WO2019098283A1 - 延伸多孔フィルム - Google Patents

延伸多孔フィルム Download PDF

Info

Publication number
WO2019098283A1
WO2019098283A1 PCT/JP2018/042311 JP2018042311W WO2019098283A1 WO 2019098283 A1 WO2019098283 A1 WO 2019098283A1 JP 2018042311 W JP2018042311 W JP 2018042311W WO 2019098283 A1 WO2019098283 A1 WO 2019098283A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
stretched porous
film
resin
stretched
Prior art date
Application number
PCT/JP2018/042311
Other languages
English (en)
French (fr)
Inventor
隆敏 牟田
祐里 桑名
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017220905A external-priority patent/JP7020067B2/ja
Priority claimed from JP2018025787A external-priority patent/JP7020164B2/ja
Priority claimed from JP2018046414A external-priority patent/JP2019156989A/ja
Priority claimed from JP2018174473A external-priority patent/JP7167580B2/ja
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2019098283A1 publication Critical patent/WO2019098283A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present invention relates to a stretched porous film having excellent feel such as flexibility and texture, suppressing generation of unpleasant sound generated when rubbing the film, and excellent also in air permeability, moisture permeability and strength. More specifically, sanitary products such as disposable diapers and feminine hygiene products; clothing such as work clothes, jumpers, jackets, medical clothes, chemical protective clothing, etc .; other masks, covers, drapes, sheets, wraps, breathable, etc.
  • An excellent stretched porous film having a feeling of use that can be suitably used for applications requiring
  • thermoplastic resin such as polyolefin resin and an inorganic filler
  • interfacial peeling is generated between the thermoplastic resin and the inorganic filler, and a large number of voids (microporous)
  • a porous film formed is known.
  • a stretched porous film made of a resin composition containing a polyolefin resin and an inorganic filler has a fine internal pore forming a communicating hole, so that it can transmit liquid while having high air permeability and moisture permeability.
  • the porous film used in these applications is often used directly for touching the human skin, it is desirable that the film has an unpleasant sound or feel such as squeakyness and sizzling when it is worn. It becomes a factor that disturbs the feeling. Therefore, the porous film is required to have a good texture and flexibility and a good touch, and to suppress unpleasant noise.
  • an inorganic filler is contained with respect to 100 parts by weight of a total amount of ethylene / ⁇ -olefin copolymer 65 to 90% by weight and thermoplastic elastomer 35 to 10% by weight.
  • a moisture-permeable film is disclosed which contains 50 to 400 parts by weight of an inorganic filler with respect to 100 parts by weight of the component.
  • an inorganic filler 50 to 300 parts by mass of an inorganic filler and 1 to 30 parts by mass of a plasticizer are included with respect to 100 parts by mass of a total of 30 to 70 parts by mass of a polyethylene resin and 70 to 30 parts by mass of an olefin elastomer.
  • Resin component containing 100 to 40 parts by mass of a hydrophobic film (Patent Document 3), 40 to 90 parts by mass of polyethylene resin, 5 to 30 parts by mass of propylene homopolymer, and 5 to 30 parts by mass of propylene / ethylene copolymer elastomer
  • a moisture-permeable film containing 100 to 200 parts by mass of an inorganic filler and 1 to 20 parts by mass of a plasticizer (Patent Document 4), a moisture-permeable film containing a polyethylene resin composition, an inorganic filler, and a styrene elastomer 5)
  • Patent Document 4 a moisture-permeable film containing a polyethylene resin composition, an inorganic filler, and a styrene elastomer 5
  • 30 to 85 parts by mass of linear low density polyethylene 5 to 20 parts by mass of high pressure polymerization low density polyethylene, metallocene
  • a moisture-permeable film comprising a resin component
  • Patent Document 7 a resin composition containing a thermoplastic resin, a film containing 80% or less of porosity and containing 1 to 70% by mass of a filler
  • Patent Document 8 a thermoplastic resin, an organic filler, and an inorganic filler
  • Patent Document 8 A porous film having a porosity of 10 to 80% is disclosed.
  • Patent Documents 1 and 2 an ethylene / ⁇ -olefin copolymer having a melting point of 60 to 100 ° C. and a crystalline low density polyethylene containing 12% by weight or more of an ⁇ -olefin comonomer having 4 to 8 carbon atoms are used. Since the film is a main component, it has a high degree of flexibility, but may melt under high temperature conditions generated in the step of bonding other members, etc., resulting in insufficient dimensional stability, heat resistance and the like.
  • Patent Documents 3 to 6 in compositions containing a polyethylene resin and an inorganic filler, an olefin elastomer, a propylene / ethylene copolymer elastomer, a styrene elastomer, a metallocene ethylene / ⁇ -olefin copolymer, etc.
  • an olefin elastomer a propylene / ethylene copolymer elastomer
  • a styrene elastomer a metallocene ethylene / ⁇ -olefin copolymer, etc.
  • Patent Documents 3 to 6 do not refer to technical design guidelines for suppressing unpleasant noise.
  • Patent Document 7 a filler is contained in a biodegradable resin typified by a polylactic acid-based resin, and attempts have been made to achieve both water resistance and degradability, and the porosity is 80% or less Although it is described that the water resistance of the film is suppressed by doing so, no mention is made as to suppression of unpleasant noise. Further, Patent Document 8 also describes that lowering the moisture permeability, the film strength, the heat retention effect, and the dustproof effect is suppressed by setting the porosity to 10 to 80%, but similarly, the unpleasant noise There is no mention of the suppression of
  • the present invention has been made in view of the above problems, and has an excellent tactile sensation such as flexibility and texture, as well as suppressing the generation of unpleasant noise generated when the film is rubbed, and excellent also in air permeability, moisture permeability and strength. It is an object of the present invention to provide a stretched porous film.
  • the present inventors succeeded in obtaining a stretched porous film capable of solving the problems of the above-mentioned prior art, and came to complete the present invention. That is, the object of the present invention is achieved by the following stretched porous film (hereinafter, also referred to as "the stretched porous film of the present invention").
  • an object of the present invention is a stretched porous film comprising a thermoplastic resin and a resin composition (Z) containing an inorganic filler (A), which is calculated from the dynamic viscoelasticity measurement of the resin composition (Z) Ratio of storage elastic modulus (E ′) to loss elastic modulus (E ′ ′), which is equal to or greater than 0.100 at ⁇ 20 ° C., and a porosity of 25 It is solved by a stretched porous film (the first embodiment of the present invention) which is% -80%.
  • Another object of the present invention is a stretched porous film comprising a thermoplastic resin and a resin composition (Z) containing an inorganic filler (A), which is calculated from the dynamic viscoelasticity measurement of the resin composition (Z).
  • a stretched porous film having excellent feel such as softness and texture, suppressing generation of unpleasant sound generated when rubbing the film, and being excellent also in air permeability, moisture permeability and strength.
  • it can, it can be suitably used for applications requiring breathability and moisture permeability.
  • the stretched porous film of the present invention as an example of the embodiment of the present invention will be described.
  • the scope of the present invention is not limited to the embodiments described below.
  • the stretched porous film is a porous film stretched at least in a uniaxial direction.
  • main component refers to a component that occupies the largest mass ratio in the composition, and is preferably 45 mass% or more, more preferably 50 mass% or more, 55 mass% The above is more preferable.
  • X to Y X and Y are arbitrary numbers
  • Stretched porous film 1-1 Stretched porous film (first embodiment of the present invention)
  • the stretched porous film of the first embodiment of the present invention is a stretched porous film comprising a thermoplastic resin and a resin composition (Z) containing an inorganic filler (A), and the dynamic of the resin composition (Z)
  • the stretched porous film of the first embodiment of the present invention comprises a resin composition (Z) containing 25% by mass to 54% by mass of a thermoplastic resin and 46% by mass to 75% by mass of an inorganic filler (A).
  • the stretched porous film of the first embodiment of the present invention is a resin composition containing 25% by mass to 54% by mass of a thermoplastic resin and 46% by mass to 75% by mass of an inorganic filler (A).
  • the upper limit of tan ⁇ of the resin composition (Z) constituting the stretched porous film is not particularly limited, but is preferably 1.000 or less at -20 ° C. from the viewpoint of heat resistance and dimensional stability. .
  • the film is excellent in touch such as flexibility and texture.
  • the tan ⁇ is preferably 0.100 or more at -20 ° C to -10 ° C, more preferably 0.100 or more at -20 ° C to 0 ° C, and 0.100 at -20 ° C to 10 ° C.
  • the above is more preferable, the range of -0.100 or more at -20 ° C to 20 ° C is even more preferable, and the range of 0.100 or more at -30 ° C to 30 ° C is most preferable.
  • the temperature range in which tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the first embodiment of the present invention is 0.100 or more is broadened In addition, unpleasant noises of various frequencies can be suppressed.
  • the porosity of the stretched porous film of the first embodiment of the present invention is 25% to 80%.
  • the porosity is more preferably 30% to 80%, and still more preferably 35% to 80%.
  • the porosity is 25% or more, as described later, the energy loss opportunity of sound propagating in the pores of the stretched porous film increases, and unpleasant noise can be sufficiently suppressed.
  • the porosity is 80% or less, it is possible to secure a film strength that can be practically used, and further, the waterproofness is sufficient, and it becomes difficult to cause the leakage of the liquid material in contact.
  • the stretched porous film of the first embodiment of the present invention is a film having a void communicated with the inside of the resin composition (Z).
  • the sound is formed by vibrating the resin composition (Z) forming the solid portion as a film and propagating inside the film It shows two ways of transmission with the sound that propagates through the air gap that has communicated. Therefore, to suppress the sound, it is necessary to consider the suppression of the sound that propagates by vibrating the resin composition (Z), and the suppression of the sound that propagates through the open space.
  • the damping of the sound by the vibration source or medium is effective for the suppression of the sound propagating by vibrating the resin composition (Z).
  • a viscoelastic body such as a resin
  • tan ⁇ which is the ratio of the storage elastic modulus (E ′) to the loss elastic modulus (E ′ ′)
  • the peak value of tan ⁇ of the resin composition (Z) constituting the stretched porous film be larger.
  • the peak position of tan ⁇ of the resin composition (Z) constituting the stretched porous film of the first embodiment of the present invention is related to the attenuation at the temperature at which the sound is generated, and from the viewpoint of the temperature-time conversion law. It also relates to the attenuation to the frequency. Therefore, it is preferable that the peak width of tan ⁇ be wider in order to absorb or not generate unpleasant sounds having various frequencies.
  • the porosity of the porous film suppresses the propagation of sound.
  • the first embodiment of the present invention relates to the ratio of the storage elastic modulus (E ′) to the loss elastic modulus (E ′ ′) calculated from the dynamic viscoelasticity measurement of the resin composition (Z).
  • the stretched porous film of the first embodiment of the present invention preferably has a crystal melting enthalpy ( ⁇ Hm) of 10 J / g to 45 J / g.
  • the crystal melting enthalpy ( ⁇ Hm) is more preferably 12 J / g to 43 J / g, still more preferably 14 J / g to 41 J / g, and further preferably 16 J / g to 39 J / g. More preferable.
  • the crystal melting enthalpy ( ⁇ Hm) is 10 J / g or more, the heat resistance and the dimensional stability of the stretched porous film can be secured.
  • the crystal melting enthalpy ( ⁇ Hm) is 45 J / g or less, generation of unpleasant noise described later can be suppressed.
  • the thermoplastic resin As a method of suppressing the unpleasant sound generated when rubbing the stretched porous film, it is considered effective to suppress the generation of the sound from the sound source as well as suppressing the above-mentioned propagation sound.
  • the thermoplastic resin Focusing on the thermoplastic resin contained in the resin composition (Z) constituting the stretched film of the first embodiment of the present invention, the thermoplastic resin is a viscoelastic body having both elastic properties and viscous properties. is there. That is, by reducing the proportion of elastic properties of the thermoplastic resin, when an external force of rubbing the film is applied, the elastic component that repels to the external force and vibrates is reduced, and the generation of sound is suppressed.
  • the elastic property of the macro viewpoint is the storage elastic modulus (E ') calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the first embodiment of the present invention described above.
  • the elastic property of the micro viewpoint is a crystalline component of the resin described later.
  • Thermoplastic resins are classified into amorphous resins and crystalline resins in terms of crystals.
  • Amorphous resin is a thermoplastic resin in which the molecular chain can not be folded regularly and has no crystal part because the molecular chain has a relatively bulky structure.
  • a crystalline resin is a thermoplastic resin in which molecular chains are regularly folded and has a high-density crystal part inside.
  • it is a crystalline resin, there is no crystalline resin in which 100% of the molecular chains are crystallized, and both an amorphous part in which the molecular chains are randomly arranged and a crystalline part in which the molecular chains are regularly folded Have.
  • the amorphous part of the crystalline resin is capable of micro-brown movement in a temperature range above the glass transition temperature (Tg), and is in a state of high mobility.
  • Tg glass transition temperature
  • Tm melting point
  • the crystal melting enthalpy ( ⁇ Hm) is an index of the crystal component ratio in the stretched porous film of the first embodiment of the present invention, and is preferably 10 J / g to 45 J / g.
  • the storage elastic modulus (E ′) calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film is preferably 8.0 ⁇ 10 8 Pa or less at 20 ° C. More preferably, it is 7.0 ⁇ 10 8 Pa or less, still more preferably 6.0 ⁇ 10 8 Pa or less.
  • the storage elastic modulus (E ′) is 8.0 ⁇ 10 8 Pa or less at 20 ° C.
  • the stretched porous film is excellent in touch such as texture and flexibility.
  • the lower limit is not particularly limited, but from the viewpoint of handling of the stretched porous film, 1.0 ⁇ 10 7 Pa or more is preferable at 20 ° C.
  • the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the first embodiment of the present invention is carried out using a strip-like sample piece cut out with a width of 4 mm and a length of 35 mm at a measurement frequency of 10 Hz. From a measured strain of 0.1%, a distance between chucks of 25 mm, and a measured temperature of -100 ° C., measurement is performed while raising the temperature at a temperature rising rate of 3 ° C./min. At this time, the storage elastic modulus (E ′), loss elastic modulus (E ′ ′), and storage elastic modulus (E ′) and loss elastic modulus (E ′) at each temperature are obtained from the temperature dependence profile of dynamic viscoelasticity obtained.
  • the thickness of the sample piece is measured in advance, and the cross-sectional area of the sample piece is calculated by inputting the thickness of the sample piece and the value of the width of the sample piece into the measuring device. It is calculated.
  • the stretched porous film of the first embodiment of the present invention since the pores are generated in the resin composition (Z), when the porous body is measured as it is, the calculated storage elastic modulus (E ′), loss, Errors easily occur in the elastic modulus (E ′ ′) and tan ⁇ .
  • the resin composition Z Dynamic viscoelasticity measurement is preferably performed on strip-shaped sample pieces cut out in the longitudinal direction (MD): 4 mm and the transverse direction (TD): 35 mm using the unstretched film of.
  • MD longitudinal direction
  • TD transverse direction
  • a press sample is prepared, and a strip-like sample piece is cut out from the press sample to perform dynamic viscoelasticity measurement.
  • any measurement method can be adopted.
  • a stretched porous film is cut into a size of 50 mm in the longitudinal direction (MD) and 50 mm in the transverse direction (TD), and the specific gravity (W1) of the stretched porous film is measured.
  • the specific gravity (W0) of the resin composition (Z) constituting the stretched porous film of the first embodiment of the present invention is measured.
  • the unstretched film of the stretched porous film of the first embodiment of the present invention is 50 mm in the longitudinal direction (MD) and 50 mm in the transverse direction (TD).
  • the specific gravity can be measured by cutting out to the size of.
  • the stretched porous film of the first embodiment of the present invention is heated to the melting point or more to melt the stretched porous film and eliminate the pores, and then a press sample is prepared.
  • the specific gravity can be measured by cutting out the pressed sample into a size of 50 mm in the longitudinal direction (MD) and 50 mm in the transverse direction (TD).
  • the crystal melting enthalpy ( ⁇ Hm) of the stretched porous film of the first embodiment of the present invention is a differential scanning calorimeter (DSC) of the stretched porous film of the first embodiment of the present invention from -40 ° C to a high temperature
  • the temperature is raised to the holding temperature at a heating rate of 10 ° C./min, held for 1 minute, then lowered from a high temperature holding temperature to -40 ° C. at a cooling rate of 10 ° C./min, held for 1 minute, and further -40 ° C. to the above
  • the crystal melting enthalpy ( ⁇ Hm) is calculated from the crystal melting peak area when the temperature is raised again to a high temperature holding temperature at a heating rate of 10 ° C./min.
  • the high temperature holding temperature can be arbitrarily selected in the range of Tm + 20 ° C. or more and Tm + 150 ° C. or less with respect to the crystal melting peak temperature (Tm) of the thermoplastic resin to be used.
  • the crystal melting enthalpy ( ⁇ Hm) defined in the first embodiment of the present invention is the reheating process even in the case of cold crystallization as seen in semicrystalline resins in the above reheating process.
  • the ⁇ Hm calculated from the crystal melting peak generated in That is, the enthalpy of crystallization ( ⁇ Hc) calculated from the exothermic peak area in cold crystallization occurring in the reheating process is not subtracted from ⁇ Hm obtained in the reheating process.
  • the stretched porous film of the first embodiment of the present invention is laminated with another layer, if DSC measurement is performed on the laminate as it is, ⁇ Hm derived from the stretched porous film may be estimated to be low. Therefore, when the stretched porous film of the first embodiment of the present invention is a laminate, the stretched porous film of the first embodiment of the present invention can be peeled off, and the ⁇ Hm can be measured for this porous layer. When peeling is difficult, ⁇ Hm of the stretched porous film of the first embodiment of the present invention in the entire laminate is calculated by DSC measurement, and the lamination ratio of the porous layer in the entire laminate is calculated. From the equation, ⁇ Hm defined in the first embodiment of the present invention can be calculated.
  • the calculation of the lamination ratio is not particularly limited, it is preferably calculated by cross-sectional observation with an optical microscope, an electron microscope or the like.
  • ⁇ Hm (J / g) defined in the first embodiment of the present invention ⁇ Hm (J / g) of the stretched porous film in the whole laminate / lamination ratio (%) / 100 (% of the porous layer in the whole laminate) )
  • the crystal melting peak temperature (Tm) in the stretched porous film of the first embodiment of the present invention is preferably 70 ° C. or more, more preferably 80 ° C. or more, and 90 ° C. or more More preferable.
  • the number of crystal melting peaks may be one, or two or more.
  • one crystal melting peak temperature (Tm) is preferably 70 ° C. or more.
  • the crystal melting enthalpy ( ⁇ Hm) is the sum of the crystal melting enthalpies ( ⁇ Hm) calculated from the two or more crystal melting peaks.
  • the crystal melting start temperature is 30% of the crystal melting peak temperature (Tm) It melts little by little from temperatures lower than ° C and often shows a broad peak. Therefore, by raising the differential scanning calorimetry (DSC) temperature from -40.degree. C., the baseline can be clarified and the crystal melting enthalpy (.DELTA.Hm) can be calculated more accurately.
  • DSC differential scanning calorimetry
  • the basis weight of the stretched porous film of the first embodiment of the present invention is preferably 10 g / m 2 to 50 g / m 2 , more preferably 15 g / m 2 to 40 g / m 2 .
  • the basis weight is 10 g / m 2 or more, mechanical strength such as tensile strength and tear strength can be easily secured sufficiently.
  • the basis weight is 50 g / m 2 or less, it is easy to obtain a feeling of sufficient lightness.
  • a mass (g) of a sample (longitudinal direction (MD): 250 mm, lateral direction (TD): 200 mm) is measured with an electronic balance, and a value obtained by multiplying the value by 20 is taken as basis weight.
  • the air permeability of the stretched porous film according to the first embodiment of the present invention is preferably 1 second / 100 mL to 5000 seconds / 100 mL, more preferably 10 seconds / 100 mL to 4000 seconds / 100 mL, and 100 seconds. It is more preferable that the ratio is from / 100 mL to 3000 seconds / 100 mL.
  • the air permeability is 1 second / 100 mL or more, it is easy to ensure sufficient water resistance and liquid permeation resistance.
  • the air permeability of 5000 seconds / 100 mL or less suggests that it has sufficient communication holes.
  • the air permeability is the number of seconds in which 100 mL of air passes through the paper, which is measured according to the method defined in JIS P8117: 2009 (Gurley testing machine method).
  • the air permeability measuring device It can be measured using a manufacturing laboratory type air permeability measuring machine EGO1-55). In the present invention, samples are randomly measured at 10 points, and their arithmetic mean value is taken as air permeability.
  • the moisture permeability of the stretched porous film according to the first embodiment of the present invention is preferably 1000 g / (m 2 ⁇ 24 h) to 15000 g / (m 2 ⁇ 24 h), and more preferably 1500 g / (m 2 ⁇ 24 h) to 12000 g / (M 2 ⁇ 24 h).
  • the moisture permeability of 15000 g / (m 2 ⁇ 24 h) or less suggests that it has water resistance.
  • the holes have sufficient communication because the moisture permeability is 1000 g / (m 2 ⁇ 24 h) or more.
  • the moisture permeability conforms to the conditions of JIS Z 0208 (The moisture permeability test method of moisture-proof packaging material (cup method)).
  • the moisture permeability test method of moisture-proof packaging material (cup method) The moisture permeability test method of moisture-proof packaging material (cup method)).
  • the tensile breaking strength at break is 7 N / 25 mm or more, mechanical strength and flexibility sufficient for practical use can be secured.
  • the upper limit is not particularly limited, but in view of stretchability, it is preferably 35 N / 25 mm or less.
  • the tensile breaking strength in the stretching direction is a sample cut out in the stretching direction 100 mm ⁇ the stretching direction 25 mm in accordance with JIS K7127, and the tensile speed is 200 m under an environment of 23 ° C. and 50% relative humidity. It is a tensile breaking strength at the time of breaking using a triple tension tester under the condition of 50 min. In the present invention, an arithmetic mean value of tensile strength at break calculated by performing measurement three times is used.
  • the tensile breaking elongation in the stretching direction in the stretched porous film of the first embodiment of the present invention is preferably 40% to 400%, and more preferably 100% to 300%.
  • a hygienic product such as a moisture-permeable back sheet such as a menstrual treatment product with a tensile elongation at break of 40% or more
  • the touch is good and the excellent feel is excellent Is obtained.
  • the tensile elongation at break when the tensile elongation at break is 400% or less, it has appropriate rigidity and tensile strength, is excellent in mechanical properties, and has low elongation and distortion of film during printing, slitting, and winding processing, and excellent mechanical suitability in a production line Is obtained.
  • the tensile elongation at break in the stretching direction is prepared according to JIS K7127 by preparing a sample cut out in a stretching direction of 100 mm ⁇ 25 mm perpendicular to the stretching direction, under an environment of 23 ° C. and a relative humidity of 50%.
  • the heat shrinkage rate in the stretching direction when the stretched porous film of the first embodiment of the present invention is heated at 60 ° C. for 1 hour is preferably less than 5.0%, and more preferably less than 4.0%. preferable.
  • the heat shrinkage rate in the stretching direction when heated at 60 ° C. for 1 hour is less than 5.0%, blocking and winding tightness when the roll-shaped sample of the stretched porous film is stored over time are preferable.
  • the thermal contraction rate is left standing and heated for 1 hour in a convection oven in which the temperature in the tank is set to 60 ° C., for which the sample cut out in the stretching direction of 200 mm ⁇ 10 mm perpendicular to the stretching direction is set.
  • the length L (mm) in the stretching direction is measured, which is a value calculated by the formula “(200-L) / 200 ⁇ 100 (%)”.
  • the measurement is made three times to obtain the arithmetic mean value of the thermal contraction rate calculated.
  • the total light transmittance of the stretched porous film of the first embodiment of the present invention is preferably 18% to 60%.
  • the stretched porous film of the first embodiment of the present invention for sanitary goods such as back sheets for moisture-permeable waterproofs such as disposable diapers by having a total light transmittance of 18% or more, an indicator drug which indicates that urination has occurred Even if it applies, it can recognize.
  • the film is white and rich in hiding power because the total light transmittance is 60% or less.
  • the total light transmittance is obtained by randomly measuring five points using a haze meter in accordance with JIS K7361 and calculating its arithmetic mean value.
  • the stretched porous film of the second embodiment of the present invention comprises a resin composition (Z) containing 25% by mass to 54% by mass of a thermoplastic resin and 46% by mass to 75% by mass of an inorganic filler (A).
  • the stretched porous film of the second embodiment of the present invention more preferably is a resin composition containing 25% by mass to 54% by mass of a thermoplastic resin and 46% by mass to 75% by mass of an inorganic filler (A).
  • the upper limit of tan ⁇ of the resin composition (Z) constituting the stretched porous film is not particularly limited, but is preferably 1.000 or less at -20 ° C. from the viewpoint of dimensional stability.
  • the film is excellent in touch such as flexibility and texture.
  • the tan ⁇ is preferably 0.100 or more at -20 ° C to -10 ° C, more preferably 0.100 or more at -20 ° C to 0 ° C, and 0.100 at -30 ° C to 0 ° C. It is more preferable that the above is more preferably 0.100 or more at -30 ° C to 10 ° C, still more preferably 0.100 or more at -30 ° C to 20 ° C. Most preferably, it is 0.100 or more in ° C.
  • the temperature range in which tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention is 0.100 or more is broadened.
  • unpleasant noises of various frequencies can be suppressed.
  • the porosity of the stretched porous film of the second embodiment of the present invention is preferably 15% to 80%.
  • the porosity is more preferably 20% to 80%, and still more preferably 25% to 80%.
  • the porosity is 15% or more, as described later, the energy loss opportunity of sound propagating in the pores of the stretched porous film increases, and unpleasant noise can be sufficiently suppressed.
  • the porosity is 80% or less, it is possible to secure a film strength that can be practically used, and further, the waterproofness is sufficient, and it becomes difficult to cause the leakage of the liquid material in contact.
  • the stretched porous film of the second embodiment of the present invention is a film having a void communicated with the inside of the resin composition (Z).
  • the sound is formed by vibrating the resin composition (Z) forming the solid portion as a film and propagating inside the film It shows two ways of transmission with the sound that propagates through the air gap that has communicated. Therefore, to suppress the sound, it is necessary to consider the suppression of the sound that propagates by vibrating the resin composition (Z), and the suppression of the sound that propagates through the open space.
  • the stretched porous film of the second embodiment of the present invention it is considered that damping of the vibration source of sound or the medium is effective for suppressing the sound which propagates by vibrating the resin composition (Z).
  • a viscoelastic body such as a resin
  • tan ⁇ which is the ratio of the storage elastic modulus (E ′) to the loss elastic modulus (E ′ ′)
  • the peak value of tan ⁇ of the resin composition (Z) constituting the stretched porous film be larger.
  • the peak position of tan ⁇ of the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention relates to the attenuation at the temperature at which the sound is generated, and from the viewpoint of the temperature-time conversion law. It also relates to the attenuation to the frequency. Therefore, it is preferable that the peak width of tan ⁇ be wider in order to absorb or not generate unpleasant sounds having various frequencies.
  • the porosity of the porous film is also considered to contribute to the suppression of the propagating sound.
  • the porosity of the stretched porous film is 15% or more in order to increase the energy loss opportunity of sound propagating in the pores of the film.
  • the stretched porous film of the second embodiment of the present invention has a crystal melting peak (Pm1) at 140 ° C. to 200 ° C.
  • the crystal melting peak (Pm1) is preferably at 150 ° C. to 190 ° C., and more preferably at 160 ° C. to 180 ° C. Having a crystal melting peak (Pm1) at 140 ° C. or higher makes it possible to impart sufficient heat resistance when bonding and laminating the stretched porous film with other members, which is important. Further, by having the crystal melting peak (Pm1) at 200 ° C. or less, there is no need to extremely increase the extrusion temperature in forming a stretched porous film, and therefore it is difficult to generate resin degradation products and the like, productivity is improved.
  • the thermoplastic resin having a melting point of 140 ° C. to 200 ° C. is contained in the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention. Can be adjusted to have the crystal melting peak (Pm1) in the above range.
  • the crystal melting enthalpy ( ⁇ Hm1) calculated from the crystal melting peak (Pm1) is preferably 1 J / g to 10 J / g.
  • the crystal melting enthalpy ( ⁇ Hm1) is more preferably 1 J / g to 8 J / g, and still more preferably 2 J / g to 6 J / g.
  • the crystal melting enthalpy ( ⁇ Hm1) is 1 J / g or more, it is preferable because it has a sufficient crystal component to impart heat resistance to the stretched porous film.
  • the crystal melting enthalpy ((DELTA) Hm1) is 10 J / g or less.
  • the crystal melting enthalpy ( ⁇ Hm1) can be reduced by adjusting the mixing ratio of the thermoplastic resin having a melting point of 140 ° C. to 200 ° C. It can adjust to the said range.
  • the stretched porous film of the second embodiment of the present invention preferably further has a crystal melting peak (Pm2) at 30 ° C to 130 ° C.
  • the crystal melting enthalpy ( ⁇ Hm2) calculated from the crystal melting peak (Pm2) is preferably 10 J / g to 45 J / g.
  • the crystal melting enthalpy ( ⁇ Hm2) is more preferably 12 J / g to 43 J / g, and still more preferably 14 J / g to 41 J / g.
  • the crystal melting enthalpy ( ⁇ Hm2) is 10 J / g or more, the heat resistance and the dimensional stability of the stretched porous film can be secured.
  • the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention contains a thermoplastic resin having a melting point of 30 ° C to 130 ° C, By adjusting the mixing ratio, the crystal melting peak (Pm2) and the crystal melting enthalpy ( ⁇ Hm2) can be adjusted to the above ranges.
  • thermoplastic resin contained in the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention is a viscoelastic body having both elastic properties and viscous properties. It is.
  • the elastic property of the macro viewpoint is the storage elastic modulus (E ') calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention described above.
  • the elastic property of the micro viewpoint is a crystalline component of the resin described later.
  • the storage elastic modulus (E) calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention (E) ') Is preferably 8.0 ⁇ 10 8 Pa or less at 20 ° C. More preferably, it is 7.0 ⁇ 10 8 Pa or less, still more preferably 6.0 ⁇ 10 8 Pa or less.
  • the storage elastic modulus (E ′) is 8.0 ⁇ 10 8 Pa or less at 20 ° C.
  • the stretched porous film is excellent in touch such as texture and flexibility, and suppresses generation of unpleasant noise. It is preferable because The lower limit is not particularly limited, but from the viewpoint of handling of the stretched porous film, 1.0 ⁇ 10 7 Pa or more is preferable at 20 ° C.
  • the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film according to the second embodiment of the present invention is performed on a strip-like sample piece cut out with a width of 4 mm and a length of 35 mm at a measurement frequency of 10 Hz. From a measured strain of 0.1%, a distance between chucks of 25 mm, and a measured temperature of -100 ° C., measurement is performed while raising the temperature at a temperature rising rate of 3 ° C./min. At this time, the storage elastic modulus (E ′), loss elastic modulus (E ′ ′), and storage elastic modulus (E ′) and loss elastic modulus (E ′) at each temperature are obtained from the temperature dependence profile of dynamic viscoelasticity obtained.
  • the thickness of the sample piece is measured in advance, and the cross-sectional area of the sample piece is calculated by inputting the thickness of the sample piece and the value of the width of the sample piece into the measuring device. It is calculated.
  • the stretched porous film of the second embodiment of the present invention since the pores are generated in the resin composition (Z), when the porous body is measured as it is, the calculated storage elastic modulus (E ′), loss, Errors easily occur in the elastic modulus (E ′ ′) and tan ⁇ .
  • a resin composition Z It is preferable to perform a dynamic viscoelasticity measurement about the strip-like sample piece cut out by MD: 4 mm and TD: 35 mm using the unstretched film of 2.).
  • a press sample is prepared, and a strip-like sample piece is cut out from the press sample to perform dynamic viscoelasticity measurement.
  • any measurement method can be adopted.
  • Thermoplastic resins are classified into amorphous resins and crystalline resins in terms of crystals.
  • Amorphous resin is a thermoplastic resin in which the molecular chain can not be folded regularly and has no crystal part because the molecular chain has a relatively bulky structure.
  • a crystalline resin is a thermoplastic resin in which molecular chains are regularly folded and has a high-density crystal part inside.
  • crystalline resin there is no crystalline resin in which 100% of the molecular chains are crystallized, and both an amorphous part in which the molecular chains are randomly arranged and a crystalline part in which the molecular chains are regularly folded Have.
  • the amorphous part of the crystalline resin is capable of micro-brown movement in a temperature range above the glass transition temperature, and is in a state of high mobility.
  • molecular chains are confined as crystals in a temperature range of not less than the glass transition temperature and not more than the melting point, and it becomes a part having a very high elastic modulus.
  • the crystal melting enthalpy is an index of the crystal component ratio in the stretched porous film of the second embodiment of the present invention, and the crystal melting enthalpy ( ⁇ Hm1) is preferably 1 J / g to 10 J / g.
  • the crystal melting enthalpy ( ⁇ Hm2) is preferably 10 J / g to 45 J / g.
  • the crystalline melting peak (Pm) and the peak temperature (Tm) of the stretched porous film of the second embodiment of the present invention are the differential scanning calorimeter (DSC), and the stretched of the second embodiment of the present invention
  • DSC differential scanning calorimeter
  • the porous film is heated from -40 ° C to a high temperature holding temperature at a heating rate of 10 ° C / min, held for 1 minute, then lowered from a high temperature holding temperature to -40 ° C at a cooling rate of 10 ° C / min, held for 1 minute Crystal melting peak (Pm) which appears when the temperature is raised again from ⁇ 40 ° C. to the above-mentioned high temperature holding temperature at a heating rate of 10 ° C./min, and the temperature (Tm) showing the peak.
  • the crystal melting enthalpy ( ⁇ Hm) is calculated from the peak area of the crystal melting peak (Pm) that appears when the temperature is raised again.
  • the high temperature holding temperature can be arbitrarily selected in the range of Tm + 20 ° C. or more and Tm + 150 ° C. or less with respect to the highest crystal melting peak temperature (Tm) of the thermoplastic resin to be used.
  • the crystal melting enthalpy ( ⁇ Hm) occurs in the reheating process, even in the case of cold crystallization as seen in a semicrystalline resin in the reheating process.
  • the ⁇ Hm calculated from the crystal melting peak is applied. That is, the crystallization enthalpy ( ⁇ Hc) calculated from the exothermic peak area in cold crystallization occurring in the reheating process is not subtracted from ⁇ Hm obtained in the reheating process.
  • the stretched porous film of the second embodiment of the present invention when the DSC measurement is performed on the laminate as it is, ⁇ Hm derived from the stretched porous film may be estimated to be low. Therefore, when the stretched porous film of the second embodiment of the present invention is a laminate, the stretched porous film of the second embodiment of the present invention can be peeled off, and ⁇ Hm can be measured for this porous layer. When peeling is difficult, while calculating ⁇ Hm of the stretched porous film of the second embodiment of the present invention in the entire laminate by DSC measurement, the lamination ratio of the porous layer in the entire laminate is calculated, and the following From the calculation formula, ⁇ Hm in the second embodiment of the present invention can be calculated.
  • ⁇ Hm (J / g) ⁇ Hm (J / g) of the stretched porous film in the whole laminate / lamination ratio (%) / 100 (%) of the porous layer in the whole laminate
  • the crystal melting peak (Pm1) in the stretched porous film of the second embodiment of the present invention has at 140 ° C. to 200 ° C.
  • at least one crystal melting peak at 140 ° C. to 200 ° C. may be two or more.
  • the crystal melting enthalpy ( ⁇ Hm1) is the sum of crystal melting enthalpies calculated from two or more crystal melting peaks.
  • the crystal melting peak (Pm2) is also preferably at least one crystal melting peak at 30 ° C. to 130 ° C., but may be two or more.
  • the crystal melting enthalpy ( ⁇ Hm 2) is a total value of crystal melting enthalpies calculated from two or more crystal melting peaks.
  • the crystal melting start temperature is more than 30 from the crystal melting peak temperature (Tm) It melts little by little from temperatures lower than ° C and often shows a broad peak. Therefore, by raising the differential scanning calorimetry (DSC) temperature from -40.degree. C., the baseline can be clarified and the crystal melting enthalpy (.DELTA.Hm) can be calculated more accurately.
  • DSC differential scanning calorimetry
  • the second embodiment of the present invention relates to the ratio of the storage elastic modulus (E ′) to the loss elastic modulus (E ′ ′) calculated from the dynamic viscoelasticity measurement of the resin composition (Z).
  • a sound absorption coefficient to suppress unpleasant noise generated when the film rubs, as well as excellent in touch such as flexibility and texture by setting the temperature at which certain tan ⁇ and crystal melting peak (Pm1) occur to a suitable range while improving the (vibration attenuation rate), the heat resistance required for the stretched porous film can be compatible.
  • the porosity of the stretched porous film according to the second embodiment of the present invention is as follows: the stretched porous film is cut into a size of 50 mm in the longitudinal direction (MD) and 50 mm in the transverse direction (TD); Measure W1). Next, the specific gravity (W0) of the resin composition (Z) constituting the stretched porous film of the second embodiment of the present invention is measured. In the measurement of the specific gravity (W0) of the resin composition (Z), the unstretched film of the stretched porous film of the second embodiment of the present invention is a longitudinal direction (MD): 50 mm, a transverse direction (TD): 50 mm The specific gravity can be measured by cutting out to the size of.
  • the stretched porous film of the second embodiment of the present invention is heated to a temperature higher than the melting point to melt the stretched porous film and eliminate pores, and then prepare a press sample.
  • the specific gravity can be measured by cutting out the pressed sample into a size of 50 mm in the longitudinal direction (MD) and 50 mm in the transverse direction (TD).
  • the basis weight of the stretched porous film of the second embodiment of the present invention is preferably 10 g / m 2 to 50 g / m 2 , more preferably 12 g / m 2 to 40 g / m 2 .
  • the basis weight is 10 g / m 2 or more, mechanical strength such as tensile strength and tear strength can be easily secured sufficiently.
  • the basis weight is 50 g / m 2 or less, it is easy to obtain a feeling of sufficient lightness.
  • a mass (g) of a sample (longitudinal direction (MD): 250 mm, lateral direction (TD): 200 mm) is measured with an electronic balance, and a value obtained by multiplying the value by 20 is taken as basis weight.
  • the air permeability of the stretched porous film of the second embodiment of the present invention is preferably 1 second / 100 mL to 5000 seconds / 100 mL, more preferably 10 seconds / 100 mL to 4000 seconds / 100 mL, and 100 seconds. It is more preferable that the ratio is from / 100 mL to 3000 seconds / 100 mL.
  • the air permeability is 1 second / 100 mL or more, it is easy to ensure sufficient water resistance and liquid permeation resistance.
  • the air permeability of 5000 seconds / 100 mL or less suggests that it has sufficient communication holes.
  • the air permeability is the number of seconds in which 100 mL of air passes through the paper, which is measured according to the method defined in JIS P8117: 2009 (Gurley testing machine method).
  • the air permeability measuring device It can be measured using a manufacturing laboratory type air permeability measuring machine EGO1-55). In the present invention, samples are randomly measured at 10 points, and their arithmetic mean value is taken as air permeability.
  • the moisture permeability of the stretched porous film according to the second embodiment of the present invention is preferably 1000 g / (m 2 ⁇ 24 h) to 15000 g / (m 2 ⁇ 24 h), more preferably 1500 g / (m 2 ⁇ 24 h) to 1 2000 g / (M 2 ⁇ 24 h).
  • the moisture permeability of 15000 g / (m 2 ⁇ 24 h) or less suggests that it has water resistance.
  • the holes have sufficient communication because the moisture permeability is 1000 g / (m 2 ⁇ 24 h) or more.
  • the moisture permeability conforms to the conditions of JIS Z 0208 (The moisture permeability test method of moisture-proof packaging material (cup method)).
  • the moisture permeability test method of moisture-proof packaging material (cup method) The moisture permeability test method of moisture-proof packaging material (cup method)).
  • the tensile breaking strength at break is 7 N / 25 mm or more, mechanical strength and flexibility sufficient for practical use can be secured.
  • the upper limit is not particularly limited, but in view of stretchability, it is preferably 35 N / 25 mm or less.
  • the tensile breaking strength in the stretching direction is a sample cut out in the stretching direction 100 mm ⁇ the stretching direction 25 mm in accordance with JIS K7127, and the tensile speed is 200 m under an environment of 23 ° C. and 50% relative humidity. It is a tensile breaking strength at the time of breaking using a triple tension tester under the condition of 50 min. In the present invention, an arithmetic mean value of tensile strength at break calculated by performing measurement three times is used.
  • the tensile breaking elongation in the stretching direction in the stretched porous film of the second embodiment of the present invention is preferably 40% to 400%, and more preferably 80% to 300%.
  • the stretched porous film of the second embodiment of the present invention as a tensile diaper with a tensile elongation at break of 40% or more for sanitary goods such as disposable diapers and back sheets for moisture-permeable waterproofs such as sanitary products, the touch is good. You get an excellent feeling of comfort.
  • the tensile elongation at break when the tensile elongation at break is 400% or less, it has appropriate rigidity and tensile strength, is excellent in mechanical properties, and has low elongation and distortion of film during printing, slitting, and winding processing, and excellent mechanical suitability in a production line Is obtained.
  • the tensile elongation at break in the stretching direction is prepared according to JIS K7127 by preparing a sample cut out in a stretching direction of 100 mm ⁇ 25 mm perpendicular to the stretching direction, under an environment of 23 ° C. and a relative humidity of 50%.
  • the total light transmittance of the stretched porous film of the second embodiment of the present invention is preferably 18% to 60%.
  • An indicator medicine which indicates that urination has occurred when the stretched porous film of the second embodiment of the present invention is used for sanitary goods such as back sheets for moisture-permeable waterproofs such as paper diapers by having a total light transmittance of 18% or more Even if it applies, it can recognize.
  • the film is white and rich in hiding power because the total light transmittance is 60% or less.
  • the total light transmittance is obtained by randomly measuring five points using a haze meter in accordance with JIS K7361 and calculating its arithmetic mean value.
  • 120 degreeC or more is preferable, as for the film-breaking heat resistance temperature in the stretched porous film of the 2nd Embodiment of this invention, 140 degreeC or more is more preferable, and 160 degreeC or more is still more preferable.
  • the film does not break by heat such as a hot melt adhesive. It can be judged that the heat resistance necessary for the stretched porous film is imparted.
  • the heat resistance temperature of the film is held by holding a sample (100 mm ⁇ 100 mm) with two stainless steel plates (100 mm ⁇ 100 mm ⁇ 2 mm (thickness)) obtained by punching the center into a 5050 mm circle and fixing the four sides with clips. After standing for 2 minutes in a convection oven with a temperature of 120 ° C in the bath and heating, the sample of the circular punching point of the stainless steel sheet melts, and the appearance of holes is visually judged, and tears and holes The one with no opening is made to have a rupture heat resistance temperature of 120 ° C. or more. In addition, the temperature in the tank is changed to 140 ° C. and 160 ° C., and when the same evaluation is performed, those having no tear or hole opening are made to have a rupture heat resistance temperature of 140 ° C. or more and 160 ° C. or more.
  • oriented porous film of the present invention refers to the above-mentioned “oriented porous film of the first embodiment of the present invention” and “oriented porous film of the second embodiment of the present invention”.
  • Resin composition (Z) constituting stretched porous film It is important that the stretched porous film of the present invention comprises a resin composition (Z) containing 25% by mass to 54% by mass of a thermoplastic resin and 46% by mass to 75% by mass of an inorganic filler (A).
  • Inorganic filler (A) examples include fine particles and minerals of calcium carbonate, calcium sulfate, barium carbonate, barium sulfate, titanium oxide, talc, clay, kaolinite, montmorillonite etc. Calcium carbonate and barium sulfate can be suitably used because of advantages such as expression, high versatility, low price, and abundant brand name.
  • the average particle diameter of the inorganic filler (A) is preferably 0.1 to 10 ⁇ m, more preferably 0.3 to 5 ⁇ m, and still more preferably 0.5 to 3 ⁇ m. If the average particle size is 0.1 ⁇ m or more, dispersion failure and secondary aggregation of the inorganic filler (A) are suppressed, and the resin can be uniformly dispersed in the resin composition (Z), which is preferable. On the other hand, when the average particle diameter is 10 ⁇ m or less, generation of large voids can be suppressed at the time of film thinning, and sufficient strength and water resistance can be secured for the film.
  • the inorganic filler (A) to be treated it is preferable to previously coat the inorganic filler with a fatty acid, fatty acid ester or the like to make the surface of the inorganic filler conformable to the resin.
  • a surface-treated inorganic filler can be used.
  • thermoplastic resin polyolefin resin, polystyrene resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, chlorinated polyethylene resin, polyester resin, polycarbonate resin, polyamide resin Resin, ethylene / vinyl alcohol copolymer, ethylene / vinyl acetate copolymer, polymethylpentene resin, polyvinyl alcohol resin, cyclic olefin resin, polylactic acid resin, polybutylene succinate resin, polyacrylonitrile Resin, polyethylene oxide resin, cellulose resin, polyimide resin, polyurethane resin, polyphenylene sulfide resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polybutene resin Fat, polyamide imide resin, polyamide bis maleimide resin, poly arylate resin, polyether imide resin, polyether ether ketone resin, polyether ketone resin, polyether sulfone resin, poly
  • thermoplastic resin a polyolefin resin is preferable as the thermoplastic resin from the viewpoints of flexibility, heat resistance, formation of communicating holes, environmental hygiene, odor and the like.
  • the thermoplastic resin may be of one type or of two or more types. When the said thermoplastic resin is comprised by 2 or more types, the sum total turns into a mass of the said thermoplastic resin, and the mass ratio of the said thermoplastic resin in resin composition (Z) is calculated.
  • the polyolefin resin is a resin containing an olefin monomer as a main monomer component.
  • the main monomer component refers to a monomer component that occupies 50% by mole or more and 100% by mole or less in the resin.
  • olefin monomers include ethylene, propylene, ⁇ -olefins such as 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene, dienes, isoprenes, butylenes, butadienes and the like. Or a multicomponent copolymer obtained by copolymerizing two or more of them.
  • vinyl acetate, (meth) acrylic acid, (meth) acrylic acid ester, glycidyl (meth) acrylic acid, vinyl alcohol, ethylene glycol, maleic anhydride, styrene, diene, cyclic olefin may be copolymerized.
  • ethylene homopolymer, branched low density polyethylene, ethylene / ⁇ -olefin copolymer, ethylene / vinyl acetate copolymer, styrene / ethylene / propylene copolymer, styrene from the viewpoint of imparting flexibility and texture / Ethylene / butylene copolymer is preferred.
  • thermoplastic resin is a polyolefin resin
  • it may be one type or two or more types as long as it is a resin containing an olefin monomer as a main monomer component.
  • the said polyolefin resin is comprised by 2 or more types, the sum total becomes the mass of the said polyolefin resin.
  • the density of the polyolefin resin is preferably 0.850 g / cm 3 or more and 0.940 g / cm 3 or less.
  • polyethylene resin (B) having a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less, and a density of 0.850 g / cm 3 or more and 0.910 g / cm 3 or less
  • soft polyolefin resin (C) of
  • the polyethylene resin (B) is a resin having a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less and ethylene as a main monomer component.
  • the main monomer component refers to a monomer component that occupies 50% by mole or more and 100% by mole or less in the resin. Therefore, the polyethylene-based resin (B) may be an ethylene homopolymer, or may be a copolymer containing ethylene as a main monomer component and containing other monomers.
  • copolymer examples include ethylene / propylene copolymer, ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene / 4-methyl-1-pentene copolymer, ethylene / 1.
  • Ethylene / ⁇ -olefin copolymers such as -octene copolymer, and also ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid copolymer, ethylene / (meth) acrylic acid ester copolymer, Ethylene / glycidyl (meth) acrylate, ethylene / vinyl alcohol copolymer, ethylene / ethylene glycol copolymer, ethylene / maleic anhydride copolymer, ethylene / styrene copolymer, ethylene / diene copolymer, ethylene / ethylene copolymer A cyclic olefin copolymer etc. are mentioned.
  • a multicomponent copolymer containing two or more of the above-mentioned monomer components such as an ethylene / propylene / 1-butene copolymer, may be used.
  • ethylene homopolymers and ethylene / ⁇ -olefin copolymers are preferable from the viewpoint of heat shrinkage resistance and dimensional stability.
  • the polyethylene resin (B) may have a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less, and may be one type as long as it is a resin containing ethylene as a main monomer component. It may be two or more types. When the said polyethylene-type resin (B) is comprised by 2 or more types, the sum total becomes the mass of the said polyethylene-type resin (B). Permeability, moisture permeability, heat shrinkage resistance, dimensional stability, liquid leakage resistance of the stretched porous film by containing the polyethylene resin (B) having a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less , Concealment, appearance, etc. can be satisfied.
  • the density of the polyethylene resin (B) is more preferably at most 0.910 g / cm 3 or more 0.937 g / cm 3, not more than 0.910 g / cm 3 or more 0.935 g / cm 3, especially preferable.
  • the density is a density measured by the pycnometer method (JIS K7112 B method). Moreover, it is a value when it measures similarly about the density of resin mentioned later.
  • the polyethylene resin (B) may be linear or branched.
  • the method for producing the polyethylene-based resin (B) is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst, a metallocene-based catalyst The polymerization method etc. which used the single site catalyst represented by these are mentioned.
  • At least one kind of the polyethylene resin (B) is branched low density polyethylene.
  • the melt tension of the resin composition (Z) is increased, and the molding processability is preferably improved.
  • tan ⁇ E ′ ′ / E ′
  • the melting point of the polyethylene resin (B) is preferably 110 to 135 ° C., and more preferably 110 to 130 ° C. If the melting point of the polyethylene-based resin (B) is 110 to 135 ° C., it is preferable because the heat shrinkage resistance and the dimensional stability of the stretched porous film can be improved.
  • the melting point is about 10 mg of resin heated to -40 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC), and maintained at 200 ° C. for 1 minute, then a cooling rate 10
  • DSC differential scanning calorimeter
  • the melt flow rate (MFR) of the polyethylene resin (B) is preferably 0.1 to 20 g / 10 minutes, and more preferably 0.5 to 10 g / 10 minutes.
  • MFR is a value measured based on JISK7219, and the measurement conditions are 190 ° C and 2.16 kg load.
  • the soft polyolefin resin (C) is a resin having a density of 0.850 g / cm 3 or more and less than 0.910 g / cm 3 and containing an olefin monomer as a main monomer component.
  • the main monomer component refers to a monomer component that occupies 50% by mole or more and 100% by mole or less in the resin.
  • olefin monomers include ethylene, propylene, ⁇ -olefins such as 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene, dienes, isoprenes, butylenes, butadienes and the like.
  • a multicomponent copolymer obtained by copolymerizing two or more of them may be copolymerized.
  • vinyl acetate, (meth) acrylic acid, (meth) acrylic acid ester, glycidyl (meth) acrylic acid, vinyl alcohol, ethylene glycol, maleic anhydride, styrene, diene, cyclic olefin may be copolymerized.
  • ethylene homopolymer branched low density polyethylene, ethylene / ⁇ -olefin copolymer, ethylene / vinyl acetate copolymer, styrene / ethylene / propylene copolymer, styrene from the viewpoint of imparting flexibility and texture / Ethylene / butylene copolymer is preferred.
  • the soft polyolefin resin (C) has a density of not less than 0.850 g / cm 3 and not more than 0.910 g / cm 3 , and even if it is a resin having an olefin monomer as a main monomer component, It may be two or more types. When the said soft polyolefin resin (C) is comprised by 2 or more types, the sum total becomes the mass of the said soft polyolefin resin (C).
  • the soft polyolefin resin (C) having a density of 0.850 g / cm 3 or more and less than 0.910 g / cm 3 , the flexibility and the texture of the stretched porous film can be improved, and the touch satisfaction can be improved.
  • the density of the flexible polyolefin resin (C) is preferably less than 0.855 g / cm 3 or more 0.910 g / cm 3, less than 0.860 g / cm 3 or more 0.910 g / cm 3 Is more preferred.
  • the soft polyolefin resin (C) preferably has a melt flow rate (MFR) of 0.1 to 20 g / 10 min, and more preferably 0.5 to 10 g / 10 min.
  • MFR melt flow rate
  • the peak of is preferably in the range of -50 to 50.degree.
  • the peak of tan ⁇ of the soft polyolefin resin (C) is in the range of ⁇ 50 to 50 ° C., this is preferable because it contributes to suppression of unpleasant noise such as rattle and snail.
  • the peak value of is preferably 0.100 or more, more preferably 0.200 or more, and still more preferably 0.300 or more.
  • the peak value of tan ⁇ of the soft polyolefin resin (C) is 0.100 or more, this is preferable because it contributes to the suppression of unpleasant noise such as rattle and gowagowa.
  • the thermoplastic resin is a polyolefin resin
  • the polyolefin resin is a polyethylene resin (B) having a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less, and a density of 0.850 g / cm
  • soft polyolefin resin (C) 3 or more and less than 0.910 g / cm 3 respectively, mixed composition of the inorganic filler (A), the polyethylene resin (B), and the soft polyolefin resin (C)
  • the mixed composition ratio of the inorganic filler (A) is at least the lower limit in the above-mentioned preferable range In some cases, the formation of the pores accompanied by the stretching is sufficient to easily form the communicating holes, and it is easy to develop sufficient air permeability and moisture permeability characteristics. Moreover, when the mixing composition ratio of the said inorganic filler (A) is below the upper limit in the above-mentioned preferable range, shaping
  • the mixed composition ratio of the polyethylene resin (B) is not less than the lower limit in the above-mentioned preferable range, and the mixed composition ratio of the soft polyolefin resin (C) is not more than the upper limit in the above-mentioned preferable range It becomes a film excellent in heat shrinkage resistance and dimensional stability. Furthermore, when the mixed composition ratio of the polyethylene resin (B) is not more than the upper limit in the above-mentioned preferable range, and the mixed composition ratio of the soft polyolefin resin (C) is not less than the lower limit in the above-mentioned preferable range And a soft touch such as softness and texture can be obtained, and it is easy to suppress unpleasant noise generated when the film is rubbed.
  • polyethylene resin (B) having a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less, and a density of 0.850 g / cm 3 or more and 0.910 g / cm 3 You may have the polypropylene resin (D) mentioned later other than the soft polyolefin resin (C) of less than.
  • Polypropylene resin (D) is preferably a density less than 0.890 g / cm 3 or more 0.910 g / cm 3.
  • the melting point is preferably 140 ° C to 170 ° C.
  • the MFR is preferably 10 to 50 g / 10 min.
  • MFR of a polypropylene resin (D) is a value measured based on the conditions M of JISK7210, and the measurement conditions are 230 degreeC and a 2.16-kg load.
  • the thermoplastic resin is a polyolefin resin
  • the polyolefin resin is a polyethylene resin (B) having a density of 0.910 g / cm 3 or more and 0.940 g / cm 3 or less, a density of 0.850 g / cm 3 or more
  • the soft polyolefin resin (C) and the polypropylene resin (D) each having less than 0.910 g / cm 3 are contained
  • the polyethylene resin (B), the soft polyolefin resin (C), and the polypropylene resin (D) (B) / (C) / (D) 1% by mass to 25% by mass / 50% by mass to 98% by mass / 1% by mass to 25% by mass (wherein (B) and (C)
  • the mixed composition ratio of the polypropylene-based resin (D) is at least the lower limit in the above-mentioned preferable range When it is, it becomes easy to express sufficient heat resistance to an extending
  • the mixed composition ratio of the polypropylene resin (D) is not more than the upper limit in the above preferable range
  • the mixed composition ratio of the polyethylene resin (B) is not more than the upper limit in the above preferable range
  • the mixed composition ratio of the soft polyolefin resin (C) is equal to or more than the lower limit in the above-mentioned preferable range, a good touch feeling such as softness and texture can be obtained, and unpleasant noise generated when the film rubs can be easily suppressed.
  • the stretched porous film of the present invention preferably contains the plasticizer (E) in an amount of 0.1% by mass to 8.0% by mass in the resin composition (Z).
  • the plasticizer (E) is contained at 0.1% by mass or more, the value of tan ⁇ of the resin composition (Z) is increased, and the peak width of tan ⁇ of the resin composition (Z) is further broadened.
  • the crystal melting enthalpy ( ⁇ Hm) of the stretched porous film can be reduced.
  • the plasticizer (E) is 8.0% by mass or less, bleeding out of the plasticizer can be suppressed, and blocking when the stretched porous film is wound in a roll, and printing failure at the time of printing Can be suppressed.
  • ester plasticizers As a plasticizer (E), the following ester plasticizers are mentioned. Those having a polar structure, for example, monovalent carboxylic acid ester plasticizers (butanoic acid, isobutanoic acid, hexanoic acid, 2-ethylhexanoic acid, hyptanic acid, octylic acid, 2-ethylhexanoic acid, lauric acid etc. And the compounds obtained by the condensation reaction of monohydric carboxylic acids of the formula (I) with polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol and glycerin etc.
  • monovalent carboxylic acid ester plasticizers butanoic acid, isobutanoic acid, hexanoic acid, 2-ethylhexanoic acid, hyptanic acid, octylic acid, 2-ethylhexanoic acid, la
  • Castor oils include conventional castor oil, refined castor oil, hydrogenated castor oil and dehydrated castor oil.
  • the hydrogenated castor oil may, for example, be a hydrogenated castor oil mainly composed of triglyceride composed of 12-hydroxyoctadecanoic acid and glycerin.
  • compatibilizer In addition to the above-mentioned raw materials, other resin raw materials, recycled resins generated from trimming loss of ears, etc. according to the purpose of use, compatibilizer, processing aid, melt viscosity improver, antioxidant, anti-aging agent , Heat stabilizer, light stabilizer, weather resistant stabilizer, UV absorber, neutralizer, nucleating agent, crosslinking agent, lubricant, anti-blocking agent, slip agent, anti-fogging agent, antibacterial agent, deodorant, hard You may add suitably a flame retardant, an antistatic agent, a coloring agent, a pigment, etc. to the resin composition (Z) which comprises the oriented porous film of this invention.
  • the method for producing a stretched porous film of the present invention is not particularly limited, and it can be produced by a conventionally known method, but it is important to be stretched in at least uniaxial direction.
  • film is meant to encompass from thick sheets to thin films.
  • the film may be planar or tubular, but is preferably planar from the viewpoint of productivity (can be taken as a product in the width direction of the original sheet) and printing on the inner surface. .
  • the film can be exemplified by a method of obtaining a film by stretching the film in at least one uniaxial direction and winding the film with a winder.
  • the composition (Z) which comprises the stretched porous film of this invention it is preferable to carry out melt-kneading.
  • a mixer such as tumbler mixer, mixing roll, Banbury mixer, ribbon blender, super mixer, etc.
  • an extruder such as a counter-direction twin-screw extruder, co-direction twin-screw extruder, etc.
  • the obtained resin composition can be molded into a film by connecting a die such as a T-die or a round die to the tip of an extruder.
  • a die such as a T-die or a round die may be connected to the tip of the extruder to form a film.
  • film forming methods such as inflation molding, tubular molding, T-die molding and the like are preferable.
  • the extrusion temperature is preferably about 180 to 260 ° C., more preferably 190 to 250 ° C. It is also effective to control the dispersion state of the material by optimizing the extrusion temperature and the shear state, to bring various physical properties and mechanical properties of the film described below to desired values.
  • the stretched porous film of the present invention can be produced by stretching the unstretched film.
  • the resin is melted using an extruder, extruded from a T die or a round die, cooled and solidified by a cooling roll, roll stretching in the longitudinal direction (film flow direction, MD), transverse direction (film flow direction) In at least one direction, such as by tenter stretching in the direction perpendicular to T.D.
  • MD longitudinal direction
  • the film may be stretched in the lateral direction and further stretched in the longitudinal direction. Further, the film may be simultaneously stretched in the longitudinal direction and the lateral direction by the simultaneous biaxial stretching machine.
  • a tubular non-stretched film may be radially stretched by internal pressure by tubular molding.
  • the ear of the folded tube-like stretched porous film is cut, divided into two pieces, and wound respectively.
  • the folded unstretched film may be cut and divided into two unstretched films, which may then be stretched and wound respectively.
  • the stretching temperature is preferably 0 ° C to 90 ° C, and more preferably 20 ° C to 70 ° C.
  • the total stretching ratio is preferably 1.5 to 6.0 times in total, more preferably 2.0 to 5.0 times. By making the draw ratio 1.5 times or more in total, a stretched porous film can be obtained which is uniformly stretched and has an excellent appearance. On the other hand, by setting the draw ratio to a total of 6.0 times or less, breakage of the film can be suppressed.
  • heat treatment or relaxation treatment can be performed at a temperature of 50 ° C. or more and 120 ° C. or less after stretching for the purpose of reducing the heat shrinkage rate, improving the physical properties, and the like.
  • heat treatment can be performed by bringing the stretched film into contact with a heated roll (annealing roll) between the stretching step and the winding step.
  • a relaxation process can be performed by making the speed of the roll which contacts next time slower than an annealing roll speed, heating with an annealing roll.
  • these heat processing and relaxation processing can also be performed in another process, after extending
  • heat treatment or relaxation treatment If the temperature of the heat treatment or relaxation treatment is too low, the shrinkage of the film is difficult to reduce, and if the temperature is too high, the film may be wound around the roll or the formed micropores may be clogged. Therefore, it is preferable to perform heat treatment or relaxation treatment at a temperature of 50 ° C. or more and 120 ° C. or less. These heat treatments and relaxation treatments may be divided into multiple steps.
  • the stretched porous film of the present invention can be subjected to surface treatment such as slit, corona treatment, printing, application of an adhesive, coating, vapor deposition and the like, if necessary.
  • the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
  • the measured value shown to the Example and evaluation were performed as follows.
  • the flow direction of the film is described as the "longitudinal" direction (or MD)
  • the perpendicular direction is referred to as the "lateral” direction (or TD).
  • the air permeability of the stretched porous film was calculated according to the method described above.
  • an Oken type air permeability measuring machine EGO1-55 manufactured by Asahi Seiko Co., Ltd. was used.
  • the crystal melting enthalpy ( ⁇ Hm) of the stretched porous film was calculated from the crystal melting peak (Pm) in the temperature rising process and the peak area of the crystal melting peak (Pm) in the reheating process.
  • the presence or absence of a crystal melting peak (Pm1) was confirmed at 140 ° C. to 200 ° C. at this time. Further, peak temperature (Tm1) and crystal melting enthalpy ( ⁇ Hm1) were calculated from the above (Pm1). Similarly, the presence or absence of a crystal melting peak (Pm2) was confirmed at 30 ° C. to 130 ° C. Further, the peak temperature (Tm2) and the crystal melting enthalpy ( ⁇ Hm2) were calculated from the above (Pm2).
  • the TD end portions of the laminated stretched porous film were sandwiched, and the distance between the held TD end portions was adjusted to 100 mm. Furthermore, after adjusting the distance between the stretched porous film held thereby and the microphone (sound collecting portion) of the ordinary sound level meter to be 100 mm, the MD and TD in the direction perpendicular to the held stretched porous film (thickness direction The film was rubbed by vibrating the clamped end three times back and forth in 1 second, and the time average sound level (LAeq) in 10 seconds of measurement time was measured and evaluated according to the following judgment criteria.
  • LAeq time average sound level
  • time average sound level (LAeq) in 10 seconds of measurement time in the state which does not vibrate a film (non-operating state) was 26 dB.
  • (14-2) Examples 105 to 108 and Comparative Examples 103 to 104 In view of the evaluations described in (1) to (7) and (9) to (12) above, comprehensive evaluation was performed on the basis of the following criteria.
  • B A film that has excellent feel such as flexibility and texture and is excellent in air permeability and moisture permeability, but is a film that feels the generation of unpleasant noise.
  • Film that combines B A film suitable for applications requiring breathability and moisture permeability, which has excellent tactile sensation such as flexibility and texture and suppresses the generation of unpleasant noise generated when rubbing the film, but heat resistance is insufficient It is.
  • C A film excellent in air permeability and moisture permeability, but it is a film which does not feel a sense of flexibility or texture and feels the generation of an unpleasant sound.
  • D A film having insufficient physical properties required for a stretched porous film such as air permeability and moisture permeability.
  • Raw materials used in each example and comparative example are as follows.
  • A-1 Heavy calcium carbonate
  • B linear low density polyethylene
  • Novatec LL UF230 linear low density polyethylene
  • E ⁇ Plasticizer (E)> -Kaif Trading Co., Ltd., hardened castor oil "HCO-P3".
  • E-1 hardened castor oil
  • E-2 -A liquid polyester plasticizer
  • E-2 antioxidant
  • Irganox B225 antioxidant
  • F-1 antioxidant
  • Example 101 Each raw material is weighed according to the composition ratio shown in Table 1, then charged in a Henschel mixer, mixed and dispersed for 5 minutes, and melt-kneaded at a set temperature of 200 ° C. using a co-directional twin-screw extruder The resin composition was extruded with a T-die connected to the tip of a co-directional twin-screw extruder, pulled out with a casting roll set at 50 ° C., and cooled and solidified to obtain an unstretched film. Dynamic viscoelasticity measurement was performed on the obtained unstretched film.
  • the obtained unstretched film is (S)-(T)
  • (T)-(U) draw ratio 130% (draw ratio: 2.3 times) was multiplied to give a total draw of 5.3 times in MD.
  • the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C.
  • Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 1.
  • Example 102 In the same manner as in Example 101, an unstretched film was collected. Thereafter, between the roll (S) set to 60 ° C., the roll (T) set to 60 ° C., and the roll (U) set to 60 ° C., the obtained unstretched film is (S)-(T) A draw ratio of 100% (stretching ratio: 2.0 times) and (T)-(U) draw ratio 100% (stretching ratio: 2.0 times) were applied to make a total of 4.0 times stretching in MD. Subsequently, the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 1.
  • Example 103 In the same manner as in Example 101, an unstretched film was collected. Thereafter, between the roll (S) set to 60 ° C., the roll (T) set to 60 ° C., and the roll (U) set to 60 ° C., the obtained unstretched film is (S)-(T) ) Draw ratio 70% (stretching ratio 1.7 times), (T)-(U) draw ratio 70% (stretching ratio 1.7 times), and the film was stretched in total by 2.9 times in MD. Subsequently, the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 1.
  • Example 104 Each raw material is weighed according to the composition ratio shown in Table 1, then charged in a Henschel mixer, mixed and dispersed for 5 minutes, and melt-kneaded at a set temperature of 200 ° C. using a co-directional twin-screw extruder The resin composition was extruded with a T-die connected to the tip of a co-directional twin-screw extruder, pulled out with a casting roll set at 50 ° C., and cooled and solidified to obtain an unstretched film. Dynamic viscoelasticity measurement was performed on the obtained unstretched film.
  • the obtained unstretched film is (S)-(T)
  • a draw ratio of 100% (stretching ratio: 2.0 times) and (T)-(U) draw ratio 100% (stretching ratio: 2.0 times) were applied to make a total of 4.0 times stretching in MD.
  • the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C.
  • Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 1.
  • Comparative Example 102 Each raw material is weighed according to the composition ratio shown in Table 1, then charged in a Henschel mixer, mixed and dispersed for 5 minutes, and melt-kneaded at a set temperature of 200 ° C. using a co-directional twin-screw extruder The resin composition was extruded with a T-die connected to the tip of a co-directional twin-screw extruder, pulled out with a casting roll set at 50 ° C., and cooled and solidified to obtain an unstretched film. Dynamic viscoelasticity measurement was performed on the obtained unstretched film.
  • the obtained unstretched film is (S)-(T)
  • (T)-(U) draw ratio 130% (draw ratio: 2.3 times) was multiplied to give a total draw of 5.3 times in MD.
  • the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C.
  • Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 1.
  • the stretched porous films obtained in Examples 101 to 104 were films having excellent air permeability and moisture permeability, and also having suitable tensile strength at break, tensile elongation at break, heat shrinkage, and total light transmittance. . In addition, even when the stretched porous films obtained in Examples 101 to 104 were rubbed together, no unpleasant sound was felt. The results show that the tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the present invention and the porosity of the stretched porous film satisfy the range specified in the present invention.
  • tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of Examples 101 to 104 is 0.100 or more at ⁇ 20 ° C., It is considered that the sound propagating by vibrating the resin composition (Z) is attenuated and contributes to the suppression of the unpleasant sound.
  • the porosity of the stretched porous films of Examples 101 to 104 is in the range of 25% to 80%, the sound propagating through the communicated voids is the sound of the voids and the wall surface of the resin composition (Z). It is thought that the number of energy losses that occur during a collision increases and contributes to the suppression of unpleasant noise.
  • the film obtained in Comparative Example 101 is a film using the resin composition (Z) satisfying the above-mentioned definition of tan ⁇ defined in the present invention as in Examples 101 to 103, but Comparative Example The stretched porous film obtained in 101 deviates from the porosity defined in the present invention. Therefore, although the film obtained in Comparative Example 101 is excellent in touch such as flexibility and texture, it was insufficient for suppression of unpleasant noise. Moreover, although the film obtained in Comparative Example 102 satisfies the porosity defined by the present invention, tan ⁇ at ⁇ 20 ° C. is less than 0.100, which is insufficient for suppression of unpleasant noise. The That is, it is important that both the above-mentioned tan ⁇ and the porosity satisfy the range defined by the present invention in order to achieve both the excellent feel and the suppression of the unpleasant noise generated when the film is rubbed. I understand.
  • Example 105 Each raw material is weighed according to the composition ratio shown in Table 2, then charged in a Henschel mixer, mixed and dispersed for 5 minutes, and melt-kneaded at a set temperature of 200 ° C. using a co-directional twin-screw extruder The resin composition was extruded with a T-die connected to the tip of a co-directional twin-screw extruder, pulled out with a casting roll set at 50 ° C., and cooled to solidify to obtain an unstretched film with a thickness of 30 ⁇ m. Dynamic viscoelasticity measurement was performed on the obtained unstretched film.
  • the obtained unstretched film is (S)-(T)
  • a draw ratio of 100% (stretching ratio: 2.0 times) and (T)-(U) draw ratio 100% (stretching ratio: 2.0 times) were applied to make a total of 4.0 times stretching in MD.
  • the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C.
  • Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 2.
  • Example 106 An unstretched film with a thickness of 30 ⁇ m was collected by the same method as in Example 105 except that the raw materials were changed to the composition ratios shown in Table 2. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 105 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 2.
  • Example 107 An unstretched film with a thickness of 30 ⁇ m was collected by the same method as in Example 105 except that the raw materials were changed to the composition ratios shown in Table 2. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 105 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 2.
  • Example 108 An unstretched film with a thickness of 50 ⁇ m was collected by the same method as in Example 105 except that the raw materials were changed to the composition ratios shown in Table 2. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 105 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 2.
  • Comparative Example 103 An unstretched film with a thickness of 50 ⁇ m was collected by the same method as in Example 105 except that the raw materials were changed to the composition ratios shown in Table 2. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 105 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 2.
  • Comparative Example 104 An unstretched film with a thickness of 50 ⁇ m was collected by the same method as in Example 105 except that the raw materials were changed to the composition ratios shown in Table 2. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 105 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 2.
  • the stretched porous films obtained in Examples 105 to 108 were films excellent in air permeability and moisture permeability as well as having suitable tensile strength at break, tensile elongation at break and total light transmittance.
  • the time average sound level (LAeq) when the stretched porous films obtained in Examples 105 to 108 were rubbed together showed a low value, and no unpleasant sound was felt.
  • tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the present invention and the range in which the porosity of the stretched porous film is defined in the present invention, And, it is considered that the crystal melting enthalpy ( ⁇ Hm) of the stretched porous film is 10 g / J to 45 g / J.
  • tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of Examples 105 to 108 is 0.100 or more at ⁇ 20 ° C., It is considered that the sound propagating by vibrating the resin composition (Z) is attenuated and contributes to the suppression of the unpleasant sound.
  • the crystal melting enthalpy ( ⁇ Hm) of the stretched porous films of Examples 1 to 4 is in the range of 10 J / g to 45 J / g, there are few crystal components that repel and vibrate when an external force is applied. It is thought that the sound to be on the other hand, the films obtained in Comparative Examples 103 and 104 do not satisfy the preferable range of tan ⁇ specified in the present invention or the crystal melting enthalpy ( ⁇ Hm), so they are insufficient for suppressing unpleasant noise, and the time average Sound level (LAeq) showed a high value.
  • the crystal melting enthalpy ( ⁇ Hm) of the stretched porous film is preferably in the range of 10 g / J to 45 g / J.
  • Example 201 Each raw material is weighed according to the composition ratio shown in Table 3, then charged in a Henschel mixer, mixed and dispersed for 5 minutes, and melt-kneaded at a set temperature of 200 ° C. using a co-directional twin-screw extruder The resin composition was extruded with a T-die connected to the tip of a co-directional twin-screw extruder, pulled out with a casting roll set at 50 ° C., and cooled to solidify to obtain an unstretched film with a thickness of 35 ⁇ m. Dynamic viscoelasticity measurement was performed on the obtained unstretched film.
  • the obtained unstretched film is (S)-(T)
  • a draw ratio of 100% (stretching ratio: 2.0 times) and (T)-(U) draw ratio 100% (stretching ratio: 2.0 times) were applied to make a total of 4.0 times stretching in MD.
  • the stretched porous film was obtained by performing heat treatment and relaxation treatment with a roll (V) set to 90 ° C.
  • Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Embodiment 202 An unstretched film with a thickness of 35 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Embodiment 203 An unstretched film with a thickness of 35 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Embodiment 204 An unstretched film with a thickness of 35 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Embodiment 205 An unstretched film with a thickness of 35 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Comparative Example 201 An unstretched film with a thickness of 50 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Comparative Example 202 An unstretched film with a thickness of 50 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Comparative Example 203 An unstretched film with a thickness of 30 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • Comparative Example 204 An unstretched film with a thickness of 35 ⁇ m was collected by the same method as in Example 201 except that the raw materials were changed to the composition ratios shown in Table 3. Dynamic viscoelasticity measurement was performed on the obtained unstretched film. Thereafter, the obtained unstretched film is stretched, heat-treated and relaxed in the same manner as in Example 201 to obtain a stretched porous film. Various evaluations were performed on the obtained stretched porous film. The results are summarized in Table 3.
  • the stretched porous films obtained in Examples 201 to 205 were films excellent in air permeability and moisture permeability as well as having suitable tensile strength at break, tensile elongation at break, and total light transmittance.
  • the time average sound level (LAeq) when the stretched porous films obtained in Examples 201 to 205 were rubbed together showed a low value, and no unpleasant sound was felt.
  • the film rupture heat resistance test the film did not rupture at 120 ° C., 140 ° C., and even at 160 ° C.
  • tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of the present invention and the appearance temperature of the crystal melting peak satisfy the range specified by the present invention It is thought that it is for.
  • tan ⁇ calculated from the dynamic viscoelasticity measurement of the resin composition (Z) constituting the stretched porous film of Examples 201 to 205 is 0.100 or more at ⁇ 20 ° C., It is considered that the sound propagating by vibrating the resin composition (Z) is attenuated and contributes to the suppression of the unpleasant sound.
  • the stretched porous films obtained in Examples 201 to 205 have crystal melting peaks at 140 ° C. to 200 ° C., they were shown to have high heat resistance.
  • the films obtained in Comparative Examples 201 and 202 do not satisfy tan ⁇ prescribed by the present invention, they are insufficient for suppressing unpleasant noise, and the time average sound level (LAeq) shows a high value.
  • the film obtained in Comparative Example 203 is a film that is soft and suppresses unpleasant noise because it does not have a crystal melting peak in the range of 140 ° C. to 200 ° C., but the heat resistance required for the stretched porous film is It turns out that it is somewhat inadequate.
  • Comparative Example 204 is a film containing an ⁇ -olefin copolymer having a density of less than 0.850 g / cm 3 , but because the film does not satisfy tan ⁇ specified by the present invention, it is insufficient for suppressing unpleasant noise.
  • Met That is, in order to achieve both the heat resistance required for the stretched porous film and the suppression of the unpleasant noise generated when the film rubs, both the above-mentioned tan ⁇ and the temperature at which the crystal melting peak appears are the present invention. It is understood that it is important to satisfy the specified range.
  • the stretched porous film of the present invention has an excellent tactile sensation such as flexibility and texture, and also suppresses the generation of unpleasant sound generated when the film is rubbed, and is also excellent in air permeability, moisture permeability and strength. Therefore, sanitary products such as disposable diapers and feminine hygiene products using stretched porous film; clothing such as work clothes, jumpers, jackets, medical clothes, chemical protective clothes, etc. Furthermore, masks, covers, drapes, sheets, wraps Etc. It can utilize suitably for the use by which air permeability, moisture permeability, etc. are calculated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Laminated Bodies (AREA)

Abstract

熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E')と損失弾性率(E'')の比であるtanδ(=E''/E')が、-20℃において0.100以上であり、空孔率が25%~80%である延伸多孔フィルム。

Description

延伸多孔フィルム
 本発明は、柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制し、通気性、透湿性および強度にも優れた延伸多孔フィルムに関する。より詳細には、紙おむつ、女性用生理用品などの衛生用品;作業服、ジャンパー、ジャケット、医療用衣服、化学防護服などの衣服;その他マスク、カバー、ドレープ、シーツ、ラップといった通気性、透湿性を求められる用途に好適に利用することができる使用感の優れた延伸多孔フィルムに関する。
 従来、ポリオレフィン系樹脂などの熱可塑性樹脂と無機充填材を含有する樹脂組成物を延伸することにより、熱可塑性樹脂と無機充填材との間で界面剥離を発生させ、多数のボイド(微多孔)を形成した多孔フィルムが知られている。特に、ポリオレフィン系樹脂と無機充填材を含有する樹脂組成物からなる延伸多孔フィルムは内部の微多孔が連通孔を形成しているため、高い透気度及び透湿度を有しながらも液体の透過を抑制した透湿防水フィルムとして利用されており、特に、紙おむつや女性用生理用品などの衛生材料、作業服、ジャンパー、ジャケット、医療用衣服、化学防護服などの衣服、マスク、カバー、ドレープ、シーツ、ラップなどの通気性や、透湿性を求められる用途に幅広く使用されている。
 これらの用途に用いられる多孔フィルムは、直接、人の肌に触れる用途に用いられることが多いため、装着した状態での活動において、フィルムがガサガサ、ゴワゴワといった不快な音や感触を有することは使用感を妨げる要因となる。そのため、多孔フィルムには、風合いや柔軟性がよく肌触りが良いことと共に、不快音の抑制が求められる。
 これらの課題に対し、例えば、エチレン/α-オレフィン共重合体65~90重量%、熱可塑性エラストマー35~10重量%の合計量100重量部に対して50~300重量部の無機充填材を含む多孔性フィルム(特許文献1)や、炭素数が4~8個のα-オレフィンコモノマーを12重量%以上含有する結晶性低密度ポリエチレン20~100重量部とポリエチレン80~0重量部とからなる樹脂成分100重量部に対して、無機充填材50~400重量部を含む透湿フィルム(特許文献2)が開示されている。
 また、ポリエチレン系樹脂30~70質量部とオレフィン系エラストマー70~30質量部の合計量100質量部に対して50~300質量部の無機充填材、1~30質量部の可塑剤を含有する通気性フィルム(特許文献3)や、ポリエチレン樹脂40~90質量部、プロピレン単独重合体5~30質量部、プロピレン/エチレン共重合エラストマー5~30質量部を含む100質量部の樹脂成分と該樹脂成分に対して無機充填剤100~200質量部、可塑剤1~20質量部を含む透湿性フィルム(特許文献4)、ポリエチレン樹脂組成物と無機充填材とスチレン系エラストマーを含む透湿性フィルム(特許文献5)、さらには、直鎖状低密度ポリエチレン30~85質量部、高圧重合法低密度ポリエチレン5~20質量部、メタロセン系エチレン/α-オレフィン共重合体10~50質量部を含む樹脂成分と、樹脂成分100質量部に対し100~200質量部の無機充填剤と1~20質量部の可塑剤を含有する透湿性フィルム(特許文献6)がそれぞれ開示されている。
 さらには、熱可塑性樹脂、及び、充填剤1~70質量%含む、空孔率が80%以下のフィルム(特許文献7)や、熱可塑性樹脂、有機充填剤、無機充填剤を含む樹脂組成物を用いた空孔率が10~80%の多孔フィルム(特許文献8)が開示されている。
特開平7-228719号公報 特開2000-1557号公報 特開2017-31292号公報 特開2015-229720号公報 国際公開2014/088065号 国際公開2015/186808号 国際公開2014/156952号 特開2006-117816号公報
 しかしながら、特許文献1、2では、融点が60~100℃のエチレン/α-オレフィン共重合体や炭素数が4~8個のα-オレフィンコモノマーを12重量%以上含有する結晶性低密度ポリエチレンが主成分となるフィルムであるため、柔軟性には富むが、他部材を貼り合わせる工程などで生じる高温条件下においては、融解する恐れがあり、寸法安定性や耐熱性などが不十分となる。
 また、特許文献3~6では、ポリエチレン系樹脂と無機充填材を含有する組成物中に、オレフィン系エラストマー、プロピレン/エチレン共重合エラストマー、スチレン系エラストマー、メタロセン系エチレン/α-オレフィン共重合体などの軟質樹脂を含有することにより、柔軟性や伸縮性を有し、風合いや触感に優れたフィルムが得られる。
 一方で、これらの多孔フィルムが使用される用途では、更なる使用感の向上が求められているため、柔軟性や風合いなどの触感の更なる改良や、フィルムの擦れ時に生じる不快な音の発生の抑制などが必要となる。しかしながら、特許文献3~6では、不快音の抑制に関する技術的設計指針に関する言及がない。
 また、特許文献7では、主としてポリ乳酸系樹脂に代表されるような生分解性樹脂に充填剤を含有し、耐水性と分解性の両立の試みがなされており、空孔率を80%以下とすることでフィルムの耐水性不足が抑制されることが記載されているが、不快音の抑制に関して、言及されてはいない。また、特許文献8においても、空孔率を10~80%とすることで透湿度、フィルム強度、保温効果、防塵効果の低下が抑制されることが記載されているが、同様に、不快音の抑制に関して言及されてはいない。
 本発明は上記課題に鑑みてなされたものであり、柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制し、通気性、透湿性および強度にも優れた延伸多孔フィルムを提供することにある。
 本発明者らは、鋭意検討した結果、上記従来技術の課題を解決し得る延伸多孔フィルムを得ることに成功し、本発明を完成するに至った。すなわち、本発明の目的は、以下の延伸多孔フィルム(以下、「本発明の延伸多孔フィルム」ともいう。)により達成される。
 すなわち、本発明の課題は、熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が、-20℃において0.100以上であり、空孔率が25%~80%である延伸多孔フィルム(本発明の第1の実施形態)によって解決される。
 また、本発明の課題は、熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、140℃~200℃に結晶融解ピーク(Pm1)を有する延伸多孔フィルム(本発明の第2の実施形態)によって解決される。
 本発明によれば、柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制し、通気性、透湿性および強度にも優れた延伸多孔フィルムを得ることができるため、通気性や透湿性を求められる用途に好適に利用することができる。
 以下、本発明の実施形態の一例としての本発明の延伸多孔フィルムについて説明する。ただし、本発明の範囲が以下に説明する実施形態に限定されるものではない。ここで、延伸多孔フィルムとは、少なくとも一軸方向に延伸された多孔フィルムである。
 なお、本明細書において、「主成分」とは、構成する組成物において最も多い質量比率を占める成分であることをいい、45質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましい。また、「X~Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
1.延伸多孔フィルム
1-1.延伸多孔フィルム(本発明の第1の実施形態)
 本発明の第1の実施形態の延伸多孔フィルムは熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、空孔率が25%~80%である延伸多孔フィルムである。
 本発明の第1の実施形態の延伸多孔フィルムは、熱可塑性樹脂を25質量%~54質量%、無機充填材(A)を46質量%~75質量%含む樹脂組成物(Z)からなることが好ましい。したがって、本発明の第1の実施形態の延伸多孔フィルムは、より好ましくは、熱可塑性樹脂を25質量%~54質量%、無機充填材(A)を46質量%~75質量%含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、空孔率が25%~80%である延伸多孔フィルムである。
 本発明の第1の実施形態の延伸多孔フィルムは、延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が、-20℃において0.100以上であることが重要であり、0.110以上であることが好ましく、0.120以上であることがより好ましく、0.130以上であることが更に好ましい。また、延伸多孔フィルムを構成する樹脂組成物(Z)のtanδの上限に関しては、特に制限はないが、耐熱性や寸法安定性の観点から、-20℃において1.000以下であることが好ましい。tanδ(=E’’/E’)が、-20℃において0.100以上であることにより、後述するように、フィルムが擦れる際に生じる不快音を抑制するための吸音率(振動減衰率)を向上することができ、かつ、柔軟性や風合いといった触感に優れたフィルムとなる。
 前記tanδは、-20℃~-10℃において0.100以上であることが好ましく、-20℃~0℃において0.100以上であることがより好ましく、-20℃~10℃において0.100以上であることが更に好ましく、-20℃~20℃において0.100以上であることが更により好ましく、-30℃~30℃において0.100以上であることが最も好ましい。本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されるtanδが0.100以上となる温度範囲が広くなることで、後述するように、様々な周波数の不快音を抑制できる。
 さらに、本発明の第1の実施形態の延伸多孔フィルムの空孔率は25%~80%であることが重要である。空孔率は30%~80%であることがより好ましく、35%~80%であることが更に好ましい。
 空孔率が25%以上の場合、後述するように、延伸多孔フィルムの空隙中を伝播する音のエネルギー損失機会が多くなり、不快音を十分に抑制することができる。また、空孔率が80%以下の場合、実用的に使用できる程度のフィルム強度を確保することができ、さらに、防水性が十分となり接する液状物の漏れを引き起こしにくいものとなる。
 音は物体が動いたり、擦れたりする際に生じる空気の振動波である。音が物体に入射音として衝突する場合、前記入射音は、エネルギー保存則の関係から、物体を透過する透過音、物体を反射する反射音、並びに物体に吸収される吸収音の3つの音として分解される。すなわち、入射音が物体に衝突した際、物体に吸収される吸収音の割合が大きければ、その物体は吸音率の高い物体と考えられる。
 本発明の第1の実施形態の延伸多孔フィルムは、樹脂組成物(Z)の内部に連通した空隙を有するフィルムである。すなわち、本発明の第1の実施形態の延伸多孔フィルムにおいて音が伝播する場合、フィルムとして固体部を形成している樹脂組成物(Z)を振動して伝播する音と、フィルム内部に形成された連通した空隙を伝播する音との2つの伝わり方を示す。そのため、音の抑制には、樹脂組成物(Z)を振動して伝播する音の抑制、及び、連通した空隙を伝播する音の抑制を考慮しなければならない。
 本発明の第1の実施形態の延伸多孔フィルムにおける、樹脂組成物(Z)を振動して伝播する音の抑制には、音の振動源や媒体での減衰が効果的であると考えられる。樹脂のような粘弾性体においては、振動のエネルギーを、熱エネルギーに損失させることで吸音効果が得られる。従って、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδは、この吸音効果を発現するために必要な要素となると考えられる。そのため、本発明の第1の実施形態においては、延伸多孔フィルムを構成する樹脂組成物(Z)のtanδのピーク値は大きい方が好ましい。
 また、本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)のtanδのピーク位置は音の発生雰囲気温度での減衰に関連すると共に、温度-時間換算則の観点から、周波数に対する減衰にも関連する。そのため、様々な周波数を有する不快音を吸音、または発生させないためには、tanδのピーク幅は広い方が好ましい。
 従って、本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が、-20℃において0.100以上であることが、フィルムの擦れ時に生じる不快な音の発生を抑制のために重要である。前述したように、tanδが0.100以上となる温度範囲が広くなることが様々な周波数の不快音を抑制できるため好ましい。
 さらに本発明の第1の実施形態においては、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδだけでなく、多孔フィルムの空孔率も、伝播する音の抑制に大きく寄与することを見出した。空孔率が増加することで、空気中を伝播する音と物体との衝突回数が増加するために、フィルム内部に形成された連通した空隙を伝播する音抑制の効果が得られたものと考えている。
 従って、フィルムの空隙中を伝播する音のエネルギー損失機会が多くするために延伸多孔フィルムの空孔率が25%以上であることが重要である。
 以上をまとめると、本発明の第1の実施形態は、樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ、及び、フィルムの空孔率を好適な範囲とすることで、柔軟性や風合いといった触感に優れるだけでなく、フィルムが擦れる際に生じる不快音を抑制するための吸音率(振動減衰率)を向上することを可能としたものである。
 また、本発明の第1の実施形態の延伸多孔フィルムは、結晶融解エンタルピー(ΔHm)が10J/g~45J/gであることが好ましい。また、前記結晶融解エンタルピー(ΔHm)が12J/g~43J/gであることがより好ましく、14J/g~41J/gであることが更に好ましく、16J/g~39J/gであることが更により好ましい。前記結晶融解エンタルピー(ΔHm)が10J/g以上となることにより、延伸多孔フィルムの耐熱性や寸法安定性が確保できる。また、前記結晶融解エンタルピー(ΔHm)が45J/g以下となることにより、後述する不快音の発生を抑制できる。
 延伸多孔フィルムを擦りあわせる際に生じる不快音を抑制する手法としては、上述した伝播音を抑制することと共に、音源からの音の発生抑制が効果的であると考える。音の発生は弾性体の振動であり、振動を起こすもの(=音源)がなければ音は発生しない。
 本発明の第1の実施形態の延伸フィルムを構成する樹脂組成物(Z)に含まれる熱可塑性樹脂に着目すると、熱可塑性樹脂は、弾性的性質と粘性的性質の両方を有する粘弾性体である。すなわち、熱可塑性樹脂の弾性的性質の割合を減少することで、フィルムを擦り合わせるという外力を与えた時に、その外力に反発して振動する弾性成分が少なくなり、音の発生が抑制される。弾性的性質と粘性的性質の割合を示す指標が上述のtanδであるが、この弾性的性質の割合をマクロ視点とミクロ視点から減少させることが、不快音の低減に効果的であると考えている。マクロ視点の弾性的性質とは、上述した本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)であり、ミクロ視点の弾性的性質とは、後述する樹脂の結晶成分である。
 熱可塑性樹脂は結晶の観点で非晶性樹脂と結晶性樹脂に分類される。非晶性樹脂は分子鎖が比較的かさ高い構造を有するため、分子鎖が規則正しく折り畳むことができず結晶部分を有さない熱可塑性樹脂である。一方、結晶性樹脂は、分子鎖が規則正しく折り畳まれ、密度の高い結晶部分を内部に有する熱可塑性樹脂である。ただし、結晶性樹脂であっても分子鎖が100%結晶化した結晶性樹脂というものは存在せず、分子鎖がランダムに配列した非晶部と分子鎖が規則正しく折り畳まれた結晶部の両方を有する。
 結晶性樹脂の非晶部は、ガラス転移温度(Tg)以上の温度域ではミクロブラウン運動が可能であり、モビリティーの高い状態にある。一方、結晶性樹脂の結晶部は、ガラス転移温度(Tg)以上、融点(Tm)以下の温度域では分子鎖が結晶として拘束されており、非常に弾性率が高い部位となる。そのため、結晶性樹脂の結晶化度が低い場合、弾性率が高い結晶部が少なくなるため、外力を与えた時に反発して振動する成分が少なく発生する音も小さくなると考えられる。従って、結晶融解エンタルピー(ΔHm)は、本発明の第1の実施形態の延伸多孔フィルムにおける結晶成分割合の指標となり、10J/g~45J/gであることが好ましい。
 延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)は、20℃において8.0×10Pa以下であることが好ましい。より好ましくは7.0×10Pa以下であり、更に好ましくは6.0×10Pa以下である。貯蔵弾性率(E’)が、20℃において8.0×10Pa以下である場合、延伸多孔フィルムは風合いや柔軟性といった触感に優れたものとなる。また、下限については特に限定されるものではないが、延伸多孔フィルムのハンドリングの観点から、20℃において1.0×10Pa以上が好ましい。
 本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定は、幅4mm、長さ35mmに切り出された短冊状のサンプル片を、測定周波数10Hz、測定歪0.1%、チャック間距離25mm、測定温度-100℃から、昇温速度3℃/minにて昇温しながら測定される。このとき、得られる動的粘弾性の温度依存性プロファイルから、各温度における貯蔵弾性率(E’)、損失弾性率(E’’)、及び、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が算出される。
 なお、動的粘弾性測定は、サンプル片の厚みをあらかじめ測定し、サンプル片の厚みとサンプル片の幅の値を測定装置に入力することにより、サンプル片の断面積が計算され、各値が算出される。
 本発明の第1の実施形態の延伸多孔フィルムは、樹脂組成物(Z)中に空孔が生じているため、多孔体をそのまま測定した場合、算出される貯蔵弾性率(E’)、損失弾性率(E’’)、及び、tanδに誤差が生じやすい。よって、本発明の第1の実施形態の規定する貯蔵弾性率(E’)、損失弾性率(E’’)、及び、tanδを得るためには、延伸多孔フィルムを構成する樹脂組成物(Z)の未延伸フィルムを用いて縦方向(MD):4mm、横方向(TD):35mmに切り出された短冊状のサンプル片について動的粘弾性測定を行うことが好ましい。ただし、延伸多孔フィルムを融点以上に加熱することでフィルムを融解し空孔を消失させた後、プレスサンプルを作製し、該プレスサンプルより短冊状のサンプル片を切り出して動的粘弾性測定を行うことによっても、本発明の第1の実施形態の規定する貯蔵弾性率(E’)、損失弾性率(E’’)、及び、tanδを算出することができる。本発明においては、いずれの測定方法も採用することができる。
 ここで空孔率は、延伸多孔フィルムを、縦方向(MD):50mm、横方向(TD):50mmの大きさに切り出し、延伸多孔フィルムの比重(W1)の測定を行う。次に、本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の比重(W0)の測定を行う。前記樹脂組成物(Z)の比重(W0)の測定においては、本発明の第1の実施形態の延伸多孔フィルムの未延伸フィルムを、縦方向(MD):50mm、横方向(TD):50mmの大きさに切り出し、比重測定を行うことができる。また、未延伸シートの採取が困難な場合は、本発明の第1の実施形態の延伸多孔フィルムを融点以上に加熱することにより延伸多孔フィルムを融解し空孔を消失した後、プレスサンプルを作製し、該プレスサンプルより、縦方向(MD):50mm、横方向(TD):50mmの大きさに切り出し、比重測定を行うことができる。
 前記延伸多孔フィルムの比重(W1)、及び、前記樹脂組成物(Z)の比重(W0)の測定は、無作為に3点測定し、その算術平均値を用いる。得られた前記延伸多孔フィルムの比重(W1)、及び、前記樹脂組成物(Z)の比重(W0)から、以下の式より空孔率を算出する。
       空孔率(%)=[1-(W1/W0)]×100
 また、本発明の第1の実施形態の延伸多孔フィルムの結晶融解エンタルピー(ΔHm)は、示差走査型熱量計(DSC)で本発明の第1の実施形態の延伸多孔フィルムを-40℃から高温保持温度まで加熱速度10℃/分で昇温後、1分間保持し、次に高温保持温度から-40℃まで冷却速度10℃/分で降温後、1分間保持し、更に-40℃から上記高温保持温度まで加熱速度10℃/分で再昇温させた際の結晶融解ピーク面積から結晶融解エンタルピー(ΔHm)を算出する。このとき、上記高温保持温度は、用いる熱可塑性樹脂の結晶融解ピーク温度(Tm)に対し、Tm+20℃以上、かつ、Tm+150℃以下の範囲において、任意に選択できる。
 なお、本発明の第1の実施形態の規定する結晶融解エンタルピー(ΔHm)は、上記再昇温過程において、半結晶性樹脂にみられるような冷結晶化が生じる場合においても、再昇温過程で生じる結晶融解ピークから算出されたΔHmを適用する。すなわち、再昇温過程において生じる冷結晶化における発熱ピーク面積から算出される結晶化エンタルピー(ΔHc)を、再昇温過程で得られるΔHmからの差し引くことは行わない。
 さらに本発明の第1の実施形態の延伸多孔フィルムが他の層と積層される場合、積層体についてそのままDSC測定を行うと、前記延伸多孔フィルムに由来するΔHmが低く見積もられるおそれがある。そのため、本発明の第1の実施形態の延伸多孔フィルムが積層体の場合、本発明の第1の実施形態の延伸多孔フィルムを剥離し、この多孔層についてΔHmを測定することができる。剥離が困難である場合は、DSC測定によって積層体全体における本発明の第1の実施形態の延伸多孔フィルムのΔHmを算出するとともに、積層体全体における前記多孔層の積層比を算出し、以下の計算式より、本発明の第1の実施形態の規定するΔHmを算出することができる。なお、積層比の算出は、特に限定されるものではないが、光学顕微鏡、電子顕微鏡等による断面観察により算出されることが好ましい。
 本発明の第1の実施形態の規定するΔHm(J/g)=積層体全体における延伸多孔フィルムのΔHm(J/g)/積層体全体における前記多孔層の積層比(%)/100(%)
 また、本発明の第1の実施形態の延伸多孔フィルムにおける結晶融解ピーク温度(Tm)は、70℃以上であることが好ましく、80℃以上であることがより好ましく、90℃以上であることが更に好ましい。また、結晶融解ピークは1つであってもよく、2つ以上であってもよい。結晶融解ピークが2つ以上である場合、うち1つの結晶融解ピーク温度(Tm)が70℃以上であることが好ましい。さらに、結晶融解ピークが2つ以上ある場合、結晶融解エンタルピー(ΔHm)は2つ以上の結晶融解ピークから算出される結晶融解エンタルピー(ΔHm)のその合計値となる。
 また、本発明の第1の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)に含まれる熱可塑性樹脂がポリオレフィン系樹脂の場合、結晶融解開始温度が結晶融解ピーク温度(Tm)より30℃以上低い温度から少しずつ融解し、ブロードなピークを示すことが多い。そのため、示差走査型熱量測定(DSC)を-40℃から昇温することにより、ベースラインを明確にし、より正確な結晶融解エンタルピー(ΔHm)を算出することができる。
 本発明の第1の実施形態の延伸多孔フィルムにおける坪量は10g/m~50g/mが好ましく、より好ましくは15g/m~40g/mである。坪量が10g/m以上であることにより、引張強度、引き裂き強度などの機械強度を十分確保しやすい。また、坪量が50g/m以下であることにより、十分な軽量感を得られやすい。
 ここで、坪量は、サンプル(縦方向(MD):250mm、横方向(TD):200mm)の質量(g)を電子天秤で測定し、その数値を20倍した値を坪量とする。
 本発明の第1の実施形態の延伸多孔フィルムにおける透気度は1秒/100mL~5000秒/100mLであることが好ましく、10秒/100mL~4000秒/100mLであることがより好ましく、100秒/100mL~3000秒/100mLであることが更に好ましい。透気度が1秒/100mL以上であることによって、耐水性及び耐透液性を十分確保しやすい。また透気度が5000秒/100mL以下であることによって、十分な連通孔を有することを示唆している。
 ここで、透気度はJIS P8117:2009(ガーレー試験機法)に規定される方法に準じて測定される100mLの空気が紙片を通過する秒数であり、例えば透気度測定装置(旭精工製王研式透気度測定機EGO1-55型)を用いて測定することができる。本発明においては、サンプルを無作為に10点測定し、その算術平均値を透気度とする。
 本発明の第1の実施形態の延伸多孔フィルムにおける透湿度は1000g/(m・24h)~15000g/(m・24h)が好ましく、より好ましくは、1500g/(m・24h)~12000g/(m・24h)である。透湿度が15000g/(m・24h)以下であることによって、耐水性を有することを示唆している。また、透湿度が1000g/(m・24h)以上であることによって、空孔が十分な連通性を有することが示唆される。
 ここで、透湿度はJIS Z0208(防湿包装材料の透湿度試験方法(カップ法))の諸条件に準拠する。吸湿剤として塩化カルシウムを15g用い、温度40℃、相対湿度90%の恒温恒湿環境下で測定する。サンプルは無作為に2点測定し、その算術平均値を求める。
 本発明の第1の実施形態の延伸多孔フィルムにおける延伸方向の引張破断強度は7N/25mm以上が好ましく、10N/25mm以上がより好ましい。前記引張破断強度が7N/25mm以上であることによって、実用上十分な機械強度と柔軟性を確保することができる。また、上限については特に限定しないが、延伸性を鑑みると35N/25mm以下であることが好ましい。ここで、延伸方向の引張破断強度はJIS K7127に準拠して、延伸方向100mm×延伸方向と垂直方向25mmに切り出したサンプルを作製し、23℃、相対湿度50%の環境下で、引張速度200m/min、チャック間距離50mmの条件で3連式引張試験機を用いて破断した際の引張破断強度である。本発明においては、3回測定を行い算出した引張破断強度の算術平均値とする。
 本発明の第1の実施形態の延伸多孔フィルムにおける延伸方向の引張破断伸びは、40%~400%であることが好ましく、100%~300%であることがより好ましい。引張破断伸びが40%以上であると、本発明の延伸多孔フィルムを紙おむつ、及び、生理処理用品などの透湿防水用バックシートなどの衛生用品に用いる場合、肌触りが良く、優れたはき心地が得られる。また、引張破断伸びが400%以下であると、適度な剛性と抗張力を有し機械特性に優れ、印刷、スリット、並びに巻取加工時にフィルムの伸び及びひずみが小さく、生産ラインにおける優れた機械適性が得られる。
 ここで、延伸方向の引張破断伸びは、JIS K7127に準拠して、延伸方向100mm×延伸方向と垂直方向25mmに切り出したサンプルを作製し、23℃、相対湿度50%の環境下で、引張速度200m/min、チャック間距離50mmの条件で3連式引張試験機を用いて破断した際の引張破断伸びである。本発明においては、3回測定を行い算出した引張破断伸びの算術平均値とする。
 本発明の第1の実施形態の延伸多孔フィルムを60℃で1時間加熱したときの延伸方向の熱収縮率は5.0%未満であることが好ましく、4.0%未満であることがより好ましい。60℃で1時間加熱したときの延伸方向における熱収縮率が5.0%未満であることにより、延伸多孔フィルムのロール状サンプルを経時保管した場合のブロッキングや巻き締まりが少なく好ましい。
 ここで、熱収縮率は、延伸方向200mm×延伸方向と垂直方向10mmに切り出したサンプルを、槽内温度60℃に設定した対流オーブンに1時間静置加熱する。その後、延伸方向の長さL(mm)を測定し、式「(200-L)/200×100(%)」により、算出した値である。本発明においては、3回測定を行い算出した熱収縮率の算術平均値とする。
 本発明の第1の実施形態の延伸多孔フィルムにおける全光線透過率は18%~60%であることが好ましい。全光線透過率が18%以上であることにより、本発明の第1の実施形態の延伸多孔フィルムを紙おむつなどの透湿防水用バックシートなどの衛生用品に用いる場合、排尿したことを知らせるインジケータ薬剤を塗布しても認識できる。また、全光線透過率が60%以下であることにより、フィルムが白く、隠ぺい性に富んでいる。
 ここで、全光線透過率は、JIS K7361に準拠したヘイズメータを用い、無作為に5点測定し、その算術平均値を求めたものである。
 以下、本発明のフィルムの別実施形態について説明する。
1-2.延伸多孔フィルム(本発明の第2の実施形態)
 本発明の第2の実施形態の延伸多孔フィルムは、熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、140℃~200℃に結晶融解ピーク(Pm1)を有する延伸多孔フィルムである。
 本発明の第2の実施形態の延伸多孔フィルムは、熱可塑性樹脂を25質量%~54質量%、無機充填材(A)を46質量%~75質量%含む樹脂組成物(Z)からなることが好ましい。したがって、本発明の第2の実施形態の延伸多孔フィルムは、より好ましくは、熱可塑性樹脂を25質量%~54質量%、無機充填材(A)を46質量%~75質量%含む樹脂組成物(Z)からなる延伸多孔フィルムであって、該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、140℃~200℃に結晶融解ピーク(Pm1)を有する延伸多孔フィルムである。
 本発明の第2の実施形態の延伸多孔フィルムは、延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が、-20℃において0.100以上であることが重要であり、0.110以上であることが好ましく、0.120以上であることがより好ましく、0.130以上であることが更に好ましい。また、延伸多孔フィルムを構成する樹脂組成物(Z)のtanδの上限に関しては、特に制限はないが、寸法安定性の観点から、-20℃において1.000以下であることが好ましい。tanδ(=E’’/E’)が、-20℃において0.100以上であることにより、後述するように、フィルムが擦れる際に生じる不快音を抑制するための吸音率(振動減衰率)を向上することができ、かつ、柔軟性や風合いといった触感に優れたフィルムとなる。
 前記tanδは、-20℃~-10℃において0.100以上であることが好ましく、-20℃~0℃において0.100以上であることがより好ましく、-30℃~0℃において0.100以上であることが更に好ましく、-30℃~10℃において0.100以上であることが更に好ましく、-30℃~20℃において0.100以上であることが更により好ましく、-30℃~30℃において0.100以上であることが最も好ましい。本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されるtanδが0.100以上となる温度範囲が広くなることで、後述するように、様々な周波数の不快音を抑制できる。
 さらに、本発明の第2の実施形態の延伸多孔フィルムの空孔率は15%~80%であることが好ましい。空孔率は20%~80%であることがより好ましく、25%~80%であることが更に好ましい。
 空孔率が15%以上の場合、後述するように、延伸多孔フィルムの空隙中を伝播する音のエネルギー損失機会が多くなり、不快音を十分に抑制することができる。また、空孔率が80%以下の場合、実用的に使用できる程度のフィルム強度を確保することができ、さらに、防水性が十分となり接する液状物の漏れを引き起こしにくいものとなる。
 音は物体が動いたり、擦れたりする際に生じる空気の振動波である。音が物体に入射音として衝突する場合、前記入射音は、エネルギー保存則の関係から、物体を透過する透過音、物体を反射する反射音、並びに物体に吸収される吸収音の3つの音として分解される。すなわち、入射音が物体に衝突した際、物体に吸収される吸収音の割合が大きければ、その物体は吸音率の高い物体と考えられる。
 本発明の第2の実施形態の延伸多孔フィルムは、樹脂組成物(Z)の内部に連通した空隙を有するフィルムである。すなわち、本発明の第2の実施形態の延伸多孔フィルムにおいて音が伝播する場合、フィルムとして固体部を形成している樹脂組成物(Z)を振動して伝播する音と、フィルム内部に形成された連通した空隙を伝播する音との2つの伝わり方を示す。そのため、音の抑制には、樹脂組成物(Z)を振動して伝播する音の抑制、及び、連通した空隙を伝播する音の抑制を考慮しなければならない。
 本発明の第2の実施形態の延伸多孔フィルムにおける、樹脂組成物(Z)を振動して伝播する音の抑制には、音の振動源や媒体での減衰が効果的であると考えられる。樹脂のような粘弾性体においては、振動のエネルギーを、熱エネルギーに損失させることで吸音効果が得られる。従って、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδは、この吸音効果を発現するために必要な要素となると考えられる。そのため、本発明の第2の実施形態においては、延伸多孔フィルムを構成する樹脂組成物(Z)のtanδのピーク値は大きい方が好ましい。
 また、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)のtanδのピーク位置は音の発生雰囲気温度での減衰に関連すると共に、温度-時間換算則の観点から、周波数に対する減衰にも関連する。そのため、様々な周波数を有する不快音を吸音、または発生させないためには、tanδのピーク幅は広い方が好ましい。
 従って、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が、-20℃において0.100以上であることが、フィルムの擦れ時に生じる不快な音の発生を抑制のために重要である。前述したように、tanδが0.100以上となる温度範囲が広くなることが様々な周波数の不快音を抑制できるため好ましい。
 また、多孔フィルムの空孔率も、伝播する音の抑制に寄与すると考えられる。空孔率が増加することで、空気中を伝播する音と物体との衝突回数が増加するために、フィルム内部に形成された連通した空隙を伝播する音抑制の効果が得られるものと考えている。
 従って、フィルムの空隙中を伝播する音のエネルギー損失機会が多くするために延伸多孔フィルムの空孔率が15%以上であることが好ましい。
 本発明の第2の実施形態の延伸多孔フィルムは、140℃~200℃に結晶融解ピーク(Pm1)を有することが重要となる。また、前記結晶融解ピーク(Pm1)は150℃~190℃に有することが好ましく、160℃~180℃に有することがより好ましい。140℃以上に結晶融解ピーク(Pm1)を有することにより、延伸多孔フィルムを他部材と接着、ラミネートするに当たり、十分な耐熱性を付与することができるため重要となる。また、200℃以下に結晶融解ピーク(Pm1)を有することにより、延伸多孔フィルムの成形において、押出温度を極端に上げる必要がないため、樹脂の劣化物などが発生しにくく、生産性が向上するため好ましい。
 前記結晶融解ピーク(Pm1)を有するには、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)に、融点が140℃~200℃の熱可塑性樹脂を含有することによって、上記範囲に結晶融解ピーク(Pm1)を有するように調整することができる。
 また、本発明の第2の実施形態の延伸多孔フィルムは、前記結晶融解ピーク(Pm1)から算出される結晶融解エンタルピー(ΔHm1)が1J/g~10J/gであることが好ましい。前記結晶融解エンタルピー(ΔHm1)は、1J/g~8J/gであることがより好ましく、2J/g~6J/gであることが更に好ましい。前記結晶融解エンタルピー(ΔHm1)が1J/g以上であることにより、延伸多孔フィルムに耐熱性を付与するための、十分な結晶成分を有するために好ましい。また、前記結晶融解エンタルピー(ΔHm1)が10J/g以下であることにより、後述する不快音の発生を抑制できる。
 本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)における、融点が140℃~200℃の熱可塑性樹脂の混合比率を調整することによって、結晶融解エンタルピー(ΔHm1)を上記範囲に調整することができる。
 本発明の第2の実施形態の延伸多孔フィルムは、30℃~130℃に結晶融解ピーク(Pm2)をさらに有することが好ましい。また、前記結晶融解ピーク(Pm2)から算出される結晶融解エンタルピー(ΔHm2)が10J/g~45J/gであることが好ましい。前記結晶融解エンタルピー(ΔHm2)は12J/g~43J/gであることがより好ましく、14J/g~41J/gであることが更に好ましい。前記結晶融解エンタルピー(ΔHm2)が10J/g以上となることにより、延伸多孔フィルムの耐熱性や寸法安定性が確保できる。また、前記結晶融解エンタルピー(ΔHm2)が45J/g以下となることにより、後述する不快音の発生を抑制できる。
 前記結晶融解ピーク(Pm2)を有するには、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)に、融点が30℃~130℃の熱可塑性樹脂を含有し、混合比率を調整することによって、結晶融解ピーク(Pm2)、及び、結晶融解エンタルピー(ΔHm2)を上記範囲に調整することができる。
 延伸多孔フィルムを擦りあわせる際に生じる不快音を抑制する手法としては、上述した伝播音を抑制することと共に、音源からの音の発生抑制が効果的であると考える。音の発生は弾性体の振動であり、振動を起こすもの(=音源)がなければ音は発生しない。
 本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)に含まれる熱可塑性樹脂に着目すると、熱可塑性樹脂は、弾性的性質と粘性的性質の両方を有する粘弾性体である。すなわち、熱可塑性樹脂の弾性的性質の割合を減少することで、フィルムを擦り合わせるという外力を与えた時に、その外力に反発して振動する弾性成分が少なくなり、音の発生が抑制される。弾性的性質と粘性的性質の割合を示す指標が上述のtanδであるが、この弾性的性質の割合をマクロ視点とミクロ視点から減少させることが、不快音の低減に効果的であると考えている。マクロ視点の弾性的性質とは、上述した本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)であり、ミクロ視点の弾性的性質とは、後述する樹脂の結晶成分である。
 まず、マクロ視点の弾性的性質を低減する観点から、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)は、20℃において8.0×10Pa以下であることが好ましい。より好ましくは7.0×10Pa以下であり、更に好ましくは6.0×10Pa以下である。貯蔵弾性率(E’)が、20℃において8.0×10Pa以下である場合、延伸多孔フィルムは風合いや柔軟性といった触感に優れたものとなると共に、不快音の発生を抑制することができるため好ましい。また、下限については特に限定されるものではないが、延伸多孔フィルムのハンドリングの観点から、20℃において1.0×10Pa以上が好ましい。
 本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定は、幅4mm、長さ35mmに切り出された短冊状のサンプル片を、測定周波数10Hz、測定歪0.1%、チャック間距離25mm、測定温度-100℃から、昇温速度3℃/minにて昇温しながら測定される。このとき、得られる動的粘弾性の温度依存性プロファイルから、各温度における貯蔵弾性率(E’)、損失弾性率(E’’)、及び、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が算出される。
 なお、動的粘弾性測定は、サンプル片の厚みをあらかじめ測定し、サンプル片の厚みとサンプル片の幅の値を測定装置に入力することにより、サンプル片の断面積が計算され、各値が算出される。
 本発明の第2の実施形態の延伸多孔フィルムは、樹脂組成物(Z)中に空孔が生じているため、多孔体をそのまま測定した場合、算出される貯蔵弾性率(E’)、損失弾性率(E’’)、及び、tanδに誤差が生じやすい。よって、本発明の第2の実施形態の規定する貯蔵弾性率(E’)、損失弾性率(E’’)、及び、tanδを得るためには、延伸多孔フィルムを構成する樹脂組成物(Z)の未延伸フィルムを用いてMD:4mm、TD:35mmに切り出された短冊状のサンプル片について動的粘弾性測定を行うことが好ましい。ただし、延伸多孔フィルムを融点以上に加熱することでフィルムを融解し空孔を消失させた後、プレスサンプルを作製し、該プレスサンプルより短冊状のサンプル片を切り出して動的粘弾性測定を行うことによっても、本発明の第2の実施形態の規定する貯蔵弾性率(E’)、損失弾性率(E’’)、及び、tanδを算出することができる。本発明においては、いずれの測定方法も採用することができる。
 次に、ミクロ視点の弾性的性質として、樹脂の結晶成分を考える。熱可塑性樹脂は結晶の観点で非晶性樹脂と結晶性樹脂に分類される。非晶性樹脂は分子鎖が比較的かさ高い構造を有するため、分子鎖が規則正しく折り畳むことができず結晶部分を有さない熱可塑性樹脂である。一方、結晶性樹脂は、分子鎖が規則正しく折り畳まれ、密度の高い結晶部分を内部に有する熱可塑性樹脂である。ただし、結晶性樹脂であっても分子鎖が100%結晶化した結晶性樹脂というものは存在せず、分子鎖がランダムに配列した非晶部と分子鎖が規則正しく折り畳まれた結晶部の両方を有する。
 結晶性樹脂の非晶部は、ガラス転移温度以上の温度域ではミクロブラウン運動が可能であり、モビリティーの高い状態にある。一方、結晶性樹脂の結晶部は、ガラス転移温度以上、融点以下の温度域では分子鎖が結晶として拘束されており、非常に弾性率が高い部位となる。そのため、結晶性樹脂の結晶化度が低い場合、弾性率が高い結晶部が少なくなるため、外力を与えた時に反発して振動する成分が少なく発生する音も小さくなると考えられる。
 従って、結晶融解エンタルピーは、本発明の第2の実施形態の延伸多孔フィルムにおける結晶成分割合の指標となり、前記結晶融解エンタルピー(ΔHm1)は、1J/g~10J/gであることが好ましい。また、前記結晶融解エンタルピー(ΔHm2)は10J/g~45J/gであることが好ましい。
 本発明の第2の実施形態の延伸多孔フィルムの結晶融解ピーク(Pm)、及び、そのピーク温度(Tm)は、示差走査型熱量計(DSC)で、本発明の第2の実施形態の延伸多孔フィルムを-40℃から高温保持温度まで加熱速度10℃/分で昇温後、1分間保持し、次に高温保持温度から-40℃まで冷却速度10℃/分で降温後、1分間保持し、更に-40℃から上記高温保持温度まで加熱速度10℃/分で再昇温させた際に出現する結晶融解ピーク(Pm)、及び、そのピークを示す温度(Tm)である。
 また、結晶融解エンタルピー(ΔHm)は、再昇温させた際に出現する上記結晶融解ピーク(Pm)のピーク面積から結晶融解エンタルピー(ΔHm)を算出する。このとき、上記高温保持温度は、用いる熱可塑性樹脂の最も高い結晶融解ピーク温度(Tm)に対し、Tm+20℃以上、かつ、Tm+150℃以下の範囲において、任意に選択できる。
 なお、本発明の第2の実施形態における結晶融解エンタルピー(ΔHm)は、上記再昇温過程において、半結晶性樹脂にみられるような冷結晶化が生じる場合においても、再昇温過程で生じる結晶融解ピークから算出されたΔHmを適用する。すなわち、再昇温過程において生じる冷結晶化における発熱ピーク面積から算出される結晶化エンタルピー(ΔHc)を、再昇温過程で得られるΔHmから差し引くことは行わない。
 さらに本発明の第2の実施形態の延伸多孔フィルムが他の層と積層される場合、積層体についてそのままDSC測定を行うと、前記延伸多孔フィルムに由来するΔHmが低く見積もられるおそれがある。そのため、本発明の第2の実施形態の延伸多孔フィルムが積層体の場合、本発明の第2の実施形態の延伸多孔フィルムを剥離し、この多孔層についてΔHmを測定することができる。剥離が困難である場合は、DSC測定によって積層体全体における本発明の第2の実施形態の延伸多孔フィルムのΔHmを算出するとともに、積層体全体における前記多孔層の積層比を算出し、以下の計算式より、本発明の第2の実施形態におけるΔHmを算出することができる。なお、積層比の算出は、特に限定されるものではないが、光学顕微鏡、電子顕微鏡等による断面観察により算出されることが好ましい。
 本発明の第2の実施形態におけるΔHm(J/g)=積層体全体における延伸多孔フィルムのΔHm(J/g)/積層体全体における前記多孔層の積層比(%)/100(%)
 また、本発明の第2の実施形態の延伸多孔フィルムにおける結晶融解ピーク(Pm1)は、140℃~200℃に有することが重要であるが、140℃~200℃に少なくとも1つの結晶融解ピークを有していればよく、2つ以上であってもよい。また、140℃~200℃に結晶融解ピークが2つ以上ある場合、前記結晶融解エンタルピー(ΔHm1)は2つ以上の結晶融解ピークから算出される結晶融解エンタルピーの合計値となる。
 また、前記結晶融解ピーク(Pm2)に関しても、30℃~130℃に少なくとも1つの結晶融解ピークを有していることが好ましいが、2つ以上であってもよい。また、30℃~130℃に結晶融解ピークが2つ以上ある場合、前記結晶融解エンタルピー(ΔHm2)は2つ以上の結晶融解ピークから算出される結晶融解エンタルピーの合計値となる。
 また、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)に含まれる熱可塑性樹脂がポリオレフィン系樹脂の場合、結晶融解開始温度が結晶融解ピーク温度(Tm)より30℃以上低い温度から少しずつ融解し、ブロードなピークを示すことが多い。そのため、示差走査型熱量測定(DSC)を-40℃から昇温することにより、ベースラインを明確にし、より正確な結晶融解エンタルピー(ΔHm)を算出することができる。
 以上をまとめると、本発明の第2の実施形態は、樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ、及び、結晶融解ピーク(Pm1)が生じる温度を好適な範囲とすることで、柔軟性や風合いといった触感に優れるだけでなく、フィルムが擦れる際に生じる不快音を抑制するための吸音率(振動減衰率)を向上するとともに、延伸多孔フィルムに求められる耐熱性を両立したものとなる。
 本発明の第2の実施形態の延伸多孔フィルムにおける空孔率は、延伸多孔フィルムを、縦方向(MD):50mm、横方向(TD):50mmの大きさに切り出し、延伸多孔フィルムの比重(W1)の測定を行う。次に、本発明の第2の実施形態の延伸多孔フィルムを構成する樹脂組成物(Z)の比重(W0)の測定を行う。前記樹脂組成物(Z)の比重(W0)の測定においては、本発明の第2の実施形態の延伸多孔フィルムの未延伸フィルムを、縦方向(MD):50mm、横方向(TD):50mmの大きさに切り出し、比重測定を行うことができる。また、未延伸シートの採取が困難な場合は、本発明の第2の実施形態の延伸多孔フィルムを融点以上に加熱することにより延伸多孔フィルムを融解し空孔を消失した後、プレスサンプルを作製し、該プレスサンプルより、縦方向(MD):50mm、横方向(TD):50mmの大きさに切り出し、比重測定を行うことができる。
 前記延伸多孔フィルムの比重(W1)、及び、前記樹脂組成物(Z)の比重(W0)の測定は、無作為に3点測定し、その算術平均値を用いる。得られた前記延伸多孔フィルムの比重(W1)、及び、前記樹脂組成物(Z)の比重(W0)から、以下の式より空孔率を算出する。
  空孔率(%)=[1-(W1/W0)]×100
 本発明の第2の実施形態の延伸多孔フィルムにおける坪量は10g/m~50g/mが好ましく、より好ましくは12g/m~40g/mである。坪量が10g/m以上であることにより、引張強度、引き裂き強度などの機械強度を十分確保しやすい。また、坪量が50g/m以下であることにより、十分な軽量感を得られやすい。
 ここで、坪量は、サンプル(縦方向(MD):250mm、横方向(TD):200mm)の質量(g)を電子天秤で測定し、その数値を20倍した値を坪量とする。
 本発明の第2の実施形態の延伸多孔フィルムにおける透気度は1秒/100mL~5000秒/100mLであることが好ましく、10秒/100mL~4000秒/100mLであることがより好ましく、100秒/100mL~3000秒/100mLであることが更に好ましい。透気度が1秒/100mL以上であることによって、耐水性及び耐透液性を十分確保しやすい。また透気度が5000秒/100mL以下であることによって、十分な連通孔を有することを示唆している。
 ここで、透気度はJIS P8117:2009(ガーレー試験機法)に規定される方法に準じて測定される100mLの空気が紙片を通過する秒数であり、例えば透気度測定装置(旭精工製王研式透気度測定機EGO1-55型)を用いて測定することができる。本発明においては、サンプルを無作為に10点測定し、その算術平均値を透気度とする。
 本発明の第2の実施形態の延伸多孔フィルムにおける透湿度は1000g/(m・24h)~15000g/(m・24h)が好ましく、より好ましくは、1500g/(m・24h)~12000g/(m・24h)である。透湿度が15000g/(m・24h)以下であることによって、耐水性を有することを示唆している。また、透湿度が1000g/(m・24h)以上であることによって、空孔が十分な連通性を有することが示唆される。
 ここで、透湿度はJIS Z0208(防湿包装材料の透湿度試験方法(カップ法))の諸条件に準拠する。吸湿剤として塩化カルシウムを15g用い、温度40℃、相対湿度90%の恒温恒湿環境下で測定する。サンプルは無作為に2点測定し、その算術平均値を求める。
 本発明の第2の実施形態の延伸多孔フィルムにおける延伸方向の引張破断強度は7N/25mm以上が好ましく、10N/25mm以上がより好ましい。前記引張破断強度が7N/25mm以上であることによって、実用上十分な機械強度と柔軟性を確保することができる。また、上限については特に限定しないが、延伸性を鑑みると35N/25mm以下であることが好ましい。ここで、延伸方向の引張破断強度はJIS K7127に準拠して、延伸方向100mm×延伸方向と垂直方向25mmに切り出したサンプルを作製し、23℃、相対湿度50%の環境下で、引張速度200m/min、チャック間距離50mmの条件で3連式引張試験機を用いて破断した際の引張破断強度である。本発明においては、3回測定を行い算出した引張破断強度の算術平均値とする。
 本発明の第2の実施形態の延伸多孔フィルムにおける延伸方向の引張破断伸びは、40%~400%であることが好ましく、80%~300%であることがより好ましい。引張破断伸びが40%以上であると、本発明の第2の実施形態の延伸多孔フィルムを紙おむつ、及び、生理処理用品などの透湿防水用バックシートなどの衛生用品に用いる場合、肌触りが良く、優れたはき心地が得られる。また、引張破断伸びが400%以下であると、適度な剛性と抗張力を有し機械特性に優れ、印刷、スリット、並びに巻取加工時にフィルムの伸び及びひずみが小さく、生産ラインにおける優れた機械適性が得られる。
 ここで、延伸方向の引張破断伸びは、JIS K7127に準拠して、延伸方向100mm×延伸方向と垂直方向25mmに切り出したサンプルを作製し、23℃、相対湿度50%の環境下で、引張速度200m/min、チャック間距離50mmの条件で3連式引張試験機を用いて破断した際の引張破断伸びである。本発明においては、3回測定を行い算出した引張破断伸びの算術平均値とする。
 本発明の第2の実施形態の延伸多孔フィルムにおける全光線透過率は18%~60%であることが好ましい。全光線透過率が18%以上であることにより、本発明の第2の実施形態の延伸多孔フィルムを紙おむつなどの透湿防水用バックシートなどの衛生用品に用いる場合、排尿したことを知らせるインジケータ薬剤を塗布しても認識できる。また、全光線透過率が60%以下であることにより、フィルムが白く、隠ぺい性に富んでいる。
 ここで、全光線透過率は、JIS K7361に準拠したヘイズメータを用い、無作為に5点測定し、その算術平均値を求めたものである。
 本発明の第2の実施形態の延伸多孔フィルムにおける破膜耐熱温度は、120℃以上が好ましく、140℃以上がより好ましく、160℃以上が更に好ましい。破膜耐熱温度が120℃以上であると、本発明の第2の実施形態の延伸多孔フィルムを他部材と接着、ラミネートするに当たり、ホットメルト接着剤等の熱によりフィルムが破膜することなく、延伸多孔フィルムに必要な耐熱性が付与されていると判断できる。
 ここで破膜耐熱温度は、サンプル(100mm×100mm)を、その中心をΦ50mmの円状に打ち抜いたステンレス鋼板(100mm×100mm×2mm(厚さ))2枚で挟み、クリップで四辺を固定し、槽内温度120℃の対流オーブンに2分間静置して加熱した後、ステンレス鋼板の円状打ち抜き箇所のサンプルが溶融し、穴が開いていないか、その様子を目視判断し、破れや穴開きがないものを破膜耐熱温度120℃以上とする。また、槽内温度を140℃、160℃と変更し、同様の評価を行った際に、破れや穴開きがないものを、それぞれ、破膜耐熱温度140℃以上、160℃以上とする。
 以下、本発明の延伸多孔フィルムを構成する樹脂組成物(Z)について説明した後、延伸多孔フィルムの製造方法について説明する。なお、「本発明の延伸多孔フィルム」は、上記の「本発明の第1の実施形態の延伸多孔フィルム」及び「本発明の第2の実施形態の延伸多孔フィルム」をいう。
2.延伸多孔フィルムを構成する樹脂組成物(Z)
 本発明の延伸多孔フィルムは、熱可塑性樹脂を25質量%~54質量%、無機充填材(A)を46質量%~75質量%含む樹脂組成物(Z)からなることが重要である。
2-1.無機充填材(A)
 前記無機充填材(A)としては、例えば、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、硫酸バリウム、酸化チタン、タルク、クレイ、カオリナイト、モンモリロナイトなどの微粒子や鉱物が挙げられるが、微多孔質化の発現、汎用性の高さ、低価格および銘柄の豊富さなどの利点から、炭酸カルシウム、硫酸バリウムが好適に用いることができる。
 無機充填材(A)の平均粒子径は0.1~10μmが好ましく、より好ましくは0.3~5μm、更に好ましくは0.5~3μmである。平均粒子径が0.1μm以上であれば、無機充填材(A)の分散不良や二次凝集が抑制され、樹脂組成物(Z)中に均一に分散することができるため好ましい。一方で、平均粒子径が10μm以下であれば、フィルムの薄膜化の際に大きなボイドの発生を抑制することができ、フィルムに十分な強度と耐水性を確保することができる。また、樹脂との分散性及び混合性を向上させる目的で、あらかじめ脂肪酸、脂肪酸エステルなどを無機充填材にコーティングし、無機充填材表面を樹脂となじみ易くしておくことが好ましく、本発明に用いられる無機充填材(A)においても、表面処理された無機充填材を用いることができる。
2-2.熱可塑性樹脂
 前記熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩素化ポリエチレン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、エチレン/ビニルアルコール系共重合体、エチレン/酢酸ビニル系共重合体、ポリメチルペンテン系樹脂、ポリビニルアルコール系樹脂、環状オレフィン系樹脂、ポリ乳酸系樹脂、ポリブチレンサクシネート系樹脂、ポリアクリロニトリル系樹脂、ポリエチレンオキサイド系樹脂、セルロース系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンエーテル系樹脂、ポリビニルアセタール系樹脂、ポリブタジエン系樹脂、ポリブテン系樹脂、ポリアミドイミド系樹脂、ポリアミドビスマレイミド系樹脂、ポリアリレート系樹脂、ポリエーテルイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエーテルケトン系樹脂、ポリエーテルスルホン系樹脂、ポリケトン系樹脂、ポリサルフォン系樹脂、アラミド系樹脂、フッ素系樹脂、ポリアセタール系樹脂等が挙げられる。中でも、柔軟性、耐熱性、連通孔の形成、環境衛生性、臭気などの観点から、前記熱可塑性樹脂としては、ポリオレフィン系樹脂であることが好ましい。
 前記熱可塑性樹脂は、1種類であってもよく、2種類以上であってもよい。前記熱可塑性樹脂が2種類以上で構成される場合、その合計が前記熱可塑性樹脂の質量となり、樹脂組成物(Z)中における、前記熱可塑性樹脂の質量比率が算出される。
 ポリオレフィン系樹脂とは、オレフィンモノマーを主たるモノマー成分とした樹脂である。主たるモノマー成分とは、樹脂中で50モル%以上100モル%以下を占めるモノマー成分のことをいう。オレフィンモノマーとしては、エチレン、プロピレン、また、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンなどのα-オレフィンや、ジエン、イソプレン、ブチレン、ブタジエンなどが挙げられ、これらの単独重合体でもよく、2種以上を共重合した多元共重合体であってもよい。また、酢酸ビニル、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリル酸グリシジル、ビニルアルコール、エチレングリコール、無水マレイン酸、スチレン、ジエン、環状オレフィンが共重合されたものでもよい。中でも、柔軟性と風合いの付与の観点から、エチレン単独重合体、分岐状低密度ポリエチレン、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル共重合体、スチレン/エチレン/プロピレン共重合体、スチレン/エチレン/ブチレン共重合体が好ましい。
 前記熱可塑性樹脂がポリオレフィン系樹脂である場合、オレフィンモノマーを主たるモノマー成分とした樹脂であれば、1種類であってもよく、2種類以上であってもよい。前記ポリオレフィン系樹脂が2種類以上で構成される場合、その合計が前記ポリオレフィン系樹脂の質量となる。
 また、前記熱可塑性樹脂がポリオレフィン系樹脂である場合、前記ポリオレフィン系樹脂の密度は0.850g/cm以上0.940g/cm以下であることが好ましい。また、前記ポリオレフィン系樹脂として、密度が0.910g/cm以上0.940g/cm以下のポリエチレン系樹脂(B)、及び、密度が0.850g/cm以上0.910g/cm未満の軟質ポリオレフィン系樹脂(C)をそれぞれ有することが好ましい。
2-2-1.ポリエチレン系樹脂(B)
 前記ポリエチレン系樹脂(B)は、密度が0.910g/cm以上0.940g/cm以下であり、かつ、エチレンを主たるモノマー成分とした樹脂である。主たるモノマー成分とは、樹脂中で50モル%以上100モル%以下を占めるモノマー成分のことをいう。よって、ポリエチレン系樹脂(B)は、エチレン単独重合体でもよく、エチレンを主たるモノマー成分とし、かつ、他のモノマーを含有する共重合体であってもよい。共重合体の例を挙げると、エチレン/プロピレン共重合体、エチレン/1-ブテン共重合体、エチレン/1-ヘキセン共重合体、エチレン/4-メチル-1-ペンテン共重合体、エチレン/1-オクテン共重合体などのエチレン/α-オレフィン共重合体や、また、エチレン/酢酸ビニル共重合体、エチレン/(メタ)アクリル酸共重合体、エチレン/(メタ)アクリル酸エステル共重合体、エチレン/(メタ)アクリル酸グリシジル、エチレン/ビニルアルコール共重合体、エチレン/エチレングリコール共重合体、エチレン/無水マレイン酸共重合体、エチレン/スチレン共重合体、エチレン/ジエン共重合体、エチレン/環状オレフィン共重合体などが挙げられる。エチレン/プロピレン/1-ブテン共重合体など、上述のモノマー成分を2種以上含有する多元共重合体であってもよい。
 この中でも、耐熱収縮性と寸法安定性の観点から、エチレン単独重合体や、エチレン/α-オレフィン共重合体が好ましい。
 前記ポリエチレン系樹脂(B)は、密度が0.910g/cm以上0.940g/cm以下であり、かつ、エチレンを主たるモノマー成分とした樹脂であれば、1種類であってもよく、2種類以上であってもよい。前記ポリエチレン系樹脂(B)が2種類以上で構成される場合、その合計が前記ポリエチレン系樹脂(B)の質量となる。
 密度が0.910g/cm以上0.940g/cm以下のポリエチレン系樹脂(B)を含むことにより、延伸多孔フィルムの通気性、透湿性、耐熱収縮性、寸法安定性、耐液漏れ性、隠ぺい性、外観などを満足させることが可能となる。ポリエチレン系樹脂(B)の密度は、0.910g/cm以上0.937g/cm以下であることがより好ましく、0.910g/cm以上0.935g/cm以下であることが特に好ましい。ここで、密度はピクノメーター法(JIS K7112 B法)により測定した密度である。また、後述する樹脂の密度についても同様に測定したときの値である。
 ポリエチレン系樹脂(B)は線状であってもよく、分岐状であってもよい。ポリエチレン系樹脂(B)の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー-ナッタ型触媒に代表されるマルチサイト触媒や、メタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
 ポリエチレン系樹脂(B)の少なくとも1種類が分岐状低密度ポリエチレンであることが好ましい。ポリエチレン系樹脂(B)の少なくとも1種類が分岐状低密度ポリエチレンである場合、樹脂組成物(Z)の溶融張力が上昇し、成形加工性が向上するため好ましい。また、分岐状低密度ポリエチレンは、動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)の値が、0~30℃において、大きい値を示すため、前記ポリエチレン系樹脂(B)の少なくとも1種が分岐状低密度ポリエチレンであることが好ましい。
 前記ポリエチレン系樹脂(B)は、融点が110~135℃であることが好ましく、110~130℃であることがより好ましい。前記ポリエチレン系樹脂(B)の融点が110~135℃であれば、延伸多孔フィルムの耐熱収縮性、寸法安定性を向上できるため好ましい。
 ここで、融点は示差走査熱量計(DSC)を用いて、樹脂約10mgを加熱速度10℃/分で-40℃~200℃まで昇温し、200℃で1分間保持した後、冷却速度10℃/分で-40℃まで降温し、再度、加熱速度10℃/分で200℃まで昇温したときに測定されたサーモグラムから求めた結晶融解ピーク温度(Tm)(℃)である。また、後述する樹脂の融点についても同様に測定したときの値である。
 前記ポリエチレン系樹脂(B)は、メルトフローレート(MFR)が、0.1~20g/10分であることが好ましく、0.5~10g/10分であることがより好ましい。MFRを0.1g/10分以上とすることで、延伸多孔フィルムの成形性を十分に保持することができるため好ましい。また、20g/10分以下とすることで延伸多孔フィルムの強度を十分に保持できるため好ましい。
 ここで、MFRはJIS K7219に準拠して測定される値であり、その測定条件は190℃、2.16kg荷重である。
2-2-2.軟質ポリオレフィン系樹脂(C)
 前記軟質ポリオレフィン系樹脂(C)は、密度は0.850g/cm以上0.910g/cm未満であり、かつ、オレフィンモノマーを主たるモノマー成分とした樹脂である。主たるモノマー成分とは、樹脂中で50モル%以上100モル%以下を占めるモノマー成分のことをいう。オレフィンモノマーとしては、エチレン、プロピレン、また、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンなどのα-オレフィンや、ジエン、イソプレン、ブチレン、ブタジエンなどが挙げられ、これらの単独重合体でもよく、2種以上を共重合した多元共重合体であってもよい。また、酢酸ビニル、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリル酸グリシジル、ビニルアルコール、エチレングリコール、無水マレイン酸、スチレン、ジエン、環状オレフィンが共重合されたものでもよい。中でも、柔軟性と風合いの付与の観点から、エチレン単独重合体、分岐状低密度ポリエチレン、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル共重合体、スチレン/エチレン/プロピレン共重合体、スチレン/エチレン/ブチレン共重合体が好ましい。
 前記軟質ポリオレフィン系樹脂(C)は、密度が0.850g/cm以上0.910g/cm未満であり、かつ、オレフィンモノマーを主たるモノマー成分とした樹脂であれば、1種類であってもよく、2種類以上であってもよい。前記軟質ポリオレフィン系樹脂(C)が2種類以上で構成される場合、その合計が前記軟質ポリオレフィン系樹脂(C)の質量となる。密度が0.850g/cm以上0.910g/cm未満の軟質ポリオレフィン系樹脂(C)を含むことにより、延伸多孔フィルムの柔軟性や風合いを良化させ、触感の満足度を向上できる。また、軟質ポリオレフィン系樹脂(C)の密度は、0.855g/cm以上0.910g/cm未満であることが好ましく、0.860g/cm以上0.910g/cm未満であることがより好ましい。
 前記軟質ポリオレフィン系樹脂(C)は、メルトフローレート(MFR)が、0.1~20g/10分であることが好ましく、0.5~10g/10分であることがより好ましい。MFRを0.1g/10分以上とすることで、延伸多孔フィルムの成形性を十分に保持することができるため好ましい。また、20g/10分以下とすることで延伸多孔フィルムの強度を十分に保持できるため好ましい。
 また、前記軟質ポリオレフィン系樹脂(C)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)のピークは、-50~50℃の範囲にあることが好ましい。前記軟質ポリオレフィン系樹脂(C)のtanδのピークが-50~50℃の範囲にある場合、ガサガサ、ゴワゴワといった不快な音の抑制に寄与するため好ましい。
 また、前記軟質ポリオレフィン系樹脂(C)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)のピーク値は、0.100以上であることが好ましく、0.200以上であることがより好ましく、0.300以上であることが更に好ましい。前記軟質ポリオレフィン系樹脂(C)のtanδのピーク値が0.100以上である場合、ガサガサ、ゴワゴワといった不快な音の抑制に寄与するため好ましい。
 前記熱可塑性樹脂がポリオレフィン系樹脂であり、前記ポリオレフィン系樹脂が、密度が0.910g/cm以上0.940g/cm以下のポリエチレン系樹脂(B)、及び、密度が0.850g/cm以上0.910g/cm未満の軟質ポリオレフィン系樹脂(C)をそれぞれ有する場合、前記無機充填材(A)、前記ポリエチレン系樹脂(B)及び、前記軟質ポリオレフィン系樹脂(C)の混合組成比は、(A)/(B)/(C)=50質量%~75質量%/1質量%~45質量%/1質量%~45質量%(ただし(A)と(B)と(C)の合計質量%を100質量%とする。)であることが好ましく、(A)/(B)/(C)=50質量%~70質量%/3質量%~43質量%/3質量%~43質量%であることがより好ましい。
 前記無機充填材(A)と前記ポリエチレン系樹脂(B)と前記軟質ポリオレフィン系樹脂(C)の混合組成比において、前記無機充填材(A)の混合組成比が上述の好ましい範囲における下限以上である場合、延伸に伴う多孔の形成が十分となり連通孔を形成しやすくなり、十分な透気特性や透湿特性を発現しやすくなる。
 また、前記無機充填材(A)の混合組成比が上述の好ましい範囲における上限以下である場合、樹脂組成物の成形が容易となり、生産性に問題ないものとなる。
 また、前記ポリエチレン系樹脂(B)の混合組成比が上述の好ましい範囲における下限以上であり、かつ、前記軟質ポリオレフィン系樹脂(C)の混合組成比が上述の好ましい範囲における上限以下である場合、耐熱収縮性や寸法安定性に優れたフィルムとなる。
 さらには、前記ポリエチレン系樹脂(B)の混合組成比が上述の好ましい範囲における上限以下であり、かつ、前記軟質ポリオレフィン系樹脂(C)の混合組成比が上述の好ましい範囲における下限以上である場合、柔軟性や風合いといった肌触りのよい触感が得られ、フィルムが擦れる際に生じる不快音を抑制しやすくなる。
 一方、前記ポリオレフィン系樹脂としては、密度が0.910g/cm以上0.940g/cm以下のポリエチレン系樹脂(B)、及び、密度が0.850g/cm以上0.910g/cm未満の軟質ポリオレフィン系樹脂(C)以外に、後述するポリプロピレン系樹脂(D)を有してもよい。
<ポリプロピレン系樹脂(D)>
 ポリプロピレン系樹脂(D)は、密度が0.890g/cm以上0.910g/cm未満であることが好ましい。また、融点は140℃~170℃であることが好ましい。また、MFRは10~50g/10minであることが好ましい。ここで、ポリプロピレン系樹脂(D)のMFRはJIS K7210の条件Mに準拠して測定される値であり、その測定条件は230℃、2.16kg荷重である。
 前記熱可塑性樹脂がポリオレフィン系樹脂であり、前記ポリオレフィン系樹脂が、密度が0.910g/cm以上0.940g/cm以下のポリエチレン系樹脂(B)、密度が0.850g/cm以上0.910g/cm未満の軟質ポリオレフィン系樹脂(C)、ポリプロピレン系樹脂(D)をそれぞれ有する場合、前記ポリエチレン系樹脂(B)、前記軟質ポリオレフィン系樹脂(C)、前記ポリプロピレン系樹脂(D)の混合組成比は、(B)/(C)/(D)=1質量%~25質量%/50質量%~98質量%/1質量%~25質量%(ただし(B)と(C)と(D)の合計質量%を100質量%とする。)であることが好ましく、(B)/(C)/(D)=5質量%~20質量%/60質量%~90質量%/5質量%~20質量%(ただし(B)と(C)と(D)の合計質量%を100質量%とする。)であることがより好ましい。
 前記ポリエチレン系樹脂(B)と前記軟質ポリオレフィン系樹脂(C)と前記ポリプロピレン系樹脂(D)との混合組成比において、前記ポリプロピレン系樹脂(D)の混合組成比が上述の好ましい範囲における下限以上である場合、延伸多孔フィルムに十分な耐熱性を発現しやすくなる。
 また、前記ポリエチレン系樹脂(B)の混合組成比が上述の好ましい範囲における下限以上である場合、樹脂組成物の成形が容易となり、生産性に問題ないものとなる。
 さらに、前記ポリプロピレン系樹脂(D)の混合組成比が上述の好ましい範囲における上限以下であり、かつ、前記ポリエチレン系樹脂(B)の混合組成比が上述の好ましい範囲における上限以下であり、かつ、前記軟質ポリオレフィン系樹脂(C)の混合組成比が上述の好ましい範囲における下限以上である場合、柔軟性や風合いといった肌触りのよい触感が得られ、フィルムが擦れる際に生じる不快音を抑制しやすくなる。
2-3.その他の成分
 さらに本発明の延伸多孔フィルムは、前記樹脂組成物(Z)中に、可塑剤(E)を0.1質量%~8.0質量%含むことが好ましい。可塑剤(E)が0.1質量%以上含まれていれば、前記樹脂組成物(Z)のtanδの値が大きくなり、さらに前記樹脂組成物(Z)のtanδのピーク幅を広くすることができる。また、延伸多孔フィルムの結晶融解エンタルピー(ΔHm)を小さくすることができる。一方、可塑剤(E)が8.0質量%以下であれば、可塑剤のブリードアウトを抑制することができ、延伸多孔フィルムをロール状に巻き取った際のブロッキングや、印刷時の印刷不良を抑制できる。
 可塑剤(E)としては、下記エステル系可塑剤が挙げられる。極性構造を有するもの、例えば、1価カルボン酸エステル系可塑剤(ブタン酸、イソブタン酸、へキサン酸、2-エチルへキサン酸、へプタン酸、オクチル酸、2-エチルヘキサン酸、ラウリル酸などの1価カルボン酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリンなどの多価アルコールとの縮合反応により得られる化合物が挙げられる。具体的な化合物を例示すると、トリエチレングリコールジ2-エチルヘキサノエート、トリエチレングリコールジイソブタノエート、トリエチレングリコール-ヘキサノエート、トリエチレングリコールジ2-エチルブタノエート、トリエチレングリコールジラウレート、エチレングリコールジ2-エチルヘキサノエート、ジエチレングリコールジ2-エチルヘキサノエート、テトラエチレングリコールジ2-エチルヘキサノエート、テトラエチレングリコールジヘプタノエート、PEG#400ジ2-エチルヘキサノエート、トリエチレングリコールモノ2-エチルヘキサノエート、グリセリントリ2-エチルヘキサノエート、ペンタエリスリトールテトラスレアレート、ジペンタエリスリトールヘキサオクタノエート、ジグリセリンテトラステアレート、ジグリセリンジステアレートなど)、多価カルボン酸エステル系可塑剤(アジピン酸、コハク酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸などの多価カルボン酸と、メタノール、エタノール、ブタノール、ヘキサノール、2-エチルブタノール、ヘプタノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、ブトキシエタノール、ブトキシエトキシエタノール、ベンジルアルコールなどの炭素数1~12の1価アルコールとの縮合反応により得られる化合物が挙げられる。具体的な化合物を例示すると、アジピン酸ジヘキシル、アジピン酸ジ2-エチルヘキシル、アジピン酸ジヘプチル、アジピン酸ジオクチル、アジピン酸ジ2-エチルヘキシル、アジピン酸ジ(ブトキシエチル)、アジピン酸ジ(ブトキシエトキシエチル)、アジピン酸モノ(2-エチルヘキシル)、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジ(2-エチルブチル)、フタル酸ジオクチル、フタル酸ジ(2-エチルヘキシル)、フタル酸ベンジルブチル、フタル酸ジドデシル、トリメット酸トリオクチルなど)、ヒドロキシカルボン酸エステル系可塑剤(ヒドロキシカルボン酸の1価アルコールエステル;リシノール酸メチル、リシノール酸エチル、リシノール酸ブチル、6-ヒドロキシヘキサン酸メチル、6-ヒドロキシヘキサン酸エチル、6-ヒドロキシヘキサン酸ブチル、ヒドロキシカルボン酸の多価アルコールエステル;エチレングリコールジ(6-ヒドロキシヘキサン酸)エステル、ジエチレングリコールジ(6-ヒドロキシヘキサン酸)エステル、トリエチレングリコールジ(6-ヒドロキシヘキサン酸)エステル、3-メチル-1,5-ペンタンジオールジ(6-ヒドロキシヘキサン酸)エステル、3-メチル-1,5-ペンタンジオールジ(2-ヒドロキシ酪酸)エステル、3-メチル-1,5-ペンタンジオールジ(3-ヒドロキシ酪酸)エステル、3-メチル-1,5-ペンタンジオールジ(4-ヒドロキシ酪酸)エステル、トリエチレングリコールジ(2-ヒドロキシ酪酸)エステル、グリセリントリ(リシノール酸)エステル、L-酒石酸ジ(1-(2-エチルヘキシル))、ひまし油類など)、ポリエステル系可塑剤などの適当なものを使用することができる。
 ひまし油類としては、通常のひまし油、精製ひまし油、硬化ひまし油および脱水ひまし油などが挙げられる。また、硬化ひまし油としては、12-ヒドロキシオクタデカン酸とグリセリンからなるトリグリセライドを主成分とする硬化ひまし油などが挙げられる。
 また、前記原料の他、使用目的に応じて、その他樹脂原料や、耳などのトリミングロス等から発生するリサイクル樹脂、相溶化剤、加工助剤、溶融粘度改良剤、酸化防止剤、老化防止剤、熱安定剤、光安定剤、耐候性安定剤、紫外線吸収剤、中和剤、核剤、架橋剤、滑材、アンチブロッキング剤、スリップ剤、防曇剤、抗菌剤、消臭剤、難燃剤、帯電防止剤、着色剤および顔料などを、本発明の延伸多孔フィルムを構成する樹脂組成物(Z)に適宜添加してもよい。
3.延伸多孔フィルムの製造方法
 本発明の延伸多孔フィルムの製造方法は、特に制限されるものではなく、従来公知の方法によって製造することができるが、少なくとも一軸方向に延伸されることが重要である。
 ここで、「フィルム」とは、厚いシートから薄いフィルムまでを包括した意を有する。フィルムとしては、平面状、チューブ状のいずれであってもよいが、生産性(原反シートの幅方向に製品として数丁取りが可能)や内面に印刷が可能という観点から、平面状が好ましい。平面状のフィルムの製造方法としては、例えば、押出機を用いて前記樹脂組成物を溶融し、ダイからフィルム状に押出し、冷却ロールや空冷、水冷にて冷却固化して得られるフィルム(未延伸フィルム)を、少なくとも一軸方向に延伸した後、巻取機にて巻き取ることによりフィルムを得る方法が例示できる。
 また、前記未延伸フィルムを得る方法としては、本発明の延伸多孔フィルムを構成する組成物(Z)を混合した後、溶融混練させることが好ましい。具体的には、タンブラーミキサー、ミキシングロール、バンバリーミキサー、リボンブレンダ―、スーパーミキサーなどの混合機で適当な時間混合した後、異方向二軸押出機、同方向二軸押出機などの押出機を使用し、組成物の均一な分散分配を促す。得られた樹脂組成物は、押出機の先端にTダイや丸ダイなどの口金を接続し、フィルム状に成型することができる。また、混練機の先端にストランドダイを接続し、ストランドカット、ダイカットなどの方法により一旦ペレット化した後、(場合によっては追加する組成物とともに)得られたペレットを単軸押出機などに導入し、押出機の先端にTダイや丸ダイなどの口金を接続し、フィルム状に成形することもできる。フィルム状に成形するにあたり、インフレーション成形、チューブラー成形、Tダイ成形などのフィルム成形方法が好ましい。押出温度は、180~260℃程度が好ましく、より好ましくは190~250℃である。押出温度やせん断の状態を最適化することにより、材料の分散状態を制御することも、下記記述するフィルムの種々の物理的特性、機械的特性を所望の値にするのに有効である。
 本発明の延伸多孔フィルムは、前記未延伸フィルムを延伸することによって製造することができる。例えば、押出機を用いて樹脂を溶融し、Tダイや丸ダイから押出し、冷却ロールで冷却固化し、縦方向(フィルムの流れ方向、MD)へのロール延伸や、横方向(フィルムの流れ方向に対して垂直方向、TD)へのテンター延伸等により、少なくとも一軸方向に延伸される。また、縦方向に延伸した後、横方向に延伸してもよく、横方向に延伸した後、縦方向に延伸してもよい。また、同じ方向に2回以上延伸してもよい。さらには、縦方向に延伸した後、横方向に延伸し、さらに縦方向に延伸してもよい。また、同時二軸延伸機により縦方向、横方向に同時に延伸されてもよい。また、チューブラー成形により内圧によってチューブ状の未延伸フィルムが放射状に延伸されてもよい。さらには、インフレーション成形により得られたチューブ状の未延伸フィルムを折り畳んだ状態で延伸した後、折り畳まれたチューブ状の延伸多孔フィルムの耳を裁断し、2枚に分けてそれぞれ巻取を行ってもよく、折り畳んだ未延伸フィルムの耳を切断し、2枚の未延伸フィルムに分けた後、それぞれ延伸し、それぞれ巻取を行ってもよい。
 本発明においては、少なくとも縦方向に1回延伸を行うことが好ましく、また、延伸ムラや通気性との兼ね合いにより、縦方向に2回以上延伸を行ってもよい。延伸温度は0℃~90℃が好ましく、20℃~70℃がより好ましい。また延伸倍率は、合計1.5倍~6.0倍が好ましく、2.0倍~5.0倍がより好ましい。延伸倍率を合計1.5倍以上とすることで、均一に延伸されて優れた外観を有する延伸多孔フィルムが得られる。一方、延伸倍率を合計6.0倍以下とすることで、フィルムの破断を抑制できる。
 必要に応じて、熱収縮率の低減や諸物性の改良等を目的として、延伸後に50℃以上120℃以下の温度で熱処理や弛緩処理を行うことができる。ロール延伸により延伸を行う場合、延伸工程と巻取工程の間で、延伸後のフィルムを加熱したロール(アニールロール)に接触させることで熱処理を行うことができる。また、アニールロールにより加熱しながら、次に接触するロールの速度をアニールロール速度よりも遅くすることで、弛緩処理を行うことができる。また、これらの熱処理や弛緩処理は、未延伸フィルムを延伸し、延伸多孔フィルムを巻き取った後、別工程にて行うこともできる。熱処理や弛緩処理の温度が低すぎるとフィルムの収縮率が低減されにくく、また温度が高すぎるとロールに巻き付いたり、形成された微多孔が閉塞したりするおそれがある。そのため、50℃以上120℃以下の温度で熱処理や弛緩処理を行うことが好ましい。これらの熱処理、弛緩処理は複数回分割して実施されてもよい。
 また、本発明の延伸多孔フィルムは、必要に応じて、スリット、コロナ処理、印刷、粘着剤の塗布、コーティング、蒸着等の表面処理や表面加工などを施すことができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例に示す測定値及び評価は次のように行った。実施例では、フィルムの流れ方向を「縦」方向(又は、MD)、その直角方向を「横」方向(又は、TD)と記載する。
(1)延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定
 下記に示す実施例、比較例において、延伸多孔フィルムを構成する樹脂組成物(Z)の未延伸フィルムを用いて、MD:4mm、TD:35mmに切り出された短冊状のサンプル片を用い、上述の方法に従い動的粘弾性測定を行い、貯蔵弾性率(E’)、損失弾性率(E’’)、及び、貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)を算出した。その後、-20℃においてtanδが0.100以上である場合は「A」と判定し、-20℃においてtanδが0.100未満となる場合は「B」と判定した。
 さらに、20℃におけるE’(単位:×10Pa)、並びに、-30℃、-20℃、-10℃、0℃、10℃、20℃、及び、30℃におけるtanδの値を表1~3に纏めた。
(2)延伸多孔フィルムの坪量
 上記の方法に従い、延伸多孔フィルムの坪量を算出した。
(3)延伸多孔フィルムの空孔率
 上記の方法に従い、延伸多孔フィルムの空孔率を算出した。
(4)延伸多孔フィルムの透気度
 上述の方法に従い、延伸多孔フィルムの透気度を算出した。透気度測定装置として、旭精工(株)社製 王研式透気度測定機EGO1-55型を用いた。
(5)延伸多孔フィルムの透湿度
 上記の方法に従い、延伸多孔フィルムの透湿度を算出した。
(6)延伸多孔フィルムの延伸方向の引張破断強度
 上述の方法に従い、延伸多孔フィルムの延伸方向(本実施例、比較例ではMD)の引張破断強度を算出した。
(7)延伸多孔フィルムの延伸方向の引張破断伸び
 上述の方法に従い、延伸多孔フィルムの延伸方向(本実施例、比較例ではMD)の引張破断伸びを算出した。
(8)延伸多孔フィルムの熱収縮率
 実施例101~104及び比較例101~102では、上述の方法に従い、60℃で1時間加熱したときの延伸多孔フィルムの延伸方向(本実施例、比較例ではMD)における熱収縮率を算出した。
(9)延伸多孔フィルムの全光線透過率
 上述の方法に従い、延伸多孔フィルムの全光線透過率を算出した。
(10)延伸多孔フィルムの結晶融解ピーク(Pm)、結晶融解エンタルピー(ΔHm)
 下記に示す実施例、比較例において得られた延伸多孔フィルムを、示差走査型熱量計(DSC)を用いて、-40℃から200℃まで加熱速度10℃/分で昇温後、1分間保持し、次に200℃から-40℃まで冷却速度10℃/分で降温後、1分間保持し、更に-40℃から200℃まで加熱速度10℃/分で再昇温させたことで、再昇温過程における結晶融解ピーク(Pm)、及び再昇温過程における前記結晶融解ピーク(Pm)のピーク面積から、延伸多孔フィルムの結晶融解エンタルピー(ΔHm)を算出した。
 実施例201~205及び比較例201~204では、このとき、140℃~200℃に結晶融解ピーク(Pm1)の有無を確認した。また、前記(Pm1)より、ピーク温度(Tm1)、結晶融解エンタルピー(ΔHm1)を算出した。同様に、30℃~130℃に結晶融解ピーク(Pm2)の有無を確認した。また、前記(Pm2)より、ピーク温度(Tm2)、結晶融解エンタルピー(ΔHm2)を算出した。
(11)延伸多孔フィルムの柔軟性
 下記に示す実施例、比較例において得られた延伸多孔フィルムを、縦方向(MD)1000mm、横方向(TD)200mmに切り出し、手で触り、下記判断基準に従い、評価した。
 A:フィルムに柔らかい風合いを感じる。
 B:フィルムに硬さを感じる。
(12)延伸多孔フィルムの不快音
 延伸多孔フィルムの不快音について、以下の試験又は不快音測定により評価を行った。
(12-1)延伸多孔フィルムの摩擦による不快音
 下記に示す実施例、比較例において得られた延伸多孔フィルムを、縦方向(MD)1000mm、横方向(TD)200mmに切り出し、フィルムをこすり合わせて、下記判断基準に従い、評価した。
 A:こすり合わせても不快な音を感じない。
 B:こすり合わせるとガサガサと不快な音を感じる。
(12-2)延伸多孔フィルムの不快音測定
 延伸多孔フィルムの不快音測定は、測定場所を幅3m程度、長さ4m程度、高さ3m程度の個室内(外部の騒音の影響が少ない環境下)にて、リオン株式会社製、普通騒音計NL-42を用いて、周波数重み付け特性はA特性とし、時間重み付け特性はF特性として行った。
 まず、下記に示す実施例、比較例において得られた延伸多孔フィルムを、縦方向(MD)400mm、横方向(TD)200mmに切り出し、縦方向中央で1度折り畳み、2つ折りに重ねあわせた。その後、重ねあわせた延伸多孔フィルムのTD両端部を挟持し、挟持したTD両端部間距離が100mmとなるように調整した。
 さらに、挟持された延伸多孔フィルムと普通騒音計のマイク(集音部)との距離を100mmとなるように調整した後、挟持された延伸多孔フィルムのMD、及び、TDと垂直方向(厚み方向)に、挟持した端部を1秒間に3往復振動させることでフィルムを擦りあわせ、測定時間10秒間における時間平均サウンドレベル(LAeq)を測定し、下記判断基準に従い評価した。
 尚、フィルムを振動させない状態(無動作状態)での測定時間10秒間における時間平均サウンドレベル(LAeq)は26dBであった。
 A:時間平均サウンドレベル(LAeq)が26dB以上35dB未満
 B:時間平均サウンドレベル(LAeq)が35dB以上45dB未満
 C:時間平均サウンドレベル(LAeq)が45dB以上
(13)延伸多孔フィルムの破膜耐熱温度
 実施例201~205及び比較例201~204では、さらに、上述の方法に従い、破膜耐熱温度を評価した。評価は、対流オーブンの槽内温度を120℃、140℃、160℃とし、槽内に2分間静置して加熱した後の状態を目視評価にて、下記判断基準に従い、評価した。
 A:ステンレス鋼板の円状打ち抜き箇所のサンプルに破れや穴開きがない。
 B:ステンレス鋼板の円状打ち抜き箇所のサンプルが溶融し、穴が開いている。
(14)総合評価
(14-1)実施例101~104及び比較例101~102
 上記(1)~(12)に示す評価を鑑み、下記基準にて総合評価を行った。
 A:柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制した、通気性や透湿性を求められる用途に適したフィルムである。
 B:柔軟性と風合いといった優れた触感を有し、通気性と透湿性に優れたフィルムであるが、不快な音の発生を感じるフィルムである。
 C:通気性と透湿性に優れたフィルムであるが、柔軟性や風合いといった触感を感じられず、かつ、不快な音の発生を感じるフィルムである。
 D:通気性と透湿性などの延伸多孔フィルムに求められる物性が不十分なフィルムである。
(14-2)実施例105~108及び比較例103~104
 上記(1)~(7)及び(9)~(12)に示す評価を鑑み、下記基準にて総合評価を行った。
 A:柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制した、通気性や透湿性を求められる用途に適したフィルムである。
 B:柔軟性と風合いといった優れた触感を有し、通気性と透湿性に優れたフィルムであるが、不快な音の発生を感じるフィルムである。
 C:通気性と透湿性に優れたフィルムであるが、柔軟性や風合いといった触感を感じられず、かつ、不快な音の発生を感じるフィルムである。
 D:通気性と透湿性などの延伸多孔フィルムに求められる物性が不十分なフィルムである。
(14-3)実施例201~205及び比較例201~204
 上記(1)~(7)及び(9)~(13)に示す評価を鑑み、下記基準にて総合評価を行った。
 A:柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制した、通気性や透湿性を求められる用途に適したフィルムであり、かつ、十分な耐熱性を兼ね備えたフィルムである。
 B:柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制した、通気性や透湿性を求められる用途に適したフィルムであるが、耐熱性が不十分である。
 C:通気性と透湿性に優れたフィルムであるが、柔軟性や風合いといった触感を感じられず、かつ、不快な音の発生を感じるフィルムである。
 D:通気性と透湿性などの延伸多孔フィルムに求められる物性が不十分なフィルムである。
 各実施例、比較例で使用した原材料は下記の通りである。
<無機充填材(A)>
・備北粉化工業(株)社製、重質炭酸カルシウム「ライトンBS-0」(平均粒子径1.1μm、ステアリン酸表面処理品)。以下、「A-1」と略する。
<ポリエチレン系樹脂(B)>
・日本ポリエチレン(株)社製、直鎖状低密度ポリエチレン「ノバテックLL UF230」(密度0.921g/cm、MFR1.0g/10分、融点121℃)。以下、「B-1」と略する。
・日本ポリエチレン(株)社製、分岐状低密度ポリエチレン「ノバテックLD LF441」(密度0.918g/cm、MFR2.3g/10分、融点113℃)。以下、「B-2」と略する。
<軟質ポリオレフィン系樹脂(C)>
・日本ポリエチレン(株)社製、メタロセン系エチレン/α-オレフィン共重合体「カーネル KF360T」(密度0.898g/cm、MFR3.5g/10分、融点90℃)。以下、「C-1」と略する。
・ダウ・ケミカル社製、エチレン/オクテンブロック共重合体「Infuse D9100.05」(密度0.877g/cm、MFR1.0g/10分、融点120℃)。以下、「C-2」と略する。
・三井化学(株)社製、エチレン/1-ブテン共重合体「タフマー A1050S」(密度0.862g/cm、MFR1.2g/10分、融点45℃)。以下、「C-3」と略する。
・ダウ・ケミカル社製、エチレン/オクテンブロック共重合体「Infuse D9107」(密度0.866g/cm、MFR1g/10分、融点119℃)。以下、「C-4」と略する。
<ポリプロピレン系樹脂(D)>
・日本ポリプロ(株)社製、ポリプロピレン「ノバテックPP SA03」(密度0.900g/cm、MFR30g/10分、融点165℃)。以下、「D-1」と略する。
<可塑剤(E)>
・ケイエフ・トレーディング(株)社製、硬化ひまし油「HCO-P3」。以下、「E-1」と略する。
・(株)ジェイ・プラス社製、液体ポリエステル系可塑剤「ダイヤサイザー D600」。以下、「E-2」と略する。
<酸化防止剤>
・BASFジャパン(株)社製、酸化防止剤「Irganox B225」。以下、「F-1」と略する。
<他樹脂>
・三井化学(株)社製、α-オレフィン共重合体「アブソートマー EP-1001」(密度0.84g/cm、MFR10g/10分(230℃2.16kg荷重))。以下、「G-1」と略する。
<実施例101>
 それぞれの原材料を表1に示す組成比率にて計量した後、ヘンシェルミキサーに投入し、5分間混合、分散させて、同方向二軸押出機を用いて、設定温度200℃にて溶融混練した後、同方向二軸押出機の先端に接続したTダイにて、樹脂組成物を押出し、50℃に設定したキャスティングロールにて引き取り、冷却固化させて未延伸フィルムを得た。得られた未延伸フィルムに関して、動的粘弾性測定を行った。
 その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比130%(延伸倍率2.3倍)、(T)-(U)ドロー比130%(延伸倍率2.3倍)を掛けてMDに合計5.3倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表1に纏めた。
<実施例102>
 実施例101と同様の手法により、未延伸フィルムを採取した。その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比100%(延伸倍率2.0倍)、(T)-(U)ドロー比100%(延伸倍率2.0倍)を掛けてMDに合計4.0倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表1に纏めた。
<実施例103>
 実施例101と同様の手法により、未延伸フィルムを採取した。その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比70%(延伸倍率1.7倍)、(T)-(U)ドロー比70%(延伸倍率1.7倍)を掛けてMDに合計2.9倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表1に纏めた。
<比較例101>
 実施例101と同様の手法により、未延伸フィルムを採取した。その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比40%(延伸倍率1.4倍)、(T)-(U)ドロー比40%(延伸倍率1.4倍)を掛けてMDに合計2.0倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表1に纏めた。
<実施例104>
 それぞれの原材料を表1に示す組成比率にて計量した後、ヘンシェルミキサーに投入し、5分間混合、分散させて、同方向二軸押出機を用いて、設定温度200℃にて溶融混練した後、同方向二軸押出機の先端に接続したTダイにて、樹脂組成物を押出し、50℃に設定したキャスティングロールにて引き取り、冷却固化させて未延伸フィルムを得た。得られた未延伸フィルムに関して、動的粘弾性測定を行った。
 その後、得られた未延伸フィルムを、20℃に設定したロール(S)と20℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比100%(延伸倍率2.0倍)、(T)-(U)ドロー比100%(延伸倍率2.0倍)を掛けてMDに合計4.0倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表1に纏めた。
<比較例102>
 それぞれの原材料を表1に示す組成比率にて計量した後、ヘンシェルミキサーに投入し、5分間混合、分散させて、同方向二軸押出機を用いて、設定温度200℃にて溶融混練した後、同方向二軸押出機の先端に接続したTダイにて、樹脂組成物を押出し、50℃に設定したキャスティングロールにて引き取り、冷却固化させて未延伸フィルムを得た。得られた未延伸フィルムに関して、動的粘弾性測定を行った。
 その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比130%(延伸倍率2.3倍)、(T)-(U)ドロー比130%(延伸倍率2.3倍)を掛けてMDに合計5.3倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表1に纏めた。
Figure JPOXMLDOC01-appb-T000001
 実施例101~104で得られた延伸多孔フィルムは、透気特性や透湿特性に優れると共に、好適な引張破断強度、引張破断伸度、熱収縮率、全光線透過率を有するフィルムであった。また、実施例101~104で得られる延伸多孔フィルムをこすり合わせても不快な音を感じることはなかった。
 この結果は、本発明の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されたtanδ、及び、延伸多孔フィルムの空孔率が本発明で規定する範囲を満たしているためと考えられる。具体的には、実施例101~104の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されたtanδが、-20℃において0.100以上となっているため、樹脂組成物(Z)を振動して伝播する音が減衰し、不快音の抑制に寄与しているためと考えられる。また、実施例101~104の延伸多孔フィルムの空孔率が25%~80%の範囲にあることから、連通した空隙を伝播する音が、空隙と樹脂組成物(Z)との壁面との衝突する際に生じるエネルギー損失の回数が多くなり、不快音の抑制に寄与していると考えられる。
 一方、比較例101で得られたフィルムは、実施例101~103と同様に、本発明の規定する前述のtanδの規定を満たした樹脂組成物(Z)を用いたものであるが、比較例101で得られた延伸多孔フィルムは、本発明の規定する空孔率を逸脱している。そのため、比較例101で得られたフィルムは、柔軟性や風合いといった触感には優れるものの、不快音の抑制には不十分であった。
 また、比較例102で得られたフィルムは、本発明の規定する空孔率を満たしたものであるが、-20℃におけるtanδが0.100未満となり、不快音の抑制には不十分であった。
 すなわち、優れた触感と、フィルムが擦れ時に生じる不快音の抑制を両立するためには、前述のtanδ、及び、空孔率の両方が、本発明が規定する範囲を満たすことが重要であることが分かる。
<実施例105>
 それぞれの原材料を表2に示す組成比率にて計量した後、ヘンシェルミキサーに投入し、5分間混合、分散させて、同方向二軸押出機を用いて、設定温度200℃にて溶融混練した後、同方向二軸押出機の先端に接続したTダイにて、樹脂組成物を押出し、50℃に設定したキャスティングロールにて引き取り、冷却固化させて厚さ30μmの未延伸フィルムを得た。得られた未延伸フィルムに関して、動的粘弾性測定を行った。
 その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比100%(延伸倍率2.0倍)、(T)-(U)ドロー比100%(延伸倍率2.0倍)を掛けてMDに合計4.0倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表2に纏めた。
<実施例106>
 原材料を表2に示す組成比率に変更した以外は、実施例105と同様の手法により、厚さ30μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例105と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表2に纏めた。
<実施例107>
 原材料を表2に示す組成比率に変更した以外は、実施例105と同様の手法により、厚さ30μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例105と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表2に纏めた。
<実施例108>
 原材料を表2に示す組成比率に変更した以外は、実施例105と同様の手法により、厚さ50μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例105と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表2に纏めた。
<比較例103>
 原材料を表2に示す組成比率に変更した以外は、実施例105と同様の手法により、厚さ50μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例105と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表2に纏めた。
<比較例104>
 原材料を表2に示す組成比率に変更した以外は、実施例105と同様の手法により、厚さ50μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例105と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表2に纏めた。
Figure JPOXMLDOC01-appb-T000002
 実施例105~108で得られた延伸多孔フィルムは、透気特性や透湿特性に優れると共に、好適な引張破断強度、引張破断伸度、全光線透過率を有するフィルムであった。また、実施例105~108で得られる延伸多孔フィルムをこすり合わせた際の時間平均サウンドレベル(LAeq)は低い値を示し、不快な音を感じることはなかった。
 この結果は、本発明の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されたtanδ、及び、延伸多孔フィルムの空孔率が本発明で規定する範囲を満たし、かつ、延伸多孔フィルムの結晶融解エンタルピー(ΔHm)が10g/J~45g/Jとなっているためと考えられる。具体的には、実施例105~108の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されたtanδが、-20℃において0.100以上となっているため、樹脂組成物(Z)を振動して伝播する音が減衰し、不快音の抑制に寄与しているためと考えられる。また、実施例1~4の延伸多孔フィルムの結晶融解エンタルピー(ΔHm)が10J/g~45J/gの範囲にあることから、外力を与えた時に反発して振動する結晶成分が少ないため、発生する音が小さくなったためと考えられる。
 一方、比較例103、104で得られたフィルムは、本発明の規定するtanδや、結晶融解エンタルピー(ΔHm)の好ましい範囲を満たしていないため、不快音の抑制には不十分であり、時間平均サウンドレベル(LAeq)が高い値を示した。
 すなわち、優れた触感と、フィルムが擦れ時に生じる不快音の抑制を両立するためには、前述のtanδ、及び、延伸多孔フィルムの空孔率が本発明の規定する範囲を満たすことが重要であり、延伸多孔フィルムの結晶融解エンタルピー(ΔHm)が10g/J~45g/Jの範囲にあることが好ましいことが分かる。
<実施例201>
 それぞれの原材料を表3に示す組成比率にて計量した後、ヘンシェルミキサーに投入し、5分間混合、分散させて、同方向二軸押出機を用いて、設定温度200℃にて溶融混練した後、同方向二軸押出機の先端に接続したTダイにて、樹脂組成物を押出し、50℃に設定したキャスティングロールにて引き取り、冷却固化させて厚さ35μmの未延伸フィルムを得た。得られた未延伸フィルムに関して、動的粘弾性測定を行った。
 その後、得られた未延伸フィルムを、60℃に設定したロール(S)と60℃に設定したロール(T)、及び、60℃に設定したロール(U)間において、(S)-(T)ドロー比100%(延伸倍率2.0倍)、(T)-(U)ドロー比100%(延伸倍率2.0倍)を掛けてMDに合計4.0倍延伸を行った。次いで、90℃に設定したロール(V)にて熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<実施例202>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ35μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<実施例203>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ35μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<実施例204>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ35μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<実施例205>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ35μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<比較例201>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ50μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<比較例202>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ50μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<比較例203>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ30μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
<比較例204>
 原材料を表3に示す組成比率に変更した以外は、実施例201と同様の手法により、厚さ35μmの未延伸フィルムを採取した。得られた未延伸フィルムに関して、動的粘弾性測定を行った。その後、得られた未延伸フィルムを実施例201と同様の手法により延伸、熱処理及び弛緩処理を行うことで、延伸多孔フィルムを得た。得られた延伸多孔フィルムに関して、各種評価を行った。結果を表3に纏めた。
Figure JPOXMLDOC01-appb-T000003
 実施例201~205で得られた延伸多孔フィルムは、透気特性や透湿特性に優れると共に、好適な引張破断強度、引張破断伸度、全光線透過率を有するフィルムであった。また、実施例201~205で得られる延伸多孔フィルムをこすり合わせた際の時間平均サウンドレベル(LAeq)は低い値を示し、不快な音を感じることはなかった。さらに、破膜耐熱試験において、120℃、140℃、さらには、160℃においても破膜することなかった。
 この結果は、本発明の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されたtanδ、及び、結晶融解ピークの出現温度が本発明の規定する範囲を満たしているためと考えられる。具体的には、実施例201~205の延伸多孔フィルムを構成する樹脂組成物(Z)の動的粘弾性測定から算出されたtanδが、-20℃において0.100以上となっているため、樹脂組成物(Z)を振動して伝播する音が減衰し、不快音の抑制に寄与しているためと考えられる。また、実施例201~205で得られた延伸多孔フィルムは140℃~200℃に結晶融解ピークを有しているため、高い耐熱性を有することが示された。
 一方、比較例201、202で得られたフィルムは、本発明の規定するtanδを満たしていないため、不快音の抑制には不十分であり、時間平均サウンドレベル(LAeq)が高い値を示した。また、比較例203で得られたフィルムは、140℃~200℃の範囲に結晶融解ピークを有しないため、柔軟で不快音が抑制されたフィルムではあるが、延伸多孔フィルムに求められる耐熱性がやや不十分であることが分かる。
 さらに、比較例204では、密度が0.850g/cm未満のα-オレフィン共重合体を含むフィルムであるが、本発明の規定するtanδを満たしていないため、不快音の抑制には不十分であった。すなわち、延伸多孔フィルムに必要な耐熱性の付与と、フィルムが擦れ時に生じる不快音の抑制を両立するためには、前述のtanδ、及び、結晶融解ピークが出現する温度の両方が、本発明が規定する範囲を満たすことが重要であることが分かる。
 以上、現時点において、最も実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨、或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う延伸多孔フィルムもまた本発明の技術的範囲に包含されるものとして理解されなければならない。
 本発明の延伸多孔フィルムは、柔軟性と風合いといった優れた触感を有するとともに、フィルムの擦れ時に生じる不快な音の発生を抑制し、通気性、透湿性および強度にも優れる。従って、延伸多孔フィルムを用いた、紙おむつ、女性用生理用品などの衛生用品;作業服、ジャンパー、ジャケット、医療用衣服、化学防護服などの衣服:さらには、マスク、カバー、ドレープ、シーツ、ラップなどの通気性や透湿性を求められる用途に好適に利用することができる。

Claims (16)

  1.  熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、
     該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、空孔率が25%~80%である延伸多孔フィルム。
  2.  結晶融解エンタルピー(ΔHm)が10J/g~45J/gである請求項1に記載の延伸多孔フィルム。
  3.  熱可塑性樹脂、無機充填材(A)を含む樹脂組成物(Z)からなる延伸多孔フィルムであって、
     該樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)と損失弾性率(E’’)の比であるtanδ(=E’’/E’)が-20℃において0.100以上であり、140℃~200℃に結晶融解ピーク(Pm1)を有する延伸多孔フィルム。
  4.  前記結晶融解ピーク(Pm1)から算出される結晶融解エンタルピー(ΔHm1)が1J/g~10J/gであることを特徴とする請求項3に記載の延伸多孔フィルム。
  5.  30℃~130℃に結晶融解ピーク(Pm2)をさらに有し、該結晶融解ピーク(Pm2)から算出される結晶融解エンタルピー(ΔHm2)が10J/g~45J/gである請求項3または4に記載の延伸多孔フィルム。
  6.  前記熱可塑性樹脂を25質量%~54質量%、前記無機充填材(A)を46質量%~75質量%含む前記樹脂組成物(Z)からなる請求項1~5のいずれかに記載の延伸多孔フィルム。
  7.  前記熱可塑性樹脂がポリオレフィン系樹脂である請求項1~6のいずれかに記載の延伸多孔フィルム。
  8.  前記ポリオレフィン系樹脂の密度が0.850g/cm以上0.940g/cm以下である請求項7に記載の延伸多孔フィルム。
  9.  前記ポリオレフィン系樹脂として、密度が0.910g/cm以上0.940g/cm以下のポリエチレン系樹脂(B)、及び、密度が0.850g/cm以上0.910g/cm未満の軟質ポリオレフィン系樹脂(C)をそれぞれ有する請求項7または8に記載の延伸多孔フィルム。
  10.  前記樹脂組成物(Z)の動的粘弾性測定から算出される貯蔵弾性率(E’)が、20℃において8.0×10Pa以下である請求項1~9のいずれかに記載の延伸多孔フィルム。
  11.  透湿度が1000g/(m・24h)~15000g/(m・24h)である請求項1~10のいずれかに記載の延伸多孔フィルム。
  12.  延伸方向の引張破断強度が7N/25mm以上である請求項1~11のいずれかに記載の延伸多孔フィルム。
  13.  延伸方向の引張破断伸びが40%~400%である請求項1~12のいずれかに記載の延伸多孔フィルム。
  14.  前記樹脂組成物(Z)中に、可塑剤(E)を0.1質量%~8.0質量%含む請求項1~13のいずれかに記載の延伸多孔フィルム。
  15.  請求項1~14のいずれかに記載の延伸多孔フィルムを用いた衛生用品。
  16.  請求項1~14のいずれかに記載の延伸多孔フィルムを用いた衣服。
PCT/JP2018/042311 2017-11-16 2018-11-15 延伸多孔フィルム WO2019098283A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-220905 2017-11-16
JP2017220905A JP7020067B2 (ja) 2017-11-16 2017-11-16 延伸多孔フィルム
JP2018-025787 2018-02-16
JP2018025787A JP7020164B2 (ja) 2018-02-16 2018-02-16 延伸多孔フィルム
JP2018046414A JP2019156989A (ja) 2018-03-14 2018-03-14 延伸多孔フィルム
JP2018-046414 2018-03-14
JP2018174473A JP7167580B2 (ja) 2018-09-19 2018-09-19 延伸多孔フィルム
JP2018-174473 2018-09-19

Publications (1)

Publication Number Publication Date
WO2019098283A1 true WO2019098283A1 (ja) 2019-05-23

Family

ID=66539066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042311 WO2019098283A1 (ja) 2017-11-16 2018-11-15 延伸多孔フィルム

Country Status (2)

Country Link
TW (1) TWI795467B (ja)
WO (1) WO2019098283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172345A1 (ja) * 2020-02-27 2021-09-02 三菱ケミカル株式会社 延伸多孔フィルムロール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462043A (ja) * 1990-06-25 1992-02-27 Kao Corp 包装用フィルム
JPH11116714A (ja) * 1997-10-17 1999-04-27 Tokuyama Corp 多孔性フィルム
JP2002003662A (ja) * 2000-06-16 2002-01-09 Japan Polyolefins Co Ltd ポリエチレン樹脂組成物、そのフィルム、多孔フィルム、成形体、および多孔フィルムの製造方法
JP2005060566A (ja) * 2003-08-14 2005-03-10 Japan Polyolefins Co Ltd 多孔フィルムおよびその製造方法
JP2017517615A (ja) * 2014-06-26 2017-06-29 ザ プロクター アンド ギャンブル カンパニー 低音圧レベルのフィルム
JP2017522411A (ja) * 2014-06-26 2017-08-10 ダウ グローバル テクノロジーズ エルエルシー 通気性フィルム及びそれを組み込んだ物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462043A (ja) * 1990-06-25 1992-02-27 Kao Corp 包装用フィルム
JPH11116714A (ja) * 1997-10-17 1999-04-27 Tokuyama Corp 多孔性フィルム
JP2002003662A (ja) * 2000-06-16 2002-01-09 Japan Polyolefins Co Ltd ポリエチレン樹脂組成物、そのフィルム、多孔フィルム、成形体、および多孔フィルムの製造方法
JP2005060566A (ja) * 2003-08-14 2005-03-10 Japan Polyolefins Co Ltd 多孔フィルムおよびその製造方法
JP2017517615A (ja) * 2014-06-26 2017-06-29 ザ プロクター アンド ギャンブル カンパニー 低音圧レベルのフィルム
JP2017522411A (ja) * 2014-06-26 2017-08-10 ダウ グローバル テクノロジーズ エルエルシー 通気性フィルム及びそれを組み込んだ物品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172345A1 (ja) * 2020-02-27 2021-09-02 三菱ケミカル株式会社 延伸多孔フィルムロール

Also Published As

Publication number Publication date
TW201925294A (zh) 2019-07-01
TWI795467B (zh) 2023-03-11

Similar Documents

Publication Publication Date Title
CN105246443B (zh) 包含多孔聚烯烃膜的吸收性制品
AU2015210792B2 (en) Stiff nanocomposite film for use in an absorbent article
JP5869792B2 (ja) 樹脂組成物、合成樹脂シート、合成樹脂成形品及び合成樹脂積層体
US20140272357A1 (en) Film materials comprising biodegradable and/or sustainable polymeric components
CN107107431B (zh) 双轴拉伸的多孔膜
JPWO2014088065A1 (ja) 透湿性フィルムおよびその製造方法
JP5600835B2 (ja) 透湿防水シートの製造方法
JP7314535B2 (ja) 延伸多孔積層フィルム
JP2002316359A (ja) 多孔フィルム・不織布複合シート及びその製造方法
JP7020164B2 (ja) 延伸多孔フィルム
WO2019098283A1 (ja) 延伸多孔フィルム
JP6500699B2 (ja) 延伸フィルム
JP7167580B2 (ja) 延伸多孔フィルム
JP2019089973A (ja) 延伸多孔フィルム
JP2015229722A (ja) 透湿性フィルム
WO2015186809A1 (ja) 透湿性フィルム
JP2017529264A (ja) ポリオレフィン系伸縮性フィルム構造、積層体、及びその方法
JP5705605B2 (ja) ポリプロピレン系樹脂多孔シート及びポリプロピレン系樹脂多孔シートの製造方法
JP6561857B2 (ja) 延伸フィルム
JP2019156989A (ja) 延伸多孔フィルム
JP2015229721A (ja) 透湿性フィルム
WO2021172345A1 (ja) 延伸多孔フィルムロール
JP2019070129A (ja) 透湿性フィルム
JP2022159245A (ja) 樹脂シート及び樹脂シートの製造方法
JP4054120B2 (ja) 多孔性フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878304

Country of ref document: EP

Kind code of ref document: A1