WO2019098195A1 - Article and production method therefor - Google Patents

Article and production method therefor Download PDF

Info

Publication number
WO2019098195A1
WO2019098195A1 PCT/JP2018/041999 JP2018041999W WO2019098195A1 WO 2019098195 A1 WO2019098195 A1 WO 2019098195A1 JP 2018041999 W JP2018041999 W JP 2018041999W WO 2019098195 A1 WO2019098195 A1 WO 2019098195A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
article
resin
sintered body
composition
Prior art date
Application number
PCT/JP2018/041999
Other languages
French (fr)
Japanese (ja)
Inventor
航介 浦島
芳則 江尻
納堂 高明
元気 米倉
龍史 明比
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019554229A priority Critical patent/JPWO2019098195A1/en
Publication of WO2019098195A1 publication Critical patent/WO2019098195A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present invention relates to an article and a method of manufacturing the same.
  • a step of forming a layer containing a metal on a substrate by ink jet printing, screen printing or the like with a conductive material such as ink containing metal particles or paste, heating the conductive material to burn the metal particles A so-called printed electronics method is known which includes a conductorization step of bonding and expressing conductivity (see, for example, Patent Documents 1 and 2).
  • the MID is a member in which a wiring is directly formed on a molded body (hereinafter sometimes referred to as “three-dimensional molded body”) having a three-dimensional surface such as an uneven surface or a curved surface.
  • MIDs are used in various fields, for example, by mounting electronic components using solder on wiring.
  • LDS method Laser Direct Structuring method
  • the MID wiring is required to have a sufficient thickness (for example, 1 ⁇ m or more) when a thin line (for example, a line width of 500 ⁇ m or less) is formed.
  • a sufficient thickness for example, 1 ⁇ m or more
  • a thin line for example, a line width of 500 ⁇ m or less
  • the LDS method it is usual to secure the thickness of the wiring by plating, but the plating has a problem that the load on the environment is large as the number of manufacturing processes is increased. Therefore, it is desirable to be able to form a wire of sufficient thickness directly on the molded body without using plating.
  • the main object of the present invention is to provide a method capable of forming a wiring which can be mounted by solder with a sufficient thickness even on a three-dimensional molded body without using plating.
  • printing a composition containing copper particles on a substrate by a noncontact printing method and sintering the printed composition to a thickness of 1.0 ⁇ m or more And B. forming a sintered body layer of copper.
  • Another aspect of the present invention is an article comprising a substrate, and a sintered copper layer provided on the substrate and having a thickness of 1.0 ⁇ m or more.
  • the substrate may be formed of a resin.
  • the glass transition temperature of the resin may be 150 ° C. or less.
  • the 5% thermal weight loss temperature of the resin may be 600 ° C. or less.
  • the resin may be at least one selected from the group consisting of polycarbonate, polyethylene terephthalate and liquid crystal polymer.
  • the printing surface of the substrate on which the composition is printed may have a three-dimensional shape, and the sintered body layer is linear with a line width of 1 mm or less,
  • the composition may be printed on a printing surface having the three-dimensional shape.
  • the sintered body layer may be provided on the surface of the base having a three-dimensional shape, and the sintered body layer may be linear having a line width of 1 mm or less.
  • process includes, in addition to a process independent of other processes, the process of the process if the purpose of the process is achieved even if it can not be clearly distinguished from the other processes. included.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in the other stepwise Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component in the composition is, unless a plurality of substances corresponding to each component are present in the composition, the plurality of types present in the composition unless otherwise specified.
  • FIG. 1 is a perspective view showing an article according to an embodiment. As shown in FIG. 1, the article 1 includes a base 2 and a sintered body layer 3 provided on the base 2.
  • the shape of the substrate 2 is appropriately selected according to the application and the like.
  • the base material 2 may be, for example, a three-dimensional object having a three-dimensional shape such as a concavo-convex shape.
  • the base material 2 is, for example, a metal such as Cu, Au, Pt, Pd, Ag, Zn, Ni, Co, Fe, Al, Sn, an alloy of these metals, a semiconductor such as ITO, ZnO, SnO, Si, graphite, It may be formed of a carbon material such as graphite, glass, resin, paper, a combination thereof, or the like.
  • the sintered body layer 3 can be suitably formed even on the base material 2 having low heat resistance, so the article 1 may be formed of resin.
  • the resin may be a resin having low heat resistance (for example, a resin having a glass transition temperature and / or a 5% thermal weight reduction temperature described later), and may be, for example, a thermoplastic resin.
  • the thermoplastic resin may be polyolefin such as polyethylene, polypropylene, polymethylpentene, polycarbonate, polyethylene terephthalate, liquid crystal polymer, etc., preferably at least one selected from the group consisting of polycarbonate, polyethylene terephthalate and liquid crystal polymer .
  • the glass transition temperature of the resin may be 150 ° C. or less, 120 ° C. or less, or 80 ° C. or less, and may be 30 ° C. or more.
  • the glass transition temperature of the resin is measured by dynamic viscoelasticity measurement. Specifically, using a dynamic viscoelasticity measuring apparatus, under the conditions of a frequency of 10 Hz, a heating rate of 5 ° C./min, and a temperature range of 20 to 260 ° C. , Is measured as the temperature at which tan ⁇ exhibits a maximum value.
  • the 5% thermal weight loss temperature of the resin may be 600 ° C. or less, 550 ° C. or less, 500 ° C. or less, 450 ° C. or less, 400 ° C. or less, 300 ° C. or less, 250 ° C. or less, or 200 ° C. or less.
  • the 5% thermal weight loss temperature of the resin is determined by raising the weight of the resin from 25 ° C. at a heating rate of 5 ° C./min under a nitrogen atmosphere using a thermogravimetric analyzer (TGA). It is defined as the temperature at which a 5 wt% decrease with respect to the weight of resin (before temperature increase) at 25 ° C.
  • TGA thermogravimetric analyzer
  • the sintered body layer 3 is provided, for example, on the surface on one surface 2 a side (upper surface side in FIG. 1) of the base material 2.
  • One surface 2a of the base material 2 may be a surface having a three-dimensional shape such as an uneven surface or a curved surface.
  • the sintered body layer 3 is a layer having conductivity, and may be, for example, a wiring forming an electric circuit (may be linear when viewed from the top).
  • the sintered body layer 3 is a layer containing a sintered body of copper.
  • the sintered body layer 3 is obtained by sintering a composition containing copper particles (details will be described later).
  • the sintered body layer 3 may be, for example, a porous layer.
  • the porosity of the sintered body layer 3 may be 10% or more, 13% or more, or 15% or more, and may be 70% or less, 55% or less, or 40% or less.
  • the porosity of the sintered body layer 3 can be obtained by analyzing the cross-sectional image of the sintered body layer 3 observed by a scanning electron microscope, scanning ion microscope or the like using image analysis software. It means the ratio of the area of the nonconductive portion where the sintered body does not exist to the total area of the three cross sections.
  • the sintered body layer 3 can be a thin wire-like wiring having a sufficient thickness.
  • the thickness of the sintered body layer 3 is 1.0 ⁇ m or more, and is 2.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, 5.0 ⁇ m or more, 7.0 ⁇ m or more, or 10.0 ⁇ m or more. It is also good.
  • the line width of the sintered body layer 3 (the length of the short side direction of the sintered body layer (wiring) 3 when viewed from the top (direction perpendicular to the direction in which the wiring extends) is 1 mm or less, 0.7 mm or less, It may be 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less.
  • the volume resistivity of the sintered body layer 3 may be 75 ⁇ ⁇ cm or less, 50 ⁇ ⁇ cm or less, 30 ⁇ ⁇ cm or less, or 20 ⁇ ⁇ cm or less.
  • the above-described base material 2 is prepared (preparation step).
  • a resin molding can be obtained by shape
  • a composition containing copper particles is printed by a non-contact printing method on the surface on the one surface 2 a side of the substrate 2 so as to have a pattern corresponding to the pattern of the sintered body layer 3. Yes (printing process).
  • the non-contact type printing method may be a method of printing in a state where the discharge part which discharges the composition is separated from the base material 2 (not in contact with the base material 2).
  • the non-contact type printing method may be, for example, a method using a jet dispenser, a method using an aerosol jet, a method using a piezo jet dispenser, or the like, with respect to the surface of the substrate 2 having a three-dimensional shape. It is preferably a method using an aerosol jet from the viewpoint of being able to print suitably.
  • the printing step can be performed using, for example, a spraying device provided with an atomizer and a discharge nozzle connected to the atomizer.
  • a spray apparatus can use the apparatus to which a well-known injection method is applied as it is. Examples of known injection methods include an aerosol deposition method, a cold spray method, a thermal spray method and the like.
  • the printing step may include a step of atomizing the composition (atomizing step) and a step of discharging the atomized composition (discharging step).
  • the conditions of the atomization step and the discharge step can be appropriately set in consideration of the type and content of copper particles, the type and content of the organic solvent described later, and the like.
  • the composition used in the printing step contains at least copper particles, and further contains, for example, a dispersion medium in which the copper particles are dispersed.
  • the copper particles contain copper as a main component from the viewpoint of thermal conductivity and sinterability.
  • the proportion of the copper element in the copper particles may be 80 atomic% or more, 90 atomic% or more, or 95 atomic% or more based on all elements except hydrogen, carbon and oxygen. When the element ratio is 80 atomic% or more, the thermal conductivity and the sinterability derived from copper tend to be easily expressed.
  • the shape of the copper particles is not particularly limited, and examples thereof include spheres, substantially spheres, polyhedrons, needles, flakes, rods and the like.
  • the copper particles may contain two or more types of copper particles having different shapes.
  • the reason for this is not necessarily clear, but is considered to be because two or more different types of copper particles complement each other's gaps, and omnidirectional generation of volume reduction due to fusion between copper particles and the like is suppressed. It is inferred that cracking is thereby suppressed even in a wire having a sufficient thickness.
  • the combination of those having different shapes is not particularly limited, but, for example, a combination of spherical copper particles (A1) and flaky copper particles (A2) is preferable.
  • the median diameter of the spherical copper particles (A1) may be 0.1 ⁇ m or more, and may be 2.0 ⁇ m or less, 1.2 ⁇ m or less, 0.9 ⁇ m or less, or 0.6 ⁇ m or less, 0.1 to 2 0.1 ⁇ m, 0.1 to 1.2 ⁇ m, 0.1 to 0.9 ⁇ m, or 0.1 to 0.6 ⁇ m.
  • the median diameter of the flake-like copper particles (A2) may be 0.03 ⁇ m or more and may be 9.0 ⁇ m or less, 7.0 ⁇ m or less, 4.0 ⁇ m or less, or 2.5 ⁇ m or less, 0.03 to It may be 9.0 ⁇ m, 0.03 to 7.0 ⁇ m, 0.03 to 4.0 ⁇ m, or 0.03 to 2.5 ⁇ m.
  • the combination of the spherical copper particles (A1) and the flake-like copper particles (A2) having such a median diameter tends to be more excellent in fusion property at a low temperature.
  • the median diameter of copper particles is the value of D50 (cumulative median value of volume distribution) measured by a laser diffraction particle size distribution analyzer (for example, submicron particle analyzer N5 PLUS (Beckman Coulter Co.) etc.) means.
  • D50 cumulative median value of volume distribution
  • a laser diffraction particle size distribution analyzer for example, submicron particle analyzer N5 PLUS (Beckman Coulter Co.) etc.
  • Ratio of content of spherical copper particles (A1) to content of flaky copper particles (A2) in composition (content of spherical copper particles (A1) (mass) / content of flaky copper particles (A2)
  • the amount (mass) may be 0.25 or more, 0.3 or more, or 0.4 or more, and may be 4.0 or less, 3.0 or less, or 2.5 or less, 0.25 It may be up to 4.0, 0.3 to 3.0, or 0.4 to 2.5.
  • the content of the copper particles may be 20 parts by mass or more, 30 parts by mass or more, 40 parts by mass or more, or 50 parts by mass or more with respect to 100 parts by mass of the total mass of the composition. If the content of the copper particles is 20 parts by mass or more based on 100 parts by mass of the total mass of the composition, it tends to be possible to form a wiring having a more sufficient thickness.
  • the content of the copper particles may be 80 parts by mass, 75 parts by mass, 70 parts by mass, or 65 parts by mass or less with respect to 100 parts by mass of the total mass of the composition. If the content of the copper particles is 80 parts by mass or less based on 100 parts by mass of the total mass of the composition, the dischargeability from the printing machine tends to be excellent.
  • the copper particles may be copper-containing particles having a core particle containing copper and an organic substance covering at least a part of the surface of the core particle.
  • the copper-containing particles may have, for example, a core particle containing copper and an organic substance containing a substance derived from an alkylamine present on at least a part of the surface of the core particle.
  • the alkylamine may be an alkylamine having a hydrocarbon group having 7 or less carbon atoms.
  • the copper-containing particles are thermally decomposed even at relatively low temperatures (eg, 150 ° C. or less) because the chain length of the hydrocarbon group of the alkylamine constituting the organic substance is relatively short, and the core particles are easily fused.
  • copper-containing particles for example, copper-containing particles described in JP-A-2016-037627 can be suitably used.
  • the organic matter may contain an alkylamine in which the carbon number of the hydrocarbon group is 7 or less.
  • the alkylamine having 7 or less carbon atoms in the hydrocarbon group may be, for example, a primary amine, a secondary amine, an alkylene diamine or the like.
  • primary amines include ethylamine, 2-ethoxyethylamine, propylamine, 3-ethoxypropylamine, butylamine, 4-methoxybutylamine, isobutylamine, pentylamine, isopentylamine, hexylamine, cyclohexylamine, heptylamine and the like. be able to.
  • Examples of secondary amines include diethylamine, dipropylamine, dibutylamine, ethylpropylamine and ethylpentylamine.
  • Examples of the alkylenediamine include ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine, 2,2-dimethyl- 1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N'-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4 -Diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N'-dimethyl-1,6-dia
  • covers at least one part of the surface of core particle may contain organic substance other than the alkylamine whose carbon number of a hydrocarbon group is seven or less.
  • the ratio of the alkylamine having a carbon number of hydrocarbon group of 7 or less to the whole organic substance is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more preferable.
  • the proportion of the organic substance coating at least a part of the surface of the core particle may be preferably 0.1% by mass or more and 20% by mass or less based on the total of the core particle and the organic substance. It may be 1 to 20% by mass. When the proportion of the organic substance is 0.1% by mass or more, sufficient oxidation resistance tends to be obtained. If the proportion of the organic matter is 20% by mass or less, conductorization at a low temperature tends to be easily achieved. More preferably, the ratio of the organic substance to the total of the core particle and the organic substance may be 0.3% by mass or more, 10% by mass or less, 0.3 to 10% by mass, and more preferably May be 0.5% by mass or more, may be 5% by mass or less, and may be 0.5 to 5% by mass.
  • the copper-containing particles contain at least copper, and may contain other substances as needed.
  • other substances include metals such as gold, silver, platinum, tin and nickel or compounds containing these metal elements, reducing compounds or organic substances, oxides, and chlorides.
  • the content of copper in the copper-containing particles is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. Is more preferred.
  • the method for producing the copper-containing particles is not particularly limited.
  • grains disclosed by Unexamined-Japanese-Patent No. 2016-037626 is mentioned, for example.
  • the dispersion medium is not particularly limited, and can be appropriately selected from organic solvents generally used for producing a conductive ink, a conductive paste and the like according to the application.
  • the dispersion medium may be used alone or in combination of two or more.
  • the dispersion medium may be terpineol, isobornyl cyclohexanol, dihydroterpineol, dihydroterpineol acetate or the like.
  • the content of the dispersion medium may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more, and 300 parts by mass or less, 200 parts by mass or less, or 150 parts by mass with respect to 100 parts by mass of copper particles. It may be the following.
  • the composition may further contain other components other than the copper particles and the dispersion medium, as needed.
  • a silane coupling agent a high molecular compound (resin), a radical initiator, a reducing agent etc. are mentioned, for example.
  • the viscosity at 25 ° C. of the composition can be appropriately set according to the method of use of the composition, and may be, for example, 50 mPa ⁇ s or more, 100 mPa ⁇ s or more, or 200 mPa ⁇ s or more, and 3000 mPa ⁇ s or less
  • the viscosity may be 1500 mPa ⁇ s or less, or 1000 mPa ⁇ s or less, and may be 50 to 3000 mPa ⁇ s, 100 to 1500 mPa ⁇ s, or 200 to 1000 mPa ⁇ s.
  • composition is measured at 25 ° C., which is measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name: VISCOMETER-TV 22, applicable cone-plate type rotor: 3 ° ⁇ R17.65). It means viscosity.
  • the method for producing the composition is not particularly limited, and any method commonly used in the art can be used.
  • it can be prepared by dispersing copper particles and a dispersion medium, and, if necessary, other components.
  • Dispersion treatment includes Ishikawa-type agitators, rotation-revolution-type agitators, ultra-thin-film high-speed rotary dispersers, roll mills, ultrasonic dispersers, media dispersers such as beads mills, cavitation stirrers such as homomixers, Silverson agitators, An opposing collision method such as an artemizer can be used. Moreover, you may use combining these methods suitably.
  • the printed composition is sintered to form a sintered body layer 3 (sintering step).
  • the copper particles contained in the composition may have a structure in which the copper particles are fused to each other after the sintering step.
  • the composition may be sintered, for example, by heating.
  • the heating temperature in this case may be 300 ° C. or less, 250 ° C. or less, or 230 ° C. or less.
  • the heating method is not particularly limited, but may be heating with a hot plate, heating with an infrared heater, or the like. Heating may be performed at a constant temperature or may be performed irregularly.
  • the composition in the sintering step, may be sintered by irradiation with a laser such as a pulse laser.
  • the atmosphere in which the sintering step is carried out is not particularly limited, but may be an inert gas atmosphere such as nitrogen, argon or the like used in a general conductor production step, and the reduction of hydrogen, formic acid, etc. to the inert gas atmosphere. It may be a reducing gas atmosphere to which a sexing substance is added.
  • the pressure in the sintering step is not particularly limited, but may be atmospheric pressure or reduced pressure.
  • the sintering time (heating time or laser irradiation time) in the sintering step is not particularly limited, but may be appropriately set in consideration of heating temperature or laser energy, atmosphere, content of copper particles, etc. it can.
  • the non-contact printing method since the non-contact printing method is used in the printing step, one surface (printing surface) 2 a of the substrate 2 on which the composition is printed has a three-dimensional shape In any case, the composition can be printed in a predetermined pattern and having a sufficient thickness. Therefore, according to this manufacturing method, a sintered body layer (wiring) 3 having a predetermined pattern (in particular, with a narrow line width) and a sufficient thickness without using plating can be obtained. That is, the method of manufacturing the article 1 may not include the step of forming the conductive layer (wiring) on the base 2 by plating.
  • FIG. 2 is a perspective view showing an article according to another embodiment.
  • the article 11 includes a base 2, a sintered body layer 3 provided on the base 2, and an electronic component 4 provided on the sintered body 3.
  • the substrate 2 and the sintered body layer 3 may be the same as the substrate 2 and the sintered body layer 3 in the article 1 shown in FIG.
  • the electronic component 4 is mounted, for example, via a solder (not shown) so as to be electrically connected to the sintered body layer 3.
  • the electronic component 4 may be, for example, an LED chip, an IC chip or the like.
  • the article 11 provided with the electronic component 4 is obtained, for example, by mounting it on a predetermined portion of the sintered body layer 3 using a solder (mounting process) following the sintering process in the method of manufacturing the article 1 described above.
  • the mounting method using the solder may be a known method.
  • the sintered body layer 3 is a layer containing copper, mounting by solder becomes possible.
  • the articles 1 and 11 described above can be suitably used as MID (also referred to as molded circuit parts, three-dimensional molded circuit parts, three-dimensional molded circuit parts, etc.).
  • the articles 1 and 11 are suitably used as a smartphone antenna, a laminate, a solar cell panel, a display, a transistor, a semiconductor package, a laminated ceramic capacitor, and the like.
  • the sintered body layer 3 in the articles 1 and 11 can also be used as a vehicle wiring, an electrical wiring, a heat dissipation film, a surface coating film, or the like.
  • Example 1 Copper particles (Mitsui Metal Mining Co., Ltd., product name: CH0200) and terpineol are mixed, and the viscosity of the composition at 25 ° C .: 1000 mPa ⁇ s, the content of copper particles: 70 mass%, copper particles
  • the composition containing was prepared. Next, using a jet dispenser (SUPER JET 350PC, manufactured by Musashi Engineering Co., Ltd.), the composition is discharged under the conditions of a liquid transfer pressure of 50 kPa and a stroke condition of 30%, and a liquid crystal polymer (LCP) substrate having a height of 5 mm.
  • the composition was printed (glass transition temperature:-, 5% thermal weight loss temperature: 540 ° C).
  • the composition was sintered under conditions of 225 ° C. for 60 minutes in a reducing atmosphere to obtain an article provided with a substrate and a sintered body layer having a thickness shown in Table 1.
  • the thickness of the sintered compact layer was measured by non-contact surface and layer cross-sectional shape measurement system (VertScan, Ryoka system Inc.).
  • Example 2 A composition containing copper particles is prepared so that the viscosity of the composition at 25 ° C. is 200 mPa ⁇ s and the content of copper particles is 65% by mass, and the composition is used as an aerosol jet system (manufactured by OPTOMEC, Aerosol) An article was obtained in the same manner as in Example 1 except that printing was performed using Jet 5x System), to obtain an article provided with a substrate and a sintered body layer having a thickness shown in Table 1.
  • Examples 3 and 4 A substrate and a table were prepared in the same manner as in Examples 1 and 2 except that the substrate was changed to a polyethylene terephthalate (PET) substrate (glass transition temperature: 70 ° C., 5% thermal weight loss temperature: 420 ° C.). An article was obtained comprising a sintered body layer having a thickness shown in 1.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • Comparative Example 1 An article was obtained in the same manner as in Example 1 except that the printing method was changed to screen printing (contact printing method).
  • Comparative Examples 2 to 4 An article was obtained in the same manner as in Examples 1 and 2 and Comparative Example 1 except that the copper particles were changed to silver particles produced in the following procedure.
  • Comparative Examples 5 to 8 An article was obtained in the same manner as in Comparative Examples 1 to 4 except that the substrate was changed to a polyethylene terephthalate (PET) substrate (glass transition temperature: 70 ° C., 5% thermal weight loss temperature: 420 ° C.).
  • PET polyethylene terephthalate
  • Comparative Examples 9 to 12 An article was obtained in the same manner as in Comparative Examples 1 to 4, respectively, except that a polycarbonate (PC) substrate (glass transition temperature: 150 ° C., 5% thermal weight loss temperature: 550 ° C.) was used as the substrate.
  • PC polycarbonate
  • the wiring formability in each Example and Comparative Example is a digital multimeter resistance meter for the wiring obtained by forming a wiring having a line width of 500 ⁇ m on the liquid crystal polymer substrate having the above-mentioned unevenness of 5 mm in height.
  • the resistance value between two points 3 cm apart was measured using (CD800a manufactured by Sanwa Electric Instrument Co., Ltd.), the case where the resistance value was 100 ⁇ or less was evaluated as A, and the case where it was larger than 100 ⁇ was evaluated as B.
  • Table 1 The results are shown in Table 1.
  • solder mountability is confirmed by SEM observation of the cross section of the formed sintered body layer (wiring) subjected to electroless Ni plating treatment by SEM, and the Ni film is formed on the sintered body layer without peeling or swelling from the wiring.
  • A the case where there was peeling or swelling of the Ni film from the wiring or the case where the Ni film was not formed was evaluated as B.
  • the results are shown in Table 1.

Abstract

A production method for an article, comprising: a step in which a composition containing copper particles is printed on to a base material by using a non-contact printing method; and a step in which the printed composition is sintered and a copper sintered body layer having a thickness of at least 1.0 µm is formed.

Description

物品及びその製造方法Article and method of manufacturing the same
 本発明は、物品及びその製造方法に関する。 The present invention relates to an article and a method of manufacturing the same.
 金属パターンの形成方法として、金属粒子を含むインク、ペースト等の導電材料をインクジェット印刷、スクリーン印刷等により基材上に金属を含む層を形成する工程と、導電材料を加熱して金属粒子を焼結させ、導電性を発現させる導体化工程とを含む、いわゆるプリンテッドエレクトロニクス法が知られている(例えば、特許文献1、2参照)。 As a method of forming a metal pattern, a step of forming a layer containing a metal on a substrate by ink jet printing, screen printing or the like with a conductive material such as ink containing metal particles or paste, heating the conductive material to burn the metal particles A so-called printed electronics method is known which includes a conductorization step of bonding and expressing conductivity (see, for example, Patent Documents 1 and 2).
 近年、配線の小型軽量化の観点から、Molded Interconnect Devices(以下、「MID」という場合がある。)に注目が集まっている。MIDは、凹凸面、曲面等の三次元形状の面を有する成形体(以下、「三次元成形体」という場合がある。)に直接配線が形成された部材である。MIDは、例えば配線上にはんだを用いて電子部品が実装されることにより、種々の分野で利用されている。MIDの形成技術によれば、デバイスのデッドスペースに配線を形成した構造、ハーネスを除去した構造等が作製できるため、車載用部材の軽量化、スマートフォンの小型化等が可能となる。一般に、MIDの形成技術としては、Laser Direct Structuring法(以下、「LDS法」という場合がある。)が知られている。 Recently, attention has been focused on Molded Interconnect Devices (hereinafter sometimes referred to as “MID”) from the viewpoint of reducing the size and weight of wiring. The MID is a member in which a wiring is directly formed on a molded body (hereinafter sometimes referred to as “three-dimensional molded body”) having a three-dimensional surface such as an uneven surface or a curved surface. MIDs are used in various fields, for example, by mounting electronic components using solder on wiring. According to the formation technique of MID, since a structure in which a wire is formed in a dead space of a device, a structure in which a harness is removed, and the like can be manufactured, weight reduction of an on-vehicle member and downsizing of a smartphone become possible. Generally, Laser Direct Structuring method (hereinafter sometimes referred to as "LDS method") is known as a technique for forming MID.
特開2012-072418号公報JP, 2012-072418, A 特開2014-148732号公報JP 2014-148732 A
 MIDの配線には、電流量を確保する観点から、細線(例えば線幅500μm以下)を形成した場合に、充分な厚さ(例えば1μm以上)を有することが要求される。LDS法を用いる場合、めっきによって配線の厚さを確保することが通常であるが、めっきには、製造工程が増えると共に、環境への負荷が大きいという問題がある。したがって、めっきを用いなくても、充分な厚さの配線を成形体に直接形成できることが望ましい。 From the viewpoint of securing a current amount, the MID wiring is required to have a sufficient thickness (for example, 1 μm or more) when a thin line (for example, a line width of 500 μm or less) is formed. When the LDS method is used, it is usual to secure the thickness of the wiring by plating, but the plating has a problem that the load on the environment is large as the number of manufacturing processes is increased. Therefore, it is desirable to be able to form a wire of sufficient thickness directly on the molded body without using plating.
 そこで、本発明は、めっきを用いなくても、はんだによる実装が可能な配線を、三次元成形体上にも充分な厚さで形成できる方法を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a method capable of forming a wiring which can be mounted by solder with a sufficient thickness even on a three-dimensional molded body without using plating.
 本発明の一側面は、銅粒子を含有する組成物を、非接触型の印刷方法により基材に印刷する工程と、印刷された組成物を焼結させて、厚さが1.0μm以上である銅の焼結体層を形成する工程と、を備える、物品の製造方法である。 In one aspect of the present invention, printing a composition containing copper particles on a substrate by a noncontact printing method, and sintering the printed composition to a thickness of 1.0 μm or more And B. forming a sintered body layer of copper.
 本発明の他の一側面は、基材と、基材上に設けられた、厚さが1.0μm以上である銅の焼結体層と、を備える物品である。 Another aspect of the present invention is an article comprising a substrate, and a sintered copper layer provided on the substrate and having a thickness of 1.0 μm or more.
 上記の物品及びその製造方法において、基材は、樹脂で形成されていてよい。樹脂のガラス転移温度は、150℃以下であってよい。樹脂の5%熱重量減少温度は、600℃以下であってよい。樹脂は、ポリカーボネート、ポリエチレンテレフタレート及び液晶ポリマーからなる群より選ばれる少なくとも1種であってよい。 In the above-described article and the method of manufacturing the same, the substrate may be formed of a resin. The glass transition temperature of the resin may be 150 ° C. or less. The 5% thermal weight loss temperature of the resin may be 600 ° C. or less. The resin may be at least one selected from the group consisting of polycarbonate, polyethylene terephthalate and liquid crystal polymer.
 上記の物品の製造方法において、組成物が印刷される基材の印刷面は、三次元形状を有していてよく、焼結体層が1mm以下の線幅を有する線状となるように、当該三次元形状を有する印刷面に組成物を印刷してよい。 In the method of manufacturing an article described above, the printing surface of the substrate on which the composition is printed may have a three-dimensional shape, and the sintered body layer is linear with a line width of 1 mm or less, The composition may be printed on a printing surface having the three-dimensional shape.
 上記の物品において、焼結体層は、基材における三次元形状を有する面上に設けられていてよく、当該焼結体層は、1mm以下の線幅を有する線状であってよい。 In the above-described article, the sintered body layer may be provided on the surface of the base having a three-dimensional shape, and the sintered body layer may be linear having a line width of 1 mm or less.
 本発明によれば、めっきを用いなくても、はんだによる実装が可能な配線を、三次元成形体上にも充分な厚さで形成できる方法を提供することができる。 According to the present invention, it is possible to provide a method capable of forming a wiring which can be mounted by solder with a sufficient thickness even on a three-dimensional molded body without using plating.
一実施形態に係る物品を示す斜視図である。It is a perspective view showing the article concerning one embodiment. 他の一実施形態に係る物品を示す斜視図である。It is a perspective view showing the article concerning other one embodiment.
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本明細書において、「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。 In the present specification, the term “process” includes, in addition to a process independent of other processes, the process of the process if the purpose of the process is achieved even if it can not be clearly distinguished from the other processes. included.
 本明細書において、「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。 In the present specification, numerical values shown before and after “to” are included in the numerical range shown using “to” as the minimum value and the maximum value, respectively.
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the numerical ranges that are described stepwise in the present specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in the other stepwise Good. In addition, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
 本明細書において、組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。 In the present specification, the content or content of each component in the composition is, unless a plurality of substances corresponding to each component are present in the composition, the plurality of types present in the composition unless otherwise specified. Mean the total content or content of
 図1は、一実施形態に係る物品を示す斜視図である。図1に示すように、物品1は、基材2と、基材2上に設けられた焼結体層3とを備えている。 FIG. 1 is a perspective view showing an article according to an embodiment. As shown in FIG. 1, the article 1 includes a base 2 and a sintered body layer 3 provided on the base 2.
 基材2の形状は、用途等に応じて適宜選択される。基材2は、例えば凹凸形状等の三次元形状を有する立体物であってよい。基材2は、例えば、Cu、Au、Pt、Pd、Ag、Zn、Ni、Co、Fe、Al、Sn等の金属、これら金属の合金、ITO、ZnO、SnO、Si等の半導体、黒鉛、グラファイト等のカーボン材料、ガラス、樹脂、紙、これらの組み合わせなどで形成されていてよい。 The shape of the substrate 2 is appropriately selected according to the application and the like. The base material 2 may be, for example, a three-dimensional object having a three-dimensional shape such as a concavo-convex shape. The base material 2 is, for example, a metal such as Cu, Au, Pt, Pd, Ag, Zn, Ni, Co, Fe, Al, Sn, an alloy of these metals, a semiconductor such as ITO, ZnO, SnO, Si, graphite, It may be formed of a carbon material such as graphite, glass, resin, paper, a combination thereof, or the like.
 本実施形態に係る物品1の製造方法(詳細は後述)では、耐熱性が低い基材2に対しても好適に焼結体層3を形成できるため、物品1は樹脂で形成されていてよい。樹脂は、耐熱性が低い樹脂(例えば後述するガラス転移温度及び/又は5%熱重量減少温度を有する樹脂)であってよく、例えば熱可塑性樹脂であってよい。熱可塑性樹脂は、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ポリカーボネート、ポリエチレンテレフタレート、液晶ポリマーなどであってよく、好ましくは、ポリカーボネート、ポリエチレンテレフタレート及び液晶ポリマーからなる群より選ばれる少なくとも1種である。 In the method for manufacturing the article 1 according to this embodiment (details will be described later), the sintered body layer 3 can be suitably formed even on the base material 2 having low heat resistance, so the article 1 may be formed of resin. . The resin may be a resin having low heat resistance (for example, a resin having a glass transition temperature and / or a 5% thermal weight reduction temperature described later), and may be, for example, a thermoplastic resin. The thermoplastic resin may be polyolefin such as polyethylene, polypropylene, polymethylpentene, polycarbonate, polyethylene terephthalate, liquid crystal polymer, etc., preferably at least one selected from the group consisting of polycarbonate, polyethylene terephthalate and liquid crystal polymer .
 樹脂のガラス転移温度は、150℃以下、120℃以下、又は80℃以下であってよく、30℃以上であってもよい。樹脂のガラス転移温度は、動的粘弾性測定によって測定され、具体的には、動的粘弾性測定装置を用い、周波数10Hz、昇温速度5℃/分、温度範囲20~260℃の条件で、tanδが最大値を示す温度として測定される。 The glass transition temperature of the resin may be 150 ° C. or less, 120 ° C. or less, or 80 ° C. or less, and may be 30 ° C. or more. The glass transition temperature of the resin is measured by dynamic viscoelasticity measurement. Specifically, using a dynamic viscoelasticity measuring apparatus, under the conditions of a frequency of 10 Hz, a heating rate of 5 ° C./min, and a temperature range of 20 to 260 ° C. , Is measured as the temperature at which tan δ exhibits a maximum value.
 樹脂の5%熱重量減少温度は、600℃以下、550℃以下、500℃以下、450℃以下、400℃以下、300℃以下、250℃以下、又は200℃以下であってよい。樹脂の5%熱重量減少温度は、熱重量分析計(TGA)を用いて、窒素雰囲気下で、25℃から昇温速度:5℃/分で昇温させたときに、樹脂の重量が、25℃における(昇温前の)樹脂の重量に対して5重量%減少したときの温度として定義される。 The 5% thermal weight loss temperature of the resin may be 600 ° C. or less, 550 ° C. or less, 500 ° C. or less, 450 ° C. or less, 400 ° C. or less, 300 ° C. or less, 250 ° C. or less, or 200 ° C. or less. The 5% thermal weight loss temperature of the resin is determined by raising the weight of the resin from 25 ° C. at a heating rate of 5 ° C./min under a nitrogen atmosphere using a thermogravimetric analyzer (TGA). It is defined as the temperature at which a 5 wt% decrease with respect to the weight of resin (before temperature increase) at 25 ° C.
 焼結体層3は、例えば、基材2の一面2a側(図1においては上面側)の面上に設けられている。基材2の一面2aは、凹凸面、曲面等の三次元形状を有する面であってよい。焼結体層3は、導電性を有する層であり、例えば、電気回路を形成する配線であってよい(上面から見たときに線状であってよい)。 The sintered body layer 3 is provided, for example, on the surface on one surface 2 a side (upper surface side in FIG. 1) of the base material 2. One surface 2a of the base material 2 may be a surface having a three-dimensional shape such as an uneven surface or a curved surface. The sintered body layer 3 is a layer having conductivity, and may be, for example, a wiring forming an electric circuit (may be linear when viewed from the top).
 焼結体層3は、銅の焼結体を含む層である。焼結体層3は、銅粒子を含む組成物を焼結させることによって得られる(詳細は後述)。焼結体層3は、例えば多孔性の層であってよい。焼結体層3の気孔率は、10%以上、13%以上、又は15%以上であってよく、70%以下、55%以下、又は40%以下であってもよい。焼結体層3の気孔率は、走査型電子顕微鏡、走査型イオン顕微鏡等によって観察した焼結体層3の断面画像を、画像解析ソフトを用いて解析することにより得られる、焼結体層3断面の全面積に対する焼結体が存在しない非導電部分の面積の比率を意味する。 The sintered body layer 3 is a layer containing a sintered body of copper. The sintered body layer 3 is obtained by sintering a composition containing copper particles (details will be described later). The sintered body layer 3 may be, for example, a porous layer. The porosity of the sintered body layer 3 may be 10% or more, 13% or more, or 15% or more, and may be 70% or less, 55% or less, or 40% or less. The porosity of the sintered body layer 3 can be obtained by analyzing the cross-sectional image of the sintered body layer 3 observed by a scanning electron microscope, scanning ion microscope or the like using image analysis software. It means the ratio of the area of the nonconductive portion where the sintered body does not exist to the total area of the three cross sections.
 焼結体層3は、充分な厚さを有する細線状の配線になり得る。焼結体層3の厚さは、1.0μm以上であり、2.0μm以上、3.0μm以上、4.0μm以上、5.0μm以上、7.0μm以上、又は10.0μm以上であってもよい。焼結体層3の線幅(上面からみたときの焼結体層(配線)3の短手方向(配線が延びる方向と垂直な方向)の長さ)は、1mm以下、0.7mm以下、0.5mm以下、0.4mm以下、0.3mm以下、又は0.2mm以下であってよい。 The sintered body layer 3 can be a thin wire-like wiring having a sufficient thickness. The thickness of the sintered body layer 3 is 1.0 μm or more, and is 2.0 μm or more, 3.0 μm or more, 4.0 μm or more, 5.0 μm or more, 7.0 μm or more, or 10.0 μm or more. It is also good. The line width of the sintered body layer 3 (the length of the short side direction of the sintered body layer (wiring) 3 when viewed from the top (direction perpendicular to the direction in which the wiring extends) is 1 mm or less, 0.7 mm or less, It may be 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less.
 焼結体層3の体積抵抗率は、75μΩ・cm以下、50μΩ・cm以下、30μΩ・cm以下、又は20μΩ・cm以下であってよい。 The volume resistivity of the sintered body layer 3 may be 75 μΩ · cm or less, 50 μΩ · cm or less, 30 μΩ · cm or less, or 20 μΩ · cm or less.
 続いて、物品1の製造方法について説明する。この製造方法では、まず、上述した基材2を準備する(準備工程)。基材2が樹脂で形成されている場合、基材2として、例えば金型を用いて樹脂を成形することにより樹脂成形体を得ることができる。 Subsequently, a method of manufacturing the article 1 will be described. In this manufacturing method, first, the above-described base material 2 is prepared (preparation step). When the base material 2 is formed with resin, a resin molding can be obtained by shape | molding resin as a base material 2, for example using a metal mold | die.
 準備工程に続いて、基材2の一面2a側の面上に、焼結体層3のパターンに対応したパターンとなるように、銅粒子を含有する組成物を非接触型の印刷方法により印刷する(印刷工程)。非接触型の印刷方法は、組成物を吐出する吐出部が、基材2から離間している(基材2と接触していない)状態で印刷する方法であればよい。非接触型の印刷方法は、例えば、ジェットディスペンサーを用いた方法、エアロゾルジェットを用いた方法、ピエゾジェットディスペンサーを用いた方法等であってよく、基材2における三次元形状を有する面に対しても好適に印刷できる観点から、好ましくは、エアロゾルジェットを用いた方法である。 Following the preparation step, a composition containing copper particles is printed by a non-contact printing method on the surface on the one surface 2 a side of the substrate 2 so as to have a pattern corresponding to the pattern of the sintered body layer 3. Yes (printing process). The non-contact type printing method may be a method of printing in a state where the discharge part which discharges the composition is separated from the base material 2 (not in contact with the base material 2). The non-contact type printing method may be, for example, a method using a jet dispenser, a method using an aerosol jet, a method using a piezo jet dispenser, or the like, with respect to the surface of the substrate 2 having a three-dimensional shape. It is preferably a method using an aerosol jet from the viewpoint of being able to print suitably.
 印刷工程においてエアロゾルジェットを用いた方法により印刷する場合、印刷工程は、例えば、アトマイザーとアトマイザーに連結された吐出ノズルとを備える噴霧装置を用いて行うことができる。このような噴霧装置は、公知の噴射方法が適用される装置をそのまま使用することができる。公知の噴射方法としては、例えば、エアロゾルデポジション法、コールドスプレー法、サーマルスプレー法等が挙げられる。より具体的には、印刷工程は、組成物を霧化する工程(霧化工程)と、霧化された組成物を吐出する工程(吐出工程)を備えていてよい。霧化工程及び吐出工程の条件は、銅粒子の種類及び含有量、後述する有機溶剤の種類及び含有量等を考慮して適宜設定することができる。 When printing is performed by a method using an aerosol jet in the printing step, the printing step can be performed using, for example, a spraying device provided with an atomizer and a discharge nozzle connected to the atomizer. Such a spray apparatus can use the apparatus to which a well-known injection method is applied as it is. Examples of known injection methods include an aerosol deposition method, a cold spray method, a thermal spray method and the like. More specifically, the printing step may include a step of atomizing the composition (atomizing step) and a step of discharging the atomized composition (discharging step). The conditions of the atomization step and the discharge step can be appropriately set in consideration of the type and content of copper particles, the type and content of the organic solvent described later, and the like.
 印刷工程で用いられる組成物は、少なくとも銅粒子を含有しており、例えば、銅粒子を分散させる分散媒を更に含有している。 The composition used in the printing step contains at least copper particles, and further contains, for example, a dispersion medium in which the copper particles are dispersed.
 銅粒子は、熱伝導率及び焼結性の観点から、主成分として銅を含有する。銅粒子における銅元素の割合は、水素、炭素、酸素を除く全元素を基準として、80原子%以上、90原子%以上、又は95原子%以上であってよい。当該元素割合が80原子%以上であると、銅に由来する熱伝導率及び焼結性が発現し易い傾向にある。 The copper particles contain copper as a main component from the viewpoint of thermal conductivity and sinterability. The proportion of the copper element in the copper particles may be 80 atomic% or more, 90 atomic% or more, or 95 atomic% or more based on all elements except hydrogen, carbon and oxygen. When the element ratio is 80 atomic% or more, the thermal conductivity and the sinterability derived from copper tend to be easily expressed.
 銅粒子の形状としては、特に制限されないが、例えば、球状、略球状、多面体状、針状、フレーク状、ロッド状等が挙げられる。 The shape of the copper particles is not particularly limited, and examples thereof include spheres, substantially spheres, polyhedrons, needles, flakes, rods and the like.
 銅粒子は、形状の異なる2種以上の銅粒子を含んでいてもよい。形状の異なる2種以上の銅粒子を含むことによって、形成される配線のひび割れが抑制され、かつ充分な厚さを有する配線を形成し易くなる傾向にある。この理由は必ずしも定かではないが、異なる2種以上の銅粒子が互いに隙間を補完し、銅粒子同士の融着等による体積減少の全方位的な発生が抑制されるためであると考えられる。これにより、充分な厚さを有する配線においても、ひび割れが抑制されると推察される。形状の異なるものの組み合わせは、特に制限されないが、例えば、球状銅粒子(A1)とフレーク状銅粒子(A2)との組み合わせであることが好ましい。 The copper particles may contain two or more types of copper particles having different shapes. By including two or more types of copper particles having different shapes, cracking of the formed wiring is suppressed, and it tends to be easy to form a wiring having a sufficient thickness. The reason for this is not necessarily clear, but is considered to be because two or more different types of copper particles complement each other's gaps, and omnidirectional generation of volume reduction due to fusion between copper particles and the like is suppressed. It is inferred that cracking is thereby suppressed even in a wire having a sufficient thickness. The combination of those having different shapes is not particularly limited, but, for example, a combination of spherical copper particles (A1) and flaky copper particles (A2) is preferable.
 球状銅粒子(A1)のメジアン径は、0.1μm以上であってよく、2.0μm以下、1.2μm以下、0.9μm以下、又は0.6μm以下であってよく、0.1~2.0μm、0.1~1.2μm、0.1~0.9μm、又は0.1~0.6μmであってよい。フレーク状銅粒子(A2)のメジアン径は、0.03μm以上であってよく、9.0μm以下、7.0μm以下、4.0μm以下、又は2.5μm以下であってよく、0.03~9.0μm、0.03~7.0μm、0.03~4.0μm、又は0.03~2.5μmであってよい。このようなメジアン径を有する球状銅粒子(A1)とフレーク状銅粒子(A2)とを組み合わせることによって、低温での融着性により優れる傾向にある。本明細書において、銅粒子のメジアン径は、レーザー折式粒度分布計(例えば、サブミクロン粒子アナライザN5 PLUS(ベックマン・コールター社)等)で測定したD50の値(体積分布の累積中央値)を意味する。 The median diameter of the spherical copper particles (A1) may be 0.1 μm or more, and may be 2.0 μm or less, 1.2 μm or less, 0.9 μm or less, or 0.6 μm or less, 0.1 to 2 0.1 μm, 0.1 to 1.2 μm, 0.1 to 0.9 μm, or 0.1 to 0.6 μm. The median diameter of the flake-like copper particles (A2) may be 0.03 μm or more and may be 9.0 μm or less, 7.0 μm or less, 4.0 μm or less, or 2.5 μm or less, 0.03 to It may be 9.0 μm, 0.03 to 7.0 μm, 0.03 to 4.0 μm, or 0.03 to 2.5 μm. The combination of the spherical copper particles (A1) and the flake-like copper particles (A2) having such a median diameter tends to be more excellent in fusion property at a low temperature. In the present specification, the median diameter of copper particles is the value of D50 (cumulative median value of volume distribution) measured by a laser diffraction particle size distribution analyzer (for example, submicron particle analyzer N5 PLUS (Beckman Coulter Co.) etc.) means.
 組成物中の、フレーク状銅粒子(A2)の含有量に対する球状銅粒子(A1)の含有量の割合(球状銅粒子(A1)の含有量(質量)/フレーク状銅粒子(A2)の含有量(質量))は、0.25以上、0.3以上、又は0.4以上であってよく、4.0以下、3.0以下、又は2.5以下であってよく、0.25~4.0、0.3~3.0、又は0.4~2.5であってもよい。フレーク状銅粒子(A2)の含有量に対する球状銅粒子(A1)の含有量がこのような範囲であると、ひび割れがより抑制される傾向にある。 Ratio of content of spherical copper particles (A1) to content of flaky copper particles (A2) in composition (content of spherical copper particles (A1) (mass) / content of flaky copper particles (A2) The amount (mass) may be 0.25 or more, 0.3 or more, or 0.4 or more, and may be 4.0 or less, 3.0 or less, or 2.5 or less, 0.25 It may be up to 4.0, 0.3 to 3.0, or 0.4 to 2.5. When the content of the spherical copper particles (A1) relative to the content of the flaky copper particles (A2) is in such a range, cracking tends to be further suppressed.
 銅粒子の含有量は、組成物全質量100質量部に対して、20質量部以上、30質量部以上、40質量部以上、又は50質量部以上であってよい。銅粒子の含有量が組成物全質量100質量部に対して20質量部以上であると、より充分な厚みを有する配線を形成できる傾向にある。銅粒子の含有量は、組成物全質量100質量部に対して、80質量部以下、75質量部以下、70質量部以下、又は65質量部以下であってよい。銅粒子の含有量が組成物全質量100質量部に対して80質量部以下であると、印刷機からの吐出性により優れる傾向にある。 The content of the copper particles may be 20 parts by mass or more, 30 parts by mass or more, 40 parts by mass or more, or 50 parts by mass or more with respect to 100 parts by mass of the total mass of the composition. If the content of the copper particles is 20 parts by mass or more based on 100 parts by mass of the total mass of the composition, it tends to be possible to form a wiring having a more sufficient thickness. The content of the copper particles may be 80 parts by mass, 75 parts by mass, 70 parts by mass, or 65 parts by mass or less with respect to 100 parts by mass of the total mass of the composition. If the content of the copper particles is 80 parts by mass or less based on 100 parts by mass of the total mass of the composition, the dischargeability from the printing machine tends to be excellent.
 一実施形態として、銅粒子は、銅を含むコア粒子とコア粒子の表面の少なくとも一部を被覆する有機物とを有する銅含有粒子であってもよい。銅含有粒子は、例えば、銅を含むコア粒子と、コア粒子の表面の少なくとも一部に存在するアルキルアミンに由来する物質を含む有機物と、を有していてよい。当該アルキルアミンは、炭化水素基の炭素数が7以下であるアルキルアミンであってよい。この銅含有粒子は、有機物を構成するアルキルアミンの炭化水素基の鎖長が比較的短いため、比較的低い温度(例えば、150℃以下)でも熱分解し、コア粒子同士が融着し易い。このような銅含有粒子としては、例えば、特開2016-037627号公報に記載の銅含有粒子を好適に用いることができる。 In one embodiment, the copper particles may be copper-containing particles having a core particle containing copper and an organic substance covering at least a part of the surface of the core particle. The copper-containing particles may have, for example, a core particle containing copper and an organic substance containing a substance derived from an alkylamine present on at least a part of the surface of the core particle. The alkylamine may be an alkylamine having a hydrocarbon group having 7 or less carbon atoms. The copper-containing particles are thermally decomposed even at relatively low temperatures (eg, 150 ° C. or less) because the chain length of the hydrocarbon group of the alkylamine constituting the organic substance is relatively short, and the core particles are easily fused. As such copper-containing particles, for example, copper-containing particles described in JP-A-2016-037627 can be suitably used.
 有機物は、炭化水素基の炭素数が7以下であるアルキルアミンを含んでいてもよい。炭化水素基の炭素数が7以下であるアルキルアミンは、例えば、1級アミン、2級アミン、アルキレンジアミン等であってよい。1級アミンとしては、エチルアミン、2-エトキシエチルアミン、プロピルアミン、3-エトキシプロピルアミン、ブチルアミン、4-メトキシブチルアミン、イソブチルアミン、ペンチルアミン、イソペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン等を挙げることができる。2級アミンとしては、ジエチルアミン、ジプロピルアミン、ジブチルアミン、エチルプロピルアミン、エチルペンチルアミン等を挙げることができる。アルキレンジアミンとしては、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N-ジエチル-1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノ-2-メチルペンタン、1,6-ジアミノへキサン、N,N’-ジメチル-1,6-ジアミノへキサン、1,7-ジアミノヘプタン等を挙げることができる。 The organic matter may contain an alkylamine in which the carbon number of the hydrocarbon group is 7 or less. The alkylamine having 7 or less carbon atoms in the hydrocarbon group may be, for example, a primary amine, a secondary amine, an alkylene diamine or the like. Examples of primary amines include ethylamine, 2-ethoxyethylamine, propylamine, 3-ethoxypropylamine, butylamine, 4-methoxybutylamine, isobutylamine, pentylamine, isopentylamine, hexylamine, cyclohexylamine, heptylamine and the like. be able to. Examples of secondary amines include diethylamine, dipropylamine, dibutylamine, ethylpropylamine and ethylpentylamine. Examples of the alkylenediamine include ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine, 2,2-dimethyl- 1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N'-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4 -Diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N'-dimethyl-1,6-diaminohexane, 1,7-diaminoheptane, etc. can be mentioned. .
 コア粒子の表面の少なくとも一部を被覆する有機物は、炭化水素基の炭素数が7以下であるアルキルアミン以外の有機物を含んでいてもよい。有機物全体に対する炭化水素基の炭素数が7以下であるアルキルアミンの割合は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 The organic substance which coat | covers at least one part of the surface of core particle may contain organic substance other than the alkylamine whose carbon number of a hydrocarbon group is seven or less. The ratio of the alkylamine having a carbon number of hydrocarbon group of 7 or less to the whole organic substance is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more preferable.
 コア粒子の表面の少なくとも一部を被覆する有機物の割合は、コア粒子及び有機物の合計に対して、好ましくは、0.1質量%以上であってよく、20質量%以下であってよく、0.1~20質量%であってよい。有機物の割合が0.1質量%以上であると、充分な耐酸化性が得られる傾向にある。有機物の割合が20質量%以下であると、低温での導体化が達成され易くなる傾向にある。コア粒子及び有機物の合計に対する有機物の割合は、より好ましくは、0.3質量%以上であってよく、10質量%以下であってよく、0.3~10質量%であってよく、さらに好ましくは、0.5質量%以上であってよく、5質量%以下であってよく、0.5~5質量%であってよい。 The proportion of the organic substance coating at least a part of the surface of the core particle may be preferably 0.1% by mass or more and 20% by mass or less based on the total of the core particle and the organic substance. It may be 1 to 20% by mass. When the proportion of the organic substance is 0.1% by mass or more, sufficient oxidation resistance tends to be obtained. If the proportion of the organic matter is 20% by mass or less, conductorization at a low temperature tends to be easily achieved. More preferably, the ratio of the organic substance to the total of the core particle and the organic substance may be 0.3% by mass or more, 10% by mass or less, 0.3 to 10% by mass, and more preferably May be 0.5% by mass or more, may be 5% by mass or less, and may be 0.5 to 5% by mass.
 銅含有粒子は、少なくとも銅を含み、必要に応じてその他の物質を含んでもよい。その他の物質としては、金、銀、白金、錫、ニッケル等の金属又はこれらの金属元素を含む化合物、還元性化合物又は有機物、酸化物、塩化物等を挙げることができる。導電性に優れる導体を形成する観点からは、銅含有粒子中の銅の含有率は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 The copper-containing particles contain at least copper, and may contain other substances as needed. Examples of other substances include metals such as gold, silver, platinum, tin and nickel or compounds containing these metal elements, reducing compounds or organic substances, oxides, and chlorides. From the viewpoint of forming a conductor excellent in conductivity, the content of copper in the copper-containing particles is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. Is more preferred.
 銅含有粒子の製造方法は特に制限されない。製造方法としては、例えば、特開2016-037626号公報に開示される銅含有粒子の製造方法が挙げられる。 The method for producing the copper-containing particles is not particularly limited. As a manufacturing method, the manufacturing method of the copper containing particle | grains disclosed by Unexamined-Japanese-Patent No. 2016-037626 is mentioned, for example.
 分散媒は、特に制限されずに、導電インク、導電ペースト等の製造に一般に用いられる有機溶剤から用途に応じて適宜選択できる。分散媒は、1種を単独で用いても2種以上を併用してもよい。粘度調整の観点から、分散媒は、テルピネオール、イソボルニルシクロヘキサノール、ジヒドロテルピネオール、ジヒドロテルピネオールアセテート等であってよい。 The dispersion medium is not particularly limited, and can be appropriately selected from organic solvents generally used for producing a conductive ink, a conductive paste and the like according to the application. The dispersion medium may be used alone or in combination of two or more. From the viewpoint of viscosity control, the dispersion medium may be terpineol, isobornyl cyclohexanol, dihydroterpineol, dihydroterpineol acetate or the like.
 分散媒の含有量は、銅粒子100質量部に対して、1質量部以上、3質量部以上、又は5質量部以上であってよく、300質量部以下、200質量部以下、又は150質量部以下であってよい。 The content of the dispersion medium may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more, and 300 parts by mass or less, 200 parts by mass or less, or 150 parts by mass with respect to 100 parts by mass of copper particles. It may be the following.
 組成物は、必要に応じて、銅粒子及び分散媒以外のその他の成分を更に含有していてもよい。その他の成分としては、例えば、シランカップリング剤、高分子化合物(樹脂)、ラジカル開始剤、還元剤等が挙げられる。 The composition may further contain other components other than the copper particles and the dispersion medium, as needed. As other components, a silane coupling agent, a high molecular compound (resin), a radical initiator, a reducing agent etc. are mentioned, for example.
 組成物の25℃における粘度は、組成物の使用方法に応じて適宜設定することができ、例えば、50mPa・s以上、100mPa・s以上、又は200mPa・s以上であってよく、3000mPa・s以下、1500mPa・s以下、又は1000mPa・s以下であってよく、50~3000mPa・s、100~1500mPa・s、又は200~1000mPa・sであってよい。組成物の25℃における粘度は、E型粘度計(東機産業株式会社製、製品名:VISCOMETER-TV22、適用コーンプレート型ロータ:3°×R17.65)を用いて測定される25℃における粘度を意味する。 The viscosity at 25 ° C. of the composition can be appropriately set according to the method of use of the composition, and may be, for example, 50 mPa · s or more, 100 mPa · s or more, or 200 mPa · s or more, and 3000 mPa · s or less The viscosity may be 1500 mPa · s or less, or 1000 mPa · s or less, and may be 50 to 3000 mPa · s, 100 to 1500 mPa · s, or 200 to 1000 mPa · s. The viscosity at 25 ° C. of the composition is measured at 25 ° C., which is measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name: VISCOMETER-TV 22, applicable cone-plate type rotor: 3 ° × R17.65). It means viscosity.
 組成物の製造方法は、特に限定されずに、当該技術分野で通常用いられる方法を用いることができる。例えば、銅粒子及び分散媒、並びに必要に応じてその他の成分を分散処理することで調製することができる。分散処理は、石川式撹拌機、自転公転式撹拌機、超薄膜高速回転式分散機、ロールミル、超音波分散機、ビーズミル等のメディア分散機、ホモミキサー、シルバーソン撹拌機等のキャビテーション撹拌装置、アルテマイザー等の対向衝突法などを用いることができる。また、これらの手法を適宜組み合わせて用いてもよい。 The method for producing the composition is not particularly limited, and any method commonly used in the art can be used. For example, it can be prepared by dispersing copper particles and a dispersion medium, and, if necessary, other components. Dispersion treatment includes Ishikawa-type agitators, rotation-revolution-type agitators, ultra-thin-film high-speed rotary dispersers, roll mills, ultrasonic dispersers, media dispersers such as beads mills, cavitation stirrers such as homomixers, Silverson agitators, An opposing collision method such as an artemizer can be used. Moreover, you may use combining these methods suitably.
 印刷工程に続いて、印刷された組成物を焼結させて焼結体層3を形成する(焼結工程)。組成物に含有される銅粒子は、焼結工程後、銅粒子同士が融着した構造を有し得る。 Following the printing step, the printed composition is sintered to form a sintered body layer 3 (sintering step). The copper particles contained in the composition may have a structure in which the copper particles are fused to each other after the sintering step.
 焼結工程では、例えば、加熱することにより組成物を焼結させてよい。この場合の加熱温度は、300℃以下、250℃以下、又は230℃以下であってよい。加熱方法は、特に制限されないが、熱板による加熱、赤外ヒータによる加熱等であってよい。加熱は、加熱は一定の温度で行っても、不規則に変化させて行ってもよい。あるいは、焼結工程では、パルスレーザー等のレーザーを照射することによって組成物を焼結させてよい。 In the sintering step, the composition may be sintered, for example, by heating. The heating temperature in this case may be 300 ° C. or less, 250 ° C. or less, or 230 ° C. or less. The heating method is not particularly limited, but may be heating with a hot plate, heating with an infrared heater, or the like. Heating may be performed at a constant temperature or may be performed irregularly. Alternatively, in the sintering step, the composition may be sintered by irradiation with a laser such as a pulse laser.
 焼結工程が実施される雰囲気は、特に制限されないが、通常の導体の製造工程で用いられる窒素、アルゴン等の不活性ガス雰囲気であってよく、不活性ガス雰囲気に、水素、ギ酸等の還元性物質を加えた、還元性ガス雰囲気であってもよい。焼結工程における圧力は、特に制限されないが、大気圧下又は減圧下であってもよい。焼結工程における焼結させる時間(加熱する時間又はレーザーを照射する時間)は、特に制限されないが、加熱温度又はレーザーのエネルギー、雰囲気、銅粒子の含有量等を考慮して適宜設定することができる。 The atmosphere in which the sintering step is carried out is not particularly limited, but may be an inert gas atmosphere such as nitrogen, argon or the like used in a general conductor production step, and the reduction of hydrogen, formic acid, etc. to the inert gas atmosphere. It may be a reducing gas atmosphere to which a sexing substance is added. The pressure in the sintering step is not particularly limited, but may be atmospheric pressure or reduced pressure. The sintering time (heating time or laser irradiation time) in the sintering step is not particularly limited, but may be appropriately set in consideration of heating temperature or laser energy, atmosphere, content of copper particles, etc. it can.
 以上説明した物品1の製造方法では、印刷工程において、非接触型の印刷方法を用いているため、組成物が印刷される基材2の一面(印刷面)2aが三次元形状を有している場合でも、所定のパターンで、かつ充分な厚さを有する組成物を印刷できる。したがって、この製造方法によれば、所定のパターンで(特に細い線幅で)、かつ、めっきを用いなくても充分な厚さを有する焼結体層(配線)3が得られる。すなわち、物品1の製造方法は、基材2上にめっきにより導電体層(配線)を形成する工程を備えていなくてよい。 In the method of manufacturing the article 1 described above, since the non-contact printing method is used in the printing step, one surface (printing surface) 2 a of the substrate 2 on which the composition is printed has a three-dimensional shape In any case, the composition can be printed in a predetermined pattern and having a sufficient thickness. Therefore, according to this manufacturing method, a sintered body layer (wiring) 3 having a predetermined pattern (in particular, with a narrow line width) and a sufficient thickness without using plating can be obtained. That is, the method of manufacturing the article 1 may not include the step of forming the conductive layer (wiring) on the base 2 by plating.
 図2は、他の一実施形態に係る物品を示す斜視図である。図2に示すように、物品11は、基材2と、基材2上に設けられた焼結体層3と、焼結体層3上に設けられた電子部品4とを備えている。基材2及び焼結体層3は、図1に示す物品1における基材2及び焼結体層3と同様であってよい。 FIG. 2 is a perspective view showing an article according to another embodiment. As shown in FIG. 2, the article 11 includes a base 2, a sintered body layer 3 provided on the base 2, and an electronic component 4 provided on the sintered body 3. The substrate 2 and the sintered body layer 3 may be the same as the substrate 2 and the sintered body layer 3 in the article 1 shown in FIG.
 電子部品4は、焼結体層3に電気的に接続するように、例えばはんだ(図示せず)を介して実装されている。電子部品4は、例えば、LEDチップ、ICチップ等であってよい。 The electronic component 4 is mounted, for example, via a solder (not shown) so as to be electrically connected to the sintered body layer 3. The electronic component 4 may be, for example, an LED chip, an IC chip or the like.
 電子部品4を備える物品11は、例えば、上述した物品1の製造方法における焼結工程に続いて、焼結体層3の所定部分にはんだを用いて実装すること(実装工程)により得られる。はんだを用いた実装方法は、公知の方法であってよい。このように、焼結体層3が銅を含む層であるため、はんだによる実装が可能になる。 The article 11 provided with the electronic component 4 is obtained, for example, by mounting it on a predetermined portion of the sintered body layer 3 using a solder (mounting process) following the sintering process in the method of manufacturing the article 1 described above. The mounting method using the solder may be a known method. Thus, since the sintered body layer 3 is a layer containing copper, mounting by solder becomes possible.
 以上説明した物品1,11は、MID(成形回路部品、立体成形回路部品、三次元成形回路部品等とも呼ばれる)として好適に用いることができる。具体的には、物品1,11は、スマートフォンアンテナ、積層板、太陽電池パネル、ディスプレイ、トランジスタ、半導体パッケージ、積層セラミックコンデンサ等として好適に使用される。物品1,11における焼結体層3は、車載用配線、電気配線、放熱膜、表面被覆膜等として利用することもできる。 The articles 1 and 11 described above can be suitably used as MID (also referred to as molded circuit parts, three-dimensional molded circuit parts, three-dimensional molded circuit parts, etc.). Specifically, the articles 1 and 11 are suitably used as a smartphone antenna, a laminate, a solar cell panel, a display, a transistor, a semiconductor package, a laminated ceramic capacitor, and the like. The sintered body layer 3 in the articles 1 and 11 can also be used as a vehicle wiring, an electrical wiring, a heat dissipation film, a surface coating film, or the like.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these.
<実施例1>
 銅粒子(三井金属鉱業株式会社製、製品名:CH0200)とテルピネオールとを混合し、組成物の25℃における粘度:1000mPa・s、銅粒子の含有量:70質量%となるように、銅粒子を含有する組成物を調製した。
 次いで、ジェットディスペンサー(武蔵エンジニアリング株式会社製、SUPER JET350PC)を用い、送液圧力50kPa、ストローク条件30%の条件で組成物を吐出し、5mmの高さの凹凸を有する液晶ポリマー(LCP)基材(ガラス転移温度:-、5%熱重量減少温度:540℃)に組成物を印刷した。その後、還元雰囲気下、225℃、60分間の条件で組成物を焼結させることにより、基材と、表1に示す厚さを有する焼結体層とを備える物品を得た。なお、焼結体層の厚さは、非接触表面・層断面形状計測システム(VertScan、株式会社菱化システム)で測定した。
Example 1
Copper particles (Mitsui Metal Mining Co., Ltd., product name: CH0200) and terpineol are mixed, and the viscosity of the composition at 25 ° C .: 1000 mPa · s, the content of copper particles: 70 mass%, copper particles The composition containing was prepared.
Next, using a jet dispenser (SUPER JET 350PC, manufactured by Musashi Engineering Co., Ltd.), the composition is discharged under the conditions of a liquid transfer pressure of 50 kPa and a stroke condition of 30%, and a liquid crystal polymer (LCP) substrate having a height of 5 mm. The composition was printed (glass transition temperature:-, 5% thermal weight loss temperature: 540 ° C). Thereafter, the composition was sintered under conditions of 225 ° C. for 60 minutes in a reducing atmosphere to obtain an article provided with a substrate and a sintered body layer having a thickness shown in Table 1. In addition, the thickness of the sintered compact layer was measured by non-contact surface and layer cross-sectional shape measurement system (VertScan, Ryoka system Inc.).
<実施例2>
 組成物の25℃における粘度:200mPa・s、銅粒子の含有量:65質量%となるように、銅粒子を含有する組成物を調製し、当該組成物をエアロゾルジェットシステム(OPTOMEC社製、Aerosol Jet 5x System)を用いて印刷した以外は、実施例1と同様にして、基材と、表1に示す厚さを有する焼結体層とを備える物品を得た。
Example 2
A composition containing copper particles is prepared so that the viscosity of the composition at 25 ° C. is 200 mPa · s and the content of copper particles is 65% by mass, and the composition is used as an aerosol jet system (manufactured by OPTOMEC, Aerosol) An article was obtained in the same manner as in Example 1 except that printing was performed using Jet 5x System), to obtain an article provided with a substrate and a sintered body layer having a thickness shown in Table 1.
<実施例3,4>
 基材をポリエチレンテレフタレート(PET)基材(ガラス転移温度:70℃、5%熱重量減少温度:420℃)に変更した以外は、それぞれ実施例1,2と同様にして、基材と、表1に示す厚さを有する焼結体層とを備える物品を得た。
<Examples 3 and 4>
A substrate and a table were prepared in the same manner as in Examples 1 and 2 except that the substrate was changed to a polyethylene terephthalate (PET) substrate (glass transition temperature: 70 ° C., 5% thermal weight loss temperature: 420 ° C.). An article was obtained comprising a sintered body layer having a thickness shown in 1.
<実施例5,6>
 基材をポリカーボネート(PC)基材(ガラス転移温度:150℃、5%熱重量減少温度:550℃)を用いた以外は、それぞれ実施例1,2と同様にして、基材と、表1に示す厚さを有する焼結体層とを備える物品を得た。
<Examples 5, 6>
Table 1 in the same manner as in Examples 1 and 2 except that a polycarbonate (PC) substrate (glass transition temperature: 150 ° C., 5% thermal weight loss temperature: 550 ° C.) was used as the substrate. And a sintered body layer having the thickness shown in the above.
<比較例1>
 印刷方法をスクリーン印刷(接触型の印刷方法)に変更した以外は、実施例1と同様にして物品を得た。
Comparative Example 1
An article was obtained in the same manner as in Example 1 except that the printing method was changed to screen printing (contact printing method).
<比較例2~4>
 銅粒子を以下の手順で作製した銀粒子に変更した以外は、それぞれ実施例1,2及び比較例1と同様にして物品を得た。
Comparative Examples 2 to 4
An article was obtained in the same manner as in Examples 1 and 2 and Comparative Example 1 except that the copper particles were changed to silver particles produced in the following procedure.
(銀粒子の作製方法)
 N,N-ジメチル-1,3-プロパンジアミン1.28g(12.5mmol)、n-ブチルアミン0.91g(12.5mmol)、ヘキシルアミン3.24g(32.0mmol)、オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.09g(0.33mmol)をセパラブルフラスコに入れ、30℃で1時間攪拌した後、シュウ酸銀3.04g(10mmol)をさらに加え30℃で1時間攪拌した。その後、120℃で攪拌しながら20分加熱し、青色の懸濁液を得た。この懸濁液にヘキサン20mLを加えて攪拌し、その後、遠心分離により銀粒子を沈降させ、上澄み液を除去した。銀粒子に対して、再度、ヘキサン40mLを加えて攪拌し、その後、遠心分離により銀粒子を沈降させ、上澄み液を除去し、銀粒子を得た。
(Method of preparing silver particles)
1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, 3.24 g (32.0 mmol) of hexylamine, 0.39 g of octylamine After 3.0 mmol) and 0.09 g (0.33 mmol) of oleic acid are put into a separable flask and stirred at 30 ° C. for 1 hour, 3.04 g (10 mmol) of silver oxalate is further added and stirred at 30 ° C. for 1 hour did. Then, it heated for 20 minutes, stirring at 120 degreeC, and obtained blue suspension. To this suspension, 20 mL of hexane was added and stirred, then the silver particles were sedimented by centrifugation and the supernatant was removed. With respect to the silver particles, 40 mL of hexane was again added and stirred, and then the silver particles were sedimented by centrifugation, and the supernatant liquid was removed to obtain silver particles.
<比較例5~8>
 基材をポリエチレンテレフタレート(PET)基材(ガラス転移温度:70℃、5%熱重量減少温度:420℃)に変更した以外は、それぞれ比較例1~4と同様にして物品を得た。
Comparative Examples 5 to 8
An article was obtained in the same manner as in Comparative Examples 1 to 4 except that the substrate was changed to a polyethylene terephthalate (PET) substrate (glass transition temperature: 70 ° C., 5% thermal weight loss temperature: 420 ° C.).
<比較例9~12>
 基材をポリカーボネート(PC)基材(ガラス転移温度:150℃、5%熱重量減少温度:550℃)を用いた以外は、それぞれ比較例1~4と同様にして物品を得た。
Comparative Examples 9 to 12
An article was obtained in the same manner as in Comparative Examples 1 to 4, respectively, except that a polycarbonate (PC) substrate (glass transition temperature: 150 ° C., 5% thermal weight loss temperature: 550 ° C.) was used as the substrate.
<配線形成性の評価>
 各実施例及び比較例における配線形成性は、上述した5mmの高さの凹凸を有する液晶ポリマー基材に対して、線幅500μmの配線を形成し、得られた配線について、デジタルマルチメータ抵抗計(三和電気計器株式会社製、CD800a)を用い、3cm離れた2点間の抵抗値を測定したときに、抵抗値が100Ω以下である場合をA、100Ωより大きい場合をBとして評価した。結果を表1に示す。
<Evaluation of wiring formability>
The wiring formability in each Example and Comparative Example is a digital multimeter resistance meter for the wiring obtained by forming a wiring having a line width of 500 μm on the liquid crystal polymer substrate having the above-mentioned unevenness of 5 mm in height. When the resistance value between two points 3 cm apart was measured using (CD800a manufactured by Sanwa Electric Instrument Co., Ltd.), the case where the resistance value was 100 Ω or less was evaluated as A, and the case where it was larger than 100 Ω was evaluated as B. The results are shown in Table 1.
<はんだ実装性>
 はんだ実装性は、形成した焼結体層(配線)に無電解Niめっき処理を施した配線の断面をSEM観察によって確認し、Ni被膜が配線からの剥離又は膨れなく焼結体層上に形成された場合をA、Ni被膜の配線からの剥離又は膨れがある場合、あるいはNi被膜が形成されなかった場合をBとして評価した。結果を表1に示す。
<Solder mountability>
The solder mountability is confirmed by SEM observation of the cross section of the formed sintered body layer (wiring) subjected to electroless Ni plating treatment by SEM, and the Ni film is formed on the sintered body layer without peeling or swelling from the wiring. In the case of A, the case where there was peeling or swelling of the Ni film from the wiring or the case where the Ni film was not formed was evaluated as B. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1,11…物品、2…基材、2a…基材の一面(印刷面)、3…焼結体層(配線)、4…電子部品。 DESCRIPTION OF SYMBOLS 1,11 ... Article, 2 ... base material, 2a ... one surface (printing surface) of a base material, 3 ... sintered compact layer (wiring), 4 ... electronic component.

Claims (14)

  1.  銅粒子を含有する組成物を、非接触型の印刷方法により基材に印刷する工程と、
     印刷された前記組成物を焼結させて、厚さが1.0μm以上である銅の焼結体層を形成する工程と、を備える、物品の製造方法。
    Printing a composition containing copper particles on a substrate by a noncontact printing method;
    And sintering the printed composition to form a sintered copper layer having a thickness of 1.0 μm or more.
  2.  前記基材が樹脂で形成されている、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the base material is formed of a resin.
  3.  前記樹脂のガラス転移温度が150℃以下である、請求項2に記載の製造方法。 The manufacturing method of Claim 2 whose glass transition temperature of the said resin is 150 degrees C or less.
  4.  前記樹脂の5%熱重量減少温度が600℃以下である、請求項2又は3に記載の製造方法。 The manufacturing method according to claim 2 or 3 whose 5% thermal weight loss temperature of said resin is 600 ° C or less.
  5.  前記樹脂が、ポリカーボネート、ポリエチレンテレフタレート及び液晶ポリマーからなる群より選ばれる少なくとも1種である、請求項2~4のいずれか一項に記載の製造方法。 The method according to any one of claims 2 to 4, wherein the resin is at least one selected from the group consisting of polycarbonate, polyethylene terephthalate and liquid crystal polymer.
  6.  前記組成物が印刷される前記基材の印刷面が三次元形状を有する、請求項1~5のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the printing surface of the substrate on which the composition is printed has a three-dimensional shape.
  7.  前記焼結体層が1mm以下の線幅を有する線状となるように、前記三次元形状を有する印刷面に前記組成物を印刷する、請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the composition is printed on the printing surface having the three-dimensional shape such that the sintered body layer becomes linear having a line width of 1 mm or less.
  8.  基材と、
     前記基材上に設けられた、厚さが1.0μm以上である銅の焼結体層と、を備える物品。
    A substrate,
    An article, comprising: a sintered body layer of copper having a thickness of 1.0 μm or more provided on the base material.
  9.  前記基材が樹脂で形成されている、請求項8に記載の物品。 The article of claim 8, wherein the substrate is formed of a resin.
  10.  前記樹脂のガラス転移温度が150℃以下である、請求項9に記載の物品。 The article according to claim 9, wherein the glass transition temperature of the resin is 150 ° C or less.
  11.  前記樹脂の5%熱重量減少温度が600℃以下である、請求項9又は10に記載の物品。 The article according to claim 9 or 10, wherein the 5% thermal weight loss temperature of the resin is 600 ° C or less.
  12.  前記樹脂が、ポリカーボネート、ポリエチレンテレフタレート及び液晶ポリマーからなる群より選ばれる少なくとも1種である、請求項9~11のいずれか一項に記載の物品。 The article according to any one of claims 9 to 11, wherein the resin is at least one selected from the group consisting of polycarbonate, polyethylene terephthalate and liquid crystal polymer.
  13.  前記焼結体層が、前記基材における三次元形状を有する面上に設けられている、請求項9~12のいずれか一項に記載の物品。 The article according to any one of claims 9 to 12, wherein the sintered body layer is provided on a surface having a three-dimensional shape in the base material.
  14.  前記焼結体層が、1mm以下の線幅を有する線状である、請求項13に記載の物品。 The article according to claim 13, wherein the sintered body layer is linear having a line width of 1 mm or less.
PCT/JP2018/041999 2017-11-14 2018-11-13 Article and production method therefor WO2019098195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554229A JPWO2019098195A1 (en) 2017-11-14 2018-11-13 Goods and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219069 2017-11-14
JP2017219069 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019098195A1 true WO2019098195A1 (en) 2019-05-23

Family

ID=66539754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041999 WO2019098195A1 (en) 2017-11-14 2018-11-13 Article and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2019098195A1 (en)
TW (1) TW201925372A (en)
WO (1) WO2019098195A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198394A (en) * 2019-06-04 2020-12-10 昭和電工マテリアルズ株式会社 Method for manufacturing electronic component and electronic component
JP2021015907A (en) * 2019-07-12 2021-02-12 昭和電工マテリアルズ株式会社 Method of manufacturing article having conductor layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133691A (en) * 2001-10-22 2003-05-09 Seiko Epson Corp Method and device for forming film pattern, conductive film wiring, electro-optical device, electronic equipment, and non-contact card medium
JP2004349366A (en) * 2003-05-21 2004-12-09 Mitsubishi Plastics Ind Ltd Multilayer wiring board and its manufacturing method
JP2009051978A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring board, prepreg, metal foil clad laminated plate, and multilayer printed wiring board
JP2016115762A (en) * 2014-12-12 2016-06-23 凸版印刷株式会社 Wiring printed matter and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133691A (en) * 2001-10-22 2003-05-09 Seiko Epson Corp Method and device for forming film pattern, conductive film wiring, electro-optical device, electronic equipment, and non-contact card medium
JP2004349366A (en) * 2003-05-21 2004-12-09 Mitsubishi Plastics Ind Ltd Multilayer wiring board and its manufacturing method
JP2009051978A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring board, prepreg, metal foil clad laminated plate, and multilayer printed wiring board
JP2016115762A (en) * 2014-12-12 2016-06-23 凸版印刷株式会社 Wiring printed matter and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198394A (en) * 2019-06-04 2020-12-10 昭和電工マテリアルズ株式会社 Method for manufacturing electronic component and electronic component
JP7419676B2 (en) 2019-06-04 2024-01-23 株式会社レゾナック Electronic component manufacturing method and electronic component
JP2021015907A (en) * 2019-07-12 2021-02-12 昭和電工マテリアルズ株式会社 Method of manufacturing article having conductor layer

Also Published As

Publication number Publication date
TW201925372A (en) 2019-07-01
JPWO2019098195A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
EP1950767B1 (en) Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
EP1672971B1 (en) Method for manufacturing a substrate
KR20100118524A (en) Conductive bonding material, method for bonding using the same, and semiconductor device bonded by the same
KR102225197B1 (en) Dispersion, and a method of manufacturing a structure with a conductive pattern using the same, and a structure with a conductive pattern
Shao et al. Facile synthesis of low temperature sintering Ag nanopaticles for printed flexible electronics
EP2204824A1 (en) Method of forming copper wiring pattern and copper oxide particle dispersion for use in the same
JP5326317B2 (en) COMPOSITE MATERIAL LIQUID FOR FORMING METAL FILM AND METAL COMPOUND FILM, METAL / METAL COMPOUND FILM USING THE SAME, AND COMPOSITE MATERIAL
WO2019098195A1 (en) Article and production method therefor
CN112272851B (en) Conductive paste and sintered body
JP3687745B2 (en) Highly dispersible metal powder, method for producing the same, and conductive paste containing the metal powder
JP2021036562A (en) Manufacturing method of article
JP7276140B2 (en) COMPOSITION, CONDUCTOR AND MANUFACTURING METHOD THEREOF, AND STRUCTURE
JP7172224B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND METHOD FOR MANUFACTURING ARTICLE HAVING CONDUCTOR LAYER
KR102658275B1 (en) Compositions, conductors and methods of making the same, and structures
JP7155663B2 (en) Article manufacturing method
JP7333164B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND METHOD FOR MANUFACTURING ARTICLE HAVING CONDUCTOR LAYER
JP7225603B2 (en) Conductor forming method
JP2015163695A (en) Low viscosity and high loading silver nanoparticles inks for ultrasonic aerosol (ua)
JP2020193241A (en) Composition for gravure off-set printing, conductor and method for producing the same, and structure
JP7187835B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND MANUFACTURING METHOD THEREOF, AND ARTICLE HAVING CONDUCTOR LAYER AND MANUFACTURING METHOD THEREOF
JP2021036067A (en) Article manufacturing method and composition for forming metal sintered body layer
JP2022033596A (en) Article manufacturing method
JP2021015907A (en) Method of manufacturing article having conductor layer
JP6996101B2 (en) Conductive laminate and its manufacturing method
JP2017197658A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879625

Country of ref document: EP

Kind code of ref document: A1