JP6822227B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP6822227B2
JP6822227B2 JP2017043104A JP2017043104A JP6822227B2 JP 6822227 B2 JP6822227 B2 JP 6822227B2 JP 2017043104 A JP2017043104 A JP 2017043104A JP 2017043104 A JP2017043104 A JP 2017043104A JP 6822227 B2 JP6822227 B2 JP 6822227B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
metal layer
conductive layer
wiring
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017043104A
Other languages
Japanese (ja)
Other versions
JP2018148085A (en
Inventor
皓也 新井
皓也 新井
俊彦 幸
俊彦 幸
雅人 駒崎
雅人 駒崎
航 岩崎
航 岩崎
遼平 湯本
遼平 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017043104A priority Critical patent/JP6822227B2/en
Publication of JP2018148085A publication Critical patent/JP2018148085A/en
Application granted granted Critical
Publication of JP6822227B2 publication Critical patent/JP6822227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、P型熱電変換素子とN型変換素子とを直列に配列した熱電変換モジュールに関する。 The present invention relates to a thermoelectric conversion module in which a P-type thermoelectric conversion element and an N-type conversion element are arranged in series.

熱電変換モジュールは、配線基板(絶縁基板)の間に、一対のP型熱電変換素子とN型熱電変換素子とを、P型、N型、P型、N型の順に交互に配置されるように、電気的に直列に接続した構成とされ、両端を直流電源に接続して、ペルチェ効果により各熱電変換素子中で熱を移動させる(P型では電流と同方向、N型では電流と逆方向に移動させる)、あるいは両配線基板間に温度差を付与して各熱電変換素子にゼーベック効果により起電力を生じさせるもので、冷却、加熱、あるいは発電としての利用が可能である。 In the thermoelectric conversion module, a pair of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements are alternately arranged in the order of P-type, N-type, P-type, and N-type between wiring substrates (insulating substrates). In addition, it is configured to be electrically connected in series, both ends are connected to a DC power supply, and heat is transferred in each thermoelectric conversion element by the Peltier effect (P type has the same direction as the current, N type has the opposite direction to the current). (Move in the direction) or give a temperature difference between both wiring boards to generate electromotive current in each thermoelectric conversion element by the Seebeck effect, which can be used for cooling, heating, or power generation.

ところで、P型熱電変換素子、N型熱電変換素子の両熱電変換素子の熱電変換材料に、線膨張係数の異なる材料を用いた場合は、熱電変換モジュールを熱源に設置すると、線膨張係数の大きな熱電変換素子には圧縮応力が生じ、線膨張係数の小さな熱電変換素子には引張応力が生じる。そして、熱伸縮差により熱応力が生じた場合には、熱電変換素子が配線基板の配線部から剥れたり、熱電変換素子にクラックが生じたりすることがある。この場合には、電気が流れなくなったり、電気伝導度が低下して熱電変換モジュールが動作不能になったり、動作不能に至らなくても発電量が大幅に低下するおそれがある。 By the way, when materials having different linear expansion coefficients are used as the thermoelectric conversion materials for both the P-type thermoelectric conversion element and the N-type thermoelectric conversion element, if the thermoelectric conversion module is installed in the heat source, the linear expansion coefficient is large. Compressive stress is generated in the thermoelectric conversion element, and tensile stress is generated in the thermoelectric conversion element having a small coefficient of linear expansion. When thermal stress is generated due to the difference in thermal expansion and contraction, the thermoelectric conversion element may be peeled off from the wiring portion of the wiring board, or the thermoelectric conversion element may be cracked. In this case, electricity may not flow, the electric conductivity may decrease and the thermoelectric conversion module may become inoperable, or the amount of power generation may be significantly reduced even if the thermoelectric conversion module does not become inoperable.

そこで、例えば特許文献1〜3では、複数の熱電変換素子(熱電半導体材料、熱電変換半導体)を接続する配線(電極)にいわゆる発泡金属(多孔性金属材料、多孔質金属部材)や金属繊維の集合体を用いることにより、配線に柔軟性を与えて、熱伸縮差による熱応力を緩和する試みがなされている。 Therefore, for example, in Patent Documents 1 to 3, so-called foamed metal (porous metal material, porous metal member) or metal fiber is used for wiring (electrode) connecting a plurality of thermoelectric conversion elements (thermoelectric semiconductor material, thermoelectric conversion semiconductor). Attempts have been made to give flexibility to the wiring by using an aggregate and to alleviate the thermal stress due to the difference in thermal expansion and contraction.

特開2007‐103580号公報JP-A-2007-103580 国際公開第2010/010783号International Publication No. 2010/010783 特許5703871号公報Japanese Patent No. 5703871

しかし、特許文献1又は特許文献2では、配線に内部に空洞部を有する多孔性金属材料又は金属繊維の集合体を用いており、これらの部材自体に電流が流れる構成とされている。このため、配線の内部抵抗が大幅に上昇し、熱電変換モジュールの出力を大幅に低下させることが懸念される。 However, in Patent Document 1 or Patent Document 2, a porous metal material or an aggregate of metal fibers having a hollow portion inside is used in the wiring, and a current flows through these members themselves. Therefore, there is a concern that the internal resistance of the wiring will increase significantly and the output of the thermoelectric conversion module will decrease significantly.

一方、特許文献3では、熱電変換モジュールの電極と加熱する熱源との間に多孔質金属部材を挟むとともに、多孔質金属部材と電極との間に絶縁シートを挟むことで、熱電変換モジュールと熱源とを密着させて熱接触を向上させることとしている。しかし、熱電変換モジュールの電極と多孔質金属部材との間が絶縁されていない場合には、多孔質金属部材に電流が流れることで、回路の短絡が生じることが懸念される。 On the other hand, in Patent Document 3, a porous metal member is sandwiched between the electrode of the thermoelectric conversion module and the heat source to be heated, and an insulating sheet is sandwiched between the porous metal member and the electrode, whereby the thermoelectric conversion module and the heat source are sandwiched. And are in close contact with each other to improve thermal contact. However, if the electrode of the thermoelectric conversion module and the porous metal member are not insulated from each other, there is a concern that a short circuit may occur due to the current flowing through the porous metal member.

本発明は、このような事情に鑑みてなされたもので、熱電変換素子の熱伸縮差による破壊を防止でき、接合信頼性及び導電性に優れた熱電変換モジュールを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a thermoelectric conversion module which can prevent destruction of a thermoelectric conversion element due to a difference in thermal expansion and contraction and has excellent bonding reliability and conductivity.

対向配置される一対の配線基板の間に線膨張係数の異なる複数の熱電変換素子が組み合わせて配列され、これらの熱電変換素子が前記配線基板を介して接続された熱電変換モジュールであって、各配線基板は、前記熱電変換素子が接合される配線部を有しており、前記一対の配線基板のうちの少なくとも一方の配線基板において、隣り合う両熱電変換素子の間を接続して設けられる一方の配線部が、両熱電変換素子の間を連結して設けられる多孔質ではない面状の導電層と、前記導電層に接合された多孔質金属層とを有しており、前記熱電変換素子と前記多孔質金属層との間に前記導電層が配設されている。 A thermoelectric conversion module in which a plurality of thermoelectric conversion elements having different linear expansion coefficients are arranged in combination between a pair of wiring boards arranged to face each other, and these thermoelectric conversion elements are connected via the wiring board. The wiring board has a wiring portion to which the thermoelectric conversion elements are joined, and is provided by connecting between two adjacent thermoelectric conversion elements in at least one wiring board of the pair of wiring boards. The wiring portion of the above has a non-porous planar conductive layer provided by connecting both thermoelectric conversion elements and a porous metal layer bonded to the conductive layer, and the thermoelectric conversion element. The conductive layer is disposed between the surface and the porous metal layer.

本発明の熱電変換モジュールにおいては、一対の配線基板のうちの少なくとも一方の配線基板の配線部を、導電層と多孔質金属層とを有する構成としており、このうち導電層に熱電変換素子を接合する構成としているので、熱電変換素子と配線部との接合にろう付けやはんだ付け、固相拡散接合、銀焼結等の種々の接合方法を採用でき、接合方法の自由度を向上でき、熱電変換素子と配線部とを確実に接合できる。また、熱電変換素子と接合される導電層を熱伝導性や導電性に優れたアルミニウム又は銅により形成しているので、配線部により接続される両熱電変換素子間の熱伝導性や導電性を良好に維持できる。また、多孔質金属層は、例えば、焼結により複数の金属繊維(アルミニウム繊維又は銅繊維)が連結されて一体化された金属多孔体や、発泡金属等の内部に複数の空洞部を有する構成とされている。このため、熱電変換素子と配線基板との接合時において、線膨張係数の異なる両熱電変換素子に熱伸縮差が生じても、多孔質金属層が伸縮して寸法変化を吸収するので、多孔質金属層を介して熱電変換素子と配線基板とに均一に押圧荷重を付加でき、熱電変換素子を所望の位置に確実に接合できる。したがって、熱電変換素子と配線基板との接合不良による内部抵抗の増加を回避でき、良好な導電性を確保できるので、熱電変換モジュールの出力を向上させることができる。
また、このように構成される熱電変換モジュールを熱源に設置して、配線部により接続される両熱電変換素子に熱伸縮差が生じた際にも、多孔質金属層が伸縮して寸法変化を吸収するので、熱伸縮差により熱電変換モジュール内に生じる応力の発生を抑制できる。
In the thermoelectric conversion module of the present invention, the wiring portion of at least one of the pair of wiring substrates has a conductive layer and a porous metal layer, and the thermoelectric conversion element is bonded to the conductive layer. Therefore, various joining methods such as brazing, soldering, solid-phase diffusion joining, and silver sintering can be adopted for joining the thermoelectric conversion element and the wiring part, and the degree of freedom of the joining method can be improved. The conversion element and the wiring portion can be reliably joined. Further, since the conductive layer bonded to the thermoelectric conversion element is made of aluminum or copper having excellent thermal conductivity and conductivity, the thermal conductivity and conductivity between the two thermoelectric conversion elements connected by the wiring portion can be improved. Can be maintained well. Further, the porous metal layer has, for example, a metal porous body in which a plurality of metal fibers (aluminum fibers or copper fibers) are connected and integrated by sintering, or a structure having a plurality of cavities inside a foamed metal or the like. It is said that. Therefore, when the thermoelectric conversion element and the wiring board are joined, even if there is a difference in thermal expansion and contraction between the two thermoelectric conversion elements having different linear expansion coefficients, the porous metal layer expands and contracts to absorb the dimensional change, so that the porous metal layer is porous. A pressing load can be uniformly applied to the thermoelectric conversion element and the wiring board via the metal layer, and the thermoelectric conversion element can be reliably bonded to a desired position. Therefore, it is possible to avoid an increase in internal resistance due to poor bonding between the thermoelectric conversion element and the wiring board, and it is possible to secure good conductivity, so that the output of the thermoelectric conversion module can be improved.
Further, when the thermoelectric conversion module configured in this way is installed in the heat source and a difference in thermal expansion and contraction occurs between the two thermoelectric conversion elements connected by the wiring portion, the porous metal layer expands and contracts to change the dimensions. Since it absorbs, it is possible to suppress the generation of stress generated in the thermoelectric conversion module due to the difference in thermal expansion and contraction.

本発明の熱電変換モジュールにおいて、前記導電層は、厚さ0.1mm以上1.2mm以下に形成されているとよい。 In the thermoelectric conversion module of the present invention, the conductive layer is preferably formed to have a thickness of 0.1 mm or more and 1.2 mm or less.

比較的厚さが薄い導電層とすることで、両熱電変換素子の間を連結するように設けられている導電層を両熱電変換素子の熱伸縮に追従して両熱電変換素子の間で容易に屈曲できるので、熱伸縮差により熱電変換モジュール内に生じる応力の発生を抑制でき、配線部により接続される両熱電変換素子間の熱伝導性や導電性を良好に維持できる。 By using a relatively thin conductive layer, the conductive layer provided so as to connect between the two thermoelectric conversion elements can easily follow the thermal expansion and contraction of both thermoelectric conversion elements. It is possible to suppress the generation of stress generated in the thermoelectric conversion module due to the difference in thermal expansion and contraction, and it is possible to maintain good thermal conductivity and conductivity between the two thermoelectric conversion elements connected by the wiring portion.

本発明の熱電変換モジュールにおいて、前記一方の配線基板の配線部には、前記多孔質金属層の前記導電層とは反対側の面に、前記多孔質金属層と主成分が同一の材料により形成された基端側金属層が配設されているとよい。 In the thermoelectric conversion module of the present invention, the wiring portion of the one wiring board is formed of the same material as the porous metal layer as the main component on the surface of the porous metal layer opposite to the conductive layer. It is preferable that the base end side metal layer is provided.

多孔質金属層の導電層とは反対側の面にも基端側金属層を配設しておくことで、基端側金属層にセラミックス基板を各種の接合方法を用いて接合することができ、絶縁性を備えた熱電変換モジュールを構成できる。 By disposing the base end side metal layer on the surface of the porous metal layer opposite to the conductive layer, the ceramic substrate can be joined to the base end side metal layer by various joining methods. , A thermoelectric conversion module with insulation can be configured.

本発明によれば、熱伸縮差による熱電変換素子のクラックや配線基板との剥離等の発生を防止でき、接合信頼性及び導電性に優れた熱電変換モジュールを得ることができる。 According to the present invention, it is possible to prevent cracks in the thermoelectric conversion element and peeling from the wiring board due to the difference in thermal expansion and contraction, and it is possible to obtain a thermoelectric conversion module having excellent bonding reliability and conductivity.

本発明の第1実施形態の熱電変換モジュールの縦断面図である。It is a vertical sectional view of the thermoelectric conversion module of the 1st Embodiment of this invention. 図1のA‐A線の矢視方向の平断面図である。It is a plan sectional view in the direction of the arrow of the line AA of FIG. 図1のB−B線の矢視方向の平断面図である。FIG. 5 is a plan sectional view taken along the line BB of FIG. 1 in the direction of arrow. 本発明の第1実施形態に係る熱電変換モジュールの製造方法を説明する図である。It is a figure explaining the manufacturing method of the thermoelectric conversion module which concerns on 1st Embodiment of this invention. 本発明の第2実施形態の熱電変換モジュールの縦断面図である。It is a vertical sectional view of the thermoelectric conversion module of the 2nd Embodiment of this invention. 本発明の第3実施形態の熱電変換モジュールの縦端面図である。It is a vertical end view of the thermoelectric conversion module of the 3rd Embodiment of this invention. 配線部の内部抵抗の測定方法を説明する模式図であり、(a)がスリットありの導電層を有する配線部、(b)がスリットなしの導電層を有する配線部である。It is a schematic diagram explaining the measurement method of the internal resistance of a wiring part, (a) is a wiring part which has a conductive layer with a slit, (b) is a wiring part which has a conductive layer without a slit. 本発明例及び比較例の熱電変換モジュールの縦断面図であり、(a)が本発明例、(b)が比較例である。It is a vertical sectional view of the thermoelectric conversion module of the present invention example and the comparative example, (a) is the present invention example, and (b) is a comparative example. 本発明例及び比較例の熱電変換モジュールにおけるP型熱電電変換素子と導電層との接合界面の超音波探査像であり、(a)が比較例、(b)が本発明例である。It is an ultrasonic exploration image of the junction interface between the P-type thermoelectric conversion element and the conductive layer in the thermoelectric conversion module of the example of the present invention and the comparative example, (a) is a comparative example, and (b) is an example of the present invention.

以下、本発明の実施形態について、図面を参照して説明する。
第1実施形態の熱電変換モジュール101は、図1〜図3に示すように、対向した配線基板2A,2Bの間に、P型熱電変換素子3及びN型熱電変換素子4を線状(一次元)に配列した構成である。簡便にするため、図1〜図3にはP型熱電変換素子3及びN型熱電変換素子4が二対で配列された例を示しており、合計4個の熱電変換素子3,4が一列に並んで設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the thermoelectric conversion module 101 of the first embodiment, as shown in FIGS. 1 to 3, a P-type thermoelectric conversion element 3 and an N-type thermoelectric conversion element 4 are linearly (primary) between the wiring boards 2A and 2B facing each other. It is a configuration arranged in the original). For the sake of simplicity, FIGS. 1 to 3 show an example in which the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 are arranged in two pairs, and a total of four thermoelectric conversion elements 3 and 4 are arranged in a row. It is provided side by side.

P型熱電変換素子3及びN型熱電変換素子4の熱電変換材料としては、テルル化合物、スクッテルダイト、充填スクッテルダイト、ホイスラー、ハーフホイスラー、クラストレート、シリサイド、酸化物、シリコンゲルマニウムなどがあり、P型熱電変換素子3の材料として、BiTe、SbTe、PbTe、TAGS(=Ag‐Sb‐Ge‐Te)、ZnSb、CoSb、CeFeSb12、Yb14MnSb11、FeVAl、MnSi1.73、FeSi、NaCoO、CaCo、BiSrCo、SiGeなどが用いられ、N型熱電変換素子4の材料として、BiTe、PbTe、LaTe、CoSb、FeVAl、ZrNiSn、BaAl16Si30、MgSi、FeSi、SrTiO、CaMnO、ZnO、SiGeなどが用いられる。以上のようにドーパントによりP型とN型の両方をとれる化合物と、P型かN型のどちらか一方のみの性質をもつ化合物があるが、本発明は特にP型かN型のどちらか一方のみの性質をもつ化合物を用い、線熱膨張係数が異なる材料同士を熱電変換モジュールとした際に、特に、効果を発揮する。 Examples of the thermoelectric conversion material of the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 include tellurium compounds, scuterdite, filled scuterdite, whistler, half whistler, crushers, silicides, oxides, and silicon germanium. , Bi 2 Te 3 , Sb 2 Te 3 , PbTe, TAGS (= Ag-Sb-Ge-Te), Zn 4 Sb 3 , CoSb 3 , CeFe 4 Sb 12 , Yb 14 as materials for the P-type thermoelectric conversion element 3. MnSb 11 , FeVAL, MnSi 1.73 , FeSi 2 , Na x CoO 2 , Ca 3 Co 4 O 7 , Bi 2 Sr 2 Co 2 O 7 , SiGe and the like are used as materials for the N-type thermoelectric conversion element 4. Bi 2 Te 3, PbTe, La 3 Te 4, CoSb 3, feVAl, ZrNiSn, Ba 8 Al 16 Si 30, Mg 2 Si, FeSi 2, SrTiO 3, CaMnO 3, ZnO, etc. SiGe is used. As described above, there are compounds that can take both P-type and N-type depending on the dopant, and compounds that have only one of P-type and N-type, but the present invention particularly includes either P-type or N-type. It is particularly effective when a compound having only one property is used and materials having different coefficients of linear thermal expansion are used as a thermoelectric conversion module.

また、環境への影響が少なく、資源埋蔵量も豊富なシリサイド系材料が注目されており、中温型(300℃〜500℃程度)の熱電変換モジュール101の熱電変換材料として、P型熱電変換素子3にマンガンシリサイド(MnSi1.73)、N型熱電変換素子4にマグネシウムシリサイド(MgSi)が用いられるが、その際、P型熱電変換素子3に用いられるマンガンシリサイドの線膨張係数は10×10−6/K程度であり、N型熱電変換素子4に用いられるマグネシウムシリサイドの線膨張係数は17×10−6/K程度である。
そして、これら熱電変換素子3,4は、例えば横断面が正方形(例えば、一辺が1mm〜8mm)の角柱状に形成され、長さ(図1の上下方向に沿う長さ)は2mm〜8mmとされ、P型熱電変換素子3の長さとN型熱電変換素子4の長さは、ほぼ同じ長さに設定されている。なお、各熱電変換素子3,4の両端面にはニッケル、金等からなるメタライズ層35が形成される。
In addition, silicide-based materials that have little impact on the environment and have abundant resource reserves are attracting attention, and P-type thermoelectric conversion elements are used as thermoelectric conversion materials for medium-temperature type (about 300 ° C to 500 ° C) thermoelectric conversion modules 101. Manganese silicide (MnSi 1.73 ) is used for 3, and magnesium silicide (Mg 2 Si) is used for the N-type thermoelectric conversion element 4. At that time, the linear expansion coefficient of manganese silicide used for the P-type thermoelectric conversion element 3 is 10. It is about × 10-6 / K, and the linear expansion coefficient of magnesium silicide used in the N-type thermoelectric conversion element 4 is about 17 × 10-6 / K.
The thermoelectric conversion elements 3 and 4 are formed in a prismatic shape having a square cross section (for example, 1 mm to 8 mm on a side) and have a length (length along the vertical direction of FIG. 1) of 2 mm to 8 mm. Therefore, the length of the P-type thermoelectric conversion element 3 and the length of the N-type thermoelectric conversion element 4 are set to be substantially the same length. A metallized layer 35 made of nickel, gold, or the like is formed on both end faces of the thermoelectric conversion elements 3 and 4.

配線基板2A,2Bは、絶縁基板21の一方の面に配線部11A,11Bが形成され、他方の面に熱伝達金属層22が形成されている。絶縁基板21は、一般的なセラミックス基板、例えばアルミナ(Al)、窒化アルミニウム(AlN)、窒化ケイ素(Si)や、グラファイト板上に成膜したダイヤモンド薄膜基板等の熱伝導性の高い絶縁性を有する部材が用いられる。例えば、絶縁基板21をセラミックス基板により形成した場合には、厚みが0.2mm〜1.5mmとされる。 In the wiring boards 2A and 2B, the wiring portions 11A and 11B are formed on one surface of the insulating substrate 21, and the heat transfer metal layer 22 is formed on the other surface. The insulating substrate 21 is a general ceramic substrate, for example, thermal conductivity of alumina (Al 2 O 3 ), aluminum nitride (Al N), silicon nitride (Si 3 N 4 ), a diamond thin film substrate formed on a graphite plate, or the like. A member having high insulating properties is used. For example, when the insulating substrate 21 is formed of a ceramic substrate, the thickness is 0.2 mm to 1.5 mm.

配線部11A,11Bは、図1に示されるように、導電層12と、多孔質金属層13と、基端側金属層14,15とを有する構成とされている。また、配線基板2Aには、図2に示すように、平面視長方形状の配線部11Aが形成されており、配線層11Aは、隣り合うP型熱電変換素子3とN型熱電変換素子4とを接続するように設けられている。そして、隣り合う両熱電変換素子3,4の間を接続して設けられる配線部11Aの導電層12は、両熱電変換素子3,4の間に連結して設けられている。一方、配線基板2Bには、図3に示すように、平面視正方形状の配線部11Bが形成されており、配線部11Bには、外部に接続するための外部配線部15aが形成されている。なお、外部配線部15aは、基端側金属層15に形成されている。また、配線部11A,11Bの平面サイズ(面積)は、これら配線部11A,11Bに接続される熱電変換素子3,4の大きさに応じて、熱電変換素子3,4の端面の面積よりも若干大きく設定されている。 As shown in FIG. 1, the wiring portions 11A and 11B have a structure including a conductive layer 12, a porous metal layer 13, and base end side metal layers 14 and 15. Further, as shown in FIG. 2, the wiring board 2A is formed with a rectangular wiring portion 11A in a plan view, and the wiring layer 11A includes adjacent P-type thermoelectric conversion elements 3 and N-type thermoelectric conversion elements 4. Is provided to connect. The conductive layer 12 of the wiring portion 11A provided by connecting the adjacent both thermoelectric conversion elements 3 and 4 is provided by connecting between the two thermoelectric conversion elements 3 and 4. On the other hand, as shown in FIG. 3, the wiring board 2B is formed with a square-shaped wiring portion 11B in a plan view, and the wiring portion 11B is formed with an external wiring portion 15a for connecting to the outside. .. The external wiring portion 15a is formed on the base end side metal layer 15. Further, the plane size (area) of the wiring portions 11A and 11B is larger than the area of the end faces of the thermoelectric conversion elements 3 and 4 according to the size of the thermoelectric conversion elements 3 and 4 connected to the wiring portions 11A and 11B. It is set slightly larger.

配線部11A,11Bを構成する各金属層12〜15のうち、導電層12は、アルミニウム又は銅を主成分とする材料(アルミニウム、アルミニウム合金、銅又は銅合金)により面状に形成されている。この導電層12の材料としては、純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)や純度99.9質量%以上の銅からなる金属板が好ましく、導電層12の厚さとしては、0.1mm以上1.2mm以下とされる。このように、導電層12の厚さを比較的薄く形成しておくことで、隣り合う両熱電変換素子3,4の間を連結して設けられる面状の導電層12を両熱電変換素子3,4の熱伸縮に追従させてこれら熱電変換素子3,4の間で容易に屈曲できる。 Of the metal layers 12 to 15 constituting the wiring portions 11A and 11B, the conductive layer 12 is formed in a planar shape by a material containing aluminum or copper as a main component (aluminum, aluminum alloy, copper or copper alloy). .. As the material of the conductive layer 12, a metal plate made of aluminum having a purity of 99.99% by mass or more (so-called 4N aluminum) or copper having a purity of 99.9% by mass or more is preferable, and the thickness of the conductive layer 12 is 0. .1 mm or more and 1.2 mm or less. By forming the thickness of the conductive layer 12 relatively thin in this way, the planar conductive layer 12 provided by connecting the adjacent both thermoelectric conversion elements 3 and 4 is formed by the bithermal conversion element 3. , 4 can be easily bent between these thermoelectric conversion elements 3 and 4 by following the thermal expansion and contraction of 4.

なお、導電層12の厚さが0.1mm未満では導電性が低下し、1.2mmを超えると熱電変換素子3,4に対する追従性が低下する。また、導電層12の厚さが0.1mm未満であると、熱電変換素子3,4との接合時に接合材の成分が導電層12を貫通し、多孔質金属層13にまで達することで、多孔質金属層13が溶融するおそれがある。 If the thickness of the conductive layer 12 is less than 0.1 mm, the conductivity is lowered, and if it exceeds 1.2 mm, the followability to the thermoelectric conversion elements 3 and 4 is lowered. Further, if the thickness of the conductive layer 12 is less than 0.1 mm, the component of the bonding material penetrates the conductive layer 12 at the time of joining with the thermoelectric conversion elements 3 and 4, and reaches the porous metal layer 13. The porous metal layer 13 may melt.

なお、図示は省略するが、導電層12の一方の表面には銀下地層が形成されており、この銀下地層と熱電変換素子3,4の端面とが接合されている。また、導電層12の他方の表面(裏面)には、導電層12と主成分を同一の材料により形成された多孔質金属層13が設けられ、多孔質金属層13の他方の表面(裏面)に基端側金属層14,15が設けられている。なお、図示例では、外部配線部15aを除く基端側金属層14,15の一方の表面全体に多孔質金属層13が設けられ、多孔質金属層13の一方の表面全体に導電層12が設けられている。 Although not shown, a silver base layer is formed on one surface of the conductive layer 12, and the silver base layer and the end faces of the thermoelectric conversion elements 3 and 4 are joined to each other. Further, on the other front surface (back surface) of the conductive layer 12, a porous metal layer 13 in which the main component is formed of the same material as the conductive layer 12 is provided, and the other front surface (back surface) of the porous metal layer 13 is provided. The base end side metal layers 14 and 15 are provided on the surface. In the illustrated example, the porous metal layer 13 is provided on the entire surface of one of the base end side metal layers 14 and 15 excluding the external wiring portion 15a, and the conductive layer 12 is provided on the entire surface of one of the porous metal layers 13. It is provided.

このように、基端側金属層14,15は、多孔質金属層13の導電層12とは反対側の面に接合されている。そして、基端側金属層14,15は、多孔質金属層13と主成分が同一(アルミニウム又は銅)の材料により形成されており、純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)や純度99.9質量%以上の銅が好ましい材料とされる。なお、基端側金属層14,15の厚みは0.05mm以上2.0mm以下とされる。 In this way, the base end side metal layers 14 and 15 are joined to the surface of the porous metal layer 13 opposite to the conductive layer 12. The base end side metal layers 14 and 15 are formed of a material having the same main component (aluminum or copper) as the porous metal layer 13, and have a purity of 99.99% by mass or more (so-called 4N aluminum) or Copper having a purity of 99.9% by mass or more is a preferable material. The thickness of the base end side metal layers 14 and 15 is 0.05 mm or more and 2.0 mm or less.

また、多孔質金属層13は、例えば、焼結により複数の金属繊維(アルミニウム繊維又は銅繊維)が連結されて一体化された金属多孔体や、発泡金属等により形成され、内部に複数の空洞部を有する構成とされている。
多孔質金属層13に適用される金属多孔体は、導電層12と主成分を同一の材料(アルミニウム又は銅)とする複数の金属繊維が焼結されてなるものである。すなわち、導電層12がアルミニウムを主成分とする材料により形成される場合は、金属多孔体の金属繊維がアルミニウム繊維で構成され、導電層12が銅を主成分とする材料により形成される場合は、金属多孔体の金属繊維が銅繊維で構成される。そして、金属多孔体は、焼結により複数の金属繊維が互いに連結されて一体化されたものであり、内部に複数の空隙部を有する構成とされる。なお、金属多孔体を構成する各々の金属繊維の外周面には、その外周面から外方に突出する長さが短く、径が細い柱状突起が間隔をおいて複数形成され、隣接する金属繊維が互いの柱状突起において連結されて一体化されている。
Further, the porous metal layer 13 is formed of, for example, a metal porous body in which a plurality of metal fibers (aluminum fibers or copper fibers) are connected and integrated by sintering, a foamed metal, or the like, and a plurality of cavities inside. It is configured to have a part.
The metal porous body applied to the porous metal layer 13 is formed by sintering a plurality of metal fibers using the same material (aluminum or copper) as the main component of the conductive layer 12. That is, when the conductive layer 12 is formed of a material containing aluminum as a main component, the metal fibers of the metal porous body are composed of aluminum fibers, and the conductive layer 12 is formed of a material containing copper as a main component. , The metal fiber of the metal porous body is composed of copper fiber. The metal porous body is formed by connecting a plurality of metal fibers to each other and integrating them by sintering, and has a structure having a plurality of voids inside. On the outer peripheral surface of each metal fiber constituting the metal porous body, a plurality of columnar protrusions having a short length protruding outward from the outer peripheral surface and having a small diameter are formed at intervals, and adjacent metal fibers are formed. Are connected and integrated in each other's columnar protrusions.

また、金属多孔体は、気孔率が20%以上90%以下とされるものを好適に用いることができる。
なお、金属多孔体の気孔率が20%未満であると、金属多孔体中の金属繊維が密となり、金属多孔体を伸縮させる際に大きな荷重が必要となる。このため、熱電変換素子3,4の熱伸縮に応じた応力緩和効果を得ることが難しくなる。また、気孔率が90%を超える金属多孔体を作ることは難しい。
Further, as the metal porous body, one having a porosity of 20% or more and 90% or less can be preferably used.
If the porosity of the metal porous body is less than 20%, the metal fibers in the metal porous body become dense, and a large load is required to expand and contract the metal porous body. Therefore, it becomes difficult to obtain a stress relaxation effect according to the thermal expansion and contraction of the thermoelectric conversion elements 3 and 4. Moreover, it is difficult to produce a metal porous body having a porosity of more than 90%.

アルミニウム繊維からなる金属多孔体を例にして金属多孔体の製造方法について簡単に説明しておくと、金属多孔体は、常温において、平均線径が40〜300μm(好ましくは50〜200μm)であって長さが0.2〜20mm(好ましくは1〜10mm)の多数本のアルミニウム繊維に、平均粒径が1〜50μm(好ましくは5〜30μm)のチタン粉もしくは水素化チタン粉又はこれらの混合粉を加えて混合したものを、590℃〜665℃で加熱することで多数本のアルミニウム繊維が連結されて成形される。 Taking a metal porous body made of aluminum fiber as an example, a method for producing the metal porous body will be briefly described. The metal porous body has an average wire diameter of 40 to 300 μm (preferably 50 to 200 μm) at room temperature. A large number of aluminum fibers having a length of 0.2 to 20 mm (preferably 1 to 10 mm) and titanium powder or titanium hydride powder having an average particle size of 1 to 50 μm (preferably 5 to 30 μm) or a mixture thereof. A large number of aluminum fibers are connected and formed by heating a mixture of powder added at 590 ° C to 665 ° C.

そして、多孔質金属層13は、このように構成される金属多孔体により形成され、熱電変換素子3,4と配線部11A,11Bとの接合時に加わる接合荷重によって、一方向(厚み方向)に押圧されることにより熱電変換素子3,4と接している部分が圧縮されている。 The porous metal layer 13 is formed of the metal porous body configured in this way, and is unidirectionally (thickness direction) due to the joining load applied at the time of joining the thermoelectric conversion elements 3 and 4 and the wiring portions 11A and 11B. By being pressed, the portion in contact with the thermoelectric conversion elements 3 and 4 is compressed.

例えば、少なくとも2つの部材が接合された接合体に対し、一定の高さを保つことで接合荷重を負荷する構造の治具を用いて、多孔質金属層13を有する配線部11A,11Bと熱電変換素子3,4とを接合するた場合、多孔質金属層13を用いた配線部11A,11Bに荷重を加えた際に、多孔質金属層13が圧縮されて厚さが小さくなることで荷重が緩和され、配線部11A,11Bと熱電変換素子3,4とに十分な接合荷重を付与することができない。このため、接合荷重を加える際には、荷重を加えて金属多孔質層13の厚さを小さくした後に、さらに目的の値まで接合荷重を追加する必要がある。あるいは、先に多孔質金属層13を用いた配線部11A,11Bを接合荷重以上の荷重により圧縮しておき、多孔質金属層13を圧縮した後に配線部11A,11Bと熱電変換素子3,4と組み立てて接合しても良い。いずれにせよ、製造された熱電変換モジュール101の多孔質金属層13は、接合荷重により圧縮される量以上に圧縮された状態となる。 For example, using a jig having a structure in which a joining load is applied to a joined body in which at least two members are joined by maintaining a constant height, the wiring portions 11A and 11B having the porous metal layer 13 and thermoelectrics are used. When the conversion elements 3 and 4 are joined, when a load is applied to the wiring portions 11A and 11B using the porous metal layer 13, the porous metal layer 13 is compressed and the thickness is reduced, so that the load is reduced. Is relaxed, and a sufficient joining load cannot be applied to the wiring portions 11A and 11B and the thermoelectric conversion elements 3 and 4. Therefore, when applying the joining load, it is necessary to apply the load to reduce the thickness of the metal porous layer 13 and then further add the joining load to a target value. Alternatively, the wiring portions 11A and 11B using the porous metal layer 13 are first compressed by a load equal to or larger than the joining load, and after the porous metal layer 13 is compressed, the wiring portions 11A and 11B and the thermoelectric conversion elements 3 and 4 are used. You may assemble and join with. In any case, the porous metal layer 13 of the manufactured thermoelectric conversion module 101 is in a state of being compressed more than the amount compressed by the joining load.

また、発泡金属は、多数の気孔(空洞部)を含む多孔質金属であり、機構の直径としては一般的に数μmから数cmとされる。この発泡金属は、ガスの発泡現象を利用して製造した多数の気泡をもつ三次元網目状をなす金属であり、金属フォームとも称される。また、多孔質樹脂の骨格表面に金属を被覆し、その後、樹脂だけを焼失させて三次元網目状の金属骨格を形成させたものも、発泡金属に含まれるものとする。 Further, the foamed metal is a porous metal containing a large number of pores (cavities), and the diameter of the mechanism is generally set to several μm to several cm. This foamed metal is a three-dimensional network-like metal having a large number of bubbles produced by utilizing the foaming phenomenon of gas, and is also called a metal foam. Further, the foam metal also includes a porous resin whose skeleton surface is coated with a metal and then only the resin is burnt to form a three-dimensional network-like metal skeleton.

また、熱伝達金属層22は、アルミニウム、アルミニウム合金、銅又は銅合金からなり、絶縁基板21の表面に接合されることにより形成されている。熱伝達金属層22の材料としては、純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)や純度99.9質量%以上の銅が好ましい。特に限定されるものではないが、基端側金属層14,15と同程度の純度と厚みとするのが好ましい。
これら基端側金属層14,15及び熱伝達金属層22の絶縁基板21(セラミックス基板)への接合は、ろう材等を用いて行われる。
Further, the heat transfer metal layer 22 is made of aluminum, an aluminum alloy, copper or a copper alloy, and is formed by joining to the surface of the insulating substrate 21. As the material of the heat transfer metal layer 22, aluminum having a purity of 99.99% by mass or more (so-called 4N aluminum) or copper having a purity of 99.9% by mass or more is preferable. Although not particularly limited, it is preferable that the purity and thickness are about the same as those of the base end side metal layers 14 and 15.
The base end side metal layers 14 and 15 and the heat transfer metal layer 22 are joined to the insulating substrate 21 (ceramic substrate) by using a brazing material or the like.

次に、このように構成された熱電変換モジュール101を製造する方法を、伝導層12と基端側金属層14,15がアルミニウムを主成分とする材料により形成され、多孔質金属層13がアルミニウム繊維からなる金属多孔体により形成される場合について説明する。 Next, in the method of manufacturing the thermoelectric conversion module 101 configured in this way, the conductive layer 12 and the base end side metal layers 14 and 15 are formed of a material containing aluminum as a main component, and the porous metal layer 13 is made of aluminum. A case where the metal porous body made of fibers is formed will be described.

(配線基板の製造)
配線基板2A,2Bは、まず、例えば図4(a)に示すように、絶縁基板21(セラミックス基板)の一方の面に配線部11A,11Bを構成する基端側金属層14,15を、他方の面に熱伝達金属層22を、Al‐Si系ろう材等により接合する。この場合、絶縁基板21に基端側金属層14,15となるアルミニウム板及び、熱伝達金属層22となるアルミニウム板をそれぞれろう材を介して積層し、これらを積層方向に加圧した状態で610℃〜650℃に加熱することにより、絶縁基板21に基端側金属層14,15及び熱伝達金属層22を接合する。
(Manufacturing of wiring board)
In the wiring boards 2A and 2B, first, as shown in FIG. 4A, for example, the base end side metal layers 14 and 15 constituting the wiring portions 11A and 11B are provided on one surface of the insulating substrate 21 (ceramic substrate). The heat transfer metal layer 22 is joined to the other surface with an Al—Si brazing material or the like. In this case, an aluminum plate to be the base end side metal layers 14 and 15 and an aluminum plate to be a heat transfer metal layer 22 are laminated on the insulating substrate 21 via a brazing material, respectively, and these are pressurized in the lamination direction. By heating to 610 ° C. to 650 ° C., the base end side metal layers 14 and 15 and the heat transfer metal layer 22 are bonded to the insulating substrate 21.

次に、常温において、アルミニウム繊維(金属繊維)にチタン粉もしくは水素化チタン粉又はこれらの混合粉を加えて混合したものを、基端側金属層14,15上に配置する。そして、さらにこのチタン粉等が混合されたアルミニウム繊維の上に導電層12となるアルミニウム板を重ねて、基端側金属層14,15と導電層12となるアルミニウム板との間にアルミニウム繊維の混合物を挟んだ状態としておき、この状態で590℃〜650℃で加熱することにより、多数本のアルミニウム繊維を連結して、図4(b)に示すように、基端側金属層14,15上に金属多孔体からなる多孔質金属層13を成形するとともに、導電層12を多孔質金属層13を介して一体に設け、配線部11A,11Bを有する配線基板2A,2Bを形成する。熱電変換素子との接合にろう材を用いることができない場合(おおむね550℃以上の温度域で熱電変換素子の耐久性が不足する場合)、導電層12の上にガラス含有銀ペーストを塗布して、焼成することにより銀下地層を形成してもよい。 Next, at room temperature, titanium powder, hydrogenated titanium powder, or a mixture of these is added to aluminum fibers (metal fibers) and mixed, and the mixture is placed on the base end side metal layers 14 and 15. Then, an aluminum plate to be the conductive layer 12 is further superposed on the aluminum fiber mixed with the titanium powder or the like, and the aluminum fiber is formed between the base end side metal layers 14 and 15 and the aluminum plate to be the conductive layer 12. By sandwiching the mixture and heating it at 590 ° C to 650 ° C in this state, a large number of aluminum fibers are connected, and as shown in FIG. 4 (b), the base end side metal layers 14, 15 A porous metal layer 13 made of a metal porous body is formed on the surface, and a conductive layer 12 is integrally provided via the porous metal layer 13 to form wiring substrates 2A and 2B having wiring portions 11A and 11B. When a brazing material cannot be used for bonding with the thermoelectric conversion element (when the durability of the thermoelectric conversion element is insufficient in a temperature range of about 550 ° C. or higher), a glass-containing silver paste is applied on the conductive layer 12. , The silver base layer may be formed by firing.

なお、配線基板2A,2Bは、大型(大面積)のセラミックス基板を用いることにより、個々の配線基板2A,2Bが連結された状態で形成することもできる。具体的には、大型のセラミックス基板に各金属層12〜15,22を接合した後、大型のセラミックス基板をワイヤーソー等により切断することにより、各セラミックス基板21に個片化して、配線基板2A,2Bを形成できる。
なお、配線基板に基端側金属層、セラミックス基板、熱伝達金属層を設けずに、導電層と多孔質金属層とで配線基板を構成する場合には、導電層となるアルミニウム板上にチタン粉等が混合されたアルミニウム繊維を配置した後に、そのままの状態で加熱を行えばよい。
The wiring boards 2A and 2B can also be formed in a state in which the individual wiring boards 2A and 2B are connected by using a large-sized (large area) ceramic substrate. Specifically, after joining the metal layers 12 to 15 and 22 to the large ceramic substrate, the large ceramic substrate is cut into individual pieces into each ceramic substrate 21 by cutting the large ceramic substrate with a wire saw or the like, and the wiring board 2A. , 2B can be formed.
When the wiring board is composed of the conductive layer and the porous metal layer without providing the base end side metal layer, the ceramics substrate, and the heat transfer metal layer on the wiring board, titanium is placed on the aluminum plate to be the conductive layer. After arranging the aluminum fiber mixed with the powder or the like, heating may be performed as it is.

また、本実施形態においては、熱電変換素子3,4と接合される導電層12をアルミニウムが含まれる材料で形成していることから、熱電変換素子3,4にシリコン(Si),マグネシウム(Mg),マンガン(Mn),ニッケル(Ni)が含有される素子を用いる場合は、熱電変換素子3,4と各配線基板2A,2Bとの接合前に、これらの配線基板2A,2Bを積層方向(厚み方向)に、熱電変換素子3,4と各配線基板2A,2Bとの接合荷重で押圧することにより、多孔質金属層13を圧縮しておくと良い。なお、導電層12を銅が含まれる材料で形成した場合には、熱電変換素子3,4にアルミニウム(Al)が含有される素子を用いる場合も同様である。配線基板2A,2Bと熱電変換素子3,4との接合時において、隣り合うP型熱電変換素子3とN型熱電変換素子4とを接続する配線部11Aの中間部分が加熱によりだれることがあり、この場合に、導電層12と各熱電変換素子3,4とが接触することで融点降下を生じることを防止するためである。 Further, in the present embodiment, since the conductive layer 12 bonded to the thermoelectric conversion elements 3 and 4 is formed of a material containing aluminum, silicon (Si) and magnesium (Mg) are attached to the thermoelectric conversion elements 3 and 4. ), Manganese (Mn), and nickel (Ni) are used, these wiring boards 2A and 2B are laminated in the stacking direction before joining the thermoelectric conversion elements 3 and 4 to the respective wiring boards 2A and 2B. It is preferable to compress the porous metal layer 13 by pressing (in the thickness direction) with the joining load between the thermoelectric conversion elements 3 and 4 and the respective wiring boards 2A and 2B. When the conductive layer 12 is made of a material containing copper, the same applies to the case where an element containing aluminum (Al) is used for the thermoelectric conversion elements 3 and 4. At the time of joining the wiring boards 2A and 2B and the thermoelectric conversion elements 3 and 4, the intermediate portion of the wiring portion 11A connecting the adjacent P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 may drip due to heating. This is to prevent the melting point from dropping due to contact between the conductive layer 12 and the thermoelectric conversion elements 3 and 4 in this case.

(熱電変換素子の接合)
銀下地層がある場合、配線基板2A,2Bに設けられた導電層12の銀下地層の上に銀ペーストをスクリーン印刷法等によって塗布し、乾燥させた後、図4(c)に示すように、その銀ペースト層の上に熱電変換素子3,4の端面を重ね合わせるようにして配線基板2A,2Bの間にP型熱電変換素子3及びN型熱電変換素子4を並べて配置し、加熱炉内で、加圧力(接合荷重):0(自重のみ)〜30MPa(好ましくは0.01MPa〜3MPa)、焼成温度:150〜400℃で加熱焼成することにより、導電層12と熱電変換素子3,4とを銀接合層を介して接合し、配線基板2A,2Bの間に、P型熱電変換素子3及びN型熱電変換素子4が直列に接続された熱電変換モジュール101を製造する。あるいは、配線基板2A,2Bに設けられた導電層12と、P型熱電変換素子3およびN型熱電変換素子4との間にろう材を挿入し、加熱炉内で、加圧力(接合荷重):0.01〜10MPa、接合温度:585〜600℃で接合しても良い。
(Joining thermoelectric conversion elements)
When there is a silver base layer, a silver paste is applied on the silver base layer of the conductive layer 12 provided on the wiring boards 2A and 2B by a screen printing method or the like, dried, and then as shown in FIG. 4C. The P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 are arranged side by side between the wiring boards 2A and 2B so that the end faces of the thermoelectric conversion elements 3 and 4 are overlapped on the silver paste layer, and heated. The conductive layer 12 and the thermoelectric conversion element 3 are heated and fired in the furnace at a pressing force (joining load): 0 (self-weight only) to 30 MPa (preferably 0.01 MPa to 3 MPa) and a firing temperature: 150 to 400 ° C. , 4 are joined via a silver bonding layer, and a thermoelectric conversion module 101 in which a P-type thermoelectric conversion element 3 and an N-type thermoelectric conversion element 4 are connected in series between wiring boards 2A and 2B is manufactured. Alternatively, a brazing material is inserted between the conductive layer 12 provided on the wiring boards 2A and 2B and the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4, and a pressing force (joining load) is applied in the heating furnace. : 0.01 to 10 MPa, bonding temperature: 585 to 600 ° C. may be bonded.

この際、熱電変換素子3,4と配線基板2A,2Bとの接合時における積層方向への接合荷重は、30MPa以下とする。これにより、線膨張係数の異なる両熱電変換素子3,4に熱伸縮差が生じても、多孔質金属層13が伸縮して寸法変化を吸収するので、多孔質金属層13を介して熱電変換素子3,4と配線基板2A,2Bとに均一に接合荷重を付加でき、熱電変換素子3,4を所望の位置に確実に接合できる。
なお、熱電変換素子3,4と配線基板2A,2Bとの接合時に付加される焼成温度は、上記のように600℃以下で行う必要がある。アルミニウム繊維からなる多孔質金属層13にあっては、焼成温度が600℃を超えると、多孔質金属層13中のアルミニウム繊維同士が焼結し、多孔質金属層13の応力緩和効果が減少するおそれがある。
At this time, the joining load in the stacking direction at the time of joining the thermoelectric conversion elements 3 and 4 and the wiring boards 2A and 2B is 30 MPa or less. As a result, even if there is a difference in thermal expansion and contraction between the thermoelectric conversion elements 3 and 4 having different linear expansion coefficients, the porous metal layer 13 expands and contracts to absorb the dimensional change, so that thermoelectric conversion is performed through the porous metal layer 13. A bonding load can be uniformly applied to the elements 3 and 4 and the wiring boards 2A and 2B, and the thermoelectric conversion elements 3 and 4 can be reliably bonded to a desired position.
The firing temperature applied when the thermoelectric conversion elements 3 and 4 are joined to the wiring boards 2A and 2B needs to be 600 ° C. or lower as described above. In the porous metal layer 13 made of aluminum fibers, when the firing temperature exceeds 600 ° C., the aluminum fibers in the porous metal layer 13 are sintered with each other, and the stress relaxation effect of the porous metal layer 13 is reduced. There is a risk.

このようにして製造された熱電変換モジュール101は、図1の上側に外部の熱源5が配置され、下側に冷却流路6等が配置される。これにより、各熱電変換素子3,4に上下の温度差に応じた起電力が発生し、配列の両端の外部配線部15a間に、各熱電変換素子3,4に生じる起電力の総和の電位差を得ることができる。 In the thermoelectric conversion module 101 manufactured in this manner, the external heat source 5 is arranged on the upper side of FIG. 1, and the cooling flow path 6 and the like are arranged on the lower side. As a result, electromotive forces are generated in the thermoelectric conversion elements 3 and 4 according to the temperature difference between the upper and lower sides, and the potential difference of the total electromotive force generated in the thermoelectric conversion elements 3 and 4 between the external wiring portions 15a at both ends of the array. Can be obtained.

そして、このような使用環境下において、熱電変換モジュール101の両熱電変換素子3,4の熱膨張に差が生じるが、隣り合うP型熱電変換素子3とN型熱電変換素子4とを接続する配線部11A,11Bを、導電層12と多孔質金属層13とを有する構成としているので、配線部11A,11Bにより互いに接続される両熱電変換素子3,4に熱伸縮差が生じても、多孔質金属層13が伸縮して寸法変化を吸収する。このため、熱電変換素子3,4の熱伸縮差により熱電変換モジュール101内に生じる応力の発生を抑制できる。 Then, in such a usage environment, although there is a difference in the thermal expansion of both thermoelectric conversion elements 3 and 4 of the thermoelectric conversion module 101, the adjacent P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 are connected. Since the wiring portions 11A and 11B have a conductive layer 12 and a porous metal layer 13, even if there is a difference in thermal expansion and contraction between the two thermoelectric conversion elements 3 and 4 connected to each other by the wiring portions 11A and 11B, The porous metal layer 13 expands and contracts to absorb dimensional changes. Therefore, it is possible to suppress the generation of stress generated in the thermoelectric conversion module 101 due to the difference in thermal expansion and contraction of the thermoelectric conversion elements 3 and 4.

一方、熱電変換モジュール101が常温に戻された際にも、多孔質金属層13が配線基板2A,2Bと熱電変換素子3,4との間で押圧又は引っ張られ、多孔質金属層13が容易に伸縮して寸法変化を吸収するので、この場合においても、熱伸縮差により熱電変換モジュール101内に生じる応力の発生を抑制できる。このように、多孔質金属層13は、伸長と圧縮を繰り返すことができる。 On the other hand, even when the thermoelectric conversion module 101 is returned to room temperature, the porous metal layer 13 is pressed or pulled between the wiring boards 2A and 2B and the thermoelectric conversion elements 3 and 4, and the porous metal layer 13 is easily formed. Since it expands and contracts to absorb dimensional changes, it is possible to suppress the generation of stress generated in the thermoelectric conversion module 101 due to the difference in thermal expansion and contraction. In this way, the porous metal layer 13 can be repeatedly stretched and compressed.

また、熱電変換モジュール101では、多孔質金属層13の表面に、導電層12を設け、導電層12と熱電変換素子3,4とを接合しており、導電層12を熱伝導性や導電性に優れた高純度のアルミニウム又は銅により形成しているので、配線部11A,11Bにより接続される両熱電変換素子3,4間の熱伝導性や導電性を導電層21によって良好に維持できる。また、導電層12は、柔軟性の高い高純度のアルミニウム又は銅により形成されるので、本実施形態のように、両熱電変換素子3,4の間を連結するように設けられていても、両熱電変換素子3,4の間で容易に屈曲でき、両熱電変換素子3,4の熱伸縮を阻害することもない。また、導電層12を設けることで、配線部11,12と熱電変換素子3,4との接合において、ろう付けやはんだ付け、固相拡散接合、銀焼結等の種々の接合方法を採用でき、接合方法の自由度が向上するので、導電層12と熱電変換素子3,4とを確実に接合できる。 Further, in the thermoelectric conversion module 101, a conductive layer 12 is provided on the surface of the porous metal layer 13 to join the conductive layer 12 and the thermoelectric conversion elements 3 and 4, and the conductive layer 12 is thermally conductive or conductive. Since it is formed of high-purity aluminum or copper having excellent properties, the conductive layer 21 can satisfactorily maintain the thermal conductivity and conductivity between the two thermoelectric conversion elements 3 and 4 connected by the wiring portions 11A and 11B. Further, since the conductive layer 12 is formed of highly flexible high-purity aluminum or copper, even if it is provided so as to connect the two thermoelectric conversion elements 3 and 4 as in the present embodiment. It can be easily bent between the two thermoelectric conversion elements 3 and 4, and does not hinder the thermal expansion and contraction of the both thermoelectric conversion elements 3 and 4. Further, by providing the conductive layer 12, various joining methods such as brazing, soldering, solid phase diffusion joining, and silver sintering can be adopted for joining the wiring portions 11 and 12 and the thermoelectric conversion elements 3 and 4. Since the degree of freedom in the joining method is improved, the conductive layer 12 and the thermoelectric conversion elements 3 and 4 can be reliably joined.

さらに、多孔質金属層13は、導電層12と主成分が同一の材料として、熱伝導性や導電性に優れたアルミニウム又は銅により形成されているので、配線部11A,11Bにより接続される両熱電変換素子3,4間の熱伝導性や導電性を多孔質金属層13によっても良好に維持でき、接合信頼性に優れた熱電変換モジュール101を得ることができる。 Further, since the porous metal layer 13 is made of aluminum or copper having excellent thermal conductivity and conductivity as the same material as the conductive layer 12 as the main component, both are connected by the wiring portions 11A and 11B. The thermal conductivity and conductivity between the thermoelectric conversion elements 3 and 4 can be well maintained by the porous metal layer 13, and the thermoelectric conversion module 101 having excellent bonding reliability can be obtained.

したがって、熱伸縮差による熱電変換素子3,4のクラックや配線基板2A,2Bとの剥離等の発生を防止できる。また、熱電変換素子3,4と配線基板2A,2Bとの接合不良による内部抵抗の増加を回避でき、良好な熱伝導性及び導電性を確保できるので、熱電変換モジュール101の出力を向上させることができる。 Therefore, it is possible to prevent cracks in the thermoelectric conversion elements 3 and 4 and peeling from the wiring boards 2A and 2B due to the difference in thermal expansion and contraction. Further, it is possible to avoid an increase in internal resistance due to poor bonding between the thermoelectric conversion elements 3 and 4 and the wiring boards 2A and 2B, and to secure good thermal conductivity and conductivity, so that the output of the thermoelectric conversion module 101 can be improved. Can be done.

なお、図1に示す第1実施形態では、外部配線部15aを除く基端側金属層14,15の表面全体に多孔質金属層13を設け、さらに多孔質金属層13の表面全体に導電層12を設けるとともに、これら多孔質金属層13と導電層12とを熱電変換素子3,4の両端の二箇所の両方にそれぞれ配設させていたが、多孔質金属層13は、P型熱電変換素子3又はN型熱電変換素子4の両端のうちの少なくともいずれか一方に設けておけばよい。なお、多孔質金属層13を設けない側の配線基板においては、複数の配線部を一枚のセラミックス基板21に一体に設けることが可能である。 In the first embodiment shown in FIG. 1, the porous metal layer 13 is provided on the entire surface of the base end side metal layers 14 and 15 excluding the external wiring portion 15a, and the conductive layer is further provided on the entire surface of the porous metal layer 13. 12 was provided, and the porous metal layer 13 and the conductive layer 12 were arranged at both two positions at both ends of the thermoelectric conversion elements 3 and 4, respectively. However, the porous metal layer 13 was P-type thermoelectric conversion. It may be provided at least one of both ends of the element 3 or the N-type thermoelectric conversion element 4. In the wiring board on the side where the porous metal layer 13 is not provided, it is possible to integrally provide a plurality of wiring portions on one ceramic substrate 21.

また、第1実施形態では、熱電変換素子3,4の両端に配設される配線基板2A,2Bのいずれにも絶縁基板21を設けたリジットタイプの熱電変換モジュール101について説明したが、本願発明は、図5に示す第2実施形態のように、熱電変換素子3,4の一方の端部側(図5では上側)に配設された配線基板2Aのみに絶縁基板21を設け、他方の端部側(図5では下側)に配設された配線基板2C,2Dを配線部11A,11Bにより構成したハーフスケルトンタイプの熱電変換モジュール102にも適用できる。また、同様に、図6に示す第3実施形態のように、熱電変換素子3,4の両端に配設される配線基板2C,2Dをいずれも絶縁基板を有しない構成とするスケルトンタイプの熱電変換モジュール103にも、本願発明を適用できる。 Further, in the first embodiment, the rigid type thermoelectric conversion module 101 in which the insulating substrate 21 is provided on each of the wiring boards 2A and 2B arranged at both ends of the thermoelectric conversion elements 3 and 4 has been described. Is provided with an insulating substrate 21 only on the wiring board 2A arranged on one end side (upper side in FIG. 5) of the thermoelectric conversion elements 3 and 4, as in the second embodiment shown in FIG. It can also be applied to a half skeleton type thermoelectric conversion module 102 in which the wiring boards 2C and 2D arranged on the end side (lower side in FIG. 5) are configured by the wiring parts 11A and 11B. Similarly, as in the third embodiment shown in FIG. 6, a skeleton type thermoelectric board having wiring boards 2C and 2D arranged at both ends of the thermoelectric conversion elements 3 and 4 having no insulating substrate. The present invention can also be applied to the conversion module 103.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

(実施例1)
導電層の有無による熱電変換モジュールの内部抵抗への影響を実証するため、図7(a)及び(b)に示すように、導電層12と多孔質体金属層13と基端側金属層14とからなる配線部11C,11Dを作製した。図7(a)に示す配線部11Cは、導電層12の中間に幅1mmのスリット16を入れた。図7(b)に示す配線部11Dは、スリットを入れずに構成した。配線部11C,11Dの導電層12と基端側金属層14とには、それぞれ5mm×11mm×0.4mmtのアルミニウム板を用いた。また、多孔質金属層13には、平均線径100μmで、平均長さ3mmのアルミニウム繊維を焼成して気孔率約60%とし、基端側金属層14と同じ平面サイズで、厚み2mmのものを使用した。
(Example 1)
In order to demonstrate the effect of the presence or absence of the conductive layer on the internal resistance of the thermoelectric conversion module, as shown in FIGS. 7A and 7B, the conductive layer 12, the porous metal layer 13, and the base end side metal layer 14 The wiring portions 11C and 11D composed of the above were produced. The wiring portion 11C shown in FIG. 7A has a slit 16 having a width of 1 mm formed in the middle of the conductive layer 12. The wiring portion 11D shown in FIG. 7B was configured without slits. An aluminum plate having a size of 5 mm × 11 mm × 0.4 mmt was used for the conductive layer 12 and the base end side metal layer 14 of the wiring portions 11C and 11D, respectively. Further, the porous metal layer 13 has an average wire diameter of 100 μm and an average length of 3 mm by firing aluminum fibers to have a porosity of about 60%, and has the same plane size as the base end side metal layer 14 and a thickness of 2 mm. It was used.

そして、導電層12を熱電変換素子と接合する面と想定し、図7(a)又は(b)に示すように、4端子法により配線部11C,11Dの内部抵抗を測定した。なお、図7(a),(b)に示す符号41は、測定器(三菱化学アナリテック社製のロレスタ‐GX)を表す。測定結果は、スリット16ありの配線部11Cが0.44mΩであるのに対し、スリットなしの配線部11Dは0.024mΩであった。この結果から、スリットのない導電層を用いることによって抵抗を下げることが可能であることがわかった。 Then, assuming that the conductive layer 12 is a surface to be joined to the thermoelectric conversion element, the internal resistances of the wiring portions 11C and 11D were measured by the four-terminal method as shown in FIGS. 7A or 7B. Reference numeral 41 shown in FIGS. 7 (a) and 7 (b) represents a measuring instrument (Loresta-GX manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The measurement result was that the wiring portion 11C with the slit 16 was 0.44 mΩ, while the wiring portion 11D without the slit was 0.024 mΩ. From this result, it was found that the resistance can be reduced by using the conductive layer without slits.

(実施例2)
実施例1において、内部抵抗の低かった、すなわちスリットのない導電層を有する配線部を用いた多孔質金属層を有する熱電変換モジュールと、多孔質金属層を有さない基端側金属層のみの配線部を有する熱電変換モジュールを作製し、内部抵抗、開放電圧、最大出力を評価した。
(Example 2)
In the first embodiment, only the thermoelectric conversion module having a porous metal layer using a wiring portion having a conductive layer having a low internal resistance, that is, having no slit, and the base end side metal layer having no porous metal layer. A thermoelectric conversion module having a wiring part was manufactured, and the internal resistance, open circuit voltage, and maximum output were evaluated.

マンガンシリサイドからなる角柱状のP型熱電変換素子と、マグネシウムシリサイドからなる角柱状のN型熱電変換素子とを作製した。各熱電変換素子は、底面を5mm×5mmとし、長さを7mmとした。また、メタライズ層として、Niが各素子の両端に形成されている。そして、これらP型熱電変換素子及びN型熱電変換素子をそれぞれ1個ずつ組み合わせて、図8(a)及び(b)に示すように、スケルトンタイプの熱電変換モジュール201,202を作製した。なお、図8(a)は本発明例の熱電変換モジュール201を示し、図8(b)は比較例の熱電変換モジュール202を示す。 A prismatic P-type thermoelectric conversion element made of manganese silicide and a prismatic N-type thermoelectric conversion element made of magnesium silicide were produced. The bottom surface of each thermoelectric conversion element was 5 mm × 5 mm, and the length was 7 mm. Further, Ni is formed at both ends of each element as a metallize layer. Then, these P-type thermoelectric conversion elements and N-type thermoelectric conversion elements were combined one by one to produce skeleton type thermoelectric conversion modules 201 and 202 as shown in FIGS. 8A and 8B. Note that FIG. 8A shows the thermoelectric conversion module 201 of the example of the present invention, and FIG. 8B shows the thermoelectric conversion module 202 of the comparative example.

本発明例では、P型熱電変換素子3及びN型熱電変換素子4の一方の端面側(図8(a)では上側)に、隣り合う両熱電変換素子3,4の間を接続する配線部11Dを有する配線基板2Eを接合し、各熱電変換素子3,4の他方の端面側(図8(a)では下側)に、外部と接続される配線部11Eからなる配線基板2Fを接合して、熱電変換モジュール201を作製した。また、配線基板2Eの配線部11Dは、導電層12と多孔質金属層13と基端側金属層14とから構成し、導電層12を両熱電変換素子3,4の間を接続するように連結させ、平面視長方形状に形成した。そして、導電層12の表面全体に多孔質金属層13を接合し、さらに多孔質金属層13の表面全体に基端側金属層14を接合することにより配線部11Aを形成した。一方、配線基板2Fの配線部11Eは、基端側金属層14のみで形成した。 In the example of the present invention, a wiring portion that connects two adjacent thermoelectric conversion elements 3 and 4 to one end surface side (upper side in FIG. 8A) of the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4. The wiring board 2E having the 11D is joined, and the wiring board 2F composed of the wiring portion 11E connected to the outside is joined to the other end face side (lower side in FIG. 8A) of each thermoelectric conversion element 3 and 4. The thermoelectric conversion module 201 was produced. Further, the wiring portion 11D of the wiring board 2E is composed of a conductive layer 12, a porous metal layer 13, and a base end side metal layer 14, so that the conductive layer 12 is connected between the two thermoelectric conversion elements 3 and 4. They were connected to form a rectangular shape in a plan view. Then, the porous metal layer 13 was bonded to the entire surface of the conductive layer 12, and the base end side metal layer 14 was bonded to the entire surface of the porous metal layer 13 to form the wiring portion 11A. On the other hand, the wiring portion 11E of the wiring board 2F is formed of only the base end side metal layer 14.

比較例では、P型熱電変換素子3及びN型熱電変換素子4の一方の端面側(図8(b)では上側)に、隣り合う両熱電変換素子3,4の間を接続する基端側金属層14のみで構成された配線部11Fを有する配線基板2Gを接合し、各熱電変換素子3,4の他方の端面側(図8(b)では下側)に、外部と接続され、基端側金属層14のみで構成された配線部11Eからなる配線基板2Fを接合して、熱電変換モジュール202を作製した。 In the comparative example, one end face side (upper side in FIG. 8B) of the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 is connected to the proximal end side connecting between the adjacent both thermoelectric conversion elements 3 and 4. A wiring board 2G having a wiring portion 11F composed of only a metal layer 14 is joined, and the other end face side (lower side in FIG. 8B) of each thermoelectric conversion element 3 or 4 is connected to the outside and is a base. The thermoelectric conversion module 202 was manufactured by joining the wiring board 2F composed of the wiring portion 11E composed of only the end side metal layer 14.

導電層12及び基端側金属層14には、純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)からなる厚み0.4mmのアルミニウム板を用いた。また、多孔質金属層13には、気孔率約60%の厚み2mmのアルミニウム製の繊維金属を用いた。そして、配線基板2Eを構成する配線部11Dは、導電層12となるアルミニウム板と基端側金属層14となるアルミニウム板との間に多孔質金属層13となる繊維金属を挟んだ状態で、640℃で加熱することにより、一体化して形成した。 For the conductive layer 12 and the base end side metal layer 14, an aluminum plate having a thickness of 0.4 mm made of aluminum having a purity of 99.99% by mass or more (so-called 4N aluminum) was used. Further, for the porous metal layer 13, a fiber metal made of aluminum having a porosity of about 60% and a thickness of 2 mm was used. The wiring portion 11D constituting the wiring board 2E has a fibrous metal to be the porous metal layer 13 sandwiched between the aluminum plate to be the conductive layer 12 and the aluminum plate to be the base end side metal layer 14. It was integrally formed by heating at 640 ° C.

そして、導電層12とP型熱電変換素子3およびN型熱電変換素子4との間に、Al−Si系ろう材を配置し、上側の配線基板2E,2Gと、下側の配線基板2Fとの間にP型熱電変換素子3及びN型熱電変換素子4を並べて配置し、加熱炉内で、加圧力(接合荷重):0.3MPa、接合温度:585℃で加熱焼成することにより、導電層12と熱電変換素子3,4とをろう材(Al‐Si系ろう材)を介して接合し、P型熱電変換素子3及びN型熱電変換素子4が1個ずつ直列に接続された熱電変換モジュール201,202を作製した。 Then, an Al—Si brazing material is arranged between the conductive layer 12 and the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4, and the upper wiring boards 2E and 2G and the lower wiring board 2F are arranged. The P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 are arranged side by side in the space between them, and are conducted by heating and firing in a heating furnace at a pressing force (joining load) of 0.3 MPa and a joining temperature of 585 ° C. The layer 12 and the thermoelectric conversion elements 3 and 4 are joined via a brazing material (Al—Si brazing material), and the P-type thermoelectric conversion element 3 and the N-type thermoelectric conversion element 4 are connected in series one by one. Conversion modules 201 and 202 were produced.

そして、得られた熱電変換モジュール201,202について、超音波探査により一方のP型熱電変換素子3(マンガンシリサイド)と導電層12との接合性を確認した。得られた超音波探査画像を図9に示す。
また、作製した熱電変換モジュール201,202へ実際に温度差(高温部500℃、低温部20℃)を与えることで、発電特性を評価し、内部抵抗、開放電圧、最大出力を確認した。
Then, with respect to the obtained thermoelectric conversion modules 201 and 202, the bondability between one P-type thermoelectric conversion element 3 (manganese silicide) and the conductive layer 12 was confirmed by ultrasonic exploration. The obtained ultrasonic exploration image is shown in FIG.
Further, by actually giving a temperature difference (high temperature part 500 ° C., low temperature part 20 ° C.) to the manufactured thermoelectric conversion modules 201 and 202, the power generation characteristics were evaluated, and the internal resistance, open circuit voltage, and maximum output were confirmed.

上記温度差を与えた状態で、熱電変換モジュールの出力端子間に可変抵抗を設置し、抵抗を変化させて、電流値と電圧値とを測定した。そして、横軸を電流値、縦軸を電圧値としたグラフを作成した。このグラフにおいて、電流値が0の時の電圧値を開放電圧とし、電圧値が0の時を最大電流とした。また、上記のグラフにおいて、開放電圧と最大電流を直線で結び、その直線の傾きを熱電変換モジュールの内部抵抗とした。最大出力は、{(開放電圧/2)×(最大電流/2)}から算出した。
これらの結果を表1に示す。
With the above temperature difference given, a variable resistor was installed between the output terminals of the thermoelectric conversion module, the resistor was changed, and the current value and the voltage value were measured. Then, a graph was created with the horizontal axis representing the current value and the vertical axis representing the voltage value. In this graph, the voltage value when the current value is 0 is defined as the open circuit voltage, and the voltage value when the voltage value is 0 is defined as the maximum current. Further, in the above graph, the open circuit voltage and the maximum current are connected by a straight line, and the slope of the straight line is taken as the internal resistance of the thermoelectric conversion module. The maximum output was calculated from {(open circuit voltage / 2) × (maximum current / 2)}.
These results are shown in Table 1.

図9の超音波探査像からわかるように、多孔質金属層13を有する本発明例(図9(b))ではP型熱電変換素子3と導電層12との全面が接合されているのに対して、多孔質金属層を有しない比較例(図9(a))では、一部にP型熱電変換素子3と導電層12との接合界面に非接合部(白色部)が生じており、本発明例の方では比較例よりも、P型熱電変換素子3と導電層12の接合性が向上した。また、表1からわかるように、本発明例では、開放電圧と最大出力とのいずれもが比較例よりも大きくなった。これにより、熱電変換モジュールの内部抵抗が減少し、同じ温度差を与えた際の最大出力が増加したことが確認できた。 As can be seen from the ultrasonic survey image of FIG. 9, in the example of the present invention having the porous metal layer 13 (FIG. 9 (b)), the entire surface of the P-type thermoelectric conversion element 3 and the conductive layer 12 is joined. On the other hand, in the comparative example (FIG. 9 (a)) which does not have the porous metal layer, a non-bonded portion (white portion) is partially formed at the bonded interface between the P-type thermoelectric conversion element 3 and the conductive layer 12. In the example of the present invention, the bondability between the P-type thermoelectric conversion element 3 and the conductive layer 12 was improved as compared with the comparative example. Further, as can be seen from Table 1, in the example of the present invention, both the open circuit voltage and the maximum output are larger than those in the comparative example. As a result, it was confirmed that the internal resistance of the thermoelectric conversion module decreased and the maximum output increased when the same temperature difference was applied.

2A,2B,2C,2D,2E,2F,2G 配線基板
3 P型熱電変換素子
4 N型熱電変換素子
5 熱源
6 冷却流路
11A,11B,11C,11D,11E,11F 配線部
12 導電層
13 多孔質金属層
14,15 基端側金属層
15a 外部配線部
21 絶縁基板
22 熱伝達金属層
35 メタライズ層
101,102,103,201,202 熱電変換モジュール
2A, 2B, 2C, 2D, 2E, 2F, 2G Wiring board 3 P-type thermoelectric conversion element 4 N-type thermoelectric conversion element 5 Heat source 6 Cooling flow path 11A, 11B, 11C, 11D, 11E, 11F Wiring section 12 Conductive layer 13 Porous metal layer 14,15 Base end side metal layer 15a External wiring part 21 Insulation substrate 22 Heat transfer metal layer 35 Metallized layer 101, 102, 103, 201, 202 Thermoelectric conversion module

Claims (3)

対向配置される一対の配線基板の間に線膨張係数の異なる複数の熱電変換素子が組み合わせて配列され、これらの熱電変換素子が前記配線基板を介して接続された熱電変換モジュールであって、
各配線基板は、前記熱電変換素子が接合される配線部を有しており、
前記一対の配線基板のうちの少なくとも一方の配線基板において、隣り合う両熱電変換素子の間を接続して設けられる一方の配線部が
熱電変換素子の間を連結して設けられる多孔質ではない面状の導電層と、
前記導電層に接合された多孔質金属層とを有しており、
前記熱電変換素子と前記多孔質金属層との間に前記導電層が配設されていることを特徴とする熱電変換モジュール。
A thermoelectric conversion module in which a plurality of thermoelectric conversion elements having different linear expansion coefficients are arranged in combination between a pair of wiring boards arranged to face each other, and these thermoelectric conversion elements are connected via the wiring boards.
Each wiring board has a wiring portion to which the thermoelectric conversion element is joined.
In at least one of the pair of wiring boards, one wiring portion provided by connecting between adjacent both thermoelectric conversion elements is provided .
A non-porous planar conductive layer provided by connecting the two thermoelectric conversion elements,
Has a porous metal layer bonded to the conductive layer,
A thermoelectric conversion module characterized in that the conductive layer is disposed between the thermoelectric conversion element and the porous metal layer.
前記導電層は、厚さ0.1mm以上1.2mm以下に形成されていることを特徴とする請求項1に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, wherein the conductive layer is formed to have a thickness of 0.1 mm or more and 1.2 mm or less. 前記一方の配線部には、前記多孔質金属層の前記導電層とは反対側の面に、前記多孔質金属層と主成分が同一の材料により形成された基端側金属層が配設されていることを特徴とする請求項1又は2に記載の熱電変換モジュール。 In the one wiring portion, a base end side metal layer formed of a material having the same main component as the porous metal layer is arranged on the surface of the porous metal layer opposite to the conductive layer. The thermoelectric conversion module according to claim 1 or 2, wherein the thermoelectric conversion module is provided.
JP2017043104A 2017-03-07 2017-03-07 Thermoelectric conversion module Active JP6822227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043104A JP6822227B2 (en) 2017-03-07 2017-03-07 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043104A JP6822227B2 (en) 2017-03-07 2017-03-07 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2018148085A JP2018148085A (en) 2018-09-20
JP6822227B2 true JP6822227B2 (en) 2021-01-27

Family

ID=63590007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043104A Active JP6822227B2 (en) 2017-03-07 2017-03-07 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP6822227B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079462A1 (en) * 2019-10-24 2021-04-29 三菱電機株式会社 Thermoelectric conversion element module and method for producing thermoelectric conversion element module
US20220018602A1 (en) 2020-07-17 2022-01-20 Micropower Global Limited Induction heating system
JP7248091B2 (en) * 2021-02-03 2023-03-29 三菱マテリアル株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103580A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Thermoelectric transducer and method of manufacturing same
JP2008305987A (en) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP4912964B2 (en) * 2007-06-07 2012-04-11 住友化学株式会社 Thermoelectric conversion module
JPWO2010010783A1 (en) * 2008-07-22 2012-01-05 コニカミノルタホールディングス株式会社 Thermoelectric conversion element
JP5703871B2 (en) * 2011-03-16 2015-04-22 日立化成株式会社 Thermoelectric conversion system and manufacturing method thereof
JP6171513B2 (en) * 2013-04-10 2017-08-02 日立化成株式会社 Thermoelectric conversion module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018148085A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5499317B2 (en) Thermoelectric conversion element and thermoelectric conversion module
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
US8940571B2 (en) Thermoelectric conversion element
JP6822227B2 (en) Thermoelectric conversion module
JP7163631B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2010212339A (en) Thermoelectric conversion module
TW201927552A (en) Insulated heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulated heat-transfer substrate
KR102444696B1 (en) Thermoelectric conversion module, and method of manufacturing the thermoelectric conversion module
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP2018137374A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
KR20150084310A (en) Thermoelectric modules consisting of thermal-via electrodes and Fabrication method thereof
JP4584355B2 (en) Thermoelectric power generation device and power generation method using the same
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
KR101207300B1 (en) Method for manufacturing thermoelectric element
WO2019244692A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP7047244B2 (en) Manufacturing method of thermoelectric conversion module
WO2019009202A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
KR20190038098A (en) Thermo electric element
WO2021157565A1 (en) Thermoelectric conversion structure
JP2003234515A (en) Thermoelectric module
KR102623077B1 (en) Thermoelectric device and method of fabricating the same
JP6957916B2 (en) Thermoelectric conversion module
JP6933055B2 (en) Thermoelectric conversion module and its manufacturing method
WO2019111997A1 (en) Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6822227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150