JP2014011469A - Thermoelectric cooling module and manufacturing method of the same - Google Patents

Thermoelectric cooling module and manufacturing method of the same Download PDF

Info

Publication number
JP2014011469A
JP2014011469A JP2013136551A JP2013136551A JP2014011469A JP 2014011469 A JP2014011469 A JP 2014011469A JP 2013136551 A JP2013136551 A JP 2013136551A JP 2013136551 A JP2013136551 A JP 2013136551A JP 2014011469 A JP2014011469 A JP 2014011469A
Authority
JP
Japan
Prior art keywords
substrate
cooling module
thermoelectric
alumina
thermoelectric cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013136551A
Other languages
Japanese (ja)
Other versions
JP6275962B2 (en
Inventor
Jong Min Lee
ジョン ミン リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of JP2014011469A publication Critical patent/JP2014011469A/en
Application granted granted Critical
Publication of JP6275962B2 publication Critical patent/JP6275962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric cooling module and a manufacturing method of the thermoelectric cooling module.SOLUTION: A thermoelectric cooling module includes: first and second substrates in which metal electrodes are formed, the first and second substrates facing each other; and multiple thermoelectric elements formed between the first substrate and the second substrate. The first and second substrates include aluminum layers and alumina (AlO) layers formed at parts of facing surfaces of the aluminum layers. Providing the thermoelectric cooling module reduces joint resistance thereby improving the efficiency of the thermoelectric cooling module and reducing the costs.

Description

本発明は、熱電冷却モジュール及びその製造方法に関し、より詳しくは、アルミニウム層を陽極酸化して多孔質アルミナを形成することで、接合抵抗の減少により熱電冷却モジュールの効率を向上させることができる熱電冷却モジュールに関する。   The present invention relates to a thermoelectric cooling module and a method for manufacturing the same, and more specifically, by forming a porous alumina by anodizing an aluminum layer, the thermoelectric cooling module can improve the efficiency of the thermoelectric cooling module by reducing the junction resistance. It relates to a cooling module.

熱電素子とは、ゼーベック効果、ペルチェ効果、トムソン効果といった、熱と電気を相互に関係づける現象を利用した素子の総称であり、P型熱電材料とN型熱電材料を金属電極同士の間に接合させることにより、PN接合対を形成する構造である。このようなPN接合対の間に温度差を設けると、ゼーベック効果(Seebeck effect)によって電力が発生し、これにより熱電素子は発電装置として機能をする。又、PN接合対のいずれか一方は冷却され、他方は発熱するペルチェ効果(Peltier effect)により、熱電素子は温度制御装置として用いることもできる。   A thermoelectric element is a generic term for elements that use phenomena that correlate heat and electricity, such as the Seebeck effect, Peltier effect, and Thomson effect. A P-type thermoelectric material and an N-type thermoelectric material are joined between metal electrodes. By doing so, a PN junction pair is formed. When a temperature difference is provided between such a PN junction pair, electric power is generated by the Seebeck effect, whereby the thermoelectric element functions as a power generator. Also, the thermoelectric element can be used as a temperature control device due to the Peltier effect in which one of the PN junction pairs is cooled and the other generates heat.

ここで、上記ペルチェ効果は、図1に示すように、外部でDC電圧を加えたときP型熱電材料の正孔とN型熱電材料の電子が移動することにより、材料の両端に発熱と吸熱を起こす現象である。上記ゼーベック効果は、図2に示すように、外部熱源から熱が供給されると、電子と正孔が移動しながら材料に流れが生じ、発電を起こす現象をいう。   Here, as shown in FIG. 1, when the DC voltage is applied externally, the Peltier effect causes the holes of the P-type thermoelectric material and the electrons of the N-type thermoelectric material to move, thereby generating heat and heat absorption at both ends of the material. It is a phenomenon that causes As shown in FIG. 2, the Seebeck effect refers to a phenomenon in which, when heat is supplied from an external heat source, electrons and holes move while a material flows while generating power.

このような熱電材料を用いた能動冷却は、素子の熱的安定性を改善させ、振動と騒音がなく、別の凝縮器と冷媒を使用しないため、体積が小さく、環境に優しい方法として認識されている。このような熱電材料を用いた能動冷却の応用分野には、無冷媒冷蔵庫、エアコン、種々のマイクロ冷却システムなどがあり、特に、種々のメモリ素子に熱電素子を装着すると、従来の冷却方式に比べて体積は減らしながら、素子を均一で且つ安定した温度に維持させることが可能であるので、素子の性能を向上させることができる。   Active cooling using such thermoelectric materials improves the thermal stability of the device, is free of vibration and noise, and uses no separate condenser and refrigerant, so it is recognized as a small volume and environmentally friendly method. ing. Applications of active cooling using such thermoelectric materials include refrigerant-free refrigerators, air conditioners, various micro-cooling systems, etc. Especially when thermoelectric elements are mounted on various memory elements, compared to conventional cooling methods. Thus, the device performance can be improved because the device can be maintained at a uniform and stable temperature while reducing the volume.

以下、従来技術による熱電モジュールの構成を添付の図面を参照して説明する。   Hereinafter, a configuration of a thermoelectric module according to the prior art will be described with reference to the accompanying drawings.

図3は、従来技術による熱電モジュールの構成を示す縦断面図である。
図に示すように、上記熱電モジュールの上下面には絶縁基板の第1基板(下部基板)11及び第2基板(上部基板)12が備えられる。上記第1基板11及び第2基板12は、熱を放出又は吸熱する役割を行うものであり、一定の距離をおいて上下方に離隔された状態に維持される。
FIG. 3 is a longitudinal sectional view showing a configuration of a thermoelectric module according to the prior art.
As shown in the drawing, a first substrate (lower substrate) 11 and a second substrate (upper substrate) 12 which are insulating substrates are provided on the upper and lower surfaces of the thermoelectric module. The first substrate 11 and the second substrate 12 serve to release or absorb heat, and are maintained in a state of being spaced apart from each other at a certain distance.

上記第1基板11及び第2基板12との間には、P型熱電素子41とN型熱電素子42が備えられる。上記P型熱電素子41及びN型熱電素子42は、熱電材料が一定の形状及び大きさを有するように形成される要素であって、上記第1基板11と第2基板12との間に交互に配置される。   A P-type thermoelectric element 41 and an N-type thermoelectric element 42 are provided between the first substrate 11 and the second substrate 12. The P-type thermoelectric element 41 and the N-type thermoelectric element 42 are elements formed so that the thermoelectric material has a certain shape and size, and are alternately arranged between the first substrate 11 and the second substrate 12. Placed in.

上記P型熱電素子41及びN型熱電素子42と第1基板11及び第2基板12との間には金属電極20が備えられる。上記金属電極20は、P型熱電素子41とN型熱電素子42とを電気的に接続させる構成である。   A metal electrode 20 is provided between the P-type thermoelectric element 41 and the N-type thermoelectric element 42 and the first substrate 11 and the second substrate 12. The metal electrode 20 is configured to electrically connect the P-type thermoelectric element 41 and the N-type thermoelectric element 42.

上記金属電極20とP型熱電素子41及びN型熱電素子42との間には、金属の拡散を防ぐために拡散防止膜30をさらに含むことができる。   A diffusion preventing film 30 may be further included between the metal electrode 20 and the P-type thermoelectric element 41 and the N-type thermoelectric element 42 to prevent metal diffusion.

このような従来の熱電モジュールは、特許文献1に開示されているように熱電モジュールから発散する熱を外部に発散したり、外部の熱を吸熱するために熱電素子の両側面に放熱板が取り付けられる。   In such a conventional thermoelectric module, as disclosed in Patent Document 1, heat radiating from the thermoelectric module is radiated to the outside, and heat sinks are attached to both side surfaces of the thermoelectric element to absorb the external heat. It is done.

このように、従来の電子製品などの放熱素子としての熱電モジュールは、発熱部位に放熱板を接合して発熱部位の熱を外部に放出するが、経時により発熱部位の温度が上がり、冷却面側への対流現象により熱平衡(thermal equilibrium)状態になり、放熱素子としての役割を適切に果たすことができないという問題点が生じた。   As described above, the conventional thermoelectric module as a heat radiating element for electronic products, etc., dissipates heat from the heat generating part by joining the heat radiating plate to the heat generating part. Due to the convection phenomenon, a thermal equilibria state is reached, and there is a problem that it cannot properly serve as a heat dissipation element.

韓国登録特許第10-0766612号公報Korean Registered Patent No. 10-0766612

本発明は、上述した問題を解決するためになされたものであり、アルミニウムの陽極酸化により多孔質アルミナとアルミニウムが接触されている一体型構造である第1及び第2基板を形成することで、接合抵抗の減少により熱電冷却モジュールの効率を向上させることができ、コストの低減効果も実現できる熱電冷却モジュール及びその製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and by forming the first and second substrates having an integrated structure in which porous alumina and aluminum are in contact with each other by anodization of aluminum, It is an object of the present invention to provide a thermoelectric cooling module that can improve the efficiency of the thermoelectric cooling module by reducing the junction resistance, and that can also realize a cost reduction effect, and a manufacturing method thereof.

上述した課題を解決するために提供される本発明の熱電冷却モジュールは、金属電極が形成され互いに対向する第1基板及び第2基板と、第1基板及び第2基板との間に形成される複数の熱電素子とを含み、第1基板及び第2基板は、アルミニウム層と、アルミニウム層の互いに対向する面の一部に形成されるアルミナ(Al23)層と、を含む。 The thermoelectric cooling module of the present invention provided to solve the above-described problem is formed between a first substrate and a second substrate on which metal electrodes are formed and opposed to each other, and the first substrate and the second substrate. The first substrate and the second substrate each include a plurality of thermoelectric elements. The first substrate and the second substrate include an aluminum layer and an alumina (Al 2 O 3 ) layer formed on part of the surfaces of the aluminum layer facing each other.

本発明によると、放熱板としてのアルミニウム層と、陽極酸化法により形成された絶縁体であって、熱電素材の接合体として用いられるアルミナ層とを一体型に形成することにより、接合抵抗を減少させ、熱電冷却モジュールの効率性を向上させ、コストを低減させる効果を有するようになる。   According to the present invention, the junction resistance is reduced by integrally forming an aluminum layer as a heat sink and an alumina layer formed by an anodization method and used as a joined body of a thermoelectric material. Thus, the efficiency of the thermoelectric cooling module is improved and the cost is reduced.

ペルチェ効果による熱電冷却を示す概略図である。It is the schematic which shows the thermoelectric cooling by the Peltier effect. ゼーベック効果による熱電発電を示す概略図である。It is the schematic which shows the thermoelectric power generation by a Seebeck effect. 従来技術の形態による熱電モジュールの内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the thermoelectric module by the form of a prior art. 本発明の望ましい実施例による熱電冷却モジュールの断面図である。1 is a cross-sectional view of a thermoelectric cooling module according to a preferred embodiment of the present invention. 本発明によりアルミニウムを陽極酸化して多孔質アルミナを形成した基板の斜視図である。It is a perspective view of the board | substrate which formed the porous alumina by anodizing aluminum by this invention. 本発明によりアルミニウムを陽極酸化して多孔質アルミナを形成した基板の断面図である。It is sectional drawing of the board | substrate which formed the porous alumina by anodizing aluminum by this invention. アルミニウム層に陽極酸化されたアルミナ層の上部の実際のイメージを示すものである。3 shows an actual image of the upper part of an alumina layer anodized on an aluminum layer. アルミニウム層に陽極酸化されたアルミナ層の断面の実際のイメージを示すものである。The actual image of the cross section of the alumina layer anodized to the aluminum layer is shown. 本発明の望ましい実施例による金属電極及び熱電素子が形成された基板の上面図である。1 is a top view of a substrate on which metal electrodes and thermoelectric elements are formed according to a preferred embodiment of the present invention. 本発明の望ましい実施例に係る熱電冷却モジュールの製造方法を示すフローチャートである。3 is a flowchart illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention. 本発明の望ましい実施例による熱電冷却モジュールの製造方法を示す製造工程図である。FIG. 5 is a manufacturing process diagram illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention. 本発明の望ましい実施例による熱電冷却モジュールの製造方法を示す製造工程図である。FIG. 5 is a manufacturing process diagram illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention. 本発明の望ましい実施例による熱電冷却モジュールの製造方法を示す製造工程図である。FIG. 5 is a manufacturing process diagram illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention. 本発明の望ましい実施例による熱電冷却モジュールの製造方法を示す製造工程図である。FIG. 5 is a manufacturing process diagram illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention.

以下、添付した図面を参照して本発明の望ましい実施例について詳しく説明する。但し、本発明はこれらにより限定されるものではない。本明細書に亘って同じ構成要素に対しては同じ符号を付す。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to these. Throughout the specification, the same components are denoted by the same reference numerals.

本発明は、アルミニウム層上に陽極酸化されたアルミナ層を形成した一体型の基板を備えることにより、接合抵抗の減少により効率を向上させ、コストを低減することができる熱電冷却モジュールを提供することをその要旨とする。   The present invention provides a thermoelectric cooling module that is provided with an integrated substrate having an anodized alumina layer formed on an aluminum layer, thereby improving efficiency by reducing junction resistance and reducing costs. Is the gist.

図4は、本発明の望ましい実施例による熱電冷却モジュールの断面図であり、図5及び図6は、本発明によりアルミニウムを陽極酸化して多孔質アルミナが形成された基板の斜視図及び断面図であり、図7及び図8は、基板の上部及び断面の実際のイメージを示すものであり、図9は、本発明の望ましい実施例による金属電極及び熱電素子が形成された基板の上面図である。   FIG. 4 is a cross-sectional view of a thermoelectric cooling module according to a preferred embodiment of the present invention, and FIGS. 5 and 6 are a perspective view and a cross-sectional view of a substrate on which porous alumina is formed by anodizing aluminum according to the present invention. 7 and 8 show actual images of the top and cross-section of the substrate, and FIG. 9 is a top view of the substrate on which the metal electrode and the thermoelectric element are formed according to the preferred embodiment of the present invention. is there.

図を参照すると、本発明の熱電冷却モジュール100は、金属電極130が形成され互いに対向する第1及び第2基板110、120と、上記第1及び第2基板110、120の間に形成される複数の熱電素子141、142とを含んでなる。   Referring to the drawing, the thermoelectric cooling module 100 of the present invention is formed between the first and second substrates 110 and 120 facing each other on which the metal electrode 130 is formed, and the first and second substrates 110 and 120. A plurality of thermoelectric elements 141 and 142 are included.

特に、上記第1及び第2基板110、120は、図5 に示すように、アルミニウム層111、121及び陽極酸化により形成された多孔質アルミナ(Al23)層112、122からなり、上記アルミナ層112、122は、互いに対向するそれぞれのアルミニウム層111、121の一部に形成される。上記第1及び第2基板110、120は、アルミニウムとアルミナの一体型構造であって、上記アルミニウム層111、121は、放熱板の役割をして発熱部位の熱をシステムの外部に放熱させ、上記多孔質アルミナ層112、122は絶縁層であって、熱電素子141、142の接合体として用いられる。 In particular, the first and second substrates 110 and 120 include aluminum layers 111 and 121 and porous alumina (Al 2 O 3 ) layers 112 and 122 formed by anodization, as shown in FIG. The alumina layers 112 and 122 are formed on a part of the aluminum layers 111 and 121 facing each other. The first and second substrates 110 and 120 have an integrated structure of aluminum and alumina, and the aluminum layers 111 and 121 function as a heat sink to dissipate heat from the heat generating portion to the outside of the system. The porous alumina layers 112 and 122 are insulating layers and are used as a joined body of the thermoelectric elements 141 and 142.

従来の熱電冷却モジュールは、発熱部位に異種素材の放熱板を接合したが、本発明は、アルミニウムの陽極酸化によりアルミニウム-アルミナといった一体型の構造を実現することにより、接触抵抗を減少させ、熱電冷却モジュールの効率を向上させるのみでなく、コストの低減効果も達成することができる。   In the conventional thermoelectric cooling module, a heat sink made of different materials is joined to the heat generating part. However, the present invention realizes an integrated structure such as aluminum-alumina by anodization of aluminum, thereby reducing the contact resistance and reducing the thermoelectricity. Not only can the efficiency of the cooling module be improved, but also a cost reduction effect can be achieved.

この際、第1及び第2基板110、120に形成されたアルミナ層112、122は、互いに対向する構造であり、相互に対応する。したがって、第1及び第2基板110、120においてアルミナ層112、122は、互いに面積が同一であることが望ましく、形状及び厚さも同一であることが望ましいが、互いに必ずしも一致する必要はない。   At this time, the alumina layers 112 and 122 formed on the first and second substrates 110 and 120 are opposed to each other and correspond to each other. Therefore, the alumina layers 112 and 122 in the first and second substrates 110 and 120 preferably have the same area and the same shape and thickness, but they do not necessarily have to coincide with each other.

アルミニウム層111、121とアルミナ層112、122からなる第1及び第2基板110、120は、図5及び図9に示すように円形に形成することも可能であるが、これに限定されるのではなく、楕円形又は四角形などの多角形に形成することができることは勿論である。   The first and second substrates 110 and 120 formed of the aluminum layers 111 and 121 and the alumina layers 112 and 122 can be formed in a circular shape as shown in FIGS. 5 and 9, but are not limited thereto. However, it is of course possible to form an oval or a polygon such as a rectangle.

上記アルミナ層112、122の厚さ(d)は30〜200μmであることが望ましく、30μm未満である場合には、電気伝導度が存在して絶縁体としての役割を果たすことができなくなる。   The thickness (d) of the alumina layers 112 and 122 is preferably 30 to 200 μm. When the thickness is less than 30 μm, electrical conductivity exists and cannot function as an insulator.

又、上記第1及び第2基板110、120においてアルミナ層112、122の面積は、上記アルミニウム層111、121の面積の5〜50%であることが望ましい。これは、アルミナ層112、122の面積がアルミニウム層111、121の面積の50%を超えると、発熱部位の熱が冷却部位に拡散され、冷却部位の温度が上昇して放熱素子としての役割を果たすことができなくなるからであり、5%以下である場合には、熱電素子141、142の接続が困難になる。   In the first and second substrates 110 and 120, the area of the alumina layers 112 and 122 is preferably 5 to 50% of the area of the aluminum layers 111 and 121. This is because when the area of the alumina layers 112, 122 exceeds 50% of the area of the aluminum layers 111, 121, the heat of the heat generating part is diffused to the cooling part, and the temperature of the cooling part rises to serve as a heat dissipation element. This is because the thermoelectric elements 141 and 142 are difficult to connect when the ratio is 5% or less.

金属電極130は、上記第1及び第2基板110、120においてアルミナ層112、122上に形成され、複数のP型熱電素子141とN型熱電素子142が互いに離隔されて上記金属電極130を介して電気的に接続される。上記金属電極130は、Cu、Au、Ag、Ni、Al、Cr、Ru、Re、Pb、Sn、In、及びZnを含む群から選択される少なくとも1種の金属又はこれらの金属を含む合金で形成することができ、P型及びN型熱電素子141、142は、当該技術分野において一般的に用いられる材料、例えば、BiTe系材料、PbTe系材料などの熱電材料を適宜ドープして用いることができる。   The metal electrode 130 is formed on the alumina layers 112 and 122 in the first and second substrates 110 and 120, and a plurality of P-type thermoelectric elements 141 and N-type thermoelectric elements 142 are separated from each other via the metal electrode 130. Are electrically connected. The metal electrode 130 is at least one metal selected from the group including Cu, Au, Ag, Ni, Al, Cr, Ru, Re, Pb, Sn, In, and Zn, or an alloy including these metals. The P-type and N-type thermoelectric elements 141 and 142 can be formed by appropriately doping a material generally used in the technical field, for example, a thermoelectric material such as a BiTe-based material or a PbTe-based material. it can.

図示されていないが、上記金属電極130とP型及びN型熱電素子141、142の間に接着力を改善するためのバッファ層(図示せず)と金属の拡散を防止するための拡散防止膜(図示せず)をさらに含むことができ、上記拡散防止膜はニッケルであることが望ましい。   Although not shown, a buffer layer (not shown) for improving the adhesive force between the metal electrode 130 and the P-type and N-type thermoelectric elements 141 and 142 and a diffusion prevention film for preventing metal diffusion. (Not shown) may further be included, and the diffusion barrier film is preferably nickel.

図10は、本発明の望ましい実施例による熱電冷却モジュールの製造方法を示すフローチャートである。図を参照すると、先ず、第1基板110及び第2基板120を形成する(S10)。具体的には、用意したアルミニウム試験片にマスクを利用して、陽極酸化法によって(S11)多孔質アルミナ層112、122を形成することにより(S12)、アルミニウム-アルミナの一体型構造を有する第1基板及び第2基板110、120を製造する。上記アルミニウムの陽極酸化は、1wt%H3PO4(リン酸)、1℃で電圧195Vを10時間以上印加して行われるものであり、この際、アルミナ層112、122が形成される面積は、上記アルミニウム層111、121の面積の5〜50%であることが望ましく、アルミナ層112、122の厚さは30〜200μmであることが望ましいが、これは上述した通りである。又、上記第1及び第2基板110、120においてアルミナ層112、122は、互いに同一の面積、形状、及び厚さを有するように形成されることが望ましい。 FIG. 10 is a flowchart illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention. Referring to the drawing, first, a first substrate 110 and a second substrate 120 are formed (S10). Specifically, by using a mask on the prepared aluminum test piece and forming the porous alumina layers 112 and 122 by an anodic oxidation method (S11) (S12), an aluminum-alumina integrated structure is obtained. One substrate and second substrates 110 and 120 are manufactured. The anodic oxidation of aluminum is performed by applying a voltage of 195 V at 1 wt% H 3 PO 4 (phosphoric acid) at 1 ° C. for 10 hours or more. At this time, the area where the alumina layers 112 and 122 are formed is The area of the aluminum layers 111 and 121 is preferably 5 to 50%, and the thickness of the alumina layers 112 and 122 is preferably 30 to 200 μm, as described above. In the first and second substrates 110 and 120, the alumina layers 112 and 122 are preferably formed to have the same area, shape, and thickness.

その後、第1基板110及び第2基板120におけるアルミナ層112、122上に金属電極130を形成するが(S20)、上記金属電極130は、Cu、Au、Ag、Ni、Al、Cr、Ru、Re、Pb、Sn、In、及びZnを含む群から選択される少なくとも1種の金属又はこれらの金属を含む合金で形成することができる。   Thereafter, a metal electrode 130 is formed on the alumina layers 112 and 122 of the first substrate 110 and the second substrate 120 (S20). The metal electrode 130 is formed of Cu, Au, Ag, Ni, Al, Cr, Ru, It can be formed of at least one metal selected from the group including Re, Pb, Sn, In, and Zn, or an alloy including these metals.

次いで、上記第1基板110の金属電極130上にBiTe系材料、PbTe系材料などの熱電材料を適宜ドープしてP型及びN型熱電素子141、142を対で形成する(S30)。   Next, a thermoelectric material such as a BiTe material or a PbTe material is appropriately doped on the metal electrode 130 of the first substrate 110 to form a pair of P-type and N-type thermoelectric elements 141 and 142 (S30).

この際、図示していないが、上記金属電極130とP型とN型熱電素子141、142との間に接着力を改善するためのバッファ層と金属の拡散を防止するための拡散防止膜を形成する工程をさらに含むことができる。   At this time, although not shown, a buffer layer for improving adhesion between the metal electrode 130 and the P-type and N-type thermoelectric elements 141 and 142 and a diffusion preventing film for preventing metal diffusion are provided. A forming step may be further included.

その後、下部基板である上記第1基板110における金属電極130上に形成されたP型及びN型熱電素子141、142が電気的に接続されるように金属電極130が形成されている上部基板、すなわち、第2基板120を接合して(S40)熱電冷却モジュールを製造する。   Thereafter, the upper substrate on which the metal electrode 130 is formed so that the P-type and N-type thermoelectric elements 141 and 142 formed on the metal electrode 130 in the first substrate 110 as the lower substrate are electrically connected, That is, the thermoelectric cooling module is manufactured by bonding the second substrate 120 (S40).

図11〜図14は、本発明の望ましい実施例による熱電冷却モジュールの製造方法を示す製造工程図である。   11 to 14 are manufacturing process diagrams illustrating a method of manufacturing a thermoelectric cooling module according to a preferred embodiment of the present invention.

図を参照すると、互いに対向する第1基板110及び第2基板120は、アルミニウム層111、121の一部に陽極酸化によって形成されたアルミナ層112、122からなる。上記アルミニウムの陽極酸化は、1wt%H3PO4(リン酸)、1℃で電圧195Vを10時間以上印加して行うことができる。上記第1基板110及び第2基板120は図5及び図9に示すように円形であり、楕円形又は四角形などの多角形の構造を有することもできるが、以下の説明では、図5及び図9に示すように円形である場合を前提として説明する。 Referring to the figure, the first substrate 110 and the second substrate 120 facing each other are made of alumina layers 112 and 122 formed by anodic oxidation on a part of the aluminum layers 111 and 121. The anodic oxidation of the aluminum can be performed by applying a voltage of 195 V at 1 ° C. for 10 hours or more at 1 wt% H 3 PO 4 (phosphoric acid). The first substrate 110 and the second substrate 120 are circular as shown in FIGS. 5 and 9, and may have an elliptical shape or a polygonal structure such as a quadrangle. In the following description, FIG. Description will be made on the assumption that the shape is circular as shown in FIG.

この際、アルミナ層112、122の厚さは30〜200μmであることが望ましく、アルミナ層112、122の面積は、アルミニウム層111、121の面積の5〜50%であることが望ましい。図11に示すように、第1及び第2基板110、120においてアルミナ層112、122の厚さ、形状、及び、面積は同一であることが望ましいが、互いに必ずしも一致する必要はない。   At this time, the thickness of the alumina layers 112 and 122 is desirably 30 to 200 μm, and the area of the alumina layers 112 and 122 is desirably 5 to 50% of the area of the aluminum layers 111 and 121. As shown in FIG. 11, the thickness, shape, and area of the alumina layers 112 and 122 in the first and second substrates 110 and 120 are desirably the same, but they do not necessarily need to match each other.

その後、第1及び第2基板110、120においてアルミナ層112、122上に金属電極130を形成し、複数のP型及びN型熱電素子141、142を相互に接続対になるように上記第1基板110上に形成された金属電極130上に形成する。図13には、一対のP型及びN型の熱電素子のみが図示されているが、これは前述のように、第1基板110は円形であることを前提としたので、図13の上面図は図9と同一である。したがって、図9に示すように、一対のP型及びN型熱電素子141、142が前後に配置されることも可能であり、一列に配置されることも可能であり、このような配置形態には制限がない。この際、金属の拡散を防止するために金属電極130とP型及びN型熱電素子141、142の間に拡散防止膜を形成する工程をさらに含むことができる。   Thereafter, a metal electrode 130 is formed on the alumina layers 112 and 122 in the first and second substrates 110 and 120, and the first and second thermoelectric elements 141 and 142 are connected to each other to form the first pair. It is formed on the metal electrode 130 formed on the substrate 110. FIG. 13 shows only a pair of P-type and N-type thermoelectric elements. As described above, since the first substrate 110 is assumed to be circular, the top view of FIG. Is the same as FIG. Therefore, as shown in FIG. 9, a pair of P-type and N-type thermoelectric elements 141 and 142 can be arranged in front and back, and can also be arranged in a row. There is no limit. At this time, in order to prevent diffusion of the metal, a step of forming a diffusion prevention film between the metal electrode 130 and the P-type and N-type thermoelectric elements 141 and 142 may be further included.

次いで、複数のP型及びN型熱電素子141、142は、金属電極130を介してそれぞれの一端が電気的に接続されるように第2基板120を接合する。   Next, the plurality of P-type and N-type thermoelectric elements 141 and 142 are bonded to the second substrate 120 such that one ends of the P-type and N-type thermoelectric elements 141 and 142 are electrically connected via the metal electrode 130.

このように、本発明は、アルミニウムの陽極酸化によりアルミニウム-アルミナの一体型構造の基板110、120を実現することで、接触抵抗の減少により熱電冷却モジュールの効率を向上させ、且つコストの低減効果を達成することができる。   As described above, the present invention realizes the aluminum-alumina monolithic substrates 110 and 120 by anodizing aluminum, thereby improving the efficiency of the thermoelectric cooling module by reducing the contact resistance and reducing the cost. Can be achieved.

[実験例1] アルミナの厚さによる電気伝導度
アルミニウムの自然酸化により形成された10nm厚さのアルミナ層、及びアルミニウムを陽極酸化して形成された20μm及び30μm厚さのアルミナ層による電気伝導度(=厚さ/{抵抗×面積})[S/m]を比較実験して以下の表1の結果を得た。ここで、アルミニウムシートの直径は4cmであり、厚さは1cmであり、陽極酸化されたアルミナの面積は12.56cm2(直径2cm)である。
[Experimental Example 1] Electrical Conductivity by Alumina Thickness Electrical Conductivity by 10 nm Thickness Alumina Layer Formed by Natural Oxidation of Aluminum and 20 μm and 30 μm Thickness Alumina Layers Formed by Anodizing Aluminum A comparison experiment of (= thickness / {resistance × area}) [S / m] was performed, and the results shown in Table 1 below were obtained. Here, the diameter of the aluminum sheet is 4 cm, the thickness is 1 cm, and the area of the anodized alumina is 12.56 cm 2 (diameter 2 cm).

アルミニウムシートに自然酸化により10nmの厚さのアルミナ層が形成された場合、抵抗実測値は10-4Ωであり、電気伝導度は7.96×104[S/m]であり、陽極酸化により20μm厚さのアルミナ層が形成された場合の抵抗実測値は1.7×10-2Ωであり、電気伝導度は4.69×102[S/m]であった。しかしながら、陽極酸化により30μm厚さのアルミナ層が形成された場合には、抵抗実測値はオーバーロードであって、電気伝導度は0、すなわち、アルミナ層は絶縁体を意味することになる。このように、陽極酸化により形成されたアルミナ層の厚さが30μm以下である場合には、アルミナ層は絶縁体としての役割を果たすことができないことが分かる。 When an alumina layer having a thickness of 10 nm is formed on an aluminum sheet by natural oxidation, the measured resistance is 10 −4 Ω, the electrical conductivity is 7.96 × 10 4 [S / m], and anodization is performed. When an alumina layer having a thickness of 20 μm was formed, the measured resistance value was 1.7 × 10 −2 Ω, and the electrical conductivity was 4.69 × 10 2 [S / m]. However, when an alumina layer having a thickness of 30 μm is formed by anodization, the actually measured resistance value is overload, and the electrical conductivity is 0, that is, the alumina layer means an insulator. Thus, it can be seen that when the thickness of the alumina layer formed by anodic oxidation is 30 μm or less, the alumina layer cannot serve as an insulator.

[実験例2] アルミニウム層とアルミナ層との面積比率による経時温度変化
LEDに取り付けられた熱電冷却モジュールのサンプルによる時間別の冷却部位の温度変化を比較観察し、表2の結果が得られた。ここで、サンプルAは、アルミナの面積がアルミニウムの面積の100%、サンプルBは、アルミナの面積がアルミニウムの面積の50%である場合であって、電力は同一に0.37W(1.0V×0.37A)を印加した。
[Experimental example 2] Temperature change with time depending on the area ratio of the aluminum layer and the alumina layer The temperature change of the cooling part according to time by the sample of the thermoelectric cooling module attached to the LED was comparatively observed, and the result of Table 2 was obtained . Here, sample A is the case where the area of alumina is 100% of the area of aluminum, and sample B is the case where the area of alumina is 50% of the area of aluminum, and the power is the same 0.37 W (1.0 V). X 0.37 A) was applied.

上記表2から分かるように、時間の経過によりアルミナの面積がアルミニウムの面積の50%であるサンプルBと、アルミナの面積がアルミニウムの面積の100%であるサンプルAとの冷却部位の温度差が大きくなるが、これは、サンプルAのようにアルミニウムの全体面積にアルミナが形成された場合、発熱部位の熱が冷却部位に拡散されながら、冷却部位の温度が上昇するためである。したがって、アルミナ層は、アルミニウム層の面積と同一に形成されるのではなく、一部のみに、望ましくは、アルミニウム層の面積の5〜50%の範囲内でアルミナが形成されることが望ましい。 As can be seen from Table 2 above, the temperature difference in the cooling region between sample B in which the area of alumina is 50% of the area of aluminum over time and sample A in which the area of alumina is 100% of the area of aluminum is This is because when alumina is formed in the entire area of aluminum as in sample A, the temperature of the cooling part rises while the heat of the heat generation part is diffused to the cooling part. Therefore, the alumina layer is not formed to be the same as the area of the aluminum layer, and it is desirable that the alumina is formed only in a part, preferably within a range of 5 to 50% of the area of the aluminum layer.

11、110 第1基板
12、120 第2基板
20、130 金属電極
30 拡散防止膜
41、141 P型熱電素子
42、142 N型熱電素子
111、121 アルミニウム層
112、122 アルミナ層
11, 110 First substrate 12, 120 Second substrate 20, 130 Metal electrode 30 Diffusion prevention film 41, 141 P-type thermoelectric element 42, 142 N-type thermoelectric element 111, 121 Aluminum layer 112, 122 Alumina layer

Claims (6)

金属電極が形成され互いに対向する第1基板及び第2基板と、
前記第1基板及び第2基板との間に形成される複数の熱電素子とを含み、
前記第1基板及び第2基板は、
アルミニウム層と、
前記アルミニウム層の互いに対向する面の一部に形成されるアルミナ(Al23)層とを含む、熱電冷却モジュール。
A first substrate and a second substrate formed with metal electrodes and facing each other;
A plurality of thermoelectric elements formed between the first substrate and the second substrate;
The first substrate and the second substrate are:
An aluminum layer;
A thermoelectric cooling module comprising: an alumina (Al 2 O 3 ) layer formed on a part of the mutually facing surfaces of the aluminum layer.
前記アルミナ層の厚さは30〜200μmである、請求項1に記載の熱電冷却モジュール。   The thermoelectric cooling module according to claim 1, wherein the alumina layer has a thickness of 30 to 200 μm. 前記アルミナ層の面積は、
前記アルミニウムの面積の5〜50%である、請求項1又は請求項2に記載の熱電冷却モジュール。
The area of the alumina layer is
The thermoelectric cooling module according to claim 1 or 2, which is 5 to 50% of an area of the aluminum.
前記第1基板及び第2基板に形成されるアルミナ層の面積は互いに同一である、請求項1〜請求項3のうちいずれか一項に記載の熱電冷却モジュール。   The thermoelectric cooling module according to any one of claims 1 to 3, wherein areas of the alumina layers formed on the first substrate and the second substrate are the same. 前記金属電極は、
Cu、Au、Ag、Ni、Al、Cr、Ru、Re、Pb、Sn、In、及びZnを含む群から選択される少なくとも1種の金属又はこれらの金属を含む合金からなる、請求項1〜請求項4のうちいずれか一項に記載の熱電冷却モジュール。
The metal electrode is
It consists of at least 1 type of metal selected from the group containing Cu, Au, Ag, Ni, Al, Cr, Ru, Re, Pb, Sn, In, and Zn, or an alloy containing these metals. The thermoelectric cooling module according to claim 4.
前記金属電極と前記熱電素子との間に形成される拡散防止膜をさらに含む請求項1〜請求項5のうちいずれか一項に記載の熱電冷却モジュール。   The thermoelectric cooling module according to any one of claims 1 to 5, further comprising a diffusion prevention film formed between the metal electrode and the thermoelectric element.
JP2013136551A 2012-06-28 2013-06-28 Thermoelectric cooling module and manufacturing method thereof Active JP6275962B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120069866A KR101998697B1 (en) 2012-06-28 2012-06-28 Thermoelectric cooling module and manufacturing method thereof
KR10-2012-0069866 2012-06-28

Publications (2)

Publication Number Publication Date
JP2014011469A true JP2014011469A (en) 2014-01-20
JP6275962B2 JP6275962B2 (en) 2018-02-07

Family

ID=49897912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136551A Active JP6275962B2 (en) 2012-06-28 2013-06-28 Thermoelectric cooling module and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6275962B2 (en)
KR (1) KR101998697B1 (en)
CN (1) CN103515522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111997A1 (en) * 2017-12-06 2019-06-13 三菱マテリアル株式会社 Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
JP2019102808A (en) * 2017-12-06 2019-06-24 三菱マテリアル株式会社 Insulating heat transfer substrate, thermoelectric conversion module, and method of manufacturing insulating heat transfer substrate
KR20190101168A (en) * 2018-02-22 2019-08-30 이배근 method and apparatus of manufacturing substrate material for thermoelectric module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102111604B1 (en) * 2014-05-13 2020-05-15 엘지이노텍 주식회사 Device using thermoelectric moudule
CN108461617A (en) * 2018-02-08 2018-08-28 南方科技大学 Temperature regulator part and preparation method
CN108648635B (en) * 2018-05-09 2019-09-20 京东方科技集团股份有限公司 The temperature-compensation method of display panel, display device and display panel
KR102372438B1 (en) 2019-04-30 2022-03-08 한국전기연구원 Thermoelectric element substrate and thermoelectric element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257789A (en) * 1998-03-10 1999-09-24 Hitachi Ltd Thermoelectric cooler and structure using it
JP2000214934A (en) * 1998-11-18 2000-08-04 Komatsu Ltd Temperature regulator and its manufacture
JP2001174095A (en) * 1999-12-17 2001-06-29 Komatsu Ltd Heat exchanger
JP2001183025A (en) * 1999-12-22 2001-07-06 Komatsu Ltd Heat-exchanger
WO2005124882A1 (en) * 2004-06-17 2005-12-29 Aruze Corp. Thermoelectric conversion module
JP2009194299A (en) * 2008-02-18 2009-08-27 Komatsu Ltd Thermoelectric generator
JP2009295878A (en) * 2008-06-06 2009-12-17 Yamaha Corp Heat exchange device
JP2010021241A (en) * 2008-07-09 2010-01-28 Yamaha Corp Thermoelectric conversion device
JP2010109132A (en) * 2008-10-30 2010-05-13 Yamaha Corp Thermoelectric module package and method of manufacturing the same
JP2013026618A (en) * 2011-07-15 2013-02-04 Samsung Electro-Mechanics Co Ltd Thermoelectric module
JP2013093397A (en) * 2011-10-25 2013-05-16 Hitachi Ltd Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2327959Y (en) * 1998-07-06 1999-07-07 赵振寰 Electronic refrigerator
JP2003222426A (en) * 2002-01-31 2003-08-08 Komatsu Ltd Heat exchanger
JP2003332642A (en) * 2002-05-10 2003-11-21 Komatsu Electronics Inc Thermoelectric conversion element unit
KR100766612B1 (en) 2006-05-26 2007-10-11 김성완 Radiant heat module using thermoelectric element
CN201408783Y (en) * 2008-10-31 2010-02-17 中国科学院上海硅酸盐研究所 Bismuth telluride based thermoelectric generation device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257789A (en) * 1998-03-10 1999-09-24 Hitachi Ltd Thermoelectric cooler and structure using it
JP2000214934A (en) * 1998-11-18 2000-08-04 Komatsu Ltd Temperature regulator and its manufacture
JP2001174095A (en) * 1999-12-17 2001-06-29 Komatsu Ltd Heat exchanger
JP2001183025A (en) * 1999-12-22 2001-07-06 Komatsu Ltd Heat-exchanger
WO2005124882A1 (en) * 2004-06-17 2005-12-29 Aruze Corp. Thermoelectric conversion module
JP2009194299A (en) * 2008-02-18 2009-08-27 Komatsu Ltd Thermoelectric generator
JP2009295878A (en) * 2008-06-06 2009-12-17 Yamaha Corp Heat exchange device
JP2010021241A (en) * 2008-07-09 2010-01-28 Yamaha Corp Thermoelectric conversion device
JP2010109132A (en) * 2008-10-30 2010-05-13 Yamaha Corp Thermoelectric module package and method of manufacturing the same
JP2013026618A (en) * 2011-07-15 2013-02-04 Samsung Electro-Mechanics Co Ltd Thermoelectric module
JP2013093397A (en) * 2011-10-25 2013-05-16 Hitachi Ltd Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111997A1 (en) * 2017-12-06 2019-06-13 三菱マテリアル株式会社 Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
JP2019102808A (en) * 2017-12-06 2019-06-24 三菱マテリアル株式会社 Insulating heat transfer substrate, thermoelectric conversion module, and method of manufacturing insulating heat transfer substrate
US11404622B2 (en) 2017-12-06 2022-08-02 Mitsubishi Materials Corporation Insulated heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulated heat transfer substrate
JP7200616B2 (en) 2017-12-06 2023-01-10 三菱マテリアル株式会社 Insulated heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulated heat transfer substrate
KR20190101168A (en) * 2018-02-22 2019-08-30 이배근 method and apparatus of manufacturing substrate material for thermoelectric module
KR102040504B1 (en) * 2018-02-22 2019-11-05 이배근 method and apparatus of manufacturing substrate material for thermoelectric module

Also Published As

Publication number Publication date
KR20140002158A (en) 2014-01-08
KR101998697B1 (en) 2019-07-10
JP6275962B2 (en) 2018-02-07
CN103515522A (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6275962B2 (en) Thermoelectric cooling module and manufacturing method thereof
KR102281065B1 (en) Cooling thermoelectric moudule and device using the same
US9142749B2 (en) Thermoelectric conversion module
JP4728745B2 (en) Thermoelectric device and thermoelectric module
US9516790B2 (en) Thermoelectric cooler/heater integrated in printed circuit board
WO2005124882A1 (en) Thermoelectric conversion module
JP2017069555A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2012033559A (en) Semiconductor device
JP2007035907A (en) Thermoelectric module
CN100385652C (en) Semiconductor device
JP2006049736A (en) Thermoelectric module
JP2015076607A (en) Semiconductor chip structure
JP5496975B2 (en) Semiconductor device module
US10897001B2 (en) Thermoelectric conversion module
JP2015056507A (en) Thermoelectric module
US20200006614A1 (en) Thermoelectric conversion device
GB2521353A (en) Thermoelectric device
JP6592996B2 (en) Thermoelectric generator
US20200028055A1 (en) Thermoelectric conversion device
JP5453296B2 (en) Semiconductor device
JP2004281451A (en) Thermoelectric conversion element
KR20160065329A (en) thermoelectric MODULE
JP6858379B2 (en) Calibration thermoelectric power generation module
JP5955911B2 (en) Semiconductor device
KR102049010B1 (en) Thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180111

R150 Certificate of patent or registration of utility model

Ref document number: 6275962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250