図4Aの第3方向D3)における単位長さ当たりの質量が、IDT電極7Bの電極指(図5Aの第1電極指73B,第2電極指74B)の電極指長手方向(図5Aの第3方向D3)における単位長さ当たりの質量よりも小さい。「電極指の電極指長さ方向における単位長さ」は、例えば、図4A及び図5Aにおいて第2方向D2から見て第1電極指73A,73Bと第2電極指74A,74Bとが重なる領域(弾性波が励振される領域)における第1電極指73A,73B及び第2電極指74A,74Bの第3方向D3の長さ(交差幅LA,LB)である。
 図12は、弾性波共振子(第1弾性波共振子3Ad、第2弾性波共振子3Bd)におけるIDT電極(IDT電極7A,7B)の厚さとTCFとの関係を示すグラフである。弾性波共振子において、波長λを2μmとし、酸化ケイ素からなる低音速膜(低音速膜5A,5B)の厚さを0.35λとし、50°YカットX伝搬LiTaO圧電単結晶からなる圧電体層(圧電体層6A,6B)の厚さを0.3λとし、IDT電極(IDT電極7A,7B)の厚さを70nmから180nmの範囲で変化させている。
 図12から、弾性波共振子では、例えばTCFの絶対値を10ppm以下にするには、IDT電極の厚さを70nm以上140nm以下の範囲にするとよく、5ppm以下にするには、IDT電極の厚さを90nm以上125nm以下の範囲にするとよい。また、弾性波共振子では、IDT電極の厚さを薄くしていくと、IDT電極の抵抗値が増加し、損失が増大するので、損失を低減する観点では、IDT電極の厚さが厚いほうが好ましい。したがって、実施形態2に係る弾性波装置において、高次モードの温度安定性、フィルタの損失の増大を抑制する観点では、図11A及び図11Bに示すように、第1弾性波共振子3AdのIDT電極7Aの電極指の電極指長手方向における単位長さ当たりの質量が、第2弾性波共振子3BdのIDT電極7Bの電極指の電極指長手方向における単位長さ当たりの質量よりも小さいのが好ましい。
 (実施形態3)
 実施形態3に係る弾性波装置は、実施形態1に係る弾性波装置1の第1弾性波共振子3Aと第2弾性波共振子3Bの代わりに、図13Aに示すような第1弾性波共振子3An及び図13Bに示すような第2弾性波共振子3Bnを備える点で、実施形態1に係る弾性波装置1と相違する。実施形態3に係る弾性波装置の回路構成は、実施形態1に係る弾性波装置1の回路構成と同じなので、図示及び説明を省略する。実施形態3に係る弾性波装置に関し、実施形態1に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態3に係る弾性波装置では、第1弾性波共振子3Anの圧電体層6Aのカット角θが、第2弾性波共振子3Bnの圧電体層6Bのカット角θよりも大きい。
 第1弾性波共振子3Anについては、シリコン基板からなる高音速部材4Aの面41Aを(111)面とする。低音速膜5A、圧電体層6A及びIDT電極7Aの厚さは、IDT電極7Aの電極指周期で定まる弾性波の波長であるλを用いて規格化している。第1弾性波共振子3Anでは、波長λは、例えば1.48μmである。図14は、弾性波共振子(第1弾性波共振子3An、第2弾性波共振子3Bn)において、アルミニウムからなるIDT電極(IDT電極7A,7B)の厚さを0.07λとし、Γ°YカットX伝搬LiTaO圧電単結晶からなる圧電体層(圧電体層6A,6B)の厚さを0.3λとし、酸化ケイ素からなる低音速膜(低音速膜5A,5B)の厚さを0.35λとし、カット角θを40°から90°の範囲で変化させた場合の、カット角と電気機械結合係数との関係を示している。図14では、SH波をメインモードとする場合のカット角と電気機械結合係数との関係を一点鎖線で示し、SV波をメインモードとする場合のカット角と電気機械結合係数との関係を破線で示してある。また、図15は、弾性波共振子(第1弾性波共振子3An、第2弾性波共振子3Bn)におけるカット角とTCFとの関係を示している。また、図16は、弾性波共振子(第1弾性波共振子3An、第2弾性波共振子3Bn)におけるカット角と比帯域との関係を示している。
 図14から、弾性波共振子(第1弾性波共振子3An、第2弾性波共振子3Bn)では、カット角が大きくなるほどSH波をメインモードとする電気機械結合係数が小さくなる傾向にあり、カット角が大きくなるほどSV波をメインモードとする電気機械結合係数が大きくなる傾向にあることが分かる。弾性波共振子の電気機械結合係数を大きくする観点では、カット角が、より小さいほうが好ましい。
 また、図15から、弾性波共振子では、カット角が大きくなるほどTCFの絶対値が小さくなる傾向にある。弾性波共振子のTCFを小さくする観点では、カット角が、より大きいほうが好ましい。
 また、図16から、弾性波共振子では、カット角が大きくなるほど比帯域が狭くなる傾向にあることが分かる。弾性波共振子の比帯域を広くする観点では、カット角が、より小さいほうが好ましい。
 実施形態3に係る弾性波装置では、第1弾性波共振子3Anの圧電体層6Aのカット角θが、第2弾性波共振子3Bnの圧電体層6Bのカット角θよりも大きいので、第1弾性波共振子3AnのTCFの絶対値を第2弾性波共振子3BnのTCFの絶対値よりも小さくできる。これにより、実施形態3に係る弾性波装置では、高次モードの温度変化に伴う周波数変動を抑制することが可能となる。
 以上説明した実施形態及び変形例は、本発明の様々な実施形態及び変形例の一部に過ぎない。また、実施形態及び変形例は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 (まとめ)
 以上説明した実施形態及び変形例より以下の態様が開示されている。
 第1の態様に係る弾性波装置(1;1c)は、アンテナ端子である第1端子(101)と、第1端子(101)とは異なる第2端子(102)との間に設けられる。弾性波装置(1;1c)は、複数の弾性波共振子(31~39)を備える。複数の弾性波共振子(31~39)は、複数の直列腕共振子(弾性波共振子31,33,35,37,39)と、複数の並列腕共振子(弾性波共振子32,34,36,38)とを含む。複数の直列腕共振子は、第1端子(101)と第2端子(102)とを結ぶ第1経路(r1)上に設けられている。複数の並列腕共振子は、第1経路(r1)上の複数のノード(N1~N4)それぞれとグラウンドとを結ぶ複数の第2経路(r21~r24)上に設けられている。複数の弾性波共振子(31~39)のうち第1端子(101)に電気的に最も近い弾性波共振子をアンテナ端共振子とした場合に、アンテナ端共振子は、第1弾性波共振子(3A;3Af;3Ad;3An)である。複数の弾性波共振子(31~39)のうちアンテナ端共振子以外の少なくとも1つの弾性波共振子は、第2弾性波共振子(3B;3Bf;3Bd;3Bn)である。第1弾性波共振子(3A;3Af;3Ad;3An)及び第2弾性波共振子(3B)の各々は、圧電体層(6A;6B)と、IDT電極(7A;7B)と、高音速部材(4A;4B)とを含む。IDT電極(7A;7B)は、圧電体層(6A;6B)上に形成されており、複数の電極指(第1電極指73A,第2電極指74A;第1電極指73B,第2電極指74B)を有する。高音速部材(4A;4B)は、圧電体層(6A;6B)を挟んでIDT電極(7A;7B)とは反対側に位置している。高音速部材(4A;4B)では、圧電体層(6A;6B)を伝搬する弾性波の音速よりも、高音速部材(4A;4B)を伝搬するバルク波の音速が高速である。圧電体層(6A;6B)の厚さが、IDT電極(7A;7B)の複数の電極指(第1電極指73A,第2電極指74A;第1電極指73B,第2電極指74B)の周期である電極指周期で定まる弾性波の波長をλとしたときに、3.5λ以下である。第1弾性波共振子(3A;3Af;3Ad;3An)と第2弾性波共振子(3B;3Bf;3Bd;3Bn)は、第1条件と第2条件と第3条件とのうちの少なくとも1つを満たす。第1条件は、第1弾性波共振子(3A;3Af;3Ad;3An)が、圧電体層(6A)とIDT電極(7A)との間に設けられた誘電体膜(8A)を更に含み、第2弾性波共振子(3B;3Bf;3Bd;3Bn)が、誘電体膜を含まない、という条件である。第2条件は、第1弾性波共振子(3A;3Af;3Ad;3An)のIDT電極(7A)の電極指(第1電極指73A,第2電極指74A)の電極指長手方向における単位長さ当たりの質量が、第2弾性波共振子(3B;3Bf;3Bd;3Bn)のIDT電極(7B)の電極指(第1電極指73B,第2電極指74B)の電極指長手方向における単位長さ当たりの質量よりも小さい、という条件である。第3条件は、第1弾性波共振子(3A;3Af;3Ad;3An)の圧電体層(6A)のカット角が、第2弾性波共振子(3B;3Bf;3Bd;3Bn)の圧電体層(6B)のカット角よりも大きい、という条件である。
 第1の態様に係る弾性波装置(1;1c)によれば、たとえ高次モードが存在していても、温度によって、高次モードが発生する周波数が変化する度合いを低減させることができる。つまり、高次モードの温度による変化を低減させることができる。
 第2の態様に係る弾性波装置(1;1c)では、第1の態様において、アンテナ端共振子は、複数の弾性波共振子(31~39)におけるアンテナ端共振子以外の弾性波共振子とは異なるチップである。
 第2の態様に係る弾性波装置(1;1c)では、上記アンテナ端共振子以外の弾性波共振子の特性のばらつきを抑制することができる。
 第3の態様に係る弾性波装置(1;1c)では、第1又は2の態様において、第1弾性波共振子(3A;3Af;3Ad;3An)又は第2弾性波共振子(3B;3Bf;3Bd;3Bn)が、低音速膜(5A;5B)を含む。低音速膜(5A;5B)は、高音速部材(4A;4B)と圧電体層(6A;6B)との間に設けられている。低音速膜(5A;5B)では、圧電体層(6A;6B)を伝搬するバルク波の音速よりも、低音速膜(5A;5B)を伝搬するバルク波の音速が低速である。
 第3の態様に係る弾性波装置(1;1c)では、電気機械結合係数の増大による比帯域の拡大と、周波数温度特性の改善との双方を図ることができる。
 第4の態様に係る弾性波装置(1;1c)では、第3の態様において、圧電体層(6A;6B)の材料がリチウムタンタレート又はリチウムニオベイトである。低音速膜(5A;5B)の材料が酸化ケイ素である。高音速部材(4A;4B)の材料がシリコンである。
 第4の態様に係る弾性波装置(1;1c)では、低音速膜(5A;5B)が設けられていない場合に比べて、損失を低減し、Q値を高めることができる。
 第5の態様に係る弾性波装置(1;1c)では、第1~4の態様のいずれか1つにおいて、高音速部材(4A)は、高音速膜(4A;4B)と、支持基板(44A;44B)とを含む。高音速膜(4A;4B)は、圧電体層(6A;6B)を伝搬する弾性波の音速よりも高音速膜(4A;4B)を伝搬するバルク波の音速が高速となる膜である。支持基板(44a;44B)は、高音速膜(4A;4B)を支持する。第1弾性波共振子(3Af)及び第2弾性波共振子(3Bf)の各々は、低音速膜(5A;5B)を含む。低音速膜(5A;5B)は、高音速膜(4A;4B)上に形成されている圧電体層(6A;6B)を伝搬する弾性波の音速よりも低音速膜(5A;5B)を伝搬するバルク波の音速が低速となる膜である。
 第5の態様に係る弾性波装置(1;1c)では、弾性波が支持基板(44A;44B)に漏れるのを抑制することができる。
 第6の態様に係る弾性波装置(1;1c)では、第5の態様において、圧電体層(6A;6B)の材料が、リチウムタンタレート又はリチウムニオベイトである。低音速膜(5A;5B)の材料が、酸化ケイ素と、ガラスと、酸窒化ケイ素と、酸化タンタルと、酸化ケイ素にフッ素、炭素又はホウ素を加えた化合物と、からなる群から選択される少なくとも1種の材料である。高音速膜(4A;4B)の材料が、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト及びマグネシア、ダイヤモンドからなる群から選択される少なくとも1種の材料である。
 第7の態様に係る弾性波装置(1;1c)では、第1~4の態様のいずれか1つにおいて、第1弾性波共振子(3A;3Ad;3An)及び第2弾性波共振子(3B;3Bd;3Bn)の各々は、低音速膜(5A;5B)を更に含む。低音速膜(5A;5B)は、高音速部材(4A;4B)と圧電体層(6A;6B)との間に設けられており、圧電体層(6A;6B)を伝搬するバルク波の音速よりも低音速膜(5A;5B)を伝搬するバルク波の音速が低速となる膜である。高音速部材(4A;4B)は、圧電体層(6A;6B)を伝搬する弾性波の音速よりも高音速部材(4A;4B)を伝搬するバルク波の音速が高速である高音速支持基板(42A;42B)である。
 第7の態様に係る弾性波装置(1;1c)では、第1弾性波共振子(3A;3Ad;3An)及び第2弾性波共振子(3B;3Bd;3Bn)の各々が低音速膜(5A;5B)を含まない場合に比べて、損失を低減し、Q値を高めることができる。
 第8の態様に係る弾性波装置(1;1c)では、第1~7の態様のいずれか1つにおいて、複数の直列腕共振子(弾性波共振子31,33,35,37,39)のうち1つの直列腕共振子(弾性波共振子31)が、複数の並列腕共振子(弾性波共振子32,34,36,38)よりも第1端子(101)に電気的に近い。上記1つの直列腕共振子(弾性波共振子31)が、アンテナ端共振子である。
 第9の態様に係る弾性波装置(1c)では、第1~7の態様のいずれか1つにおいて、複数の直列腕共振子(弾性波共振子31,33,35,37)のうち1つの直列腕共振子(弾性波共振子31)と複数の並列腕共振子(弾性波共振子32,34,36,38)のうち1つの並列腕共振子(弾性波共振子32)とが、第1端子(101)と直接的に接続されている。上記1つの直列腕共振子(弾性波共振子31)と上記1つの並列腕共振子(弾性波共振子32)との少なくとも一方が、アンテナ端共振子である。
 第10の態様に係るマルチプレクサ(100;100b)は、第1~9の態様のいずれか1つの弾性波装置(1;1c)からなる第1フィルタ(11)と、第2フィルタ(12)とを備える。第2フィルタ(12)は、第1端子(101)と第1端子(101)とは異なる第3端子(103)との間に設けられている。第1フィルタ(11)の通過帯域が、第2フィルタ(12)の通過帯域よりも高周波数域である。
 第10の態様に係るマルチプレクサ(100;100b)では、弾性波装置(1;1c)において、たとえ高次モードが存在していても、温度によって、高次モードが発生する周波数が変化する度合いを低減させることができる。つまり、高次モードの温度による変化を低減させることができる。
 第11の態様に係るマルチプレクサ(100b)は、第10の態様において、複数の弾性波共振子(31~39)からなる共振子群(30)を複数備える。複数の共振子群(30)では、第1端子(101)が共通端子であり、かつ、第2端子(102)が個別端子である。複数の共振子群(30)のアンテナ端共振子が1チップに集積されている。
 第11の態様に係るマルチプレクサ(100b)では、複数の共振子群(30)のアンテナ端共振子の特性ばらつきを低減でき、かつ、弾性波装置(1;1c)の小型化を図ることができる。
 第12の態様に係るマルチプレクサ(100;100b)では、第10又は11の態様において、第1フィルタ(11)の通過帯域の最小周波数が、第2フィルタ(12)の通過帯域の最大周波数よりも高い。
 第13の態様に係る高周波フロントエンド回路(300)は、第10~12の態様のいずれか1つのマルチプレクサ(100;100b)と、(第1)増幅回路(303)とを備える。(第1)増幅回路(303)は、マルチプレクサ(100)に接続されている。
 第13の態様に係る高周波フロントエンド回路(300)では、弾性波装置(1;1c)において、たとえ高次モードが存在していても、温度によって、高次モードが発生する周波数が変化する度合いを低減させることができる。つまり、高次モードの温度による変化を低減させることができる。
 第14の態様に係る通信装置(400)は、第13の態様の高周波フロントエンド回路(300)と、信号処理回路(RF信号処理回路401、ベースバンド信号処理回路402)とを備える。信号処理回路は、アンテナ(200)で受信される高周波信号を処理する。高周波フロントエンド回路(300)は、アンテナ(200)と信号処理回路との間で高周波信号を伝達する。
 第14の態様に係る通信装置(400)では、弾性波装置(1;1c)において、たとえ高次モードが存在していても、温度によって、高次モードが発生する周波数が変化する度合いを低減させることができる。つまり、高次モードの温度による変化を低減させることができる。
 1,1c 弾性波装置
 31~39 弾性波共振子
 3A,3Af,3Ad,3An 第1弾性波共振子
 3B,3Bf,3Bd,3Bn 第2弾性波共振子
 4A,4B 高音速部材
 42A,42B 高音速支持基板
 44A,44B 支持基板
 45A,45B 高音速膜
 5A,5B 低音速膜
 6A,6B 圧電体層
 61A,61B 主面
 7A,7B IDT電極
 71A,71B 第1バスバー
 72A,72B 第2バスバー
 73A,73B 第1電極指
 74A,74B 第2電極指
 100,100b マルチプレクサ
 101 第1端子
 102 第2端子
 103 第3端子
 104 第4端子
 105 第5端子
 11 第1フィルタ
 12 第2フィルタ
 21 第3フィルタ
 22 第4フィルタ
 30 共振子群
 200 アンテナ
 300 高周波フロントエンド回路
 301 第1スイッチ回路
 302 第2スイッチ回路
 303 第1増幅回路
 304 第2増幅回路
 400 通信装置
 401 RF信号処理回路
 402 ベースバンド信号処理回路
 N1~N4 ノード
 r1 第1経路
 r21~r24 第2経路

Claims (14)

  1.  アンテナ端子である第1端子と、前記第1端子とは異なる第2端子との間に設けられる弾性波装置であって、
     複数の弾性波共振子を備え、
     前記複数の弾性波共振子は、
      前記第1端子と前記第2端子とを結ぶ第1経路上に設けられた複数の直列腕共振子と、
      前記第1経路上の複数のノードそれぞれとグラウンドとを結ぶ複数の第2経路上に設けられた複数の並列腕共振子と、を含み、
     前記複数の弾性波共振子のうち前記第1端子に電気的に最も近い弾性波共振子をアンテナ端共振子とした場合に、
     前記アンテナ端共振子は、第1弾性波共振子であり、
     前記複数の弾性波共振子のうち前記アンテナ端共振子以外の少なくとも1つの弾性波共振子は、第2弾性波共振子であり、
     前記第1弾性波共振子及び前記第2弾性波共振子の各々は、
      圧電体層と、
      前記圧電体層上に形成されており複数の電極指を有するIDT電極と、
      前記圧電体層を挟んで前記IDT電極とは反対側に位置しており前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速部材と、を含み、
      前記圧電体層の厚さが、前記IDT電極の前記複数の電極指の周期である電極指周期で定まる弾性波の波長をλとしたときに、3.5λ以下であり、
     前記第1弾性波共振子と前記第2弾性波共振子は、第1条件と第2条件と第3条件とのうちの少なくとも1つを満たし、
      前記第1条件は、前記第1弾性波共振子が、前記圧電体層と前記IDT電極との間に設けられた誘電体膜を更に含み、前記第2弾性波共振子が、前記誘電体膜を含まない、若しくは、前記第1弾性波共振子の誘電体膜の厚みより薄い厚みを有する誘電体膜を更に含む、という条件であり、
      前記第2条件は、前記第1弾性波共振子の前記IDT電極の電極指の電極指長手方向における単位長さ当たりの質量が、前記第2弾性波共振子の前記IDT電極の電極指の電極指長手方向における前記単位長さ当たりの質量よりも小さい、という条件であり、
      前記第3条件は、前記第1弾性波共振子の前記圧電体層のカット角が、前記第2弾性波共振子の前記圧電体層のカット角よりも大きい、という条件である、
     弾性波装置。
  2.  前記複数の弾性波共振子のうち前記アンテナ端共振子を含む少なくとも1つの弾性波共振子は、前記第1弾性波共振子であり、
     前記複数の弾性波共振子のうち前記少なくとも1つの弾性波共振子以外の弾性波共振子は、前記第2弾性波共振子であり、
     前記第1弾性波共振子は、前記第2弾性波共振子とは異なるチップである、
     請求項1に記載の弾性波装置。
  3.  前記第1弾性波共振子又は前記第2弾性波共振子が、前記高音速部材と前記圧電体層との間に設けられており前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜を含む、
     請求項1又は2に記載の弾性波装置。
  4.  前記圧電体層の材料がリチウムタンタレート又はリチウムニオベイトであり、
     前記低音速膜の材料が酸化ケイ素であり、
     前記高音速部材の材料がシリコンである、
     請求項3に記載の弾性波装置。
  5.  前記高音速部材は、
      前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速膜と、
      前記高音速膜を支持する支持基板と、を含み、
     前記第1弾性波共振子及び前記第2弾性波共振子の各々は、前記高音速膜上に形成されている前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜を含む、
     請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記圧電体層の材料が、リチウムタンタレート又はリチウムニオベイトであり、
     前記低音速膜の材料が、酸化ケイ素と、ガラスと、酸窒化ケイ素と、酸化タンタルと、酸化ケイ素にフッ素、炭素又はホウ素を加えた化合物と、からなる群から選択される少なくとも1種の材料であり、
     前記高音速膜の材料が、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト及びマグネシア、ダイヤモンドからなる群から選択される少なくとも1種の材料である、
     請求項5に記載の弾性波装置。
  7.  前記第1弾性波共振子及び前記第2弾性波共振子の各々は、前記高音速部材と前記圧電体層との間に設けられており前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜を更に含み、
     前記高音速部材は、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速支持基板である、
     請求項1~4のいずれか1項に記載の弾性波装置。
  8.  前記複数の直列腕共振子のうち1つの直列腕共振子が、前記複数の並列腕共振子よりも前記第1端子に電気的に近く、
     前記1つの直列腕共振子が、前記アンテナ端共振子である、
     請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記複数の直列腕共振子のうち1つの直列腕共振子と前記複数の並列腕共振子のうち1つの並列腕共振子とが、前記第1端子と直接的に接続されており、
     前記1つの直列腕共振子と前記1つの並列腕共振子との少なくとも一方が、前記アンテナ端共振子である、
     請求項1~7のいずれか1項に記載の弾性波装置。
  10.  請求項1~9のいずれか1項に記載の弾性波装置からなる第1フィルタと、
     前記第1端子と前記第1端子とは異なる第3端子との間に設けられた第2フィルタと、を備え、
     前記第1フィルタの通過帯域が、前記第2フィルタの通過帯域よりも低周波数域である、
     マルチプレクサ。
  11.  前記複数の弾性波共振子からなる共振子群を複数備え、
     前記複数の共振子群では、前記第1端子が共通端子であり、かつ、前記第2端子が個別端子であり、
     前記複数の共振子群の前記アンテナ端共振子が1チップに集積されている、
     請求項10に記載のマルチプレクサ。
  12.  前記第1フィルタの前記通過帯域の最小周波数が、前記第2フィルタの前記通過帯域の最大周波数よりも高い、
     請求項10又は11に記載のマルチプレクサ。
  13.  請求項10~12のいずれか1項に記載のマルチプレクサと、
     前記マルチプレクサに接続された増幅回路と、を備える、
     高周波フロントエンド回路。
  14.  請求項13に記載された高周波フロントエンド回路と、
     アンテナで受信される高周波信号を処理する信号処理回路と、を備え、
     前記高周波フロントエンド回路は、前記アンテナと前記信号処理回路との間で前記高周波信号を伝達する、
     通信装置。
PCT/JP2018/046699 2018-01-12 2018-12-19 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 WO2019138812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019564599A JP6950751B2 (ja) 2018-01-12 2018-12-19 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
CN201880086018.4A CN111602337B (zh) 2018-01-12 2018-12-19 弹性波装置、多工器、高频前端电路及通信装置
US16/914,522 US11496226B2 (en) 2018-01-12 2020-06-29 Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003868 2018-01-12
JP2018-003868 2018-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/914,522 Continuation US11496226B2 (en) 2018-01-12 2020-06-29 Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2019138812A1 true WO2019138812A1 (ja) 2019-07-18

Family

ID=67218330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046699 WO2019138812A1 (ja) 2018-01-12 2018-12-19 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置

Country Status (4)

Country Link
US (1) US11496226B2 (ja)
JP (1) JP6950751B2 (ja)
CN (1) CN111602337B (ja)
WO (1) WO2019138812A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024762A1 (ja) * 2019-08-06 2021-02-11 株式会社村田製作所 弾性波フィルタ装置
JPWO2021090775A1 (ja) * 2019-11-06 2021-05-14
WO2022168796A1 (ja) * 2021-02-04 2022-08-11 株式会社村田製作所 弾性波装置
WO2022168797A1 (ja) * 2021-02-04 2022-08-11 株式会社村田製作所 弾性波装置
WO2022224470A1 (ja) * 2021-04-20 2022-10-27 株式会社村田製作所 共振子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835414B2 (en) * 2018-12-05 2023-12-05 Murata Manufacturing Co., Ltd. Passive pressure sensor with a piezoelectric diaphragm and a non-piezoelectric substrate
CN112054781B (zh) * 2020-09-11 2021-10-08 广东广纳芯科技有限公司 具有双层同向叉指换能器结构的高性能谐振器
CN112600531A (zh) * 2020-12-18 2021-04-02 广东广纳芯科技有限公司 一种高频近零频率温度系数的窄带滤波器及制造方法
CN112653421A (zh) * 2020-12-18 2021-04-13 广东广纳芯科技有限公司 一种高声速高频高性能的窄带滤波器
CN112787620A (zh) * 2021-01-13 2021-05-11 广东广纳芯科技有限公司 一种具有多层膜结构的声表面波谐振器及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036344A (ja) * 2005-07-22 2007-02-08 Murata Mfg Co Ltd 弾性境界波装置
WO2010131737A1 (ja) * 2009-05-15 2010-11-18 株式会社村田製作所 弾性境界波装置
JP2012151697A (ja) * 2011-01-19 2012-08-09 Taiyo Yuden Co Ltd 分波器
WO2016208446A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 フィルタ装置
WO2017006742A1 (ja) * 2015-07-06 2017-01-12 株式会社村田製作所 弾性波装置
JP2017147674A (ja) * 2016-02-19 2017-08-24 株式会社村田製作所 弾性波共振子、帯域通過型フィルタ及びデュプレクサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614110B1 (ko) * 2004-03-23 2006-08-22 쌍신전자통신주식회사 저지대역 특성을 개선한 체적탄성파 여파기 모듈
JP2011087079A (ja) * 2009-10-14 2011-04-28 Ngk Insulators Ltd 弾性表面波素子
WO2009147787A1 (ja) * 2008-06-06 2009-12-10 パナソニック株式会社 弾性波共用器
CN102396154B (zh) * 2009-04-22 2015-02-04 天工松下滤波方案日本有限公司 弹性波元件和使用它的电子设备
CN104601141B (zh) * 2009-05-14 2017-10-03 天工滤波方案日本有限公司 天线共用器
JPWO2011093449A1 (ja) * 2010-01-28 2013-06-06 株式会社村田製作所 チューナブルフィルタ
EP2658123B1 (en) 2010-12-24 2019-02-13 Murata Manufacturing Co., Ltd. Elastic wave device and method for manufacturing the same.
WO2013080461A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
CN106664068B (zh) * 2014-07-25 2019-06-14 株式会社村田制作所 带通滤波器以及滤波器模块
JP6481758B2 (ja) * 2015-06-24 2019-03-13 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、デュプレクサ、高周波フロントエンド回路、および通信装置
JP7292100B2 (ja) * 2019-05-16 2023-06-16 NDK SAW devices株式会社 弾性表面波素子、フィルタ回路及び電子部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036344A (ja) * 2005-07-22 2007-02-08 Murata Mfg Co Ltd 弾性境界波装置
WO2010131737A1 (ja) * 2009-05-15 2010-11-18 株式会社村田製作所 弾性境界波装置
JP2012151697A (ja) * 2011-01-19 2012-08-09 Taiyo Yuden Co Ltd 分波器
WO2016208446A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 フィルタ装置
WO2017006742A1 (ja) * 2015-07-06 2017-01-12 株式会社村田製作所 弾性波装置
JP2017147674A (ja) * 2016-02-19 2017-08-24 株式会社村田製作所 弾性波共振子、帯域通過型フィルタ及びデュプレクサ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024762A1 (ja) * 2019-08-06 2021-02-11 株式会社村田製作所 弾性波フィルタ装置
US20220158623A1 (en) * 2019-08-06 2022-05-19 Murata Manufacturing Co., Ltd. Acoustic wave filter device
JPWO2021090775A1 (ja) * 2019-11-06 2021-05-14
WO2021090775A1 (ja) * 2019-11-06 2021-05-14 株式会社村田製作所 弾性波装置
JP7392734B2 (ja) 2019-11-06 2023-12-06 株式会社村田製作所 弾性波装置
WO2022168796A1 (ja) * 2021-02-04 2022-08-11 株式会社村田製作所 弾性波装置
WO2022168797A1 (ja) * 2021-02-04 2022-08-11 株式会社村田製作所 弾性波装置
WO2022224470A1 (ja) * 2021-04-20 2022-10-27 株式会社村田製作所 共振子

Also Published As

Publication number Publication date
JP6950751B2 (ja) 2021-10-13
CN111602337A (zh) 2020-08-28
US20200328823A1 (en) 2020-10-15
CN111602337B (zh) 2023-09-12
JPWO2019138812A1 (ja) 2020-12-17
US11496226B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP6954378B2 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019138812A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
JP6590069B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6816834B2 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
JP6683256B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JP7004009B2 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
WO2019017422A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP6773238B2 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
US20210384886A1 (en) Acoustic wave filter device and multiplexer
US20220123731A1 (en) Acoustic wave device, high-frequency front-end circuit, and communication device
JP7510416B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
CN113519121B (zh) 弹性波滤波器装置以及多工器
WO2024004862A1 (ja) フィルタ装置および通信装置
WO2023074373A1 (ja) 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ
WO2023054301A1 (ja) 弾性波フィルタ装置およびマルチプレクサ
WO2022009692A1 (ja) マルチプレクサ
CN118399925A (en) Multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899671

Country of ref document: EP

Kind code of ref document: A1