WO2019124032A1 - 基板処理システム、基板処理方法及びコンピュータ記憶媒体 - Google Patents

基板処理システム、基板処理方法及びコンピュータ記憶媒体 Download PDF

Info

Publication number
WO2019124032A1
WO2019124032A1 PCT/JP2018/044366 JP2018044366W WO2019124032A1 WO 2019124032 A1 WO2019124032 A1 WO 2019124032A1 JP 2018044366 W JP2018044366 W JP 2018044366W WO 2019124032 A1 WO2019124032 A1 WO 2019124032A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
substrate
thickness
protective material
wafer
Prior art date
Application number
PCT/JP2018/044366
Other languages
English (en)
French (fr)
Inventor
宗久 児玉
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2019560925A priority Critical patent/JP6968201B2/ja
Priority to KR1020207020593A priority patent/KR102604525B1/ko
Priority to CN201880080582.5A priority patent/CN111479654B/zh
Publication of WO2019124032A1 publication Critical patent/WO2019124032A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a substrate processing system for processing a processed surface of a substrate provided with a protective material on a non-processed surface, a substrate processing method using the substrate processing system, and a computer storage medium.
  • the back surface of a wafer may be ground to thin the wafer with respect to a semiconductor wafer (hereinafter referred to as a wafer) on which devices such as a plurality of electronic circuits are formed on the surface. It has been done. Further, as described in, for example, Patent Document 1 and Patent Document 2, for example, a protective tape is provided on the surface of the wafer before grinding as a protective material for protecting the device.
  • the grinding apparatus includes, for example, a rotatable chuck that holds the front surface of the wafer, and a grinding wheel that is annularly rotatably configured and includes a grinding wheel that grinds the back surface of the wafer held by the chuck. Then, in this grinding apparatus, rough grinding and finish grinding are sequentially performed on the back surface of the wafer. Specifically, in each grinding process, the back surface of the wafer is ground by bringing the grinding wheel into contact with the back surface of the wafer while rotating the chuck (wafer) and the grinding wheel (grinding wheel). In addition, during this grinding, the wafer is finished to a target thickness by measuring the thickness of the wafer with a thickness measurement gauge.
  • the above-described thickness measurement gauge is a contact type, and includes a reference height gauge and a wafer height gauge, and a value obtained by subtracting the measurement value of the reference height gauge from the measurement value of the wafer height gauge. It is stated that the thickness of the wafer is measured on the basis of. In this case, since the protective tape is attached to the surface of the wafer, the thickness of the wafer is calculated in consideration of the thickness of the protective tape.
  • Patent Document 2 describes using a non-contact type finish thickness measuring device in finish grinding.
  • the finished thickness measuring device has a plurality of thickness sensors, and measures the thickness of the wafer at a plurality of points. In this case, the thickness of only the wafer excluding the protective tape is measured.
  • the thickness of the protective tape may vary from wafer to wafer.
  • the overall thickness of the wafer and the protective tape is measured by rough grinding using a contact-type thickness measurement meter, and the thickness of the wafer is measured using a non-contact-type thickness measurement meter by finish grinding The amount of grinding in rough grinding and finish grinding varies from wafer to wafer.
  • the thickness of the protective tape differs for each wafer, the thickness of each wafer after grinding is It will be different. Then, in order to grind the wafers having different thicknesses to the same thickness, the amount of grinding at the time of the subsequent grinding will vary from wafer to wafer.
  • the grinding amount varies in this way. Particularly in finish grinding, since the wafer is ground to the final finished thickness, the amount of grinding needs to be strictly controlled, and it is necessary that the amount of grinding be constant regardless of variations in the thickness of the protective tape. Become.
  • the present invention has been made in view of the above circumstances, and in grinding and processing a processed surface of a substrate provided with a protective material on a non-processed surface, the substrate is properly made with a constant grinding amount for each substrate.
  • the purpose is to grind.
  • One aspect of the present invention for solving the above problems is a substrate processing system for processing a processing surface of a substrate having a protective material provided on a non-processing surface, and a grinding unit for grinding the processing surface of the substrate in a plurality of steps. And before grinding the processed surface of the substrate in the grinding unit, based on the protective material thickness measurement unit that measures the thickness of the protective material and the protective material thickness measured by the protective material thickness measurement unit. In the first grinding process, the second grinding amount in the second grinding process after the first grinding process for grinding the machined surface of the substrate in the grinding unit is constant for each substrate. And a control unit that calculates a grinding amount of 1.
  • the thickness of the protective material is measured before grinding the machined surface of the substrate, and the first grinding amount in the first grinding process step is calculated using the measurement result.
  • the first grinding amount is calculated in consideration of the thickness of the protective material, even if the thickness of the protective material varies from substrate to substrate, the substrate after being ground in the first grinding process step Can be made constant for each substrate.
  • the second grinding amount in grinding the machined surface of the substrate in the second grinding process can be made constant, and the substrate can be ground appropriately.
  • One embodiment of the present invention is a substrate processing method for processing a processed surface of a substrate provided with a protective material on a non-processed surface, the protective material thickness measuring step of measuring the thickness of the protective material; Thereafter, a plurality of grinding processing steps of grinding the processed surface of the substrate, and among the plurality of grinding processing steps based on the protective material thickness measured in the protective material thickness measuring step, The first grinding amount in the first grinding process is calculated so that the second grinding amount in the second grinding process after the first grinding process for grinding the machined surface becomes constant for each substrate. Do.
  • a readable program storing a program that operates on a computer of a control unit that controls the substrate processing system so as to cause the substrate processing system to execute the substrate processing method It is a computer storage medium.
  • the substrate in grinding and processing the machined surface of the substrate having the protective material provided on the non-machined surface, the substrate can be properly ground with a constant amount of grinding for each substrate. .
  • FIG. 1 is a plan view schematically showing the outline of the configuration of a substrate processing system 1.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction orthogonal to one another are defined, and the Z-axis positive direction is the vertically upward direction.
  • the wafer W as a substrate is thinned.
  • the surface to be processed ground
  • non-processing surface W2 the surface on the opposite side to the processing surface W1
  • the wafer W is, for example, a semiconductor wafer such as a silicon wafer or a compound semiconductor wafer.
  • the wafer W includes a wafer main body M as a substrate main body, and a device D formed on the non-processing surface side of the wafer main body M.
  • the surface of the wafer main body M constitutes a processing surface W1
  • the surface of the device D constitutes a non-processing surface W2 of the wafer W.
  • a protective material for protecting the device D for example, a protective tape P is attached.
  • the entire wafer W to which the protective tape P is attached is referred to as a protective wafer Wp.
  • the substrate processing system 1 stores the protected wafer Wp before processing in the cassette C, and transfers the plurality of protected wafers Wp from the outside into the substrate processing system 1 in cassette units, and processing A loading station 3 for storing the subsequent wafer W (wafer W in which the protective tape P has been peeled from the protective wafer Wp) in the cassette C and unloading the plurality of wafers W from the substrate processing system 1 in cassette units, A processing apparatus 4 for processing and thinning the wafer Wp, a post-processing apparatus 5 for performing post-processing of the protected wafer Wp after processing, protection between the loading station 2, the processing apparatus 4 and the post-processing apparatus 5 And a transfer station 6 for transferring the wafer Wp.
  • the loading station 2, the transfer station 6, and the processing device 4 are arranged in this order in the Y-axis direction on the X-axis negative direction side.
  • the unloading station 3 and the post-processing device 5 are arranged side by side in this order in the Y-axis direction on the X-axis positive direction side.
  • a cassette mounting table 10 is provided at the loading station 2.
  • a plurality of, for example, two cassettes C can be mounted on the cassette mounting table 10 in a row in the X-axis direction.
  • the unloading station 3 also has the same configuration as the loading station 2.
  • a cassette mounting table 20 is provided at the unloading station 3, and for example, two cassettes C can be mounted on the cassette mounting table 20 in a row in the X-axis direction.
  • the loading station 2 and the unloading station 3 may be integrated into one loading and unloading station, and in such a case, the loading and unloading station is provided with a common cassette mounting table.
  • processing such as grinding and cleaning is performed on the protected wafer Wp.
  • the configuration of the processing device 4 will be described later.
  • post-processing is performed on the protected wafer Wp processed by the processing apparatus 4.
  • the post-processing for example, a mounting process of holding the protective wafer Wp on a dicing frame via a dicing tape, a peeling process of peeling the protective tape P attached to the wafer W in the protective wafer Wp, and the like are performed.
  • the post-processing apparatus 5 carries the post-processing and carries the wafer W held by the dicing frame to the cassette C of the unloading station 3.
  • a known device is used for the mounting process and the peeling process performed by the post-processing device 5 respectively.
  • the transfer station 6 is provided with a wafer transfer area 30.
  • a wafer transfer apparatus 32 movable on the transfer path 31 extending in the X-axis direction is provided.
  • the wafer transfer apparatus 32 has a transfer fork 33 and a transfer pad 34 as a wafer holding unit for holding the protective wafer Wp.
  • the tip of the transfer fork 33 branches into two, and the protective wafer Wp is held by suction.
  • the transfer fork 33 transfers the protected wafer Wp before the grinding process.
  • the transfer pad 34 has a circular shape with a diameter longer than the diameter of the protective wafer Wp in plan view, and adsorbs and holds the protective wafer Wp.
  • the transfer pad 34 transfers the protective wafer Wp after the grinding process.
  • the transfer fork 33 and the transfer pad 34 are configured to be movable in the horizontal direction, the vertical direction, around the horizontal axis, and around the vertical axis, respectively.
  • a control unit 40 is provided in the substrate processing system 1.
  • the control unit 40 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program that controls processing of the protected wafer Wp (wafer W) in the substrate processing system 1.
  • the program storage unit also stores a program for realizing the below-described wafer processing in the substrate processing system 1 by controlling the operation of drive systems such as the above-described various processing apparatuses and transport apparatuses.
  • the program is recorded on a computer readable storage medium H such as a computer readable hard disk (HD), a flexible disk (FD), a compact disc (CD), a magnet optical desk (MO), a memory card, etc. And may be installed in the control unit 40 from the storage medium H.
  • the processing apparatus 4 includes a rotary table 100, a transport unit 110, an alignment unit 120, a first cleaning unit 130, a second cleaning unit 140, a rough grinding unit 150 as a grinding unit, and grinding Middle grinding unit 160 as a part, finish grinding unit 170 as a grinding part, protective tape thickness measuring unit 180 as a protective material thickness measuring part, overall thickness measuring unit 190 as a total thickness measuring part, and substrate body thickness measuring part
  • the rough grinding unit 150 corresponds to a first grinding portion in the present invention
  • the middle grinding unit 160 and the finish grinding unit 170 respectively correspond to a second grinding portion in the present invention.
  • the rotary table 100 is configured to be rotatable by a rotation mechanism (not shown). On the rotating table 100, four chucks 101 for attracting and holding the protective wafer Wp are provided. The chucks 101 are arranged uniformly on the same circumference as the rotary table 100, that is, every 90 degrees. The four chucks 101 are movable to the delivery position A0 and the processing positions A1 to A3 by rotation of the rotary table 100.
  • the delivery position A0 is a position on the X-axis positive direction side and the Y-axis negative direction side of the rotary table 100, and the second cleaning unit 140 and the alignment unit are on the Y-axis negative direction side of the delivery position A0.
  • 120 and the first cleaning unit 130 are arranged side by side.
  • the alignment unit 120 and the first cleaning unit 130 are stacked and arranged in this order from above.
  • the first processing position A1 is a position on the X-axis positive direction side and the Y-axis positive direction side of the rotary table 100, and the rough grinding unit 150 is disposed.
  • the second processing position A2 is a position on the X axis negative direction side and the Y axis positive direction side of the rotary table 100, and the middle grinding unit 160 is disposed.
  • the third processing position A3 is a position on the X axis negative direction side and the Y axis negative direction side of the rotary table 100, and the finish grinding unit 170 is disposed.
  • the chuck 101 is held by a chuck base 102.
  • the chuck 101 and the chuck base 102 are configured to be rotatable by a rotation mechanism (not shown).
  • the transport unit 110 is an articulated robot including a plurality of, for example, three arms 111 to 113.
  • the three arms 111 to 113 are connected by joints (not shown), and by these joints, the first arm 111 and the second arm 112 are configured to be pivotable around their respective proximal ends.
  • a transfer pad 114 for attracting and holding the protective wafer Wp is attached to the first arm 111 at the tip.
  • the third arm 113 at the proximal end is attached to a vertical movement mechanism 115 for moving the arms 111 to 113 in the vertical direction.
  • the transfer unit 110 having such a configuration can transfer the protective wafer Wp to the delivery position A0, the alignment unit 120, the first cleaning unit 130, and the second cleaning unit 140.
  • the alignment unit 120 adjusts the horizontal direction of the protective wafer Wp before the grinding process. For example, the position of the notch portion of the wafer W is adjusted by detecting the position of the notch portion of the wafer W while detecting the position of the notch portion of the wafer W while rotating the protective wafer Wp held by the spin chuck (not shown). The horizontal orientation of the protective wafer Wp is adjusted.
  • the processing surface W1 of the wafer W after the grinding processing is cleaned, more specifically, spin-cleaned.
  • the cleaning liquid is supplied from the cleaning liquid nozzle (not shown) to the processing surface W1 of the wafer W. Then, the supplied cleaning liquid diffuses on the processing surface W1, and the processing surface W1 is cleaned.
  • the second cleaning unit 140 cleans the non-processed surface W2 of the wafer W in a state where the protective wafer Wp after the grinding processing is held by the transfer pad 114, that is, the protective tape P attached to the non-processed surface W2. , Cleaning the transfer pad 114.
  • the processing surface W1 of the wafer W is roughly ground.
  • the rough grinding unit 150 has a rough grinding portion 151 having an annular shape and a rotatable rough grinding wheel (not shown).
  • the rough grinding portion 151 is configured to be movable in the vertical direction and the horizontal direction along the support column 152. Then, while the processing surface W1 of the wafer W held by the chuck 101 is in contact with the rough grinding wheel, the processing surface W1 of the wafer W is roughly ground by rotating the chuck 101 and the rough grinding wheel respectively.
  • the processing surface W1 of the wafer W is middle ground.
  • the middle grinding unit 160 has a middle grinding portion 161 having an annular shape and a rotatable middle grinding wheel (not shown).
  • the middle grinding portion 161 is configured to be movable in the vertical direction and the horizontal direction along the support column 162.
  • the grain size of the abrasive grains of the medium grinding wheel is smaller than the grain size of the abrasive grains of the rough grinding stone.
  • the processing surface W1 of the wafer W is finish ground.
  • the finish grinding unit 170 has a finish grinding portion 171 provided with a ring-shaped rotatable finish grinding wheel (not shown).
  • the finish grinding unit 171 is configured to be movable in the vertical direction and the horizontal direction along the support 172.
  • the grain size of the abrasive grains of the finish grinding wheel is smaller than the grain size of the abrasive grains of the medium grinding wheel.
  • the protective tape thickness measurement unit 180 is provided, for example, above the alignment unit 120. As shown in FIG. 4, the protective tape thickness measurement unit 180 measures the thickness of the protective tape P with respect to the protective wafer Wp held by the transfer pad 114 of the transfer unit 110. The protective tape thickness measurement unit 180 measures the thickness of the protective tape P of the protective wafer Wp being transported from the alignment unit 120 to the delivery position A0.
  • the protective tape thickness measurement unit 180 includes a sensor 181 and a calculation unit 182.
  • a sensor that measures the thickness of the protective tape P without contacting the protective tape P is used, and for example, a white confocal (confocal) optical system sensor is used.
  • the sensor 181 irradiates the protective tape P with light having a predetermined wavelength band, and further receives the reflected light reflected from the surface P1 of the protective tape P and the reflected light reflected from the back surface P2.
  • the calculation unit 182 calculates the thickness of the protective tape P based on the both reflected lights received by the sensor 181.
  • a white confocal optical system sensor is used as the sensor 181 of the protective tape thickness measurement unit 180, but the configuration of the protective tape thickness measurement unit 180 is not limited thereto. Any measuring device can be used as long as it measures thickness. Also, a plurality of sensors 181 may be provided.
  • the entire thickness measurement unit 190 is provided to each of the rough grinding unit 150 and the middle grinding unit 160. As shown in FIG. 5, the entire thickness measurement unit 190 includes a chuck side height gauge 191, a wafer side height gauge 192, and a calculation unit 193.
  • the chuck side height gauge 191 includes a probe 194, and the tip end of the probe 194 contacts the upper surface 102a of the chuck base 102 to measure the height position of the upper surface 102a.
  • the upper surface 102 a of the chuck base 102 is flush with the upper surface of the chuck 101 that holds the protective wafer Wp.
  • the wafer side height gauge 192 includes a probe 195, and the tip of the probe 195 contacts the processing surface W1 of the wafer W, and measures the height position of the processing surface W1.
  • the calculation unit 193 subtracts the chuck side height gauge 191 from the measurement value of the wafer side height gauge 192 to calculate the entire thickness of the protective wafer Wp.
  • the total thickness is the sum of the thickness of the wafer W (the sum of the thickness of the wafer main body M and the thickness of the device D) and the thickness of the protective tape P.
  • Wafer body thickness measurement unit 200 is provided in finish grinding unit 170.
  • the wafer body thickness measurement unit 200 includes a sensor 201 and a calculation unit 202.
  • the sensor 201 a sensor that measures the thickness of the wafer body M without contacting the wafer body M is used, and for example, a white confocal (confocal) optical system sensor is used.
  • the sensor 201 irradiates the wafer main body M with light having a predetermined wavelength band, and further receives the reflected light reflected from the front surface of the wafer main body M and the reflected light reflected from the back surface.
  • the calculation unit 202 calculates the thickness of the wafer main body M based on the both reflected lights received by the sensor 201.
  • the sensor 201 can measure the thickness without contacting the wafer main body M, so that the wafer main body M can be prevented from being scratched.
  • the wafer W wafer main body M
  • the finish grinding unit 170 the wafer W (wafer main body M) is ground and thinned, and is easily scratched. Therefore, it is useful to be able to measure the thickness of the wafer main body M without contact.
  • a white confocal optical system sensor is used as the sensor 201 of the wafer body thickness measurement unit 200, but the configuration of the wafer body thickness measurement unit 200 is not limited to this. Any measuring device can be used as long as it measures thickness. In addition, a plurality of sensors 201 may be provided.
  • FIG. 8 is an explanatory view showing a state in which the processing surface W1 of the wafer W is ground in the substrate processing system 1 (processing apparatus 4).
  • the total thickness of the protective wafer Wp is Twp0
  • the thickness of the wafer body M is Tm0
  • the thickness of the device D is Td
  • the thickness of the protective tape P is Tp. It is.
  • the rough grinding in FIG. 8B, the intermediate grinding in FIG. 8C, and the finish grinding in FIG. 8D are sequentially performed, and the wafer W is thinned.
  • the grinding amounts of the processing surface W1 of the wafer W in rough grinding, middle grinding and finish grinding are G1, G2 and G3, and the target thicknesses of the wafer W after grinding are H1, H2 and H3.
  • the cassette C containing a plurality of protective wafers Wp is placed on the cassette mounting table 10 of the loading station 2.
  • the protective wafer Wp is stored such that the non-processed surface W2 of the wafer W to which the protective tape P is attached is directed upward.
  • the protected wafer Wp in the cassette C is taken out by the transfer fork 33 of the wafer transfer apparatus 32 and transferred to the processing apparatus 4.
  • the front and back surfaces are reversed such that the processing surface W1 of the wafer W is directed upward by the transfer fork 33.
  • the protected wafer Wp transferred to the processing apparatus 4 is delivered to the alignment unit 120. Then, in the alignment unit 120, the horizontal direction of the protective wafer Wp is adjusted (Step S1 in FIG. 7).
  • the thickness Tp of the protective tape P shown in FIG. 8A is measured by the protective tape thickness measurement unit 180 (step S2 in FIG. 7).
  • the measurement result of the protective tape thickness measurement unit 180 is output from the calculation unit 182 to the control unit 40.
  • the protected wafer Wp is transported by the transport unit 110 from the alignment unit 120 to the delivery position A0 and delivered to the chuck 101 at the delivery position A0. Thereafter, the rotary table 100 is rotated 90 degrees counterclockwise to move the chuck 101 to the first processing position A1.
  • the whole thickness Twp0 of the protective wafer Wp shown in FIG. 8A is measured by the whole thickness measuring unit 190 (Step S3 in FIG. 7).
  • the measurement result of the entire thickness measurement unit 190 is output from the calculation unit 193 to the control unit 40.
  • the rough grinding amount G1 of the processing surface W1 of the wafer W in the rough grinding unit 150 is determined based on the thickness Tp of the protective tape P measured in step S2 and the total thickness Twp0 measured in step S3. Calculate (step S4 in FIG. 7). Specifically, first, a target thickness H1 of the wafer W to be left after the rough grinding shown in FIG. 8B is set. Then, the rough grinding amount G1 is calculated using the following equation (1). The rough grinding amount G1 corresponds to the first grinding amount in the present invention.
  • G1 Twp0-Tp-H1 ⁇ ⁇ ⁇ ⁇ ⁇ (1)
  • the processing surface W1 of the wafer W is roughly ground as shown in FIG. 8B by the rough grinding unit 150 based on the rough grinding amount G1 calculated in step S4 (step S5 in FIG. 7).
  • the rotary table 100 is rotated 90 degrees counterclockwise to move the chuck 101 to the second processing position A2. Then, before middle grinding by middle grinding unit 160, total thickness Twp1 of protective wafer Wp shown in FIG. 8B is measured by total thickness measurement unit 190 (step S6 in FIG. 7). The measurement result of the entire thickness measurement unit 190 is output from the calculation unit 193 to the control unit 40.
  • the middle grinding unit 160 middle-grinds the processing surface W1 of the wafer W as shown in FIG. 8C (step S8 in FIG. 7).
  • the rotary table 100 is rotated 90 degrees counterclockwise to move the chuck 101 to the third processing position A3. Then, before the finish grinding by the finish grinding unit 170, the thickness Tm2 of the wafer body M shown in FIG. 8C is measured by the wafer body thickness measurement unit 200 (step S9 in FIG. 7). The measurement result of the wafer body thickness measurement unit 200 is output from the calculation unit 202 to the control unit 40.
  • the thickness Td of the device D used in step S10 may or may not be known in advance before wafer processing. If the thickness Td of the device D is known in advance before the wafer processing, the equation (3) may be entered as it is.
  • the thickness Td of the device D when it is not known before wafer processing, it can be calculated from the thickness Tm2 of the wafer main body M measured in step S9. In such a case, there are, for example, two methods of calculating the thickness Td of the device D. As a first calculation method, the thickness Td of the device D can be calculated by subtracting the thickness Tm2 of the wafer main body M from the target thickness H2 of the wafer W after middle grinding.
  • the total thickness measurement unit 190 is also provided to the finish grinding unit 170, and before the finish grinding by the finish grinding unit 170, the entire thickness Twp2 of the protected wafer Wp shown in FIG. Do. Then, the thickness Td of the device D can be calculated using the following equation (4).
  • Td Twp2-Tm2-Tp (4)
  • the finish grinding unit 170 performs finish grinding on the processing surface W1 of the wafer W as shown in FIG. 8 (d) (step S11 in FIG. 7).
  • the target thickness H3 of the wafer W is the same as the target thickness of the wafer main body M.
  • the processing surface W1 of the wafer W is finish ground until the thickness of the wafer main body M changes from Tm3 to H3.
  • the rotary table 100 is rotated 90 degrees counterclockwise, or the rotary table 100 is rotated 270 degrees clockwise to move the chuck 101 to the delivery position A0.
  • the processing surface W1 of the wafer W is roughly cleaned by the cleaning liquid using the cleaning liquid nozzle (not shown) (step S12 in FIG. 7).
  • cleaning is performed to remove dirt on the processing surface W1 to a certain extent.
  • the protection wafer Wp is transferred by the transfer unit 110 from the delivery position A0 to the second cleaning unit 140. Then, in the second cleaning unit 140, the non-processed surface W2 (protective tape P) of the wafer W is cleaned and dried in a state where the protected wafer Wp is held by the transfer pad 114 (step S13 in FIG. 7). .
  • the protective wafer Wp is transferred by the transfer unit 110 from the second cleaning unit 140 to the first cleaning unit 130.
  • the processing surface W1 of the wafer W is finish-cleaned with the cleaning liquid using the cleaning liquid nozzle (not shown) (step S14 in FIG. 7).
  • the processing surface W1 is cleaned and dried to a desired degree of cleanliness.
  • the protected wafer Wp is transferred by the wafer transfer apparatus 32 from the first cleaning unit 130 to the post-processing apparatus 5. Then, in the post-processing apparatus 5, post-processing such as mounting processing for holding the protective wafer Wp on the dicing frame and peeling processing for peeling the protective tape P attached to the protective wafer Wp is performed (step S15 in FIG. 7). ).
  • a series of processing can be continuously performed on a plurality of protected wafers Wp, and the throughput of wafer processing can be improved.
  • the middle grinding unit 180 by measuring the thickness Tp of the protective tape P with the protective tape thickness measurement unit 180, even if the thickness Tp of the protective tape P varies among the protective wafers Wp, at least the middle grinding unit The middle grinding amount G2 at 160 and the finishing grinding amount G3 at the finishing grinding unit 170 can be made constant. And grinding of processing side W1 of wafer W can be performed appropriately.
  • FIG. 9A shows a protective wafer Wpa as a reference.
  • FIG. 9B shows a protective wafer Wpb in which the thickness of the protective tape P is different from that of the protective wafer Wpa.
  • FIG. 9C shows a protected wafer Wpc in which the thickness of the wafer W before the grinding process is different from that of the protected wafer Wpa.
  • the grinding amounts G1, G2 and G3 in rough grinding, middle grinding and finish grinding are calculated by the following formulas (1), (2) and (3), respectively.
  • G1 Twp0-Tp-H1 ⁇ ⁇ ⁇ ⁇ ⁇ (1)
  • G2 Twp1-Tp-H2 ...
  • G3 Tm2 + Td-H3 ⁇ ⁇ ⁇ ⁇ ⁇ (3)
  • the thicknesses of the protective tapes Pa and Pb are Tpa and Tpb, respectively, and the thickness Tpb is larger than the thickness Tpa.
  • the thicknesses of the wafer bodies Ma and Mb before the grinding process are the same for Tma0 and Tmb0, respectively, and the thicknesses for the devices Da and Db are the same for Tda and Tdb, respectively.
  • the rough grinding amount G1 in the rough grinding is calculated by the above equation (1), but (Twpa0-Tpa) in the protected wafer Wpa and (Twpb0-Tpb) in the protected wafer Wpb are the same. Then, rough grinding amount Ga1 for protected wafer Wpa and rough grinding amount Gb1 for protected wafer Wpb become equal.
  • the middle grinding amount Ga2 for the protection wafer Wpa and the middle grinding amount Gb2 for the protection wafer Wpb are the same from the above equation (2).
  • the finish grinding amount G3 in the finish grinding the finish grinding amount Ga3 for the protection wafer Wpa and the finish grinding amount Gb3 for the protection wafer Wpb are the same from the above equation (3).
  • the amounts Ga3 and Gb3 can be made the same.
  • protection wafers Wpa and Wpc shown in FIGS. 9A and 9C will be described.
  • the thicknesses of the wafer bodies Ma and Mc before the grinding process are Tma0 and Tmc0, respectively, and the thickness Tmc0 is larger than the thickness Tma0.
  • the thicknesses of the protective tapes Pa and Pb are the same for Tpa and Tpb, respectively, and the thicknesses of the devices Da and Db are also the same for Tda and Tdb, respectively.
  • the overall thicknesses Twpa1 and Twpc1 after rough grinding can be made the same.
  • the middle grinding amount Ga2 for the protective wafer Wpa and the middle grinding amount Gc2 for the protective wafer Wpc become the same.
  • the finish grinding amount G3 in the finish grinding the finish grinding amount Ga3 for the protection wafer Wpa and the finish grinding amount Gc3 for the protection wafer Wpc are the same from the above equation (3).
  • the middle grinding amounts Ga2 and Gb2 and the finish grinding amounts Ga3 and Gb3 are set for each of the protection wafers Wpa and Wpb. It can be the same.
  • the subsequent processing becomes uneven.
  • the overall thicknesses Twpa1 and Twpc1 after rough grinding are the same, the middle grinding amounts Ga2 and Gb2, and the finish grinding amounts Ga3 and Gb3 are also the same, that is, the remaining damage layer is the same. Because the subsequent processing (medium grinding, finish grinding) will be the same conditions. As a result, uniform processing can be performed for each of the protected wafers Wpa and Wpb.
  • the rough grinding in step S5 may be divided into a plurality of steps.
  • the rough grinding in step S5 is divided into, for example, steps from air cutting to lower the rough grinding portion 151 (coarse grinding wheel) at low speed, to step S51 to perform rough grinding at high speed, and to step S52 to perform rough grinding to low speed. It will be.
  • the grinding amount G12 be a grinding amount that does not apply a stress to the wafer W, and be a fixed value common to a plurality of wafers W.
  • the grinding amount G11 in the high-speed step S51 is set as a fluctuation value that fluctuates for each of the protection wafers Wp. Specifically, after the rough grinding amount G1 is calculated for each protection wafer Wp, the grinding amount G12 (fixed value) of each step S52 is subtracted from the rough grinding amount G1, and the grinding amount G11 of step S51 is calculated. calculate.
  • the grinding amount G11 of the high-speed step S51 is different for each protection wafer Wp
  • the grinding amount G12 of the low-speed step S52 can be fixed. Then, in the second half process of the rough grinding, the stress applied to the wafer W can be reduced as compared with the first half process, and the rough grinding can be appropriately performed.
  • Step S52 may be further divided into a plurality of steps. Further, depending on the thickness of the wafer W, step S51 is omitted, and grinding is performed only with the grinding amount G12 (fixed value) of step S52. For example, even when there are a plurality of fixed values of the grinding amount in a plurality of steps, the first half of the plurality of steps may be omitted and grinding may be performed only with the grinding amount of the fixed value.
  • the entire thickness of the protection wafer Wp is measured by the contact total thickness measurement unit 190 in the middle grinding in step S8, but the total thickness of the protection wafer Wp is measured in the first half processing of the middle grinding.
  • the thickness of the wafer main body M may be measured in the second half process.
  • the entire thickness of the protective wafer Wp can be measured by the contact total thickness measurement unit 190 (first half process).
  • the thickness of the wafer main body M is measured by the non-contact type wafer main body thickness measurement unit 200 (second half process).
  • the middle grinding amount G21 in the first half processing and the second grinding amount G22 in the second half processing are divided and calculated.
  • the first half process based on the total thickness Twp1 of the protective wafer Wp measured by the entire thickness measurement unit 190, the thickness Tp of the protective tape P measured in step S2, and the predetermined thickness (H2)
  • the front half grinding amount G21 is calculated using the above equation (2).
  • the second half grinding amount G22 is calculated using the equation (3). And based on these first half grinding amount G21 and second half grinding amount G22, it is possible to appropriately carry out middle grinding of the processing surface W1 of the wafer W. Note that a value input in advance may be used as the thickness Td of the device D.
  • the overall thickness of the protected wafer Wp may be measured in the first half process, and the thickness of the wafer main body M may be measured in the second half process.
  • the finish grinding amount G3 is divided and calculated into the first half grinding amount G31 and the second half grinding amount G32.
  • the protective tape thickness measurement unit 180 measures the thickness of the protective tape P with respect to the protective wafer Wp being transported by the transport unit 110. As long as the processing surface W1 of the wafer W is not roughly ground, it can be disposed at an arbitrary position. That is, the protective tape thickness measurement unit 180 can be disposed between the loading station 2 and the rough grinding unit 150. Specifically, the protective tape thickness measurement unit 180 may be provided inside the alignment unit 120 or may be provided inside the loading station 2.
  • the processing apparatus 4 includes the rough grinding unit 150, the middle grinding unit 160, and the finish grinding unit 170, but the configuration of the unit is not limited to this.
  • the rough grinding unit 150 may be disposed at the first processing position A1, the finish grinding unit 170 may be disposed at the second processing position A2, and the polishing unit (not shown) may be disposed at the third processing position A3. . Even in such a case, it is possible to appropriately grind the processing surface W1 of the wafer W by calculating the rough grinding amount G1 in the rough grinding unit 150 and the finishing grinding amount G3 in the finishing grinding unit 170 as in the above embodiment. it can.
  • the protective tape P is attached to the non-processed surface W2 of the wafer W in order to protect the device D, but the protective material of the device D is not limited to this.
  • a support substrate such as a support wafer or a glass substrate may be bonded to the non-processed surface W2 of the wafer W, and the present invention can be applied even in such a case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

非加工面に保護材が設けられた基板の加工面を加工する基板処理システムは、前記基板の加工面を複数の工程で研削する研削部と、前記研削部で前記基板の加工面を研削する前に、前記保護材の厚みを測定する保護材厚み測定部と、前記保護材厚み測定部で測定された保護材厚みに基づいて、前記研削部で前記基板の加工面を研削する第1の研削処理工程以降の第2の研削処理工程における第2の研削量が基板毎に一定になるように、前記第1の研削処理工程における第1の研削量を算出する制御部と、を有する。

Description

基板処理システム、基板処理方法及びコンピュータ記憶媒体
(関連出願の相互参照)
 本願は、2017年12月22日に日本国に出願された特願2017-246732号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、非加工面に保護材が設けられた基板の加工面を加工する基板処理システム、当該基板処理システムを用いた基板処理方法及びコンピュータ記憶媒体に関する。
 近年、半導体デバイスの製造工程においては、表面に複数の電子回路等のデバイスが形成された半導体ウェハ(以下、ウェハという)に対し、当該ウェハの裏面を研削して、ウェハを薄化することが行われている。また、例えば特許文献1や特許文献2に記載されているとおり、研削前のウェハの表面には、デバイスを保護する保護材として、例えば保護テープが設けられている。
 ウェハの裏面の研削は、例えば特許文献1や特許文献2に記載された研削装置を用いて行われる。研削装置は、例えばウェハの表面を保持し回転自在のチャックと、チャックに保持されたウェハの裏面を研削する研削砥石を備え環状で回転自在に構成された研削ホイールと、を備えている。そして、この研削装置では、ウェハの裏面に対して粗研削と仕上研削を順次行っている。具体的には、各研削工程において、チャック(ウェハ)と研削ホイール(研削砥石)を回転させながら、研削砥石をウェハの裏面に接触させることによって、当該ウェハの裏面が研削される。また、この研削中、厚み測定ゲージによってウェハの厚みを測定することで、ウェハを目標厚みに仕上げている。
 また、例えば特許文献2には、上述した厚み測定ゲージが接触式のものであって、基準側ハイトゲージとウェハ側ハイトゲージを備え、ウェハ側ハイトゲージの測定値から基準側ハイトゲージの測定値を引いた値に基づいてウェハの厚さが測定されることが記載されている。この場合、ウェハの表面に保護テープが貼り付けられているので、保護テープの厚みも加味してウェハの厚みが算出される。
 さらに、例えば特許文献2には、仕上研削において、非接触式の仕上厚み測定装置を用いることが記載されている。仕上厚み測定装置は複数の厚みセンサを有し、ウェハの厚みを複数ポイント測定するものである。この場合、保護テープを除くウェハのみの厚みが測定される。
日本国特開2012-187654号公報 日本国特開2008-264913号公報
 ところで、保護テープは、ウェハ毎にその厚みがばらつく場合がある。かかる場合、従来のように、粗研削で接触式の厚み測定計を用いてウェハと保護テープの全体厚みを測定し、仕上研削で非接触式の厚み測定計を用いてウェハの厚みを測定すると、粗研削と仕上研削での研削量がウェハ毎にばらつく。
 接触式の厚み測定計を用いて、ウェハの厚みと保護テープの厚みを含めた全体厚みを測定しながら研削する場合、ウェハ毎に保護テープの厚みが異なると、研削後の各ウェハの厚みが異なることになる。そうするとその後、ウェハの厚みが異なるものを同じ厚みに研削するためには、その後の研削時の研削量がウェハ毎にばらつくことなる。
 このように研削量がばらつくのは好ましくない。特に仕上研削では、ウェハは最終の仕上厚みまで研削されるため、その研削量は厳密に制御される必要があり、保護テープの厚みのばらつきに関わらず、研削量が一定であることが必要となる。
 本発明は、上記事情に鑑みてなされたものであり、非加工面に保護材が設けられた基板の加工面を研削して加工するにあたり、基板毎の研削量を一定にして、基板を適切に研削することを目的とする。
 上記課題を解決する本発明の一態様は、非加工面に保護材が設けられた基板の加工面を加工する基板処理システムであって、前記基板の加工面を複数の工程で研削する研削部と、前記研削部で前記基板の加工面を研削する前に、前記保護材の厚みを測定する保護材厚み測定部と、前記保護材厚み測定部で測定された保護材厚みに基づいて、前記研削部で前記基板の加工面を研削する第1の研削処理工程以降の第2の研削処理工程における第2の研削量が基板毎に一定になるように、前記第1の研削処理工程における第1の研削量を算出する制御部と、を有する。
 本発明の一態様によれば、基板の加工面を研削する前に保護材の厚みを測定し、この測定結果を用いて、第1の研削処理工程における第1の研削量を算出する。このように第1の研削量が、保護材の厚みを考慮して算出されるため、保護材の厚みが基板毎にばらついていたとしても、第1の研削処理工程で研削された後の基板の厚みを、基板毎に一定にすることができる。そうすると、その後、第2の研削処理工程で基板の加工面を研削する際の第2の研削量を一定にすることができ、基板を適切に研削することができる。
 別な観点による本発明の一態様は、非加工面に保護材が設けられた基板の加工面を加工する基板処理方法であって、前記保護材の厚みを測定する保護材厚み測定工程と、その後、前記基板の加工面を研削する複数の研削処理工程と、を有し、前記保護材厚み測定工程で測定された保護材厚みに基づいて、前記複数の研削処理工程のうち、前記基板の加工面を研削する第1の研削処理工程以降の第2の研削処理工程における第2の研削量が基板毎に一定になるように、前記第1の研削処理工程における第1の研削量を算出する。
 また別な観点による本発明の一態様によれば、前記基板処理方法を基板処理システムによって実行させるように、当該基板処理システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。
 本発明の一態様によれば、非加工面に保護材が設けられた基板の加工面を研削して加工するにあたり、基板毎の研削量を一定にして、基板を適切に研削することができる。
本実施形態にかかる基板処理システムの構成の概略を模式的に示す平面図である。 保護ウェハの構成の概略を示す側面図である。 加工装置の構成の概略を示す平面図である。 保護テープ厚み測定ユニットの構成の概略を示す側面図である。 全体厚み測定ユニットの構成の概略を示す側面図である。 ウェハ本体厚み測定ユニットの構成の概略を示す側面図である。 ウェハ処理の主な工程を示すフローチャートである。 ウェハの加工面が研削される様子を示す説明図である。 保護テープの厚みと研削処理前のウェハの厚みが異なる保護ウェハについて、各研削処理の研削量を示す説明図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
<基板処理システム>
 先ず、本実施形態にかかる基板処理システムの構成について説明する。図1は、基板処理システム1の構成の概略を模式的に示す平面図である。なお、以下においては、位置関係を明確にするために、互いに直交するX軸方向、Y軸方向及びZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする。
 本実施形態の基板処理システム1では、基板としてのウェハWを薄化する。以下、図2に示すようにウェハWにおいて、加工(研削)される面を「加工面W1」といい、加工面W1と反対側の面を「非加工面W2」という。ウェハWは、例えばシリコンウェハや化合物半導体ウェハなどの半導体ウェハである。ウェハWは、基板本体としてのウェハ本体Mと、ウェハ本体Mの非加工面側に形成されたデバイスDとを備えている。そして、ウェハ本体Mの表面が加工面W1を構成し、デバイスDの表面がウェハWの非加工面W2を構成している。ウェハWの非加工面W2には、デバイスDを保護するための保護材、例えば保護テープPが貼り付けられている。なお、以下の説明においては、保護テープPが貼り付けられたウェハWの全体を保護ウェハWpという。
 図1に示すように基板処理システム1は、処理前の保護ウェハWpをカセットC内に収納し、複数の保護ウェハWpをカセット単位で外部から基板処理システム1に搬入する搬入ステーション2と、処理後のウェハW(保護ウェハWpから保護テープPが剥離されたウェハW)をカセットC内に収納し、複数のウェハWをカセット単位で基板処理システム1から外部に搬出する搬出ステーション3と、保護ウェハWpに加工処理を行って薄化する加工装置4と、加工処理後の保護ウェハWpの後処理を行う後処理装置5と、搬入ステーション2、加工装置4及び後処理装置5の間で保護ウェハWpを搬送する搬送ステーション6と、を接続した構成を有している。搬入ステーション2、搬送ステーション6、及び加工装置4は、X軸負方向側においてY軸方向にこの順で並べて配置されている。搬出ステーション3と後処理装置5は、X軸正方向側においてY軸方向にこの順で並べて配置されている。
 搬入ステーション2には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば2つのカセットCをX軸方向に一列に載置自在になっている。
 搬出ステーション3も、搬入ステーション2と同様の構成を有している。搬出ステーション3にはカセット載置台20が設けられ、カセット載置台20には、例えば2つのカセットCをX軸方向に一列に載置自在になっている。なお、搬入ステーション2と搬出ステーション3は1つの搬入出ステーションに統合されてもよく、かかる場合、搬入出ステーションには共通のカセット載置台が設けられる。
 加工装置4では、保護ウェハWpに対して研削や洗浄などの加工処理が行われる。この加工装置4の構成は後述する。
 後処理装置5では、加工装置4で加工処理された保護ウェハWpに対して後処理が行われる。後処理としては、例えば保護ウェハWpをダイシングテープを介してダイシングフレームに保持するマウント処理、保護ウェハWpにおいてウェハWに貼り付けられた保護テープPを剥離する剥離処理などが行われる。そして、後処理装置5は、後処理が行われダイシングフレームに保持されたウェハWを搬出ステーション3のカセットCに搬送する。後処理装置5で行われるマウント処理や剥離処理はそれぞれ、公知の装置が用いられる。
 搬送ステーション6には、ウェハ搬送領域30が設けられている。ウェハ搬送領域30には、X軸方向に延伸する搬送路31上を移動自在なウェハ搬送装置32が設けられている。ウェハ搬送装置32は、保護ウェハWpを保持するウェハ保持部として、搬送フォーク33と搬送パッド34を有している。搬送フォーク33は、その先端が2本に分岐し、保護ウェハWpを吸着保持する。搬送フォーク33は、研削処理前の保護ウェハWpを搬送する。搬送パッド34は、平面視において保護ウェハWpの径より長い径を備えた円形状を有し、保護ウェハWpを吸着保持する。搬送パッド34は、研削処理後の保護ウェハWpを搬送する。そして、これら搬送フォーク33と搬送パッド34はそれぞれ、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。
 図1に示すように基板処理システム1には、制御部40が設けられている。制御部40は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、基板処理システム1における保護ウェハWp(ウェハW)の処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、基板処理システム1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部40にインストールされたものであってもよい。
<加工装置>
 次に、上述した加工装置4の構成について説明する。図3~図6に示すように加工装置4は、回転テーブル100、搬送ユニット110、アライメントユニット120、第1の洗浄ユニット130、第2の洗浄ユニット140、研削部としての粗研削ユニット150、研削部としての中研削ユニット160、研削部としての仕上研削ユニット170、保護材厚み測定部としての保護テープ厚み測定ユニット180、全体厚み測定部としての全体厚み測定ユニット190、及び基板本体厚み測定部としてのウェハ本体厚み測定ユニット200を有している。なお、本実施形態では、粗研削ユニット150が本発明における第1の研削部に相当し、中研削ユニット160と仕上研削ユニット170がそれぞれ本発明における第2の研削部に相当する。
 回転テーブル100は、回転機構(図示せず)によって回転自在に構成されている。回転テーブル100上には、保護ウェハWpを吸着保持するチャック101が4つ設けられている。チャック101は、回転テーブル100と同一円周上に均等、すなわち90度毎に配置されている。4つのチャック101は、回転テーブル100が回転することにより、受渡位置A0及び加工位置A1~A3に移動可能になっている。
 本実施形態では、受渡位置A0は回転テーブル100のX軸正方向側且つY軸負方向側の位置であり、受渡位置A0のY軸負方向側には、第2の洗浄ユニット140、アライメントユニット120及び第1の洗浄ユニット130が並べて配置される。アライメントユニット120と第1の洗浄ユニット130は上方からこの順で積層されて配置される。第1の加工位置A1は回転テーブル100のX軸正方向側且つY軸正方向側の位置であり、粗研削ユニット150が配置される。第2の加工位置A2は回転テーブル100のX軸負方向側且つY軸正方向側の位置であり、中研削ユニット160が配置される。第3の加工位置A3は回転テーブル100のX軸負方向側且つY軸負方向側の位置であり、仕上研削ユニット170が配置される。
 チャック101はチャックベース102に保持されている。チャック101及びチャックベース102は、回転機構(図示せず)によって回転可能に構成されている。
 搬送ユニット110は、複数、例えば3つのアーム111~113を備えた多関節型のロボットである。3つのアーム111~113は関節部(図示せず)によって接続され、これら関節部によって、第1のアーム111と第2のアーム112はそれぞれ基端部を中心に旋回自在に構成されている。3つのアーム111~113のうち、先端の第1のアーム111には、保護ウェハWpを吸着保持する搬送パッド114が取り付けられている。また、3つのアーム111~113のうち、基端の第3のアーム113は、アーム111~113を鉛直方向に移動させる鉛直移動機構115に取り付けられている。そして、かかる構成を備えた搬送ユニット110は、受渡位置A0、アライメントユニット120、第1の洗浄ユニット130、及び第2の洗浄ユニット140に対して、保護ウェハWpを搬送できる。
 アライメントユニット120では、研削処理前の保護ウェハWpの水平方向の向きを調節する。例えばスピンチャック(図示せず)に保持された保護ウェハWpを回転させながら、検出部(図示せず)でウェハWのノッチ部の位置を検出することで、当該ノッチ部の位置を調節して保護ウェハWpの水平方向の向きを調節する。
 第1の洗浄ユニット130では、研削処理後のウェハWの加工面W1を洗浄し、より具体的にはスピン洗浄する。例えばスピンチャック(図示せず)に保持された保護ウェハWp(ウェハW)を回転させながら、洗浄液ノズル(図示せず)からウェハWの加工面W1に洗浄液を供給する。そうすると、供給された洗浄液は加工面W1上を拡散し、当該加工面W1が洗浄される。
 第2の洗浄ユニット140では、研削処理後の保護ウェハWpが搬送パッド114に保持された状態のウェハWの非加工面W2、すなわち非加工面W2に貼り付けられた保護テープPを洗浄するとともに、搬送パッド114を洗浄する。
 粗研削ユニット150では、ウェハWの加工面W1を粗研削する。粗研削ユニット150は、環状形状で回転自在な粗研削砥石(図示せず)を備えた粗研削部151を有している。また、粗研削部151は、支柱152に沿って鉛直方向及び水平方向に移動可能に構成されている。そして、チャック101に保持されたウェハWの加工面W1を粗研削砥石に当接させた状態で、チャック101と粗研削砥石をそれぞれ回転させることによって、ウェハWの加工面W1を粗研削する。
 中研削ユニット160では、ウェハWの加工面W1を中研削する。中研削ユニット160は、環状形状で回転自在な中研削砥石(図示せず)を備えた中研削部161を有している。また、中研削部161は、支柱162に沿って鉛直方向及び水平方向に移動可能に構成されている。なお、中研削砥石の砥粒の粒度は、粗研削砥石の砥粒の粒度より小さい。そして、チャック101に保持されたウェハWの加工面W1を中研削砥石に当接させた状態で、チャック101と中研削砥石をそれぞれ回転させることによって加工面W1を中研削する。
 仕上研削ユニット170では、ウェハWの加工面W1を仕上研削する。仕上研削ユニット170は、環状形状で回転自在な仕上研削砥石(図示せず)を備えた仕上研削部171を有している。また、仕上研削部171は、支柱172に沿って鉛直方向及び水平方向に移動可能に構成されている。なお、仕上研削砥石の砥粒の粒度は、中研削砥石の砥粒の粒度より小さい。そして、チャック101に保持されたウェハWの加工面W1を仕上研削砥石に当接させた状態で、チャック101と仕上研削砥石をそれぞれ回転させることによって加工面W1を仕上研削する。
 図1及び図3に示すように保護テープ厚み測定ユニット180は、例えばアライメントユニット120の上方に設けられる。図4に示すように保護テープ厚み測定ユニット180では、搬送ユニット110の搬送パッド114に保持された保護ウェハWpに対し、保護テープPの厚みを測定する。保護テープ厚み測定ユニット180は、アライメントユニット120から受渡位置A0に搬送中の保護ウェハWpの保護テープPの厚みを測定する。
 保護テープ厚み測定ユニット180は、センサ181と算出部182を有している。センサ181には、保護テープPに接触せずに当該保護テープPの厚みを測定するセンサが用いられ、例えば白色共焦点(コンフォーカル)式の光学系センサが用いられる。センサ181は、保護テープPに対して所定の波長帯域を有する光を照射し、さらに保護テープPの表面P1から反射した反射光と、裏面P2から反射した反射光とを受光する。算出部182は、センサ181で受光した両反射光に基づいて、保護テープPの厚みを算出する。
 なお、本実施形態では保護テープ厚み測定ユニット180のセンサ181には白色共焦点式の光学系センサが用いられたが、保護テープ厚み測定ユニット180の構成はこれに限定されず、保護テープPの厚みを測定するものであれば任意の測定器を用いることができる。また、センサ181は、複数設けられていてもよい。
 全体厚み測定ユニット190は、粗研削ユニット150と中研削ユニット160のそれぞれに設けられる。図5に示すように全体厚み測定ユニット190は、チャック側ハイトゲージ191、ウェハ側ハイトゲージ192、及び算出部193を有している。チャック側ハイトゲージ191はプローブ194を備え、プローブ194の先端がチャックベース102の上面102aに接触することで、当該上面102aの高さ位置を測定する。チャックベース102の上面102aは、保護ウェハWpを保持するチャック101の上面と同一平面である。ウェハ側ハイトゲージ192はプローブ195を備え、プローブ195の先端がウェハWの加工面W1に接触し、当該加工面W1の高さ位置を測定する。算出部193は、ウェハ側ハイトゲージ192の測定値からチャック側ハイトゲージ191を差し引くことで、保護ウェハWpの全体厚みを算出する。なお、この全体厚みは、ウェハWの厚み(ウェハ本体Mの厚みとデバイスDの厚みの合計)と保護テープPの厚みを足したものである。
 ウェハ本体厚み測定ユニット200は、仕上研削ユニット170に設けられる。図6に示すようにウェハ本体厚み測定ユニット200は、センサ201と算出部202を有している。センサ201には、ウェハ本体Mに接触せずに当該ウェハ本体Mの厚みを測定するセンサが用いられ、例えば白色共焦点(コンフォーカル)式の光学系センサが用いられる。センサ201は、ウェハ本体Mに対して所定の波長帯域を有する光を照射し、さらにウェハ本体Mの表面から反射した反射光と、裏面から反射した反射光とを受光する。算出部202は、センサ201で受光した両反射光に基づいて、ウェハ本体Mの厚みを算出する。
 本実施形態のセンサ201は、ウェハ本体Mに接触せずに厚みを測定することができるので、当該ウェハ本体Mに傷が入るのを防止することができる。特に仕上研削ユニット170では、ウェハW(ウェハ本体M)は研削されて薄くなっており、傷が入りやすいため、このように非接触でウェハ本体Mの厚みを測定できることは有用である。
 なお、本実施形態ではウェハ本体厚み測定ユニット200のセンサ201には白色共焦点式の光学系センサが用いられたが、ウェハ本体厚み測定ユニット200の構成はこれに限定されず、ウェハ本体Mの厚みを測定するものであれば任意の測定器を用いることができる。また、センサ201は、複数設けられていてもよい。
<ウェハ処理>
 次に、以上のように構成された基板処理システム1を用いて行われるウェハ処理について、図7のフローチャートに沿って説明する。
 図8は、基板処理システム1(加工装置4)において、ウェハWの加工面W1が研削される様子を示す説明図である。図8(a)に示すように研削前において、保護ウェハWpの全体厚みはTwp0であり、ウェハ本体Mの厚みはTm0であり、デバイスDの厚みはTdであり、保護テープPの厚みはTpである。そして、図8(b)の粗研削、図8(c)の中研削、図8(d)の仕上研削が順次行われ、ウェハWが薄化される。粗研削、中研削、仕上研削におけるウェハWの加工面W1の研削量はG1、G2、G3であり、それぞれの研削後のウェハWの目標厚みはH1、H2、H3である。
 基板処理システム1では、先ず、複数の保護ウェハWpを収納したカセットCが、搬入ステーション2のカセット載置台10に載置される。カセットCには、保護テープPが変形するのを抑制するため、当該保護テープPが貼り付けられたウェハWの非加工面W2が上側を向くように保護ウェハWpが収納されている。
 次に、ウェハ搬送装置32の搬送フォーク33によりカセットC内の保護ウェハWpが取り出され、加工装置4に搬送される。この際、搬送フォーク33によりウェハWの加工面W1が上側に向くように、表裏面が反転される。
 加工装置4に搬送された保護ウェハWpは、アライメントユニット120に受け渡される。そして、アライメントユニット120において、保護ウェハWpの水平方向の向きが調節される(図7のステップS1)。
 次に、保護ウェハWpが搬送ユニット110によって搬送中、保護テープ厚み測定ユニット180によって、図8(a)に示す保護テープPの厚みTpが測定される(図7のステップS2)。保護テープ厚み測定ユニット180の測定結果は、算出部182から制御部40に出力される。
 次に、保護ウェハWpは搬送ユニット110により、アライメントユニット120から受渡位置A0に搬送され、当該受渡位置A0のチャック101に受け渡される。その後、回転テーブル100を反時計回りに90度回転させ、チャック101を第1の加工位置A1に移動させる。
 次に、粗研削ユニット150による粗研削の前に、全体厚み測定ユニット190によって、図8(a)に示す保護ウェハWpの全体厚みTwp0が測定される(図7のステップS3)。全体厚み測定ユニット190の測定結果は、算出部193から制御部40に出力される。
 制御部40では、ステップS2で測定された保護テープPの厚みTpと、ステップS3で測定された全体厚みTwp0とに基づいて、粗研削ユニット150におけるウェハWの加工面W1の粗研削量G1を算出する(図7のステップS4)。具体的には先ず、図8(b)に示す、粗研削後に残したいウェハWの目標厚みH1を設定する。そして下記式(1)を用いて、粗研削量G1を算出する。なお、粗研削量G1は、本発明における第1の研削量に相当する。
G1=Twp0-Tp-H1 ・・・・(1)
 次に、粗研削ユニット150によって、ステップS4で算出した粗研削量G1に基づき、図8(b)に示すようにウェハWの加工面W1が粗研削される(図7のステップS5)。
 次に、回転テーブル100を反時計回りに90度回転させ、チャック101を第2の加工位置A2に移動させる。そして、中研削ユニット160による中研削の前に、全体厚み測定ユニット190によって、図8(b)に示す保護ウェハWpの全体厚みTwp1が測定される(図7のステップS6)。全体厚み測定ユニット190の測定結果は、算出部193から制御部40に出力される。
 制御部40では、ステップS2で測定された保護テープPの厚みTpと、ステップS6で測定された全体厚みTwp1とに基づいて、中研削ユニット160におけるウェハWの加工面W1の中研削量G2を算出する(図7のステップS7)。具体的には先ず、図8(c)に示す、中研削後に残したいウェハWの目標厚みH2を設定する。そして下記式(2)を用いて、中研削量G2を算出する。なお、中研削量G2は、本発明における第2の研削量に相当する。
G2=Twp1-Tp-H2 ・・・・(2)
 次に、中研削ユニット160によって、ステップS7で算出した中研削量G2に基づき、図8(c)に示すようにウェハWの加工面W1が中研削される(図7のステップS8)。
 次に、回転テーブル100を反時計回りに90度回転させ、チャック101を第3の加工位置A3に移動させる。そして、仕上研削ユニット170による仕上研削の前に、ウェハ本体厚み測定ユニット200によって、図8(c)に示すウェハ本体Mの厚みTm2が測定される(図7のステップS9)。ウェハ本体厚み測定ユニット200の測定結果は、算出部202から制御部40に出力される。
 制御部40では、ステップS9で測定されたウェハ本体Mの厚みTm2と、デバイスDの厚みTdとに基づいて、仕上研削ユニット170におけるウェハWの加工面W1の仕上研削量G3を算出する(図7のステップS10)。具体的には先ず、図8(d)に示す、仕上研削後に残したいウェハWの目標厚みH3を設定する。そして下記式(3)を用いて、仕上研削量G3を算出する。なお、仕上研削量G3は、本発明における第2の研削量に相当する。
G3=Tm2+Td-H3 ・・・・(3)
 なお、ステップS10で用いられるデバイスDの厚みTdは、ウェハ処理前に予め分かっている場合と分かっていない場合がある。デバイスDの厚みTdがウェハ処理前に予め分かっている場合は、上記式(3)にそのまま入れればよい。
 一方、デバイスDの厚みTdがウェハ処理前に分かっていない場合、ステップS9で測定されたウェハ本体Mの厚みTm2から算出できる。かかる場合、デバイスDの厚みTdの算出方法は、例えば2つある。1つ目の算出方法として、中研削後のウェハWの目標厚みH2からウェハ本体Mの厚みTm2を差し引けば、デバイスDの厚みTdを算出できる。
 2つ目の算出方法として、例えば仕上研削ユニット170にも全体厚み測定ユニット190を設け、仕上研削ユニット170による仕上研削の前に、図8(c)に示す保護ウェハWpの全体厚みTwp2を測定する。そして下記式(4)を用いて、デバイスDの厚みTdを算出できる。
Td=Twp2-Tm2-Tp ・・・・(4)
 次に、仕上研削ユニット170によって、ステップS10で算出した仕上研削量G3に基づき、図8(d)に示すようにウェハWの加工面W1が仕上研削される(図7のステップS11)。
 ここで、デバイスDの厚みTdを考慮する必要がない場合、ウェハWの目標厚みH3は、ウェハ本体Mの目標厚みと同じになる。かかる場合、ウェハWの加工面W1は、ウェハ本体Mの厚みがTm3からH3になるまで仕上研削される。
 次に、回転テーブル100を反時計回りに90度回転させ、又は回転テーブル100を時計回りに270度回転させて、チャック101を受渡位置A0に移動させる。ここでは、洗浄液ノズル(図示せず)を用いて、ウェハWの加工面W1が洗浄液によって粗洗浄される(図7のステップS12)。このステップS12では、加工面W1の汚れをある程度まで落とす洗浄が行われる。
 次に、保護ウェハWpは搬送ユニット110により、受渡位置A0から第2の洗浄ユニット140に搬送される。そして、第2の洗浄ユニット140では、保護ウェハWpが搬送パッド114に保持された状態で、ウェハWの非加工面W2(保護テープP)が洗浄し、乾燥される(図7のステップS13)。
 次に、保護ウェハWpは搬送ユニット110によって、第2の洗浄ユニット140から第1の洗浄ユニット130に搬送される。そして、第1の洗浄ユニット130では、洗浄液ノズル(図示せず)を用いて、ウェハWの加工面W1が洗浄液によって仕上洗浄される(図7のステップS14)。このステップS14では、加工面W1が所望の清浄度まで洗浄し乾燥される。
 その後、保護ウェハWpはウェハ搬送装置32によって、第1の洗浄ユニット130から後処理装置5に搬送される。そして、後処理装置5では、保護ウェハWpをダイシングフレームに保持するマウント処理や、保護ウェハWpに貼り付けられた保護テープPを剥離する剥離処理などの後処理が行われる(図7のステップS15)。
 その後、すべての処理が施されたウェハWは、搬出ステーション3のカセット載置台20のカセットCに搬送される。こうして、基板処理システム1における一連のウェハ処理が終了する。
 以上の実施形態によれば、一の基板処理システム1において、一連の処理を複数の保護ウェハWpに対して連続して行うことができ、ウェハ処理のスループットを向上させることができる。
 また、本実施形態によれば、保護テープ厚み測定ユニット180で保護テープPの厚みTpを測定することにより、当該保護テープPの厚みTpが保護ウェハWp毎にばらついたとしても、少なくとも中研削ユニット160における中研削量G2と仕上研削ユニット170における仕上研削量G3をそれぞれ、一定にすることができる。そして、ウェハWの加工面W1の研削を適切に行うことができる。
 以下、この本実施形態の効果について、図9に基づいて説明する。図9(a)は基準となる保護ウェハWpaを示している。図9(b)は、保護ウェハWpaとは保護テープPの厚みが異なる、保護ウェハWpbを示している。図9(c)は、保護ウェハWpaとは研削処理前のウェハWの厚みが異なる、保護ウェハWpcを示している。
 なお上述したように、粗研削、中研削、仕上研削における研削量G1、G2、G3はそれぞれ下記式(1)、(2)、(3)で算出される。
G1=Twp0-Tp-H1 ・・・・(1)
G2=Twp1-Tp-H2 ・・・・(2)
G3=Tm2+Td-H3 ・・・・(3)
 かかる場合において、先ず、図9(a)、(b)に示す保護ウェハWpa、Wpbについて説明する。これら保護ウェハWpa、Wpbにおいて、保護テープPa、Pbの厚みはそれぞれTpa、Tpbであり、厚みTpbは厚みTpaよりも大きい。また、研削処理前のウェハ本体Ma、Mbの厚みはそれぞれTma0、Tmb0で同じであり、デバイスDa、Dbの厚みもそれぞれTda、Tdbで同じである。
 そして、粗研削における粗研削量G1は上記式(1)で算出されるが、保護ウェハWpaにおける(Twpa0-Tpa)と保護ウェハWpbにおける(Twpb0-Tpb)とは同じになる。そうすると、保護ウェハWpaに対する粗研削量Ga1と、保護ウェハWpbに対する粗研削量Gb1とが同じになる。
 同様に、中研削における中研削量G2についても、上記式(2)より、保護ウェハWpaに対する中研削量Ga2と、保護ウェハWpbに対する中研削量Gb2とが同じになる。また、仕上研削における仕上研削量G3についても、上記式(3)より、保護ウェハWpaに対する仕上研削量Ga3と、保護ウェハWpbに対する仕上研削量Gb3とが同じになる。
 このように本実施形態によれば、保護テープPa、Pbの厚みTpa、Tpbが異なっていても、保護ウェハWpa、Wpb毎に、粗研削量Ga1、Gb1、中研削量Ga2、Gb2、仕上研削量Ga3、Gb3を同じにすることができる。
 次に、図9(a)、(c)に示す保護ウェハWpa、Wpcについて説明する。これら保護ウェハWpa、Wpcにおいて、研削処理前のウェハ本体Ma、Mcの厚みはそれぞれTma0、Tmc0であり、厚みTmc0は厚みTma0よりも大きい。保護テープPa、Pbの厚みはそれぞれTpa、Tpbで同じであり、デバイスDa、Dbの厚みもそれぞれTda、Tdbで同じである。
 かかる場合、保護ウェハWpaの全体厚みTwpa0と保護ウェハWpcの全体厚みTwpc0が異なるため、上記式(1)より算出される、粗研削における粗研削量Ga1、Gc1は異なる。
 しかしながら、粗研削後の全体厚みTwpa1、Twpc1を同じにすることができる。そうすると、中研削における中研削量G2については、上記式(2)より、保護ウェハWpaに対する中研削量Ga2と、保護ウェハWpcに対する中研削量Gc2とが同じになる。また、仕上研削における仕上研削量G3についても、上記式(3)より、保護ウェハWpaに対する仕上研削量Ga3と、保護ウェハWpcに対する仕上研削量Gc3とが同じになる。
 このように本実施形態によれば、研削処理前のウェハ本体Ma、Mcの厚みTma0、Tmc0が異なる場合、保護ウェハWpa、Wpb毎に、中研削量Ga2、Gb2、仕上研削量Ga3、Gb3を同じにすることができる。ここで、粗研削ではダメージ層が形成される。そしてダメージ層の厚みが変わると、その後の処理が不均一になる。この点、本実施形態のように粗研削後の全体厚みTwpa1、Twpc1が同じになり、中研削量Ga2、Gb2、仕上研削量Ga3、Gb3も同じになり、すなわちダメージ層の残りが同じになるので、その後の処理(中研削、仕上研削)が同じ条件になる。その結果、保護ウェハWpa、Wpb毎に均一な処理を行うことができる。
<他の実施形態>
 以上の実施形態において、ステップS5の粗研削は、複数ステップに分けて行われてもよい。ステップS5の粗研削は、例えば低速で粗研削部151(粗研削砥石)を下降させるエアカットから、高速で粗研削を行うステップS51、低速で粗研削を行うステップS52などのステップに分かれて行われる。
 上述したように、複数の保護ウェハWpにおいて、研削処理前のウェハ本体Mの厚みが異なる場合、保護ウェハWp毎に、粗研削量G1が異なる。一方で、低速のステップS52では、その研削量G12は、ウェハWに対してストレスがかからない研削量としたく、複数のウェハWに対して共通の固定値にするのが好ましい。
 そこで、高速のステップS51の研削量G11を、保護ウェハWp毎に変動する変動値とする。具体的には、各保護ウェハWpに対して粗研削量G1を算出した後、当該粗研削量G1から、各ステップS52の研削量G12(固定値)を差し引いて、ステップS51の研削量G11を算出する。
 かかる場合、高速のステップS51の研削量G11は、保護ウェハWp毎に異なるものの、低速のステップS52の研削量G12を固定することができる。そうすると、粗研削の後半処理では、前半処理に比べて、ウェハWにかかるストレスを小さくすることができ、粗研削を適切に行うことができる。
 なお、ステップS52は、さらに複数のステップに分けてもよい。また、ウェハWの厚みによっては、ステップS51が省略され、ステップS52の研削量G12(固定値)だけで研削される。例えば複数のステップで研削量の固定値が複数ある場合も、複数のステップの前半を省略し、固定値の研削量だけで研削してもよい。
 また、以上の実施形態では、ステップS8の中研削において、接触式の全体厚み測定ユニット190で保護ウェハWpの全体厚みを測定していたが、中研削の前半処理で保護ウェハWpの全体厚みを測定し、後半処理でウェハ本体Mの厚みを測定する場合がある。例えば中研削の開始時において、ウェハWの厚みがある程度大きい場合、接触式の全体厚み測定ユニット190で保護ウェハWpの全体厚みを測定することができる(前半処理)。そして、ウェハWの厚みが所定厚みに到達すると、非接触式のウェハ本体厚み測定ユニット200でウェハ本体Mの厚みを測定する(後半処理)。
 かかる場合、中研削量G2を算出するに際しては、前半処理における前半研削量G21と、後半処理における後半研削量G22とに分けて算出する。具体的には、前半処理では、全体厚み測定ユニット190で測定された保護ウェハWpの全体厚みTwp1と、ステップS2で測定された保護テープPの厚みTpと、上記所定厚み(H2)とに基づき、上記式(2)を用いて、前半研削量G21が算出される。
 また、後半処理では、ウェハ本体厚み測定ユニット200で測定されたウェハ本体Mの厚みTm2と、例えば当該厚みTm2から算出されるデバイスDの厚みTdと、仕上研削後の目標厚みH3に基づき、上記式(3)を用いて、後半研削量G22が算出される。そして、これら前半研削量G21と後半研削量G22に基づいて、ウェハWの加工面W1の中研削を適切に行うことができる。なお、デバイスDの厚みTdには、予め入力された値を用いてもよい。
 なお、ステップS11の仕上研削についても、前半処理で保護ウェハWpの全体厚みを測定し、後半処理でウェハ本体Mの厚みを測定する場合がある。かかる場合でも、上記中研削量G2と同様に、仕上研削量G3を前半研削量G31と後半研削量G32に分けて算出する。
 以上の実施形態の基板処理システム1では、保護テープ厚み測定ユニット180は、搬送ユニット110で搬送中の保護ウェハWpに対して、保護テープPの厚みを測定していたが、粗研削ユニット150においてウェハWの加工面W1を粗研削する前であれば、任意の位置に配置できる。すなわち、保護テープ厚み測定ユニット180は、搬入ステーション2から粗研削ユニット150までの間に配置できる。具体的に保護テープ厚み測定ユニット180は、アライメントユニット120の内部に設けられていてもよく、あるいは搬入ステーション2の内部に設けられていてもよい。
 以上の実施形態の基板処理システム1において、加工装置4は、粗研削ユニット150、中研削ユニット160、仕上研削ユニット170を有していたが、ユニットの構成はこれに限定されない。第1の加工位置A1に粗研削ユニット150が配置され、第2の加工位置A2に仕上研削ユニット170が配置され、第3の加工位置A3に研磨ユニット(図示せず)が配置されてもよい。かかる場合でも、上記実施形態と同様に、粗研削ユニット150における粗研削量G1、仕上研削ユニット170における仕上研削量G3をそれぞれ算出することで、ウェハWの加工面W1を適切に研削することができる。
 以上の実施形態では、ウェハWの非加工面W2にはデバイスDを保護するために保護テープPが貼り付けられていたが、デバイスDの保護材はこれに限定されない。例えばウェハWの非加工面W2には、支持ウェハやガラス基板などの支持基板が貼り合せられていてもよく、かかる場合でも本発明を適用することができる。
 以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
  1   基板処理システム
  2   搬入ステーション
  3   搬出ステーション
  4   加工装置
  5   後処理装置
  6   搬送ステーション
  40  制御部
  150 粗研削ユニット
  160 中研削ユニット
  170 仕上研削ユニット
  180 保護テープ厚み測定ユニット
  190 全体厚み測定ユニット
  200 ウェハ本体厚み測定ユニット
  D   デバイス
  M   ウェハ本体
  P   保護テープ
  W   ウェハ
  W1  加工面
  W2  非加工面
  Wp  保護ウェハ

Claims (14)

  1. 非加工面に保護材が設けられた基板の加工面を加工する基板処理システムであって、
    前記基板の加工面を複数の工程で研削する研削部と、
    前記研削部で前記基板の加工面を研削する前に、前記保護材の厚みを測定する保護材厚み測定部と、
    前記保護材厚み測定部で測定された保護材厚みに基づいて、前記研削部で前記基板の加工面を研削する第1の研削処理工程以降の第2の研削処理工程における第2の研削量が基板毎に一定になるように、前記第1の研削処理工程における第1の研削量を算出する制御部と、を有する。
  2. 請求項1に記載の基板処理システムにおいて、
    前記基板と前記保護材の全体厚みを測定する全体厚み測定部を有し、
    前記制御部は、前記第1の研削処理工程で前記基板が研削される前に前記全体厚み測定部で測定された全体厚みと、前記保護材厚み測定部で測定された保護材厚みと、前記第1の研削処理工程で研削された後の前記基板の目標厚みと、に基づいて、前記第1の研削処理工程における第1の研削量を算出する。
  3. 請求項2に記載の基板処理システムにおいて、
    前記第1の研削処理工程では、複数ステップに分けて前記基板の加工面を研削し、
    前記制御部は、
    前記複数ステップの研削のうち、前記基板の加工面を研削する第1のステップ以降の第2のステップにおける研削量を設定し、
    前記全体厚み測定部で測定された全体厚みと、前記保護材厚み測定部で測定された保護材厚みと、前記第2のステップで設定された研削量と、に基づいて、前記第1のステップにおける研削量を算出する。
  4. 請求項1に記載の基板処理システムにおいて、
    前記基板と前記保護材の全体厚みを測定する全体厚み測定部を有し、
    前記制御部は、前記第2の研削処理工程で前記基板が研削される前に前記全体厚み測定部で測定された全体厚みと、前記保護材厚み測定部で測定された保護材厚みと、前記第2の研削処理工程で研削された後の前記基板の目標厚みと、に基づいて、前記第2の研削処理工程における第2の研削量を算出する。
  5. 請求項1に記載の基板処理システムにおいて、
    前記基板処理システムは、
    前記基板と前記保護材の全体厚みが所定厚みに到達するまで、全体厚みを測定する全体厚み測定部と、
    全体厚みが前記所定厚みに到達した後、前記基板の厚みを測定する基板厚み測定部と、を有し、
    前記制御部は、
    前記第2の研削処理工程で前記基板が研削される前に前記全体厚み測定部で測定された全体厚みと、前記保護材厚み測定部で測定された保護材厚みと、前記所定厚みとに基づいて、前記第2の研削処理工程における第2の前半研削量を算出し、
    その後、全体厚みが前記所定厚みに到達した後、前記基板厚み測定部で測定された基板厚みに基づいて、前記第2の研削処理工程で研削された後の前記基板の目標厚みまで研削するように前記研削部を制御する。
  6. 請求項1に記載の基板処理システムにおいて、
    前記基板は、基板本体と、前記基板本体の非加工面側に形成され、前記保護材に保護されたデバイスとを備え、
    前記基板処理システムは、前記基板本体の厚みを測定する基板本体厚み測定部を有し、
    前記制御部は、前記第2の研削処理工程で前記基板が研削される前に前記基板本体厚み測定部で測定された基板本体厚みと、前記基板本体厚みから算出される前記デバイスの厚みと、前記第2の研削処理工程で研削された後の前記基板の目標厚みと、に基づいて、前記第2の研削処理工程における第2の研削量を算出する。
  7. 請求項1に記載の基板処理システムにおいて、
    前記研削部は、前記第1の研削処理工程を行う第1の研削部と、前記第2の研削処理工程を行う第2の研削部とを有する。
  8. 非加工面に保護材が設けられた基板の加工面を加工する基板処理方法であって、
    前記保護材の厚みを測定する保護材厚み測定工程と、
    その後、前記基板の加工面を研削する複数の研削処理工程と、を有し、
    前記保護材厚み測定工程で測定された保護材厚みに基づいて、前記複数の研削処理工程のうち、前記基板の加工面を研削する第1の研削処理工程以降の第2の研削処理工程における第2の研削量が基板毎に一定になるように、前記第1の研削処理工程における第1の研削量を算出する。
  9. 請求項8に記載の基板処理方法において、
    前記第1の研削処理工程において前記基板と前記保護材の全体厚みを測定する第1の全体厚み測定工程を有し、
    前記第1の研削処理工程で前記基板が研削される前に前記第1の全体厚み測定工程で測定された全体厚みと、前記保護材厚み測定工程で測定された保護材厚みと、前記第1の研削処理工程で研削された後の前記基板の目標厚みと、に基づいて、前記第1の研削処理工程における第1の研削量を算出する。
  10. 請求項9に記載の基板処理方法において、
    前記第1の研削処理工程では、複数ステップに分けて前記基板の加工面を研削し、
    前記複数ステップの研削のうち、前記基板の加工面を研削する第1のステップ以降の第2のステップにおける研削量を設定し、
    前記第1の全体厚み測定工程で測定された全体厚みと、前記保護材厚み測定工程で測定された保護材厚みと、前記第2のステップで設定された研削量と、に基づいて、前記第1のステップにおける研削量を算出する。
  11. 請求項8に記載の基板処理方法において、
    前記第2の研削処理工程において前記基板と前記保護材の全体厚みを測定する第2の全体厚み測定工程を有し、
    前記第2の研削処理工程で前記基板が研削される前に前記第2の全体厚み測定工程で測定された全体厚みと、前記保護材厚み測定工程で測定された保護材厚みと、前記第2の研削処理工程で研削された後の前記基板の目標厚みと、に基づいて、前記第2の研削処理工程における第2の研削量を算出する。
  12. 請求項8に記載の基板処理方法において、
    前記基板処理方法は、
    前記第2の研削処理工程において前記基板と前記保護材の全体厚みが所定厚みに到達するまで、全体厚みを測定する第2の全体厚み測定工程と、
    前記第2の研削処理工程において全体厚みが前記所定厚みに到達した後、前記基板の厚みを測定する基板厚み測定工程と、を有し、
    前記第2の研削処理工程で前記基板が研削される前に前記第2の全体厚み測定工程で測定された全体厚みと、前記保護材厚み測定工程で測定された保護材厚みと、前記所定厚みとに基づいて、前記第2の研削処理工程における第2の前半研削量を算出し、
    その後、全体厚みが前記所定厚みに到達した後、前記基板厚み測定工程で測定された基板厚みに基づいて、前記第2の研削処理工程で研削された後の前記基板の目標厚みまで研削する。
  13. 請求項8に記載の基板処理方法において、
    前記基板は、基板本体と、前記基板本体の非加工面側に形成され、前記保護材に保護されたデバイスとを備え、
    前記基板処理方法は、前記第2の研削処理工程において前記基板本体の厚みを測定する基板本体厚み測定工程を有し、
    前記第2の研削処理工程で前記基板が研削される前に前記基板本体厚み測定工程で測定された基板本体厚みと、前記基板本体厚みから算出される前記デバイスの厚みと、前記第2の研削処理工程で研削された後の前記基板の目標厚みと、に基づいて、前記第2の研削処理工程における第2の研削量を算出する。
  14. 非加工面に保護材が設けられた基板の加工面を加工する基板処理方法を基板処理システムによって実行させるように、当該基板処理システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記基板処理方法は、
    前記保護材の厚みを測定する保護材厚み測定工程と、
    その後、前記基板の加工面を研削する複数の研削処理工程と、を有し、
    前記保護材厚み測定工程で測定された保護材厚みに基づいて、前記複数の研削処理工程のうち、前記基板の加工面を研削する第1の研削処理工程以降の第2の研削処理工程における第2の研削量が基板毎に一定になるように、前記第1の研削処理工程における第1の研削量を算出する。
PCT/JP2018/044366 2017-12-22 2018-12-03 基板処理システム、基板処理方法及びコンピュータ記憶媒体 WO2019124032A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019560925A JP6968201B2 (ja) 2017-12-22 2018-12-03 基板処理システム、基板処理方法及びコンピュータ記憶媒体
KR1020207020593A KR102604525B1 (ko) 2017-12-22 2018-12-03 기판 처리 시스템, 기판 처리 방법 및 컴퓨터 기억 매체
CN201880080582.5A CN111479654B (zh) 2017-12-22 2018-12-03 基板处理***、基板处理方法以及计算机存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246732 2017-12-22
JP2017246732 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124032A1 true WO2019124032A1 (ja) 2019-06-27

Family

ID=66994680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044366 WO2019124032A1 (ja) 2017-12-22 2018-12-03 基板処理システム、基板処理方法及びコンピュータ記憶媒体

Country Status (5)

Country Link
JP (1) JP6968201B2 (ja)
KR (1) KR102604525B1 (ja)
CN (1) CN111479654B (ja)
TW (1) TWI806935B (ja)
WO (1) WO2019124032A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166668A1 (ja) * 2020-02-17 2021-08-26 東京エレクトロン株式会社 加工方法及び加工装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335458A (ja) * 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd ウエーハ研削装置
JP2010040821A (ja) * 2008-08-06 2010-02-18 Fujitsu Microelectronics Ltd 半導体装置の製造方法及び半導体製造装置
JP2010199227A (ja) * 2009-02-24 2010-09-09 Disco Abrasive Syst Ltd 研削装置
JP2011245610A (ja) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp 半導体装置の製造方法
JP2016132047A (ja) * 2015-01-16 2016-07-25 株式会社ディスコ 被加工物の研削方法
JP2017056523A (ja) * 2015-09-17 2017-03-23 株式会社ディスコ 研削装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343756A (ja) * 2001-05-21 2002-11-29 Tokyo Seimitsu Co Ltd ウェーハ平面加工装置
DE102006044367B4 (de) * 2006-09-20 2011-07-14 Siltronic AG, 81737 Verfahren zum Polieren einer Halbleiterscheibe und eine nach dem Verfahren herstellbare polierte Halbleiterscheibe
JP2008264913A (ja) 2007-04-18 2008-11-06 Disco Abrasive Syst Ltd 研削加工装置
CN101367192B (zh) * 2007-08-17 2011-05-11 中芯国际集成电路制造(上海)有限公司 晶圆背面研磨方法
JP2012187654A (ja) 2011-03-09 2012-10-04 Disco Corp 研削装置
JP6143572B2 (ja) * 2013-06-18 2017-06-07 株式会社Screenホールディングス 基板保持回転装置およびそれを備えた基板処理装置、ならびに基板処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335458A (ja) * 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd ウエーハ研削装置
JP2010040821A (ja) * 2008-08-06 2010-02-18 Fujitsu Microelectronics Ltd 半導体装置の製造方法及び半導体製造装置
JP2010199227A (ja) * 2009-02-24 2010-09-09 Disco Abrasive Syst Ltd 研削装置
JP2011245610A (ja) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp 半導体装置の製造方法
JP2016132047A (ja) * 2015-01-16 2016-07-25 株式会社ディスコ 被加工物の研削方法
JP2017056523A (ja) * 2015-09-17 2017-03-23 株式会社ディスコ 研削装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166668A1 (ja) * 2020-02-17 2021-08-26 東京エレクトロン株式会社 加工方法及び加工装置
JPWO2021166668A1 (ja) * 2020-02-17 2021-08-26
JP7466622B2 (ja) 2020-02-17 2024-04-12 東京エレクトロン株式会社 加工方法及び加工装置

Also Published As

Publication number Publication date
KR20200099565A (ko) 2020-08-24
TWI806935B (zh) 2023-07-01
CN111479654B (zh) 2022-07-01
CN111479654A (zh) 2020-07-31
JP6968201B2 (ja) 2021-11-17
KR102604525B1 (ko) 2023-11-22
JPWO2019124032A1 (ja) 2020-12-17
TW201929078A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
KR102450002B1 (ko) 기판 처리 시스템, 기판 처리 방법 및 컴퓨터 기억 매체
JP6937370B2 (ja) 研削装置、研削方法及びコンピュータ記憶媒体
KR102607483B1 (ko) 기판 처리 시스템, 기판 처리 방법 및 컴퓨터 기억 매체
JPWO2019013042A1 (ja) 基板処理システム、基板処理方法及びコンピュータ記憶媒体
JP6385734B2 (ja) 研削方法
JP2022075811A (ja) 加工装置、加工方法及びコンピュータ記憶媒体
JP7002874B2 (ja) 基板処理システム
WO2019124032A1 (ja) 基板処理システム、基板処理方法及びコンピュータ記憶媒体
JP7261786B2 (ja) 加工装置
CN114641369B (zh) 基板处理方法和基板处理装置
JP2022046137A (ja) 基板処理方法及び基板処理システム
WO2021166668A1 (ja) 加工方法及び加工装置
CN114641370B (zh) 基板处理方法和基板处理装置
JP2020009849A (ja) 基板処理システム及び基板処理方法
JP2022125928A (ja) 処理方法及び処理装置
JP2022018648A (ja) 基板処理装置及び記憶媒体
JP2019114684A (ja) 基板処理システム、基板処理方法、プログラム及びコンピュータ記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020593

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18891474

Country of ref document: EP

Kind code of ref document: A1