WO2019111997A1 - Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate - Google Patents

Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate Download PDF

Info

Publication number
WO2019111997A1
WO2019111997A1 PCT/JP2018/044892 JP2018044892W WO2019111997A1 WO 2019111997 A1 WO2019111997 A1 WO 2019111997A1 JP 2018044892 W JP2018044892 W JP 2018044892W WO 2019111997 A1 WO2019111997 A1 WO 2019111997A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat transfer
glass
conductive layer
thermoelectric conversion
Prior art date
Application number
PCT/JP2018/044892
Other languages
French (fr)
Japanese (ja)
Inventor
皓也 新井
修司 西元
雅人 駒崎
長友 義幸
黒光 祥郎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018217595A external-priority patent/JP7200616B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020207014470A priority Critical patent/KR20200089673A/en
Priority to CN201880078217.0A priority patent/CN111433923B/en
Priority to EP18886694.1A priority patent/EP3723145A4/en
Priority to US16/769,311 priority patent/US11404622B2/en
Publication of WO2019111997A1 publication Critical patent/WO2019111997A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • the present invention comprises an insulating heat transfer substrate comprising a heat transfer layer and a conductive layer, wherein the heat transfer layer and the conductive layer are electrically insulated, a thermoelectric conversion module using the insulating heat transfer substrate, and an insulating heat transfer
  • the present invention relates to a method of manufacturing a substrate.
  • the present application claims priority based on Japanese Patent Application No. 2017-234319 filed in Japan on Dec. 6, 2017, and Japanese Patent Application No. 2018-217595 filed in Japan on November 20, 2018, The contents are incorporated herein.
  • thermoelectric conversion module converts thermal energy into electrical energy or electrical energy into thermal energy using a thermoelectric conversion element having the Seebeck effect or Peltier effect.
  • thermoelectric conversion modules for example, one having a structure in which n-type thermoelectric conversion elements and p-type thermoelectric conversion elements are alternately connected in series is proposed.
  • heat transfer plates are disposed respectively on one end side and the other end side of a plurality of thermoelectric conversion elements, and the conductive layers disposed on these heat transfer plates respectively connect the thermoelectric conversion elements in series. It is considered to be connected.
  • thermoelectric conversion element a temperature difference is caused between the heat transfer plate disposed on one end side of the thermoelectric conversion element and the heat transfer plate disposed on the other end side of the thermoelectric conversion element, whereby electric energy is obtained by the Seebeck effect. It is possible to generate Alternatively, by supplying a current to the thermoelectric conversion element, between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element by the Peltier effect. It is possible to generate a temperature difference.
  • a enamel substrate is used in which a enamel layer is formed on the surface of a metal substrate and an electrode is formed on the opposite side of the enamel layer to the metal substrate. There is something to be done.
  • the metal substrate and the electrode are electrically insulated by the enamel layer.
  • the above-mentioned hollow substrate is also used, for example, in an LED module or the like using an LED element.
  • the thickness of the enamel layer is formed relatively thick in order to secure the insulation property, the thermal resistance in the stacking direction becomes large, and the heat generated in the element is sufficiently transmitted. There was a possibility that it could not be heated.
  • the enamel layer is thick, there is a possibility that the interface may be broken due to thermal stress under high temperature due to the thermal expansion difference between the glass used for the enamel layer and the metal for circuit formed on the enamel layer.
  • the present invention has been made in view of the above-described circumstances, and has an insulating heat transfer substrate that has sufficient insulation and high heat conductivity, and can be manufactured relatively easily, and this insulation
  • An object of the present invention is to provide a thermoelectric conversion module using a heat transfer substrate, and a method of manufacturing the above-described insulating heat transfer substrate.
  • the insulating heat transfer substrate of the present invention comprises a heat transfer layer made of aluminum or an aluminum alloy, a conductive layer disposed on one side of the heat transfer layer, and the conductive layer. And a glass layer formed between the heat transfer layers, wherein the conductive layer is made of a sintered silver body, and the thickness of the glass layer is in the range of 5 ⁇ m to 50 ⁇ m. It is characterized by
  • the conductive layer is formed on one surface of the heat transfer layer made of aluminum or aluminum alloy via the glass layer having a thickness of 5 ⁇ m to 50 ⁇ m.
  • the insulation between the heat transfer layer and the conductive layer can be secured, the thermal resistance in the stacking direction can be reduced, and the heat conductivity is excellent.
  • the conductive layer is formed of a baked body of silver, a circuit pattern can be formed on the conductive layer by applying and baking a paste containing silver in a pattern.
  • the glass layer may be formed in a pattern on one surface of the heat transfer layer.
  • the glass layer is formed in a pattern on one surface of the heat transfer layer, and the conductive layer is formed on the glass layer, so the glass layer is not largely exposed on the surface, which makes it easy to handle.
  • the pattern of the conductive layer may be the same as or smaller than the dimension of the pattern of the glass layer.
  • the thickness of the conductive layer is preferably in the range of 5 ⁇ m to 100 ⁇ m. In this case, since the thickness of the conductive layer is defined as described above, the electrical conductivity in the conductive layer can be secured.
  • the heat transfer layer is divided into a plurality of block bodies, and the glass layer and the conductive layer are formed on one block body, respectively. It may be In this case, since the heat transfer layer is divided into a plurality of blocks, the bonding area of the heat transfer layer and the glass layer having different thermal expansion coefficients can be configured to be relatively small. Can be suppressed. Moreover, it can utilize as an insulation heat-transfer board
  • the glass layer and the conductive layer may be formed on the other surface side of the heat transfer layer.
  • thermoelectric conversion elements may be provided on both surfaces of the heat transfer layer. It is possible to construct a stacked thermoelectric conversion module.
  • thermoelectric conversion module of the present invention includes a plurality of thermoelectric conversion elements, a first conductive layer disposed on one end side of the thermoelectric conversion elements, and a second conductive layer disposed on the other end side,
  • thermoelectric conversion element since the above-described insulating heat transfer substrate is disposed on at least one or both of one end side and the other end side of the thermoelectric conversion element, the thermal conductivity in the stacking direction is excellent, and the thermoelectric conversion element Heat can be efficiently transferred to the heat transfer layer. Thus, the thermoelectric conversion efficiency is excellent. Further, since the insulation between the conductive layer and the heat transfer layer is secured, the voltage resistance at the working voltage is provided, and stable use can be achieved.
  • the method for producing an insulating heat transfer substrate according to the present invention is the method for producing an insulating heat transfer substrate described above, wherein a glass paste is applied to one surface of an aluminum plate made of aluminum or an aluminum alloy and fired. And a conductive layer forming step of forming a conductive layer by applying and baking a glass-containing silver paste on the glass layer.
  • a circuit pattern can be formed in a conductive layer by apply
  • a silver paste may be applied after applying a silver paste containing glass, and then a silver paste may be applied, and then firing may be performed.
  • the thickness of the silver fired body can be secured, and the resistance of the conductive layer can be reduced.
  • the glass paste may be applied in a pattern in the glass layer forming step.
  • the glass layer is formed only in the region where the conductive layer is formed on one surface of the aluminum plate (heat transfer layer)
  • a large-sized aluminum plate is used to form a plurality of insulating heat transfer substrates
  • the aluminum plate can be cut in a region where the glass layer is not formed, and it becomes possible to manufacture the insulating heat transfer substrate more efficiently.
  • the conductive layer is formed on the glass layer formed in a pattern shape, and then the aluminum plate is divided into a plurality of blocks. It is good also as composition. In this case, it is possible to efficiently manufacture the insulating heat transfer substrate having a structure in which the heat transfer layer is divided into a plurality of blocks.
  • the present invention can provide a method of manufacturing the above-described insulating heat transfer substrate.
  • thermoelectric conversion module provided with the insulation heat-transfer board
  • substrate shown in FIG. It is a schematic explanatory drawing of the insulation heat-transfer board
  • the thermoelectric conversion module 10 includes the first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30 according to the present embodiment, and a plurality of columnar thermoelectric conversion elements 11. And.
  • the first insulating heat transfer substrate 20 is disposed on one end side (lower side in FIG. 1) of the plurality of columnar thermoelectric conversion elements 11 in the longitudinal direction, and the other end side (FIG. 1) of the thermoelectric conversion elements 11 in the longitudinal direction.
  • the second insulating heat transfer substrate 30 is disposed on the upper side in 1), and the second conductive provided on the first insulating heat transfer substrate 20 and the second conductive heat transfer substrate 30
  • a plurality of columnar thermoelectric conversion elements 11 are electrically connected in series by the layer 35.
  • the first insulating heat transfer substrate 20 side is used as a low temperature portion
  • the second insulating heat transfer substrate 30 side is used as a high temperature portion. Will be implemented.
  • the first insulating heat transfer substrate 20 includes a first heat transfer layer 21 made of aluminum or an aluminum alloy, and a first conductive layer laminated on one surface of the first heat transfer layer 21 via the first glass layer 23. And 25.
  • the first glass layer 23 is formed in a pattern, and the first conductive layer 25 is formed on one side of the first insulating heat transfer substrate 20.
  • the first glass layer 23 is not formed in the non-area.
  • the first heat transfer layer 21 is made of an aluminum plate made of aluminum or an aluminum alloy, and the thickness thereof is, for example, 0.1 mm or more.
  • aluminum for example, pure aluminum such as aluminum having a purity of 99 mass% or more (2N aluminum), aluminum having a purity of 99.9 mass% or more (3N aluminum), aluminum having a purity of 99.99 mass% or more (4N aluminum) is used. be able to.
  • the aluminum alloy for example, A6061 can be used. In the present embodiment, the A6061 alloy is used as the aluminum plate that constitutes the first heat transfer layer 21.
  • the first conductive layer 25 is formed of a sintered silver body, and is formed in a circuit pattern on one surface (upper surface in FIG. 1) of the first heat transfer layer 21. And in this embodiment, thickness ta of the 1st electric conduction layer 25 is carried out within the limits of 5 micrometers or more and 100 micrometers or less.
  • the first glass layer 23 interposed between the first heat transfer layer 21 and the first conductive layer 25 functions as an insulating layer which electrically insulates the first heat transfer layer 21 and the first conductive layer 25.
  • the thickness tg of the first glass layer 23 is less than 5 ⁇ m, in the case of producing the thermoelectric conversion module 10, pressurization when bonding the thermoelectric conversion element 11 or using the thermoelectric conversion module 10 Due to the pressure applied at that time, the first glass layer 23 may be broken, the first heat transfer layer 21 and the first conductive layer 25 may be short-circuited, and the power generation performance of the thermoelectric conversion module may be reduced.
  • the thickness tg of the first glass layer 23 is defined in the range of 5 ⁇ m to 50 ⁇ m.
  • the lower limit of the thickness tg of the first glass layer 23 is preferably 10 ⁇ m or more.
  • the upper limit of the thickness tg of the first glass layer 23 is preferably 40 ⁇ m or less, and is preferably 25 ⁇ m or less It is further preferred that
  • the second insulating heat transfer substrate 30 includes a second heat transfer layer 31 made of aluminum or an aluminum alloy, and a second conductive layer laminated on one surface of the second heat transfer layer 31 with the second glass layer 33 interposed therebetween. And 35.
  • the second insulating heat transfer substrate 30 has a configuration similar to that of the first insulating heat transfer substrate 20 described above, and the thickness ta of the second conductive layer 35 made of a sintered silver body is in the range of 5 ⁇ m to 100 ⁇ m.
  • the thickness tg of the second glass layer 33 interposed between the second heat transfer layer 31 and the second conductive layer 35 is in the range of 5 ⁇ m to 50 ⁇ m.
  • the second heat transfer layer 31 is made of an A6061 alloy and has a thickness of 0.1 mm or more. Further, in the second insulating heat transfer substrate 30, the second glass layer 33 is formed in a pattern, and a region where the second conductive layer 35 is not formed on one surface of the second insulating heat transfer substrate 30. , The second
  • lead-free glass which does not contain lead (Pb).
  • the lead-free glass is not particularly limited.
  • Bi 2 O 3 , ZnO, and B 2 O 3 are essential components, and SiO 2 , Al 2 O 3 , Fe 2 O 3 , CuO, CeO 2 , ZrO 2 , Li 2
  • alkali metal oxides such as O, Na 2 O, and K 2 O
  • alkaline earth metal oxides such as MgO, CaO, BaO, and SrO are appropriately added as necessary. Can be used.
  • the thermoelectric conversion element 11 has an n-type thermoelectric conversion element 11a and a p-type thermoelectric conversion element 11b, and these n-type thermoelectric conversion elements 11a and p-type thermoelectric conversion elements 11b are alternately arranged.
  • Metallized layers (not shown) are respectively formed on one end surface and the other end surface of the thermoelectric conversion element 11.
  • the metallized layer it is possible to use, for example, nickel, silver, cobalt, tungsten, molybdenum or the like, or a non-woven fabric or the like made of these metal fibers.
  • the outermost surface of the metallized layer (the bonding surface with the first conductive layer 25 and the second conductive layer 35) is preferably made of Au or Ag.
  • the n-type thermoelectric conversion element 11a and the p-type thermoelectric conversion element 11b are, for example, sintered bodies of tellurium compound, skutterudite, filled skutterudite, Heusler, half-Heusler, clathrate, silicide, oxide, or silicon germanium. It consists of As a material of the n-type thermoelectric conversion element 11 a, for example, Bi 2 Te 3 , PbTe, La 3 Te 4 , CoSb 3 , FeVAl, ZrNiSn, Ba 8 Al 16 Si 30 , Mg 2 Si, FeSi 2 , SrTiO 3 , CaMnO 3 ZnO, SiGe or the like is used.
  • TAGS Ag-Sb-Ge-Te
  • TAGS Ag-Sb-Ge-Te
  • thermoelectric conversion module 10 a method of manufacturing the insulating heat transfer substrate (the first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30) according to the above-described embodiment and a method of manufacturing the thermoelectric conversion module 10 will be described with reference to FIGS. This will be described with reference to FIG.
  • Glass layer forming step S01 First, on one surface of the aluminum plate 41 to be the first heat transfer layer 21 and on one surface of the aluminum plate 51 to be the second heat transfer layer 31, glass pastes 42 and 52 containing glass powder to be described later are It apply
  • the first glass layer 23 and the second glass layer 33 are formed in a pattern by applying and baking the glass paste in a pattern.
  • there is no limitation in the coating method of glass paste It is preferable to select the existing method suitably.
  • the first glass layer 23 and the second glass layer 33 having a desired thickness. Furthermore, it is preferable to perform baking conditions of glass paste 42, 52 on atmospheric air, heating temperature: 400 degreeC or more and 600 degrees C or less, holding time at heating temperature: 10 minutes or more and 60 minutes or less.
  • the glass-incorporated silver pastes 43 and 53 are applied, and if necessary, the silver paste is further applied, dried and fired, and the first conductive A layer 25 and a second conductive layer 35 are formed.
  • the silver paste does not contain glass powder. Moreover, it is a paste containing the glass powder and silver component which are mentioned later as glass-containing silver paste.
  • the silver component can be similar to the silver paste.
  • a silver paste containing glass is applied, and a silver paste is applied thereon.
  • the application method of silver paste or silver paste with glass it is preferable to select the existing method suitably.
  • the glass-incorporated silver paste and the silver paste may be each applied a plurality of times.
  • the thickness of the first conductive layer 25 and the second conductive layer 35 can be made to a desired thickness by adjusting the number of times of application.
  • the glass powder contained in the glass paste and the glass-incorporated silver paste in the present embodiment is a lead-free glass powder as described above, and the specific composition is Bi 2 O 3 : 68% by mass or more and 93% by mass or less, ZnO: 1% by mass or more and 20% by mass or less, B 2 O 3 : 1% by mass or more and 11% by mass or less, SiO 2 : 5% by mass or less, Al 2 O 3 : 5% by mass or less, Fe 2 O 3 : 5% by mass or less, CuO: 5% by mass or less, CeO 2 : 5% by mass or less, ZrO 2 : 5% by mass or less, Alkali metal oxide: 2% by mass or less, Alkaline earth metal oxides: 7% by mass or less, It is assumed.
  • the glass paste in this embodiment consists of glass powder and a solvent.
  • silver paste consists of silver powder and a solvent.
  • the glass-filled silver paste comprises silver powder, glass powder, and a solvent.
  • silver oxide and a reducing agent may be contained.
  • the insulation heat transfer substrate (the first insulation heat transfer substrate 20 and the second insulation heat transfer substrate 30) according to the present embodiment is manufactured.
  • thermoelectric conversion element bonding step S03 Then, the first conductive layer 25 of the first insulating heat transfer substrate 20 is joined to one end side of the thermoelectric conversion element 11, and the second conductive layer 35 of the second insulating heat transfer substrate 30 is connected to the other end side of the thermoelectric conversion element 11. Join.
  • the joining method of the thermoelectric conversion element 11 and the 1st conductive layer 25 and the 2nd conductive layer 35 in thermoelectric conversion element joining process S03 does not have a restriction
  • the thermoelectric conversion module 10 which is this embodiment is manufactured by the above process.
  • the heat transfer layer (first Conductive layer (first glass layer 23 and second glass layer 33) having a thickness in the range of 5 ⁇ m to 50 ⁇ m on one surface of heat transfer layer 21 and second heat transfer layer 31) (conductive layer (first glass layer 23 and second glass layer 33) (The first conductive layer 25 and the second conductive layer 35) are formed, so the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31) and the conductive layer (the first conductive layer 25 and the second While being able to fully ensure insulation between the conductive layers 35), it is possible to reduce the thermal resistance in the stacking direction, and the heat conductivity is excellent.
  • the glass layers are formed in a pattern, and the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31).
  • the glass layer is not formed in a region where the conductive layer (the first conductive layer 25 and the second conductive layer 35) is not formed in one surface of (The first glass layer 23 and the second glass layer 33) are not largely exposed to the surface, and the handling property is excellent.
  • the conductive layer (the first conductive layer 25 and the second conductive layer 35) is formed of a fired body of silver, and the thickness ta of the conductive layer (the first conductive layer 25 and the second conductive layer 35) is 5 ⁇ m. Since the thickness is set to 100 ⁇ m or less, electrical conductivity in the conductive layer (the first conductive layer 25 and the second conductive layer 35) can be secured.
  • the first insulating heat transfer substrate 20 is disposed on one end side of the thermoelectric conversion element 11, and the second insulating heat transfer substrate 30 is on the other end side of the thermoelectric conversion element 11. Being arranged, the heat conductivity in the stacking direction is excellent, and the heat of the thermoelectric conversion element 11 is efficiently transferred to the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31). Can. Thus, the thermoelectric conversion efficiency is excellent. Moreover, since the insulation between the conductive layer (the first conductive layer 25 and the second conductive layer 35) and the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31) is secured, it is used It has withstand voltage in voltage and can be used stably.
  • the glass paste is applied and fired to form the glass layer (the first glass layer 23).
  • a silver paste or a silver paste containing glass is applied onto the glass layer forming step S01 for forming the second glass layer 33) and the glass layer (the first glass layer 23 and the second glass layer 33) and fired,
  • the conductive layer (the first conductive layer 25 and the second conductive layer 35) and the glass layer (the first glass layer 23 and the second glass layer 33) can be formed relatively easily and freely on one surface,
  • the first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30 It is possible to rate well production.
  • a circuit pattern can be formed on the conductive layer (the first conductive layer 25 and the second conductive layer 35) by applying and baking a silver paste or a silver paste containing glass in a pattern.
  • a glass paste is applied in a pattern and baked to form a glass layer (the first glass layer 23 and the second glass layer 33) in a pattern. Therefore, the glass layer is not formed in the area where the conductive layer is not formed on one side of the aluminum plate, and a plurality of insulating heat transfer substrates are formed using a large aluminum plate, and then the aluminum plate is cut. This makes it possible to manufacture the insulating heat transfer substrate more efficiently.
  • the insulation heat transfer substrate used for the thermoelectric conversion module is described as an example in the present embodiment, the present invention is not limited thereto, and the insulation heat transfer substrate of the present invention may be used for the LED module.
  • the insulating heat transfer substrate of the present invention may be used in a peltier module.
  • lead-free glass of the composition mentioned above was mentioned as an example and explained as a composition of glass which forms a glass layer in this embodiment, it is not limited to this, and even if it uses glass of other composition. Good.
  • the aluminum or aluminum alloy forming the heat transfer layer the A6061 alloy is described as an example, but the invention is not limited to this, and other aluminum or aluminum alloy may be used. .
  • Glass paste may be used.
  • you may use the glass powder containing 2 or more types.
  • the thermal expansion coefficient of the glass layer to be formed is relatively large and approximates to the metal constituting the conductive layer, so that the warpage can be suppressed.
  • the firing temperature can be set relatively high, for example, at 600 to 650 ° C., and it becomes possible to form a dense silver fired body.
  • the glass layer 123 is formed on the entire surface of the heat transfer layer 121, and the conductive layer 125 is formed in a pattern on the glass layer 123. It may be an insulating heat transfer substrate 120 having a different structure.
  • the glass layer 223 on one surface of the heat transfer layer 221 is formed in a pattern, and the conductive layer 225 is formed on the glass layer 223 formed in a pattern. It may be an insulating heat transfer substrate 220.
  • an insulating heat transfer substrate having a structure in which the heat transfer layer 321 is divided into a plurality of block bodies, and the glass layer 323 and the conductive layer 325 are formed for each block body. It may be 320.
  • the insulating heat transfer substrate 320 shown in FIG. 7 is disposed on one end side of the thermoelectric conversion element 11, and a heat sink (heat exchange) is formed on the other end side of the thermoelectric conversion element 11.
  • thermoelectric conversion module 310 having a structure in which the insulating circuit board 330 having the In the thermoelectric conversion module 310 having this configuration, one end side of the thermoelectric conversion element 11 is not constrained, so that the occurrence of thermal distortion can be suppressed.
  • the manufacturing method is not particularly limited, but the glass layer 323 is formed in a pattern on one surface of the aluminum plate to be the heat transfer layer 321.
  • the conductive layer 325 thereon and then dividing the aluminum plate into a plurality of block bodies, efficient manufacture can be achieved.
  • the aluminum plate may be divided into a plurality of block bodies by cutting it, or may be divided into a plurality of block bodies by punching the aluminum plate.
  • the insulating heat transfer substrate 420 has a structure in which the glass layer 423 and the conductive layer 425 are formed on one surface and the other surface of the heat transfer layer 421, respectively. It is also good.
  • the thermoelectric conversion module 410 having a structure in which the plurality of thermoelectric conversion elements 11 are stacked via the insulating heat transfer substrate 420.
  • An insulating heat transfer substrate having a structure shown in Table 1 was produced by the same method as that of the embodiment described above. A glass paste was applied on the heat transfer layer described in Table 1 after adjusting the number of times of application so as to obtain the thickness shown in Table 1, and then baked to form a glass layer.
  • a glass-incorporated silver paste is applied onto the glass layer and dried, and then the silver paste is applied with the number of applications adjusted to a thickness as shown in Table 1 and then fired to form a conductive layer, and an insulating heat transfer substrate I got
  • silver paste is not apply
  • the silver paste was applied multiple times.
  • the thickness of the conductive layer and the glass layer, the peeling of the conductive layer and the glass layer, and the insulation between the conductive layer and the heat transfer layer were evaluated for the obtained insulating heat transfer substrate as follows. The evaluation results are shown in Table 1.
  • the thicknesses of the conductive layer and the glass layer were measured by observing the cross section of the obtained insulating heat transfer substrate with a laser microscope (VK-X200 manufactured by Keyence Corporation, magnification 1000 times), and using a scale attached to the laser microscope. Each layer was measured at any three points, and the arithmetic mean was taken as the thickness of the conductive layer and the glass layer.
  • the electrical resistance between the conductive layer and the heat transfer layer of the obtained insulating heat transfer substrate is measured by a tester (TY720 manufactured by YOKOGAWA), and in the case of less than 500 ⁇ in the continuity check mode of this tester, “B”, continuity is The case where it did not confirm was evaluated as "A.”
  • Comparative Examples 1 and 4 in which the thickness of the glass layer was 3 ⁇ m, the insulation between the conductive layer and the glass layer was deteriorated.
  • Comparative Examples 2 and 3 and Comparative Examples 5 and 6 in which the thickness of the glass layer was 70 ⁇ m, peeling occurred between the conductive layer and the glass layer.
  • example 1-20 in which the thickness of the glass layer was in the range of 5 ⁇ m to 50 ⁇ m, peeling did not occur between the conductive layer and the glass layer. In addition, the insulation between the conductive layer and the glass layer was also sufficient.

Abstract

This insulating heat-transfer substrate is characterized by comprising: a heat transfer layer comprising aluminum or an aluminum alloy; a conductive layer arranged on one surface of the heat transfer layer; and a glass layer formed between the conductive layer and the heat-transfer layer, wherein the conductive layer is composed of a sintered body of silver, and the thickness of the glass layer is within a range of 5-50 μm inclusive.

Description

絶縁伝熱基板、熱電変換モジュール、及び、絶縁伝熱基板の製造方法Insulating heat transfer substrate, thermoelectric conversion module, and method of manufacturing insulating heat transfer substrate
 本発明は、熱伝達層と導電層とを備え、これら熱伝達層と導電層が電気的に絶縁された絶縁伝熱基板、この絶縁伝熱基板を用いた熱電変換モジュール、及び、絶縁伝熱基板の製造方法に関する。
 本願は、2017年12月6日に、日本に出願された特願2017-234319号及び2018年11月20日に、日本に出願された特願2018-217595号に基づき優先権を主張し、その内容をここに援用する。
The present invention comprises an insulating heat transfer substrate comprising a heat transfer layer and a conductive layer, wherein the heat transfer layer and the conductive layer are electrically insulated, a thermoelectric conversion module using the insulating heat transfer substrate, and an insulating heat transfer The present invention relates to a method of manufacturing a substrate.
The present application claims priority based on Japanese Patent Application No. 2017-234319 filed in Japan on Dec. 6, 2017, and Japanese Patent Application No. 2018-217595 filed in Japan on November 20, 2018, The contents are incorporated herein.
 熱電変換モジュールは、ゼーベック効果あるいはペルティエ効果を有する熱電変換素子を用いて、熱エネルギーを電気エネルギーに、あるいは、電気エネルギーを熱エネルギーに変換するものである。
 上述の熱電変換モジュールにおいては、例えば、n型熱電変換素子とp型熱電変換素子とを交互に直列接続した構造のものが提案されている。このような熱電変換モジュールにおいては、複数の熱電変換素子の一端側及び他端側にそれぞれ伝熱板が配置され、これらの伝熱板にそれぞれ配設された導電層によって熱電変換素子同士が直列接続された構造とされている。
The thermoelectric conversion module converts thermal energy into electrical energy or electrical energy into thermal energy using a thermoelectric conversion element having the Seebeck effect or Peltier effect.
Among the above-mentioned thermoelectric conversion modules, for example, one having a structure in which n-type thermoelectric conversion elements and p-type thermoelectric conversion elements are alternately connected in series is proposed. In such a thermoelectric conversion module, heat transfer plates are disposed respectively on one end side and the other end side of a plurality of thermoelectric conversion elements, and the conductive layers disposed on these heat transfer plates respectively connect the thermoelectric conversion elements in series. It is considered to be connected.
 そして、熱電変換素子の一端側に配設された伝熱板と熱電変換素子の他端側に配設された伝熱板との間で温度差を生じさせることで、ゼーベック効果によって、電気エネルギーを発生させることが可能となる。
 あるいは、熱電変換素子に電流を流すことで、ペルティエ効果によって、熱電変換素子の一端側に配設された伝熱板と熱電変換素子の他端側に配設された伝熱板との間に温度差を生じさせることが可能となる。
Then, a temperature difference is caused between the heat transfer plate disposed on one end side of the thermoelectric conversion element and the heat transfer plate disposed on the other end side of the thermoelectric conversion element, whereby electric energy is obtained by the Seebeck effect. It is possible to generate
Alternatively, by supplying a current to the thermoelectric conversion element, between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element by the Peltier effect. It is possible to generate a temperature difference.
 ここで、上述の伝熱板として、例えば特許文献1に示すように、金属基板の表面にホーロー層が形成され、このホーロー層の金属基板とは反対側に電極が形成されたホーロー基板が使用されることがある。このホーロー基板においては、ホーロー層によって、金属基板と電極とが電気的に絶縁された構造とされている。
 また、上述のホーロー基板は、例えばLED素子を用いたLEDモジュール等においても使用されている。
Here, as the above-described heat transfer plate, as shown in, for example, Patent Document 1, a enamel substrate is used in which a enamel layer is formed on the surface of a metal substrate and an electrode is formed on the opposite side of the enamel layer to the metal substrate. There is something to be done. In the enamel substrate, the metal substrate and the electrode are electrically insulated by the enamel layer.
Moreover, the above-mentioned hollow substrate is also used, for example, in an LED module or the like using an LED element.
特開平03-039490号公報JP 03-039490 A
 ここで、上述のホーロー基板においては、絶縁性を確保するためにホーロー層の厚みが比較的厚く形成されていることから、積層方向の熱抵抗が大きくなり、素子において発生した熱を十分に伝熱させることができないおそれがあった。
 また、ホーロー層が厚い場合、ホーロー層に使用するガラスと、ホーロー層上に形成する回路用の金属との熱膨張差により、高温下では熱応力により界面が破壊されるおそれがあった。
Here, in the above-mentioned enamel substrate, since the thickness of the enamel layer is formed relatively thick in order to secure the insulation property, the thermal resistance in the stacking direction becomes large, and the heat generated in the element is sufficiently transmitted. There was a possibility that it could not be heated.
In addition, when the enamel layer is thick, there is a possibility that the interface may be broken due to thermal stress under high temperature due to the thermal expansion difference between the glass used for the enamel layer and the metal for circuit formed on the enamel layer.
 この発明は、前述した事情に鑑みてなされたものであって、十分な絶縁性を有するとともに高い伝熱性を有し、比較的容易に製造することが可能な絶縁伝熱基板、及び、この絶縁伝熱基板を用いた熱電変換モジュール、及び、上述の絶縁伝熱基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and has an insulating heat transfer substrate that has sufficient insulation and high heat conductivity, and can be manufactured relatively easily, and this insulation An object of the present invention is to provide a thermoelectric conversion module using a heat transfer substrate, and a method of manufacturing the above-described insulating heat transfer substrate.
 上記課題を解決するために、本発明の絶縁伝熱基板は、アルミニウム又はアルミニウム合金からなる熱伝達層と、この熱伝達層の一方の面側に配設された導電層と、前記導電層と前記熱伝達層の間に形成されたガラス層と、を有し、前記導電層は、銀の焼成体で構成されており、前記ガラス層の厚さが5μm以上50μm以下の範囲内とされていることを特徴としている。 In order to solve the above problems, the insulating heat transfer substrate of the present invention comprises a heat transfer layer made of aluminum or an aluminum alloy, a conductive layer disposed on one side of the heat transfer layer, and the conductive layer. And a glass layer formed between the heat transfer layers, wherein the conductive layer is made of a sintered silver body, and the thickness of the glass layer is in the range of 5 μm to 50 μm. It is characterized by
 本発明の絶縁伝熱基板によれば、アルミニウム又はアルミニウム合金からなる熱伝達層の一方の面に、厚さが5μm以上50μm以下の範囲内のガラス層を介して導電層が形成されているので、熱伝達層と導電層との間の絶縁性を確保できるとともに、積層方向の熱抵抗を小さくすることができ、伝熱性に優れている。
 また、導電層が銀の焼成体で構成されているので、銀を含むペーストをパターン状に塗布して焼成することで、導電層に回路パターンを形成することができる。
According to the insulating heat transfer substrate of the present invention, the conductive layer is formed on one surface of the heat transfer layer made of aluminum or aluminum alloy via the glass layer having a thickness of 5 μm to 50 μm. The insulation between the heat transfer layer and the conductive layer can be secured, the thermal resistance in the stacking direction can be reduced, and the heat conductivity is excellent.
In addition, since the conductive layer is formed of a baked body of silver, a circuit pattern can be formed on the conductive layer by applying and baking a paste containing silver in a pattern.
 ここで、本発明の絶縁伝熱基板においては、前記ガラス層は、前記熱伝達層の一方の面にパターン状に形成された構成としてよい。
 この場合、熱伝達層の一方の面にガラス層がパターン状に形成され、このガラス層の上に導電層が形成されているので、ガラス層が表面に大きく露出しておらず、取り扱い性に優れている。
 なお、導電層のパターンはガラス層のパターンの寸法と全く同じか、それよりも小さくするとよい。
Here, in the insulating heat transfer substrate of the present invention, the glass layer may be formed in a pattern on one surface of the heat transfer layer.
In this case, the glass layer is formed in a pattern on one surface of the heat transfer layer, and the conductive layer is formed on the glass layer, so the glass layer is not largely exposed on the surface, which makes it easy to handle. Are better.
The pattern of the conductive layer may be the same as or smaller than the dimension of the pattern of the glass layer.
 また、本発明の絶縁伝熱基板においては、前記導電層の厚さが5μm以上100μm以下の範囲内とされていることが好ましい。
 この場合、導電層の厚さが上述のように規定されているので、導電層における電気伝導性を確保することができる。
Further, in the insulating heat transfer substrate of the present invention, the thickness of the conductive layer is preferably in the range of 5 μm to 100 μm.
In this case, since the thickness of the conductive layer is defined as described above, the electrical conductivity in the conductive layer can be secured.
 さらに、本発明の絶縁伝熱基板においては、前記熱伝達層は、複数のブロック体に分割されており、一つのブロック体に対して、それぞれ前記ガラス層及び前記導電層が形成されている構成としてもよい。
 この場合、熱伝達層が複数のブロック体に分割されているので、熱膨張係数が異なる熱伝達層及びガラス層の接合面積を比較的小さく構成することができ、これらの熱膨張差による反り等を抑制することができる。また、スケルトン型又はハーフスケルトン型の熱電変換モジュール用の絶縁伝熱基板として利用することができる。
Furthermore, in the insulating heat transfer substrate of the present invention, the heat transfer layer is divided into a plurality of block bodies, and the glass layer and the conductive layer are formed on one block body, respectively. It may be
In this case, since the heat transfer layer is divided into a plurality of blocks, the bonding area of the heat transfer layer and the glass layer having different thermal expansion coefficients can be configured to be relatively small. Can be suppressed. Moreover, it can utilize as an insulation heat-transfer board | substrate for thermoelectric conversion modules of a skeleton type | mold or a half skeleton type | mold.
 また、本発明の絶縁伝熱基板においては、前記熱伝達層の他方の面側にも、前記ガラス層及び前記導電層が形成されている構成としてもよい。
 この場合、前記熱伝達層の一方の面側及び他方の面側にそれぞれ前記ガラス層及び前記導電層が形成されているので、前記熱伝達層の両面にそれぞれ熱電変換素子を配設することができ、積層型の熱電変換モジュールを構成することができる。
Further, in the insulating heat transfer substrate of the present invention, the glass layer and the conductive layer may be formed on the other surface side of the heat transfer layer.
In this case, since the glass layer and the conductive layer are respectively formed on one surface side and the other surface side of the heat transfer layer, thermoelectric conversion elements may be provided on both surfaces of the heat transfer layer. It is possible to construct a stacked thermoelectric conversion module.
 本発明の熱電変換モジュールは、複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1導電層及び他端側に配設された第2導電層と、を有し、前記第1導電層及び前記第2導電層を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールであって、前記熱電変換素子の一端側及び他端側の少なくとも一方又は両方に、上述の絶縁伝熱基板が配設されていることを特徴としている。 The thermoelectric conversion module of the present invention includes a plurality of thermoelectric conversion elements, a first conductive layer disposed on one end side of the thermoelectric conversion elements, and a second conductive layer disposed on the other end side, A thermoelectric conversion module in which a plurality of thermoelectric conversion elements are electrically connected via the first conductive layer and the second conductive layer, wherein at least one of the one end side and the other end side of the thermoelectric conversion element or It is characterized in that the above-mentioned insulating heat transfer substrate is disposed on both of them.
 この場合、前記熱電変換素子の一端側及び他端側の少なくとも一方又は両方に、上述の絶縁伝熱基板が配設されているので、積層方向の熱伝導性に優れており、熱電変換素子の熱を熱伝達層へと効率良く伝達することができる。よって、熱電変換効率に優れることになる。
 また、導電層と熱伝達層との間の絶縁性が確保されているので、使用電圧における耐電圧性を有しており、安定して使用することが可能となる。
In this case, since the above-described insulating heat transfer substrate is disposed on at least one or both of one end side and the other end side of the thermoelectric conversion element, the thermal conductivity in the stacking direction is excellent, and the thermoelectric conversion element Heat can be efficiently transferred to the heat transfer layer. Thus, the thermoelectric conversion efficiency is excellent.
Further, since the insulation between the conductive layer and the heat transfer layer is secured, the voltage resistance at the working voltage is provided, and stable use can be achieved.
 本発明の絶縁伝熱基板の製造方法は、上述の絶縁伝熱基板の製造方法であって、アルミニウム又はアルミニウム合金からなるアルミニウム板の一方の面に、ガラスペーストを塗布して焼成し、ガラス層を形成するガラス層形成工程と、前記ガラス層上に、ガラス入り銀ペーストを塗布して焼成し、導電層を形成する導電層形成工程と、を備えていることを特徴としている。 The method for producing an insulating heat transfer substrate according to the present invention is the method for producing an insulating heat transfer substrate described above, wherein a glass paste is applied to one surface of an aluminum plate made of aluminum or an aluminum alloy and fired. And a conductive layer forming step of forming a conductive layer by applying and baking a glass-containing silver paste on the glass layer.
 このような構成とされた絶縁伝熱基板の製造方法によれば、ガラスペーストを塗布して焼成し、ガラス層を形成するガラス層形成工程と、前記ガラス層上に、ガラス入り銀ペーストを塗布して焼成し、導電層を形成する導電層形成工程と、を備えているので、熱伝達層の一方の面に導電層及びガラス層を比較的容易に形成することができ、絶縁伝熱基板を効率良く製造することができる。
 また、ガラス入り銀ペーストをパターン状に塗布して焼成することで、導電層に回路パターンを形成することができる。なお、ガラス入り銀ペーストの塗布を複数回実施して、塗布厚さを確保してもよい。
According to the method of manufacturing an insulating heat transfer substrate having such a configuration, a glass layer forming step of applying a glass paste and baking it to form a glass layer, and applying a glass-containing silver paste on the glass layer And forming a conductive layer, the conductive layer and the glass layer can be relatively easily formed on one surface of the heat transfer layer, and the insulating heat transfer substrate Can be manufactured efficiently.
Moreover, a circuit pattern can be formed in a conductive layer by apply | coating and baking glass-containing silver paste in pattern shape. The coating thickness may be secured by carrying out the application of the glass-containing silver paste multiple times.
 ここで、本発明の絶縁伝熱基板の製造方法においては、前記導電層形成工程では、ガラス入り銀ペーストを塗布した後に、さらに銀ペーストを塗布し、その後、焼成を行う構成としてもよい。
 この場合、銀の焼成体の厚さを確保することが可能となり、導電層の抵抗を小さくすることができる。
Here, in the method of manufacturing an insulating heat transfer substrate according to the present invention, in the conductive layer forming step, a silver paste may be applied after applying a silver paste containing glass, and then a silver paste may be applied, and then firing may be performed.
In this case, the thickness of the silver fired body can be secured, and the resistance of the conductive layer can be reduced.
 また、本発明の絶縁伝熱基板の製造方法においては、前記ガラス層形成工程においては、前記ガラスペーストをパターン状に塗布する構成としてもよい。
 この場合、アルミニウム板(熱伝達層)の一方の面のうち導電層が形成される領域にのみガラス層が形成されるので、大型のアルミニウム板を用いて複数枚の絶縁伝熱基板を形成し、その後、ガラス層が形成されていない領域でアルミニウム板を切断することができ、さらに効率良く絶縁伝熱基板を製造することが可能となる。
In the method of manufacturing an insulating heat transfer substrate according to the present invention, the glass paste may be applied in a pattern in the glass layer forming step.
In this case, since the glass layer is formed only in the region where the conductive layer is formed on one surface of the aluminum plate (heat transfer layer), a large-sized aluminum plate is used to form a plurality of insulating heat transfer substrates Thereafter, the aluminum plate can be cut in a region where the glass layer is not formed, and it becomes possible to manufacture the insulating heat transfer substrate more efficiently.
 さらに、本発明の絶縁伝熱基板の製造方法においては、前記ガラス層をパターン状に形成された前記ガラス層上に前記導電層を形成し、その後、前記アルミニウム板を複数のブロック体に分割する構成としてもよい。
 この場合、前記熱伝達層が複数のブロック体に分割された構造の絶縁伝熱基板を効率良く製造することが可能となる。
Furthermore, in the method of manufacturing an insulating heat transfer substrate according to the present invention, the conductive layer is formed on the glass layer formed in a pattern shape, and then the aluminum plate is divided into a plurality of blocks. It is good also as composition.
In this case, it is possible to efficiently manufacture the insulating heat transfer substrate having a structure in which the heat transfer layer is divided into a plurality of blocks.
 本発明によれば、十分な絶縁性を有するとともに高い伝熱性を有し、比較的容易に製造することが可能な絶縁伝熱基板、及び、この絶縁伝熱基板を用いた熱電変換モジュール、及び、上述の絶縁伝熱基板の製造方法を提供することができる。 According to the present invention, an insulating heat transfer substrate having sufficient insulation and high heat conductivity, which can be manufactured relatively easily, a thermoelectric conversion module using the insulating heat transfer substrate, and The present invention can provide a method of manufacturing the above-described insulating heat transfer substrate.
本発明の実施形態である絶縁伝熱基板を備えた熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module provided with the insulation heat-transfer board | substrate which is embodiment of this invention. 本発明の実施形態である絶縁伝熱基板の概略説明図である。It is a schematic explanatory drawing of the insulation heat-transfer board | substrate which is embodiment of this invention. 本発明の実施形態である絶縁伝熱基板の製造方法及び熱電変換モジュールの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the insulation heat-transfer board | substrate which is embodiment of this invention, and the manufacturing method of a thermoelectric conversion module. 本発明の実施形態である絶縁伝熱基板の製造方法及び熱電変換モジュールの製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the insulation heat-transfer board | substrate which is embodiment of this invention, and the manufacturing method of a thermoelectric conversion module. 本発明の他の実施形態である絶縁伝熱基板の概略説明図である。(a)が上面図、(b)が側面図である。It is a schematic explanatory drawing of the insulation heat-transfer board | substrate which is other embodiment of this invention. (A) is a top view, (b) is a side view. 本発明の他の実施形態である絶縁伝熱基板の概略説明図である。(a)が上面図、(b)が側面図である。It is a schematic explanatory drawing of the insulation heat-transfer board | substrate which is other embodiment of this invention. (A) is a top view, (b) is a side view. 本発明の他の実施形態である絶縁伝熱基板の概略説明図である。(a)が上面図、(b)が側面図である。It is a schematic explanatory drawing of the insulation heat-transfer board | substrate which is other embodiment of this invention. (A) is a top view, (b) is a side view. 図7に示す絶縁伝熱基板を用いた熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module using the insulation heat-transfer board | substrate shown in FIG. 本発明の他の実施形態である絶縁伝熱基板の概略説明図である。It is a schematic explanatory drawing of the insulation heat-transfer board | substrate which is other embodiment of this invention. 図9に示す絶縁伝熱基板を用いた熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module using the insulation heat-transfer board | substrate shown in FIG.
 以下に、本発明の実施形態について添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. Each embodiment shown below is concretely described in order to understand the meaning of the invention better, and does not limit the present invention unless otherwise specified. Further, in the drawings used in the following description, for the sake of easy understanding of the features of the present invention, the main parts may be enlarged for convenience, and the dimensional ratio of each component may be the same as the actual one. Not necessarily.
 本実施形態に係る熱電変換モジュール10は、図1に示すように、本実施形態である第1絶縁伝熱基板20及び第2絶縁伝熱基板30と、複数の柱状をなす熱電変換素子11と、を備えている。
 複数の柱状をなす熱電変換素子11の長さ方向の一端側(図1において下側)に第1絶縁伝熱基板20が配設され、熱電変換素子11の長さ方向の他端側(図1において上側)に第2絶縁伝熱基板30が配設されており、第1絶縁伝熱基板20に設けられた第1導電層25及び第2絶縁伝熱基板30に設けられた第2導電層35によって、複数の柱状をなす熱電変換素子11が電気的に直列接続されている。
 本実施形態である熱電変換モジュール10においては、例えば、第1絶縁伝熱基板20側を低温部とし、第2絶縁伝熱基板30側を高温部として使用され、熱エネルギーと電気エネルギーとの変換が実施される。
As shown in FIG. 1, the thermoelectric conversion module 10 according to the present embodiment includes the first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30 according to the present embodiment, and a plurality of columnar thermoelectric conversion elements 11. And.
The first insulating heat transfer substrate 20 is disposed on one end side (lower side in FIG. 1) of the plurality of columnar thermoelectric conversion elements 11 in the longitudinal direction, and the other end side (FIG. 1) of the thermoelectric conversion elements 11 in the longitudinal direction. The second insulating heat transfer substrate 30 is disposed on the upper side in 1), and the second conductive provided on the first insulating heat transfer substrate 20 and the second conductive heat transfer substrate 30 A plurality of columnar thermoelectric conversion elements 11 are electrically connected in series by the layer 35.
In the thermoelectric conversion module 10 according to the present embodiment, for example, the first insulating heat transfer substrate 20 side is used as a low temperature portion, and the second insulating heat transfer substrate 30 side is used as a high temperature portion. Will be implemented.
 第1絶縁伝熱基板20は、アルミニウム又はアルミニウム合金からなる第1熱伝達層21と、この第1熱伝達層21の一方の面に第1ガラス層23を介して積層された第1導電層25と、を有している。
 本実施形態である第1絶縁伝熱基板20においては、第1ガラス層23はパターン状に形成されており、第1絶縁伝熱基板20の一方の面のうち第1導電層25が形成されていない領域には、第1ガラス層23が形成されていない。
The first insulating heat transfer substrate 20 includes a first heat transfer layer 21 made of aluminum or an aluminum alloy, and a first conductive layer laminated on one surface of the first heat transfer layer 21 via the first glass layer 23. And 25.
In the first insulating heat transfer substrate 20 according to the present embodiment, the first glass layer 23 is formed in a pattern, and the first conductive layer 25 is formed on one side of the first insulating heat transfer substrate 20. The first glass layer 23 is not formed in the non-area.
 ここで、第1熱伝達層21は、アルミニウム又はアルミニウム合金からなるアルミニウム板で構成されており、その厚さが例えば0.1mm以上とされている。
なお、アルミニウムとしては、例えば、純度99mass%以上のアルミニウム(2Nアルミニウム)、純度99.9mass%以上のアルミニウム(3Nアルミニウム)、純度99.99mass%以上のアルミニウム(4Nアルミニウム)等の純アルミニウムを用いることができる。アルミニウム合金としては、例えば、A6061等を用いることができる。
 なお、本実施形態においては、第1熱伝達層21を構成するアルミニウム板として、A6061合金を用いている。
Here, the first heat transfer layer 21 is made of an aluminum plate made of aluminum or an aluminum alloy, and the thickness thereof is, for example, 0.1 mm or more.
As aluminum, for example, pure aluminum such as aluminum having a purity of 99 mass% or more (2N aluminum), aluminum having a purity of 99.9 mass% or more (3N aluminum), aluminum having a purity of 99.99 mass% or more (4N aluminum) is used. be able to. As the aluminum alloy, for example, A6061 can be used.
In the present embodiment, the A6061 alloy is used as the aluminum plate that constitutes the first heat transfer layer 21.
 第1導電層25は、銀の焼成体で構成されており、第1熱伝達層21の一方の面(図1において上面)に回路パターン状に形成されている。
 そして、本実施形態においては、第1導電層25の厚さtaが5μm以上100μm以下の範囲内とされている。
The first conductive layer 25 is formed of a sintered silver body, and is formed in a circuit pattern on one surface (upper surface in FIG. 1) of the first heat transfer layer 21.
And in this embodiment, thickness ta of the 1st electric conduction layer 25 is carried out within the limits of 5 micrometers or more and 100 micrometers or less.
 第1熱伝達層21と第1導電層25との間に介在する第1ガラス層23は、第1熱伝達層21と第1導電層25とを電気的に絶縁する絶縁層として機能する。
 ここで、第1ガラス層23の厚さtgが5μm未満の場合には、熱電変換モジュール10を製作する場合において、熱電変換素子11を接合する際の加圧や、熱電変換モジュール10を使用する際の加圧によって、第1ガラス層23が破損し、第1熱伝達層21と第1導電層25が短絡し、熱電変換モジュールの発電性能が低下するおそれがある。一方、第1ガラス層23の厚さtgが50μmを超える場合には、第1ガラス層23と第1熱伝達層21との界面で剥離が生じるおそれがある。
 以上のことから、本実施形態においては、第1ガラス層23の厚さtgを5μm以上50μm以下の範囲内に規定している。
 なお、熱電変換モジュール10の作製時や使用時の加圧による第1ガラス層23の破損をさらに抑制するためには、第1ガラス層23の厚さtgの下限を10μm以上とすることが好ましい。また、第1ガラス層23と第1熱伝達層21との界面での剥離をさらに抑制するためには、第1ガラス層23の厚さtgの上限を40μm以下とすることが好ましく、25μm以下とすることがさらに好ましい。
The first glass layer 23 interposed between the first heat transfer layer 21 and the first conductive layer 25 functions as an insulating layer which electrically insulates the first heat transfer layer 21 and the first conductive layer 25.
Here, when the thickness tg of the first glass layer 23 is less than 5 μm, in the case of producing the thermoelectric conversion module 10, pressurization when bonding the thermoelectric conversion element 11 or using the thermoelectric conversion module 10 Due to the pressure applied at that time, the first glass layer 23 may be broken, the first heat transfer layer 21 and the first conductive layer 25 may be short-circuited, and the power generation performance of the thermoelectric conversion module may be reduced. On the other hand, when the thickness tg of the first glass layer 23 exceeds 50 μm, peeling may occur at the interface between the first glass layer 23 and the first heat transfer layer 21.
From the above, in the present embodiment, the thickness tg of the first glass layer 23 is defined in the range of 5 μm to 50 μm.
In order to further suppress the breakage of the first glass layer 23 due to the application of pressure during the fabrication or use of the thermoelectric conversion module 10, the lower limit of the thickness tg of the first glass layer 23 is preferably 10 μm or more. . In order to further suppress peeling at the interface between the first glass layer 23 and the first heat transfer layer 21, the upper limit of the thickness tg of the first glass layer 23 is preferably 40 μm or less, and is preferably 25 μm or less It is further preferred that
第2絶縁伝熱基板30は、アルミニウム又はアルミニウム合金からなる第2熱伝達層31と、この第2熱伝達層31の一方の面に第2ガラス層33を介して積層された第2導電層35と、を有している。
 この第2絶縁伝熱基板30は、上述した第1絶縁伝熱基板20と同様な構成とされており、銀の焼成体からなる第2導電層35の厚さtaが5μm以上100μm以下の範囲内とされ、第2熱伝達層31と第2導電層35との間に介在する第2ガラス層33の厚さtgが5μm以上50μm以下の範囲内とされている。また、第2熱伝達層31はA6061合金で構成されており、その厚さが0.1mm以上とされている。
 また、第2絶縁伝熱基板30においては、第2ガラス層33はパターン状に形成されており、第2絶縁伝熱基板30の一方の面のうち第2導電層35が形成されていない領域には、第2ガラス層33が形成されていない。
The second insulating heat transfer substrate 30 includes a second heat transfer layer 31 made of aluminum or an aluminum alloy, and a second conductive layer laminated on one surface of the second heat transfer layer 31 with the second glass layer 33 interposed therebetween. And 35.
The second insulating heat transfer substrate 30 has a configuration similar to that of the first insulating heat transfer substrate 20 described above, and the thickness ta of the second conductive layer 35 made of a sintered silver body is in the range of 5 μm to 100 μm. The thickness tg of the second glass layer 33 interposed between the second heat transfer layer 31 and the second conductive layer 35 is in the range of 5 μm to 50 μm. The second heat transfer layer 31 is made of an A6061 alloy and has a thickness of 0.1 mm or more.
Further, in the second insulating heat transfer substrate 30, the second glass layer 33 is formed in a pattern, and a region where the second conductive layer 35 is not formed on one surface of the second insulating heat transfer substrate 30. , The second glass layer 33 is not formed.
 ここで、第1ガラス層23及び第2ガラス層33を構成するガラスとしては、鉛(Pb)を含まない無鉛ガラスを用いることが好ましい。
 無鉛ガラスとしては、特に限定されない。例えば、無鉛ガラスとしては、Bi、ZnO、及びBを必須成分とし、これに、SiO、Al、Fe、CuO、CeO、ZrO、LiO、NaO、及びKO等のアルカリ金属酸化物、並びにMgO、CaO、BaO、及びSrO等のアルカリ土類金属酸化物から選択される1種以上が、必要に応じて適宜添加されたものを使用することができる。
Here, as glass which comprises the 1st glass layer 23 and the 2nd glass layer 33, it is preferable to use lead-free glass which does not contain lead (Pb).
The lead-free glass is not particularly limited. For example, as lead-free glass, Bi 2 O 3 , ZnO, and B 2 O 3 are essential components, and SiO 2 , Al 2 O 3 , Fe 2 O 3 , CuO, CeO 2 , ZrO 2 , Li 2 One or more selected from alkali metal oxides such as O, Na 2 O, and K 2 O, and alkaline earth metal oxides such as MgO, CaO, BaO, and SrO are appropriately added as necessary. Can be used.
 熱電変換素子11は、n型熱電変換素子11aとp型熱電変換素子11bとを有しており、これらn型熱電変換素子11aとp型熱電変換素子11bが交互に配列されている。
 なお、この熱電変換素子11の一端面及び他端面には、メタライズ層(図示なし)がそれぞれ形成されている。メタライズ層としては、例えば、ニッケル、銀、コバルト、タングステン、又はモリブデン等や、あるいはそれらの金属繊維でできた不織布等を用いることができる。なお、メタライズ層の最表面(第1導電層25及び第2導電層35との接合面)は、Au又はAgで構成されていることが好ましい。
The thermoelectric conversion element 11 has an n-type thermoelectric conversion element 11a and a p-type thermoelectric conversion element 11b, and these n-type thermoelectric conversion elements 11a and p-type thermoelectric conversion elements 11b are alternately arranged.
Metallized layers (not shown) are respectively formed on one end surface and the other end surface of the thermoelectric conversion element 11. As the metallized layer, it is possible to use, for example, nickel, silver, cobalt, tungsten, molybdenum or the like, or a non-woven fabric or the like made of these metal fibers. The outermost surface of the metallized layer (the bonding surface with the first conductive layer 25 and the second conductive layer 35) is preferably made of Au or Ag.
 n型熱電変換素子11a及びp型熱電変換素子11bは、例えば、テルル化合物、スクッテルダイト、充填スクッテルダイト、ホイスラー、ハーフホイスラー、クラストレート、シリサイド、酸化物、又はシリコンゲルマニウム等の焼結体で構成されている。
 n型熱電変換素子11aの材料として、例えば、BiTe、PbTe、LaTe、CoSb、FeVAl、ZrNiSn、BaAl16Si30、MgSi、FeSi、SrTiO、CaMnO、ZnO、又はSiGeなどが用いられる。
また、p型熱電変換素子11bの材料として、例えば、BiTe、SbTe、PbTe、TAGS(=Ag‐Sb‐Ge‐Te)、ZnSb、CoSb、CeFeSb12、Yb14MnSb11、FeVAl、MnSi1.73、FeSi、NaxCoO、CaCo、BiSrCo、又はSiGeなどが用いられる。
 なお、ドーパントによりn型とp型の両方をとれる化合物と、n型かp型のどちらか一方のみの性質をもつ化合物がある。
The n-type thermoelectric conversion element 11a and the p-type thermoelectric conversion element 11b are, for example, sintered bodies of tellurium compound, skutterudite, filled skutterudite, Heusler, half-Heusler, clathrate, silicide, oxide, or silicon germanium. It consists of
As a material of the n-type thermoelectric conversion element 11 a, for example, Bi 2 Te 3 , PbTe, La 3 Te 4 , CoSb 3 , FeVAl, ZrNiSn, Ba 8 Al 16 Si 30 , Mg 2 Si, FeSi 2 , SrTiO 3 , CaMnO 3 ZnO, SiGe or the like is used.
Moreover, as a material of the p-type thermoelectric conversion element 11b, for example, Bi 2 Te 3 , Sb 2 Te 3 , PbTe, TAGS (= Ag-Sb-Ge-Te), Zn 4 Sb 3 , CoSb 3 , CeFe 4 Sb 12 Yb 14 MnSb 11 , FeVAl, MnSi 1.73 , FeSi 2 , NaxCoO 2 , Ca 3 Co 4 O 7 , Bi 2 Sr 2 Co 2 O 7 , or SiGe is used.
There are a compound which can take both n-type and p-type depending on a dopant and a compound having only n-type or p-type property.
 次に、上述した本実施形態である絶縁伝熱基板(第1絶縁伝熱基板20及び第2絶縁伝熱基板30)の製造方法、及び、熱電変換モジュール10の製造方法について、図3及び図4を参照して説明する。 Next, a method of manufacturing the insulating heat transfer substrate (the first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30) according to the above-described embodiment and a method of manufacturing the thermoelectric conversion module 10 will be described with reference to FIGS. This will be described with reference to FIG.
(ガラス層形成工程S01)
 まず、第1熱伝達層21となるアルミニウム板41の一方の面、及び、第2熱伝達層31となるアルミニウム板51の一方の面に、後述するガラス粉末を含有するガラスペースト42,52を塗布して、焼成を行い、第1ガラス層23及び第2ガラス層33を形成する。なお、このガラスペーストには銀は含まれていない。
 本実施形態においては、ガラスペーストをパターン状に塗布して焼成することにより、第1ガラス層23及び第2ガラス層33をパターン状に形成している。
なお、ガラスぺーストの塗布方法に限定はなく、既存の方法を適宜選択することが好ましい。
 また、例えば、ガラスペーストの塗布回数を調整することにより、所望の厚さの第1ガラス層23及び第2ガラス層33を得ることができる。
 さらに、ガラスぺースト42,52の焼成条件は、大気雰囲気、加熱温度:400℃以上600℃以下、加熱温度での保持時間:10分以上60分以下の条件で行うことが好ましい。
(Glass layer forming step S01)
First, on one surface of the aluminum plate 41 to be the first heat transfer layer 21 and on one surface of the aluminum plate 51 to be the second heat transfer layer 31, glass pastes 42 and 52 containing glass powder to be described later are It apply | coats and bakes and the 1st glass layer 23 and the 2nd glass layer 33 are formed. In addition, silver is not contained in this glass paste.
In the present embodiment, the first glass layer 23 and the second glass layer 33 are formed in a pattern by applying and baking the glass paste in a pattern.
In addition, there is no limitation in the coating method of glass paste, It is preferable to select the existing method suitably.
Also, for example, by adjusting the number of times of application of the glass paste, it is possible to obtain the first glass layer 23 and the second glass layer 33 having a desired thickness.
Furthermore, it is preferable to perform baking conditions of glass paste 42, 52 on atmospheric air, heating temperature: 400 degreeC or more and 600 degrees C or less, holding time at heating temperature: 10 minutes or more and 60 minutes or less.
(導電層形成工程S02)
 次に、第1ガラス層23及び第2ガラス層33の上に、ガラス入り銀ペースト43,53を塗布し、必要があれば、さらに銀ペーストを塗布し、乾燥後に焼成して、第1導電層25及び第2導電層35を形成する。
 なお、銀ペーストにはガラス粉末は含有されていない。また、ガラス入り銀ペーストとしては、後述するガラス粉末と銀成分を含有するペーストである。銀成分は銀ペーストと同様とすることができる。
 ここで、本実施形態では、第1導電層25及び第2導電層35の厚さを確保するために、ガラス入り銀ペーストを塗布し、その上に銀ペーストを塗布している。
 なお、銀ペースト又はガラス入り銀ペーストの塗布方法に限定はなく、既存の方法を適宜選択することが好ましい。また、ガラス入り銀ペーストおよび銀ペーストをそれぞれ複数回塗布してもよい。
 このように、塗布回数を調整することにより、第1導電層25及び第2導電層35の厚さを所望の厚さにすることができる。
 さらに、銀ペースト又はガラス入り銀ペーストの焼成条件は、大気雰囲気、加熱温度:400℃以上600℃以下、加熱温度での保持時間:10分以上60分以下の条件で行うことが好ましい。
(Conductive layer forming step S02)
Next, on the first glass layer 23 and the second glass layer 33, the glass-incorporated silver pastes 43 and 53 are applied, and if necessary, the silver paste is further applied, dried and fired, and the first conductive A layer 25 and a second conductive layer 35 are formed.
The silver paste does not contain glass powder. Moreover, it is a paste containing the glass powder and silver component which are mentioned later as glass-containing silver paste. The silver component can be similar to the silver paste.
Here, in the present embodiment, in order to secure the thickness of the first conductive layer 25 and the second conductive layer 35, a silver paste containing glass is applied, and a silver paste is applied thereon.
In addition, there is no limitation in the application method of silver paste or silver paste with glass, It is preferable to select the existing method suitably. Alternatively, the glass-incorporated silver paste and the silver paste may be each applied a plurality of times.
Thus, the thickness of the first conductive layer 25 and the second conductive layer 35 can be made to a desired thickness by adjusting the number of times of application.
Furthermore, it is preferable to perform baking conditions of air atmosphere, heating temperature: 400 degreeC or more and 600 degrees C or less, and holding time at heating temperature: 10 minutes or more and 60 minutes or less baking conditions of silver paste or silver paste containing glass.
 ここで、本実施形態においてガラスペースト及びガラス入り銀ペーストに含まれるガラス粉末は、上述のように無鉛ガラス粉末とされており、具体的な組成は、
Bi:68質量%以上93質量%以下、
ZnO:1質量%以上20質量%以下、
:1質量%以上11質量%以下、
SiO:5質量%以下、
Al:5質量%以下、
Fe:5質量%以下、
CuO:5質量%以下、
CeO:5質量%以下、
ZrO:5質量%以下、
アルカリ金属酸化物:2質量%以下、
アルカリ土類金属酸化物:7質量%以下、
とされている。
Here, the glass powder contained in the glass paste and the glass-incorporated silver paste in the present embodiment is a lead-free glass powder as described above, and the specific composition is
Bi 2 O 3 : 68% by mass or more and 93% by mass or less,
ZnO: 1% by mass or more and 20% by mass or less,
B 2 O 3 : 1% by mass or more and 11% by mass or less,
SiO 2 : 5% by mass or less,
Al 2 O 3 : 5% by mass or less,
Fe 2 O 3 : 5% by mass or less,
CuO: 5% by mass or less,
CeO 2 : 5% by mass or less,
ZrO 2 : 5% by mass or less,
Alkali metal oxide: 2% by mass or less,
Alkaline earth metal oxides: 7% by mass or less,
It is assumed.
 なお、本実施形態におけるガラスペーストは、ガラス粉末と、溶剤とからなる。また、銀ペーストは、銀粉末と、溶剤とからなる。ガラス入り銀ペーストは、銀粉末と、ガラス粉末と、溶剤とからなる。なお、必要に応じて樹脂や分散剤を含有しても良い。また、銀粉末の代わりに、酸化銀と還元剤とを含有させてもよい。 In addition, the glass paste in this embodiment consists of glass powder and a solvent. Moreover, silver paste consists of silver powder and a solvent. The glass-filled silver paste comprises silver powder, glass powder, and a solvent. In addition, you may contain resin and a dispersing agent as needed. Also, instead of silver powder, silver oxide and a reducing agent may be contained.
 以上のようにして、本実施形態である絶縁伝熱基板(第1絶縁伝熱基板20及び第2絶縁伝熱基板30)が製造される。 As described above, the insulation heat transfer substrate (the first insulation heat transfer substrate 20 and the second insulation heat transfer substrate 30) according to the present embodiment is manufactured.
(熱電変換素子接合工程S03)
 そして、熱電変換素子11の一端側に第1絶縁伝熱基板20の第1導電層25を接合し、熱電変換素子11の他端側に第2絶縁伝熱基板30の第2導電層35を接合する。なお、熱電変換素子接合工程S03における熱電変換素子11と第1導電層25及び第2導電層35との接合方法は、特に制限はなく、既存の方法を適宜選択して適用することができる。例えば、銀接合材を用い、熱電変換素子と導電層を接合する方法がある。
 以上の工程により、本実施形態である熱電変換モジュール10が製造される。
(Thermoelectric conversion element bonding step S03)
Then, the first conductive layer 25 of the first insulating heat transfer substrate 20 is joined to one end side of the thermoelectric conversion element 11, and the second conductive layer 35 of the second insulating heat transfer substrate 30 is connected to the other end side of the thermoelectric conversion element 11. Join. In addition, the joining method of the thermoelectric conversion element 11 and the 1st conductive layer 25 and the 2nd conductive layer 35 in thermoelectric conversion element joining process S03 does not have a restriction | limiting in particular, The existing method can be selected suitably and can be applied. For example, there is a method of bonding a thermoelectric conversion element and a conductive layer using a silver bonding material.
The thermoelectric conversion module 10 which is this embodiment is manufactured by the above process.
 以上のような構成とされた本実施形態である絶縁伝熱基板(第1絶縁伝熱基板20及び第2絶縁伝熱基板30)によれば、アルミニウム又はアルミニウム合金からなる熱伝達層(第1熱伝達層21及び第2熱伝達層31)の一方の面に、厚さが5μm以上50μm以下の範囲内のガラス層(第1ガラス層23及び第2ガラス層33)を介して導電層((第1導電層25及び第2導電層35)が形成されているので、熱伝達層(第1熱伝達層21及び第2熱伝達層31)と導電層(第1導電層25及び第2導電層35)との間の絶縁性を十分に確保できるとともに、積層方向の熱抵抗を小さくすることができ、伝熱性に優れている。 According to the insulating heat transfer substrate (the first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30) of the present embodiment configured as described above, the heat transfer layer (first Conductive layer (first glass layer 23 and second glass layer 33) having a thickness in the range of 5 μm to 50 μm on one surface of heat transfer layer 21 and second heat transfer layer 31) (conductive layer (first glass layer 23 and second glass layer 33) (The first conductive layer 25 and the second conductive layer 35) are formed, so the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31) and the conductive layer (the first conductive layer 25 and the second While being able to fully ensure insulation between the conductive layers 35), it is possible to reduce the thermal resistance in the stacking direction, and the heat conductivity is excellent.
 さらに、本実施形態においては、ガラス層(第1ガラス層23及び第2ガラス層33)がパターン状に形成されており、熱伝達層(第1熱伝達層21及び第2熱伝達層31)の一方の面のうち導電層((第1導電層25及び第2導電層35)が形成されない領域にはガラス層(第1ガラス層23及び第2ガラス層33)が形成されないので、ガラス層(第1ガラス層23及び第2ガラス層33)が表面に大きく露出しておらず、取り扱い性に優れている。 Furthermore, in the present embodiment, the glass layers (the first glass layer 23 and the second glass layer 33) are formed in a pattern, and the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31). The glass layer (the first glass layer 23 and the second glass layer 33) is not formed in a region where the conductive layer (the first conductive layer 25 and the second conductive layer 35) is not formed in one surface of (The first glass layer 23 and the second glass layer 33) are not largely exposed to the surface, and the handling property is excellent.
 また、導電層(第1導電層25及び第2導電層35)が、銀の焼成体で構成されており、導電層(第1導電層25及び第2導電層35)の厚さtaが5μm以上100μm以下の範囲内とされているので、導電層(第1導電層25及び第2導電層35)における電気伝導性を確保することができる。 In addition, the conductive layer (the first conductive layer 25 and the second conductive layer 35) is formed of a fired body of silver, and the thickness ta of the conductive layer (the first conductive layer 25 and the second conductive layer 35) is 5 μm. Since the thickness is set to 100 μm or less, electrical conductivity in the conductive layer (the first conductive layer 25 and the second conductive layer 35) can be secured.
 本実施形態である熱電変換モジュール10によれば、熱電変換素子11の一端側に第1絶縁伝熱基板20が配設され、熱電変換素子11の他端側に第2絶縁伝熱基板30が配設されているので、積層方向の熱伝導性に優れており、熱電変換素子11の熱を熱伝達層(第1熱伝達層21及び第2熱伝達層31)へと効率良く伝達することができる。よって、熱電変換効率に優れることになる。
 また、導電層(第1導電層25及び第2導電層35)と熱伝達層(第1熱伝達層21及び第2熱伝達層31)との間の絶縁性が確保されているので、使用電圧における耐電圧性を有しており、安定して使用することが可能となる。
According to the thermoelectric conversion module 10 of the present embodiment, the first insulating heat transfer substrate 20 is disposed on one end side of the thermoelectric conversion element 11, and the second insulating heat transfer substrate 30 is on the other end side of the thermoelectric conversion element 11. Being arranged, the heat conductivity in the stacking direction is excellent, and the heat of the thermoelectric conversion element 11 is efficiently transferred to the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31). Can. Thus, the thermoelectric conversion efficiency is excellent.
Moreover, since the insulation between the conductive layer (the first conductive layer 25 and the second conductive layer 35) and the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31) is secured, it is used It has withstand voltage in voltage and can be used stably.
 本実施形態である絶縁伝熱基板(第1絶縁伝熱基板20及び第2絶縁伝熱基板30)の製造方法によれば、ガラスペーストを塗布して焼成し、ガラス層(第1ガラス層23及び第2ガラス層33)を形成するガラス層形成工程S01と、ガラス層(第1ガラス層23及び第2ガラス層33)の上に、銀ペースト又はガラス入り銀ペーストを塗布して焼成し、導電層(第1導電層25及び第2導電層35)を形成する導電層形成工程S02と、を備えているので、熱伝達層(第1熱伝達層21及び第2熱伝達層31)の一方の面に導電層(第1導電層25及び第2導電層35)及びガラス層(第1ガラス層23及び第2ガラス層33)を比較的容易かつ自由なパターンに形成することができ、第1絶縁伝熱基板20及び第2絶縁伝熱基板30を効率良く製造することができる。
 また、銀ペースト又はガラス入り銀ペーストをパターン状に塗布して焼成することで、導電層(第1導電層25及び第2導電層35)に回路パターンを形成することができる。
According to the manufacturing method of the insulation heat transfer substrate (the first insulation heat transfer substrate 20 and the second insulation heat transfer substrate 30) which is the present embodiment, the glass paste is applied and fired to form the glass layer (the first glass layer 23). And a silver paste or a silver paste containing glass is applied onto the glass layer forming step S01 for forming the second glass layer 33) and the glass layer (the first glass layer 23 and the second glass layer 33) and fired, And a conductive layer forming step S02 for forming the conductive layer (the first conductive layer 25 and the second conductive layer 35), and therefore the heat transfer layer (the first heat transfer layer 21 and the second heat transfer layer 31). The conductive layer (the first conductive layer 25 and the second conductive layer 35) and the glass layer (the first glass layer 23 and the second glass layer 33) can be formed relatively easily and freely on one surface, The first insulating heat transfer substrate 20 and the second insulating heat transfer substrate 30 It is possible to rate well production.
In addition, a circuit pattern can be formed on the conductive layer (the first conductive layer 25 and the second conductive layer 35) by applying and baking a silver paste or a silver paste containing glass in a pattern.
 さらに、本実施形態においては、ガラス層形成工程S01において、ガラスペーストをパターン状に塗布して焼成し、ガラス層(第1ガラス層23及び第2ガラス層33)をパターン状に形成しているので、アルミニウム板の一方の面のうち導電層が形成されない領域にはガラス層が形成されず、大型のアルミニウム板を用いて複数枚の絶縁伝熱基板を形成し、その後、アルミニウム板を切断することで、さらに効率良く絶縁伝熱基板を製造することが可能となる。 Furthermore, in the present embodiment, in the glass layer forming step S01, a glass paste is applied in a pattern and baked to form a glass layer (the first glass layer 23 and the second glass layer 33) in a pattern. Therefore, the glass layer is not formed in the area where the conductive layer is not formed on one side of the aluminum plate, and a plurality of insulating heat transfer substrates are formed using a large aluminum plate, and then the aluminum plate is cut. This makes it possible to manufacture the insulating heat transfer substrate more efficiently.
 また、本実施形態では、ガラスペースト及びガラス入り銀ペーストに含有されるガラスとして非鉛系のガラスを用いているので、環境への負荷を軽減することができる。 Further, in the present embodiment, since lead-free glass is used as the glass contained in the glass paste and the silver paste containing glass, the load on the environment can be reduced.
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、熱電変換モジュールに用いる絶縁伝熱基板を例に挙げて説明したが、これに限定されることはなく、本発明の絶縁伝熱基板をLEDモジュールに用いてもよい。また、本発明の絶縁伝熱基板をペルチェモジュールに用いてもよい。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, although the insulation heat transfer substrate used for the thermoelectric conversion module is described as an example in the present embodiment, the present invention is not limited thereto, and the insulation heat transfer substrate of the present invention may be used for the LED module. In addition, the insulating heat transfer substrate of the present invention may be used in a peltier module.
 また、本実施形態では、ガラス層を形成するガラスの組成として、上述した組成の無鉛ガラスを例に挙げて説明したが、これに限定されることはなく、他の組成のガラスを用いてもよい。
 さらに、本実施形態では、熱伝達層を形成するアルミニウム又はアルミニウム合金として、A6061合金を例に挙げて説明したが、これに限定されることはなく、他のアルミニウム又はアルミニウム合金を用いてもよい。
Moreover, although lead-free glass of the composition mentioned above was mentioned as an example and explained as a composition of glass which forms a glass layer in this embodiment, it is not limited to this, and even if it uses glass of other composition. Good.
Furthermore, in the present embodiment, as the aluminum or aluminum alloy forming the heat transfer layer, the A6061 alloy is described as an example, but the invention is not limited to this, and other aluminum or aluminum alloy may be used. .
 さらに、本実施形態では、上述の組成の無鉛ガラス粉末を含有するガラスペーストを用いてガラス層を形成するものとして説明したが、これに限定されることはなく、他の組成のガラス粉末を含有するガラスペーストを用いてもよい。
 例えば、SiO、TiO、RO(Rはアルカリ金属)を主成分とし、副成分としてアルカリ土類金属の酸化物、ZnO、P及びSbから選択される1種又は2種以上を含むガラス粉末を用いてもよい。この組成のガラス粉末を含有するガラスペーストにおいては、形成されるガラス層の熱膨張係数が比較的大きく、導電層を構成する金属に近似するため、反りを抑制することが可能となる。また、焼成温度を例えば600~650℃と比較的高く設定することができ、緻密な銀の焼成体を形成することが可能となる。
Furthermore, in this embodiment, although it demonstrated as what forms a glass layer using the glass paste containing the lead-free glass powder of the above-mentioned composition, it is not limited to this and contains glass powder of other composition. Glass paste may be used.
For example, one kind selected from SiO 2 , TiO 2 , R 2 O (R is an alkali metal) as a main component and an oxide of an alkaline earth metal, ZnO, P 2 O 5 and Sb 2 O 3 as an accessory component Or you may use the glass powder containing 2 or more types. In the glass paste containing the glass powder of this composition, the thermal expansion coefficient of the glass layer to be formed is relatively large and approximates to the metal constituting the conductive layer, so that the warpage can be suppressed. In addition, the firing temperature can be set relatively high, for example, at 600 to 650 ° C., and it becomes possible to form a dense silver fired body.
 また、本実施形態においては、例えば、図5に示すように、熱伝達層121の一面の全体にガラス層123が形成され、このガラス層123の上に、導電層125がパターン状に形成された構造の絶縁伝熱基板120であってもよい。
 あるいは、例えば、図6に示すように、熱伝達層221の一面のガラス層223がパターン状に形成され、パターン状に形成されたガラス層223の上に、導電層225が形成された構造の絶縁伝熱基板220であってもよい。
Further, in the present embodiment, for example, as shown in FIG. 5, the glass layer 123 is formed on the entire surface of the heat transfer layer 121, and the conductive layer 125 is formed in a pattern on the glass layer 123. It may be an insulating heat transfer substrate 120 having a different structure.
Alternatively, for example, as shown in FIG. 6, the glass layer 223 on one surface of the heat transfer layer 221 is formed in a pattern, and the conductive layer 225 is formed on the glass layer 223 formed in a pattern. It may be an insulating heat transfer substrate 220.
 さらに、例えば、図7に示すように、熱伝達層321が複数のブロック体に分割され、一つのブロック体に対して、それぞれガラス層323及び導電層325が形成された構造の絶縁伝熱基板320であってもよい。
 この場合、図8に示すように、熱電変換素子11の一端側に図7に示す絶縁伝熱基板320が配設され、熱電変換素子11の他端側に熱伝達層331としてヒートシンク(熱交換器)を有する絶縁回路基板330が配設された構造の熱電変換モジュール310を構成することができる。この構成の熱電変換モジュール310においては、熱電変換素子11の一端側が拘束されていないため、熱歪の発生を抑制することが可能となる。
Furthermore, for example, as shown in FIG. 7, an insulating heat transfer substrate having a structure in which the heat transfer layer 321 is divided into a plurality of block bodies, and the glass layer 323 and the conductive layer 325 are formed for each block body. It may be 320.
In this case, as shown in FIG. 8, the insulating heat transfer substrate 320 shown in FIG. 7 is disposed on one end side of the thermoelectric conversion element 11, and a heat sink (heat exchange) is formed on the other end side of the thermoelectric conversion element 11. The thermoelectric conversion module 310 having a structure in which the insulating circuit board 330 having the In the thermoelectric conversion module 310 having this configuration, one end side of the thermoelectric conversion element 11 is not constrained, so that the occurrence of thermal distortion can be suppressed.
 なお、図7に示す絶縁伝熱基板320においては、製造方法に特に制限はないが、熱伝熱層321となるアルミニウム板の一面にガラス層323をパターン状に形成するとともに、このガラス層323上に導電層325を形成し、その後、前記アルミニウム板を複数のブロック体に分割することによって、効率良く製造することが可能となる。ここで、アルミニウム板を切断することで複数のブロック体に分割してもよいし、アルミニウム板を打ち抜き加工することで複数のブロック体に分割してもよい。 In the insulating heat transfer substrate 320 shown in FIG. 7, the manufacturing method is not particularly limited, but the glass layer 323 is formed in a pattern on one surface of the aluminum plate to be the heat transfer layer 321. By forming the conductive layer 325 thereon and then dividing the aluminum plate into a plurality of block bodies, efficient manufacture can be achieved. Here, the aluminum plate may be divided into a plurality of block bodies by cutting it, or may be divided into a plurality of block bodies by punching the aluminum plate.
 また、本実施形態においては、例えば、図9に示すように、熱伝達層421の一面及び他面に、それぞれガラス層423及び導電層425が形成された構造の絶縁伝熱基板420であってもよい。
 この場合、図10に示すように、絶縁伝熱基板420を介して複数の熱電変換素子11が積層された構造の熱電変換モジュール410を構成することが可能となる。
In the present embodiment, for example, as shown in FIG. 9, the insulating heat transfer substrate 420 has a structure in which the glass layer 423 and the conductive layer 425 are formed on one surface and the other surface of the heat transfer layer 421, respectively. It is also good.
In this case, as shown in FIG. 10, it is possible to configure the thermoelectric conversion module 410 having a structure in which the plurality of thermoelectric conversion elements 11 are stacked via the insulating heat transfer substrate 420.
 本発明の有効性を確認するために行った確認実験について説明する。 A confirmation experiment conducted to confirm the effectiveness of the present invention will be described.
上述した実施形態と同様の方法で表1に示す構造の絶縁伝熱基板を作製した。
 表1記載の熱伝達層上にガラスペーストを表1記載の厚さになるように塗布回数を調整して塗布した後、焼成し、ガラス層を形成した。ガラス層上にガラス入り銀ペーストを塗布し、乾燥した後、銀ペーストを表1記載の厚さとなるよう塗布回数を調整して塗布した後、焼成して導電層を形成し、絶縁伝熱基板を得た。なお、本発明例1、本発明例2、本発明例11、本発明例12については、銀ペーストを塗布せず、本発明例1、本発明例2、本発明例11、本発明例12以外の本発明例および比較例では、銀ペーストを複数回塗布した。
 得られた絶縁伝熱基板について、以下のようにして、導電層およびガラス層の厚さ、導電層とガラス層の剥離、導電層と熱伝達層との絶縁性、を評価した。評価結果を表1に示す。
An insulating heat transfer substrate having a structure shown in Table 1 was produced by the same method as that of the embodiment described above.
A glass paste was applied on the heat transfer layer described in Table 1 after adjusting the number of times of application so as to obtain the thickness shown in Table 1, and then baked to form a glass layer. A glass-incorporated silver paste is applied onto the glass layer and dried, and then the silver paste is applied with the number of applications adjusted to a thickness as shown in Table 1 and then fired to form a conductive layer, and an insulating heat transfer substrate I got In addition, about this invention example 1, this invention example 2, this invention example 11, and this invention example 12, silver paste is not apply | coated, but this invention example 1, this invention example 2, this invention example 11, this invention example 12 In the invention examples and comparative examples other than the above, the silver paste was applied multiple times.
The thickness of the conductive layer and the glass layer, the peeling of the conductive layer and the glass layer, and the insulation between the conductive layer and the heat transfer layer were evaluated for the obtained insulating heat transfer substrate as follows. The evaluation results are shown in Table 1.
(導電層およびガラス層の厚さ)
 導電層およびガラス層の厚さは、得られた絶縁伝熱基板の断面をレーザー顕微鏡(キーエンス社製VK-X200、倍率1000倍)で観察し、レーザー顕微鏡付属のスケールで測定した。各層について任意の三か所で測定を行い、その算術平均値を導電層およびガラス層の厚さとした。
(Thickness of conductive layer and glass layer)
The thicknesses of the conductive layer and the glass layer were measured by observing the cross section of the obtained insulating heat transfer substrate with a laser microscope (VK-X200 manufactured by Keyence Corporation, magnification 1000 times), and using a scale attached to the laser microscope. Each layer was measured at any three points, and the arithmetic mean was taken as the thickness of the conductive layer and the glass layer.
(導電層とガラス層の剥離)
 得られた絶縁伝熱基板を目視で確認し、導電層とガラス層との間に剥離が生じていた場合を「B」、生じていなかった場合を「A」と評価した。
(Peeling of conductive layer and glass layer)
The obtained insulating heat transfer substrate was visually confirmed, and the case where peeling occurred between the conductive layer and the glass layer was evaluated as “B”, and the case where it did not occur was evaluated as “A”.
(導電層と熱伝達層との絶縁性)
 得られた絶縁伝熱基板の導電層と熱伝達層との間の電気抵抗をテスター(YOKOGAWA社製TY720)により測定し、このテスターの導通チェックモードで500Ω未満の場合を「B」、導通が確認されなかった場合を「A」と評価した。
(Insulation between conductive layer and heat transfer layer)
The electrical resistance between the conductive layer and the heat transfer layer of the obtained insulating heat transfer substrate is measured by a tester (TY720 manufactured by YOKOGAWA), and in the case of less than 500 Ω in the continuity check mode of this tester, “B”, continuity is The case where it did not confirm was evaluated as "A."
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ガラス層の厚さが3μmとされた比較例1、比較例4においては、導電層とガラス層との絶縁性が悪くなった。
 ガラス層の厚さが70μmとされた比較例2、3、比較例5,6においては、導電層とガラス層との間で剥離が生じた。
In Comparative Examples 1 and 4 in which the thickness of the glass layer was 3 μm, the insulation between the conductive layer and the glass layer was deteriorated.
In Comparative Examples 2 and 3 and Comparative Examples 5 and 6 in which the thickness of the glass layer was 70 μm, peeling occurred between the conductive layer and the glass layer.
 これに対して、ガラス層の厚さが5μm以上50μm以下の範囲内とされた本発明例1-20においては、導電層とガラス層との間で剥離は生じなかった。また、導電層とガラス層との絶縁性も十分であった。 In contrast, in the invention example 1-20 in which the thickness of the glass layer was in the range of 5 μm to 50 μm, peeling did not occur between the conductive layer and the glass layer. In addition, the insulation between the conductive layer and the glass layer was also sufficient.
 以上のことから、本発明例によれば、十分な絶縁性を有するとともに高い伝熱性を有し、比較的容易に製造することが可能な絶縁伝熱基板を提供可能であることが確認された。 From the above, it was confirmed that according to the example of the present invention, it is possible to provide an insulating heat transfer substrate having sufficient insulation and high heat conductivity, which can be relatively easily manufactured. .
10 熱電変換モジュール
11 熱電変換素子
20 第1絶縁伝熱基板(絶縁伝熱基板)
21 第1熱伝達層(熱伝達層)
23 第1ガラス層(ガラス層) 
25 第1導電層(導電層)
30 第2絶縁伝熱基板(絶縁伝熱基板)
31 第2熱伝達層(熱伝達層) 
33 第2ガラス層(ガラス層) 
35 第2導電層(導電層)
41、51 アルミニウム板
120,220,320,420 絶縁伝熱基板
121,221,321,421 熱伝達層
123,223,323,423 ガラス層
125,225,325,425 導電層
310,410 熱電変換モジュール
10 thermoelectric conversion module 11 thermoelectric conversion element 20 first insulation heat transfer substrate (insulation heat transfer substrate)
21 First heat transfer layer (heat transfer layer)
23 First glass layer (glass layer)
25 First conductive layer (conductive layer)
30 Second insulation heat transfer board (insulation heat transfer board)
31 second heat transfer layer (heat transfer layer)
33 Second glass layer (glass layer)
35 second conductive layer (conductive layer)
41, 51 Aluminum plate 120, 220, 320, 420 Insulating heat transfer substrate 121, 221, 321, 421 Heat transfer layer 123, 223, 323, 423 Glass layer 125, 225, 325, 425 Conductive layer 310, 410 Thermoelectric conversion module

Claims (10)

  1.  アルミニウム又はアルミニウム合金からなる熱伝達層と、この熱伝達層の一方の面側に配設された導電層と、前記導電層と前記熱伝達層の間に形成されたガラス層と、を有し、
     前記導電層は、銀の焼成体で構成されており、
     前記ガラス層の厚さが5μm以上50μm以下の範囲内とされていることを特徴とする絶縁伝熱基板。
    A heat transfer layer made of aluminum or an aluminum alloy, a conductive layer disposed on one side of the heat transfer layer, and a glass layer formed between the conductive layer and the heat transfer layer ,
    The conductive layer is composed of a sintered body of silver,
    The thickness of the said glass layer is made into the range of 5 micrometers-50 micrometers, The insulation heat-transfer board | substrate characterized by the above-mentioned.
  2.  前記ガラス層は、前記熱伝達層の一方の面にパターン状に形成されていることを特徴とする請求項1に記載の絶縁伝熱基板。 The insulating heat transfer substrate according to claim 1, wherein the glass layer is formed in a pattern on one surface of the heat transfer layer.
  3.  前記導電層の厚さが5μm以上100μm以下の範囲内とされていることを特徴とする請求項1又は請求項2に記載の絶縁伝熱基板。 The thickness of the said conductive layer is made into the range of 5 micrometers or more and 100 micrometers or less, The insulation heat-transfer board | substrate of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  前記熱伝達層は、複数のブロック体に分割されており、一つのブロック体に対して、それぞれ前記ガラス層及び前記導電層が形成されていることを特徴とする請求項1から請求項3の何れか一項に記載の絶縁伝熱基板。 The heat transfer layer is divided into a plurality of block bodies, and the glass layer and the conductive layer are formed for one block body, respectively. The insulating heat-transfer board | substrate as described in any one.
  5.  前記熱伝達層の他方の面側にも、前記ガラス層及び前記導電層が形成されていることを特徴とする請求項1から請求項4のいずれか一項に記載の絶縁伝熱基板。 The insulating heat transfer substrate according to any one of claims 1 to 4, wherein the glass layer and the conductive layer are formed also on the other surface side of the heat transfer layer.
  6.  複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1導電層及び他端側に配設された第2導電層と、を有し、前記第1導電層及び前記第2導電層を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールであって、
     前記熱電変換素子の一端側及び他端側の少なくとも一方又は両方に、請求項1から請求項5のいずれか一項に記載の絶縁伝熱基板が配設されていることを特徴とする熱電変換モジュール。
    A plurality of thermoelectric conversion elements, a first conductive layer disposed on one end side of the thermoelectric conversion elements, and a second conductive layer disposed on the other end side; the first conductive layer and the first conductive layer; A thermoelectric conversion module in which a plurality of the thermoelectric conversion elements are electrically connected via two conductive layers,
    A thermoelectric conversion substrate according to any one of claims 1 to 5 is disposed on at least one or both of one end side and the other end side of the thermoelectric conversion element. module.
  7.  請求項1から請求項5のいずれか一項に記載の絶縁伝熱基板の製造方法であって、
     アルミニウム又はアルミニウム合金からなるアルミニウム板の一方の面に、ガラスペーストを塗布して焼成し、ガラス層を形成するガラス層形成工程と、
     前記ガラス層上に、ガラス入り銀ペーストを塗布して焼成し、導電層を形成する導電層形成工程と、
     を備えていることを特徴とする絶縁伝熱基板の製造方法。
    A method of manufacturing an insulating heat transfer substrate according to any one of claims 1 to 5, wherein
    A glass layer forming step of applying a glass paste to one surface of an aluminum plate made of aluminum or an aluminum alloy and baking the paste to form a glass layer;
    A conductive layer forming step of applying a glass-containing silver paste onto the glass layer and baking it to form a conductive layer;
    A method of manufacturing an insulating heat transfer substrate, comprising:
  8.  前記導電層形成工程では、ガラス入り銀ペーストを塗布した後に、さらに銀ペーストを塗布し、その後、焼成を行うことを特徴とする請求項7に記載の絶縁伝熱基板の製造方法。 The method according to claim 7, wherein in the conductive layer forming step, a silver paste containing glass is applied, a silver paste is further applied, and then firing is performed.
  9.  前記ガラス層形成工程においては、前記ガラスペーストをパターン状に塗布することを特徴とする請求項7又は請求項8に記載の絶縁伝熱基板の製造方法。 9. The method according to claim 7, wherein in the glass layer forming step, the glass paste is applied in a pattern.
  10.  前記ガラス層をパターン状に形成された前記ガラス層上に前記導電層を形成し、その後、前記アルミニウム板を複数のブロック体に分割することを特徴とする請求項9に記載の絶縁伝熱基板の製造方法。 10. The insulating heat transfer substrate according to claim 9, wherein the conductive layer is formed on the glass layer in which the glass layer is formed in a pattern, and then the aluminum plate is divided into a plurality of blocks. Manufacturing method.
PCT/JP2018/044892 2017-12-06 2018-12-06 Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate WO2019111997A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207014470A KR20200089673A (en) 2017-12-06 2018-12-06 Insulated heating substrate, thermoelectric conversion module, and method for manufacturing insulating heating substrate
CN201880078217.0A CN111433923B (en) 2017-12-06 2018-12-06 Insulating heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat transfer substrate
EP18886694.1A EP3723145A4 (en) 2017-12-06 2018-12-06 Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
US16/769,311 US11404622B2 (en) 2017-12-06 2018-12-06 Insulated heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulated heat transfer substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-234319 2017-12-06
JP2017234319 2017-12-06
JP2018-217595 2018-11-20
JP2018217595A JP7200616B2 (en) 2017-12-06 2018-11-20 Insulated heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulated heat transfer substrate

Publications (1)

Publication Number Publication Date
WO2019111997A1 true WO2019111997A1 (en) 2019-06-13

Family

ID=66751581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044892 WO2019111997A1 (en) 2017-12-06 2018-12-06 Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate

Country Status (1)

Country Link
WO (1) WO2019111997A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339490A (en) 1989-07-05 1991-02-20 Matsushita Electric Ind Co Ltd Production of enameled substrate and thermal head and motor bearing using the same
JP2006237146A (en) * 2005-02-23 2006-09-07 Ishikawajima Harima Heavy Ind Co Ltd Cascade module for thermoelectric conversion
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
JP2008244100A (en) * 2007-03-27 2008-10-09 Yamaha Corp Thermoelectric module and manufacturing method thereof
JP2013168431A (en) * 2012-02-14 2013-08-29 Mitsubishi Materials Corp Solder junction structure, power module, substrate for power module with heat sink, and manufacturing methods of solder junction structure, power module, and substrate for power module with heat sink
JP2014011469A (en) * 2012-06-28 2014-01-20 Lg Innotek Co Ltd Thermoelectric cooling module and manufacturing method of the same
JP2017059823A (en) * 2015-09-18 2017-03-23 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017157599A (en) * 2016-02-29 2017-09-07 三菱マテリアル株式会社 Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339490A (en) 1989-07-05 1991-02-20 Matsushita Electric Ind Co Ltd Production of enameled substrate and thermal head and motor bearing using the same
JP2006237146A (en) * 2005-02-23 2006-09-07 Ishikawajima Harima Heavy Ind Co Ltd Cascade module for thermoelectric conversion
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
JP2008244100A (en) * 2007-03-27 2008-10-09 Yamaha Corp Thermoelectric module and manufacturing method thereof
JP2013168431A (en) * 2012-02-14 2013-08-29 Mitsubishi Materials Corp Solder junction structure, power module, substrate for power module with heat sink, and manufacturing methods of solder junction structure, power module, and substrate for power module with heat sink
JP2014011469A (en) * 2012-06-28 2014-01-20 Lg Innotek Co Ltd Thermoelectric cooling module and manufacturing method of the same
JP2017059823A (en) * 2015-09-18 2017-03-23 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017157599A (en) * 2016-02-29 2017-09-07 三菱マテリアル株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
JP2019102808A (en) Insulating heat transfer substrate, thermoelectric conversion module, and method of manufacturing insulating heat transfer substrate
JP7163631B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR102444696B1 (en) Thermoelectric conversion module, and method of manufacturing the thermoelectric conversion module
JP6822227B2 (en) Thermoelectric conversion module
WO2017047627A1 (en) Thermoelectric conversion module and thermoelectric conversion device
JP2018137374A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
WO2019111997A1 (en) Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
WO2019244692A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
TWI752242B (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP7248091B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2022168777A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
WO2021157565A1 (en) Thermoelectric conversion structure
WO2019004429A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2014155643A1 (en) Thermoelectric conversion device
CN116784019A (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018886694

Country of ref document: EP

Effective date: 20200706