WO2019085493A1 - 一种显示器件 - Google Patents

一种显示器件 Download PDF

Info

Publication number
WO2019085493A1
WO2019085493A1 PCT/CN2018/091264 CN2018091264W WO2019085493A1 WO 2019085493 A1 WO2019085493 A1 WO 2019085493A1 CN 2018091264 W CN2018091264 W CN 2018091264W WO 2019085493 A1 WO2019085493 A1 WO 2019085493A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
display device
protective layer
disposed
Prior art date
Application number
PCT/CN2018/091264
Other languages
English (en)
French (fr)
Inventor
张探
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2019085493A1 publication Critical patent/WO2019085493A1/zh
Priority to US16/582,193 priority Critical patent/US11600799B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device.
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the embodiment of the present invention provides a display device, which solves the problem that the display device in the prior art realizes a full screen or a narrow bezel display.
  • a display device includes a substrate, an OLED module disposed on the first surface of the substrate, and a trace region disposed on the second surface of the substrate, wherein the second surface is opposite to the first surface, and the trace is The area is electrically connected to the OLED module.
  • the substrate includes vias, and circuit traces of the trace regions are connected to the OLED module through vias.
  • the display device further includes a bonding region disposed on the second surface of the substrate, the lead of the bonding region being connected to the OLED module through the via.
  • the display device further includes a bonding region disposed on the first surface of the substrate.
  • the binding region is disposed on a short side edge of the first surface of the substrate, and the routing region is disposed at an edge of two long sides of the second surface of the substrate.
  • the substrate is ultra-thin glass.
  • the substrate includes a first substrate layer and a second substrate layer that are sealed together, and at least one of the first substrate layer and the second substrate layer is ultra-thin glass.
  • the first substrate layer and the second substrate layer are integrally sealed by OCA, barrier OCA, UV glue, silicone rubber or glass glue.
  • the display device further includes a first protective layer covering the OLED module and being sealed with the substrate.
  • the display device further includes a second protective layer that covers the trace region and is integrated with the substrate.
  • the materials of the first protective layer and the second protective layer are ultra-thin glass, which are respectively sealed with the substrate by OCA, barrier OCA, UV glue, silicone rubber or glass glue.
  • the display device further includes a first protective layer, a second protective layer, and an encapsulation layer disposed between the first protective layer and the second protective layer, the middle portion of the encapsulation layer includes an empty trench region, the substrate and the OLED module Set in the empty slot area.
  • the OLED module includes a plurality of functional layers, and a strain barrier layer is disposed between adjacent ones of the plurality of functional layers, and the strain barrier layer includes a chamber and a layer of elastic material surrounding the periphery of the chamber.
  • the void region and/or chamber is filled with a gas or liquid, and the encapsulating layer and/or the layer of elastomeric material is comprised of a material of low modulus of elasticity.
  • the footprint area of the void region is greater than the size of the substrate.
  • a first silicone oil layer is disposed between the OLED module and the first protective layer, and/or a second silicone oil layer is disposed between the substrate and the second protective layer.
  • the encapsulation layer includes at least one gas guide groove and a sealing material for sealing the at least one gas guide groove.
  • the display device further includes a first protective layer and a second protective layer, the second protective layer is provided with a recess, the substrate and the OLED module are disposed in the recess, and the first protective layer is disposed on the OLED module.
  • the first protective layer is located in the recess of the second protective layer, and the upper surface of the first protective layer is flush with the upper surface of the second protective layer.
  • the cross-sectional area of the groove is greater than the cross-sectional area of the substrate.
  • the perimeter of the first protective layer and the sides of the recess of the second protective layer are encapsulated using a laser sintered glass frit process.
  • the routing area of the non-display portion is disposed on the back surface of the substrate, so that the OLED module is electrically connected to the front surface of the OLED module to complete the routing function, and the front surface of the display device is greatly reduced.
  • the area of the display area enables the device to achieve a narrow border or even a full screen display, thereby enhancing the display effect of the screen and improving the user's visual experience.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 3(a) is a schematic diagram showing the front structure of a substrate of a display device according to an embodiment of the invention.
  • FIG. 3(b) is a schematic diagram showing the structure of the back surface of a substrate of a display device according to an embodiment of the present invention.
  • FIG. 4(a) is a schematic diagram showing the front structure of a substrate of a display device according to another embodiment of the present invention.
  • FIG. 4(b) is a schematic diagram showing the structure of the back surface of a substrate of a display device according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device includes a substrate 1a, an OLED module 2 disposed on a first surface of the substrate 1a, and a wiring region 3 disposed on a second surface of the substrate 1a, wherein the second surface is a surface opposite to the first surface
  • the routing area 3 is electrically connected to the OLED module 2 of the first surface.
  • the first surface of the substrate 1a is a front surface, and a TFT array layer, an anode layer, an organic light-emitting layer, a cathode layer and the like may be sequentially disposed thereon, and these functional layers collectively constitute the OLED module 2 to be a display of the display device. region.
  • the second surface of the substrate 1a is the back surface, and the wiring area 3 is disposed at a corresponding position on the back surface of the substrate 1a as a non-display portion, such as an edge region of the periphery, which greatly reduces the area of the non-display area on the front side of the device, so that the device can be narrowed.
  • the border is even a full screen display.
  • the routing area of the non-display portion is disposed on the back surface of the substrate to electrically connect with the front OLED module to complete the routing function, and the front surface of the display device is greatly reduced.
  • the area of the display area enables the device to achieve a narrow border or even a full screen display, thereby enhancing the display effect of the screen and improving the user's visual experience.
  • the substrate 1a includes vias, and the circuit traces of the trace regions 3 can be connected to the OLED module 2 on the front side via vias on the substrate 1a.
  • the via structure may be set in one-to-one correspondence with the circuit traces, or one via may be corresponding to a plurality of circuit traces, or one via may correspond to all circuit traces.
  • the holes may be punched by a laser or chemically, and the walls of the holes may be vapor-deposited with various conductive media such as copper.
  • the circuit traces of the rear trace area 3 of the substrate 1a can be electrically connected to the front OLED module 2 through the vias.
  • the wiring area 3 on the back side can be electrically connected to the first surface of the substrate 1a in other ways, which is not limited in the present invention.
  • the substrate it can be either a hard glass substrate or a bendable ultra-thin glass, or PI (polyimide), PET (polyethylene terephthalate) or PEN (polynaphthalene).
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polynaphthalene
  • a flexible substrate made of a material such as ethylene glycol dicarboxylate.
  • the substrate 1a is a layer and is ultra-thin glass.
  • an organic light-emitting structure such as a TFT array layer, an anode layer, an organic light-emitting layer, and a cathode layer is formed on the front surface of the ultra-thin glass to form a display region of the display device, and circuit traces are formed on the back surface thereof to form a wiring region of the display device.
  • the through holes are formed on the front side and the back side, so that the circuit traces on the back surface are electrically connected to the display area on the front side through the via holes.
  • the ultra-thin glass Compared with a common glass substrate, the ultra-thin glass has a smaller thickness, such as 0.1 mm to 0.5 mm, and has good flexibility, and can be used as a bendable flexible substrate to satisfy the foldability of the display device. demand.
  • the ultra-thin glass also has a good stiffness, and the stiffness of one layer can be equivalent to the stiffness of several layers of PI/PET, and the precision of punching on the ultra-thin glass is also more accurate. high. Therefore, the display device provided by the embodiment replaces the traditional substrate such as PI, PET or PEN by using ultra-thin glass, which not only satisfies the requirements of folding, improves the manufacturing precision, but also avoids the use of PI, PET in the prior art. Or the contradiction caused by materials such as PEN and the easy splitting of the folded film layer, satisfying the user's requirements for stiffness and ensuring the quality of the display device.
  • the substrate 1b includes a first substrate layer 11 and a second substrate layer 12 that are integrally sealed, wherein the first substrate layer 11 and the second substrate layer 12 are At least one layer is ultra-thin glass. That is, the first substrate layer 11 and the second substrate layer 12 may both be ultra-thin glass, or one of them may be ultra-thin glass.
  • An OLED module 2 is disposed on a surface of the first substrate layer 11 away from the second substrate layer 12 (ie, a front surface of the substrate 1b) on the surface of the second substrate layer 12 away from the first substrate layer 11 (ie, the back surface of the substrate 1b) There is a cabling area 3.
  • the corresponding positions of the first substrate layer 11 and the second substrate layer 12 are all provided with a via structure, and the routing region 3 disposed on the second substrate layer 12 can be electrically connected to the second via the via holes of the two substrate layers.
  • OCA Optical Clear Adhesive
  • OCA with barrier function silicone rubber
  • UV (Ultraviolet Rays) glue or other adhesives may be used between the first substrate layer 11 and the second substrate layer 12. Sealed.
  • Frit glass glue
  • the glass glue contains a silicon material homogenous to the ultra-thin glass material, it can better seal the two layers of ultra-thin glass, so that the sealed substrate 1b as a whole has better water blocking performance.
  • the manner of distributing the adhesive may be various, such as a block shape, a strip shape or other regular or irregular closed pattern, or a ring shape distributed around the substrate, as long as the two substrate layers can be made.
  • the invention is not limited by the present invention.
  • the two can be sealed by a full-area sealing method, and the sealing method can further improve the device. Reliability.
  • the display device provided by the embodiment further improves the stiffness of the display device by arranging the substrate as a two-layer substrate layer, and at least one of the layers is an ultra-thin glass structure, and the OLED module and the routing area are further improved. They are disposed on opposite sides of different substrate layers, which avoids the influence on each other or the substrate structure caused by the front and back sides of the same substrate, and reduces the difficulty of the manufacturing process.
  • a flexible thin film circuit board such as a COF (Chip on Film), a FPC (Flexible Printed Circuit), and a driving IC are required. These flexible thin film circuits are required.
  • the board and the driver IC constitute a binding area of the display device.
  • the routing area 3 is disposed on the back surface of the substrate, and the bonding area 4a is disposed on the front surface of the substrate (ie, the first surface). It can be shared with component areas such as the camera or earpiece of the display device.
  • the bending region 5 is disposed at an intermediate position perpendicular to the opposite long sides of the substrate and at the opposite short sides, and the binding region 4a is disposed at a short edge of the front surface of the substrate, and the routing region 3 is The circuit traces of the trace area 3 are electrically connected to the front surface of the substrate through the vias 9 at the edges of the two long sides of the back surface of the substrate. Since the via hole 9 in this embodiment is covered by the wiring region 3 on the back side, it is not shown in FIG. 3(b).
  • the bending region may also be disposed at other positions according to actual needs, such as being disposed perpendicular to the opposite short sides of the substrate and at an intermediate position between the two opposite long sides or along a diagonal direction of the substrate, the routing area 3 and the binding area 4a.
  • the position can also be adjusted accordingly, and the present invention does not specifically limit this.
  • the ACF Analyotropic Conductive Film
  • the FOG Finl on Glass
  • the substrate and the flexible thin film circuit board and the driving IC can be bound together by a FOP (Film on PI) and COP (Chip on PI) binding process. Both of these binding methods enable the display device to achieve a narrow border display.
  • the bonding region 4b and the routing region 3 are both disposed on the back surface of the substrate (ie, the second surface), and at the same time, binding
  • the lead of the region 4b can also be connected to the OLED module 2 through the via 9 on the substrate to conduct conduction with the front surface to achieve a full screen display effect.
  • two vias 9 for the passage of the leads are provided on the substrate 1a at positions corresponding to the bonding regions 4b.
  • the leads of the bonding regions 4b can also be shared with the circuit traces of the routing regions 3.
  • the number of holes 9 in the present embodiment and the position of the through holes 9 in this embodiment are merely examples of the present invention and are not intended to limit the present invention.
  • the display device provided by the embodiment adopts ultra-thin glass as the flexible substrate, realizes the bendability of the device, and also plays a good supporting role, thereby improving the overall stiffness of the device.
  • the embodiment also moves the binding area from the front side to the back side of the display device, further reducing the area of the non-display area on the front side of the device, and realizing a full screen display.
  • the flexible display device further includes a first protective layer covering the OLED module 2 and being integrally sealed with the substrate 1a for protecting the substrate.
  • the display area of 1a the first protective layer is also used to protect the flexible film circuit board and the driving IC of the bonding region.
  • the material of the first protective layer may be ultra-thin glass.
  • the first protective layer 6a in the embodiment shown in FIG. 5 is ultra-thin glass.
  • the first protective layer and the substrate 1a can be sealed by a surrounding package, a block package or a full-surface package.
  • the embodiment shown in FIG. 5 is sealed by a peripheral packaging method, and the encapsulation layer 7a may specifically be OCA, barrier OCA, silicone rubber, glass glue, UV glue, or the like.
  • the first protective layer 6a is disposed on the front surface of the OLED module 2, and the encapsulation layer 7a is disposed around the OLED module 2.
  • the first protective layer 6a is sealingly connected to the encapsulation layer 7a, and the substrate 1a only needs to be pre-prepared.
  • the substrate 1a and the encapsulation layer 7a are tightly sealed by leaving a narrow frame, and are sealed with the first protective layer 6a.
  • the reserved frame only needs to meet the basic requirements of the sealing, and has almost no influence on the full screen display of the device, and the embodiment uses the ultra-thin glass as the protective layer to further improve the overall stiffness of the device.
  • the first protective layer may also be a thin film encapsulating material.
  • a thin film layer may be attached to both sides and the front surface of the OLED module 2 to form a first protective layer 6b.
  • the thin film encapsulation layer may be a transparent thin film layer formed by alternately superposing an organic thin film and an inorganic thin film, which has good water and oxygen barrier properties. Since the transparent film layer is light and thin, its thickness generally does not exceed 3 ⁇ m, and the film is packaged on the entire surface, which does not affect the optical display and achieves a good sealing effect.
  • the display device further includes a second protective layer 8a covering the wiring region 3 and being integrated with the substrate 1a for protecting the circuit.
  • the wiring is removed, and when the bonding region is also located on the back side of the substrate 1a, the second protective layer 8a is also used to protect the flexible film circuit board and the driving IC of the bonding region.
  • the material of the second protective layer 8a is a thin film encapsulation material, and in other embodiments, it may also be an ultra-thin glass.
  • the second protective layer 8a and the substrate 1a may also be sealed by a colloid such as OCA, barrier OCA, silicone rubber, glass glue or UV.
  • the display device provided in this embodiment further protects the circuit traces on the back surface of the substrate and/or the flexible thin film circuit board and the driver IC by further adding another protective layer on the back surface of the substrate, thereby further increasing the overall device. reliability.
  • the first protective layer and the second protective layer are both ultra-thin glass.
  • the display device includes a first protective layer 6c and a second protective layer 8b, and is disposed in the first protection.
  • the middle portion of the encapsulation layer 7b includes an empty groove region 1031, and the display panel 10 is disposed in the empty groove region 1031 of the encapsulation layer 7b, wherein the bottom surface area of the empty groove region 1031 is larger than the size of the display panel 10.
  • the embodiment of the present invention replaces the upper and lower covers in the existing flexible display device with ultra-thin glass. Since the ultra-thin glass itself has excellent stiffness and bending resistance, it can effectively solve the problem that the existing display device has a contradiction between the stiffness and the prevention of film splitting.
  • the display panel 10 is disposed in the vacant area 1031 between the first protective layer 6c and the second protective layer 8b, and the bottom area size of the vacant area 1031 is larger than the size of the display panel 10 (ie, the size of the substrate) Therefore, when the flexible display panel 10 is bent, the display panel 10 can slide relative to the first protective layer 6c and the second protective layer 8b in the empty groove region 1031, thereby alleviating the bending stress, and the display panel 10 can be effectively avoided.
  • the inner layer is layered, which further improves the bending resistance of the display device and improves the reliability of the product.
  • the display panel 10 in order to make the sliding of the display panel 10 in the empty groove region 1031 more flexible and smooth during the bending process, between the display panel 10 and the first protective layer 6c (ie, the OLED module and the first A first silicone oil layer is disposed between the protective layers 6c, and/or a second silicone oil layer is disposed between the display panel 10 and the second protective layer 8b (ie, between the substrate and the second protective layer 8b).
  • the display panel 10 can slide in the empty groove region 1031, and the present invention does not do whether the display device includes the first silicone oil layer and the second silicone oil layer. limited.
  • the encapsulation layer 7b of the display device includes at least one air guiding groove and a sealing material for sealing the air guiding groove.
  • These air guiding grooves can guide the air bubbles generated by the bonding process during the process of bonding the first protective layer 6c to prevent the air bubbles from remaining between the first protective layer 6c and the display panel 10. After the bonding process of the first protective layer 6c is completed, the at least one air guiding groove is sealed with a sealing material.
  • the first protective layer and the second protective layer are also ultra-thin glass, and the structure of the display device is as shown in FIG. 9, wherein the second protective layer 8c has a groove, and the display panel 10 The first protective layer 6d is disposed on the display panel 10 in the recess.
  • the second protective layer 8c with a groove in the middle can be prepared by grooving or the like in the middle of an ultra-thin glass, which can be prepared by itself or directly purchased by a glass sales company, wherein the concave is obtained.
  • the groove can be obtained by a process such as etching, and the source or preparation manner of the second protective layer 8c with a groove in the present invention is not limited.
  • the display panel 10 may be disposed in the recess of the second protective layer 8c by a bonding manner of optical glue. Due to the presence of the groove, the sliding range of the first protective layer 6d is effectively limited, and the excessive displacement of the first protective layer 6d during the bending process is prevented from causing the entire display device to fail.
  • the first protective layer 6d may be attached to the display panel 10 by an optical adhesive, and after the bonding is completed, the upper surface of the first protective layer 6d should be kept at the same level as the upper surface of the second protective layer 8c.
  • the cross-sectional area of the groove of the second protective layer 8c with the groove is larger than the cross-sectional area of the display panel 10, so that the display device 10 can be in the process of bending
  • the groove is slid so that the bending stress can be further dispersed to avoid the fracture failure of the display panel 10.
  • the first protective layer 6d should be located in the recess of the second protective layer 8c. Due to the presence of the second protective layer 8c, the slip of the first protective layer 6d is effectively suppressed, and the bending resistance of the display device is improved.
  • the manner in which the display panel 10 is disposed in the recess of the second protective layer 8b may be by optical glue bonding or by silicone oil bonding or the like, and when the silicone oil is bonded, the display panel 10 can be better in the groove.
  • the ground is slid to relieve the bending stress, but the present invention does not limit the specific arrangement and the bonding material used.
  • the periphery of the first protective layer 6d and the side of the recess of the second protective layer 8c are packaged by a laser sintered glass powder process.
  • the packaged glass frit layer 103 is as shown in FIG.
  • the laser-sintered glass frit layer 103 fills the gap between the periphery of the first protective layer 6d and the side of the recess of the second protective layer 8c, thereby preventing external water oxygen from entering the display panel 10.
  • the upper surface of the display panel 10 after the internal packaging is completed is covered with a first protective layer 6d, the lower surface and the side edges are covered with the protection of the second protective layer 8c, surrounded by a glass powder layer 103 for protection, effectively blocking moisture and oxygen. Entry improves the water and oxygen barrier properties of the display device.
  • a strain barrier layer is added to the adjacent two material layers.
  • FIG. 11 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device provided by the embodiment of the present invention includes: a first module material layer 1001 and a second module material layer 1003 stacked; and at least one layer 1001 and a second module disposed on the first module material
  • the strain barrier layer 1002 between the sets of material layers 1003; wherein the strain barrier layer 1002 includes a chamber 22 and an elastic material layer 21 surrounding the outer periphery of the chamber.
  • the module material layer is a functional unit constituting a display device, and each functional unit may be composed of a plurality of functional layers.
  • the module material layer may be a first protective layer, a second protective layer, or a functional layer in an OLED module (eg, a TFT array layer, a touch screen, a polarizer, etc.), in order to distinguish different layers of module materials, the present invention
  • the embodiment introduces first and second qualifiers, such as first module material layer 1001 and second module material layer 1003.
  • the barrier layer 1002 is the encapsulation layer 7b in the embodiment shown in FIG. 8, wherein the chamber 22 corresponds to the empty groove region 1031 in the encapsulation layer 7b, and the display panel 10 is disposed therein, and the elastic material layer surrounding the periphery of the chamber 22 is disposed. 21 corresponds to the encapsulating material around the empty groove region 1031.
  • the chamber 22 may be filled with a gas, a liquid (such as silicone oil) or a vacuum state, and may function to block strain. However, when the chamber 22 is filled with gas, the chamber 22 may be balanced. Internal and external air pressure.
  • the elastic material layer 21 may be composed of a material having a low elastic modulus, and the elastic modulus may be several KPa to several tens of KPa, which is far lower than the first module material layer 1001 and the second module material layer.
  • 1003 (for example, the modulus of the module material layer in the display device has a modulus of elasticity of several tens of GPa to hundreds of GPa). This can provide an effective passage for the slip between the first module material layer 1001 and the second module material layer 1003 by utilizing the deformation ability of the elastic material layer 21 during deformation, especially when subjected to shear stress.
  • the material of the elastic material layer 21 may be a silicone rubber.
  • the present invention is not limited thereto, and the material of the elastic material layer 21 may also be other low elastic modulus materials.
  • the display device provided by the embodiment of the invention provides a strain barrier layer 1002 between the first module material layer 1001 and the second module material layer 1003. Since the strain barrier layer 1002 can effectively block the strain of the first module material layer 1001 and the second module material layer 1003, the first module material layer 1001 and the second module material can be effectively prevented from occurring when the bending deformation occurs.
  • the transmission of strain between the layers 1003 reduces the strain of the first module material layer 1001 and the second module material layer 1003, thereby significantly improving the bending resistance of the display device and improving the reliability of the product.
  • the flexible display module of the present invention is not limited to including only the first module material layer 1001 and the second module material layer 1003 shown in FIG. 11 , and may also include more layers of module materials, and A strain barrier layer 1002 may be disposed between adjacent two layers of module material layers.
  • the embodiment of the present invention does not specifically limit the number of layers of the module material layer and the adjacent barrier material layers 1002.
  • a bezel having the shape of the preset curved surface may be prepared first, and then the bendable display device provided by the embodiment of the present invention is installed into the bezel.
  • the perimeter of the bezel may be less than the perimeter of the display device. Since the device itself has a bendable property when it is a flexible display device, when the whole is mounted in a frame having a circumference smaller than the whole, the whole is curved into a curved surface by the plane.
  • mounting the flexible display device into the bezel may include attaching the bezel to the entire periphery of the flexible device in a frame-like manner.
  • an annular groove may be provided on the inner surface of the bezel.
  • the depth of the annular groove is preferably 3-5 mm, which ensures that the mounting is secure and does not make the frame too thick.
  • the width of the annular groove may be equal to the thickness of the flexible display device.
  • the cross-sectional shape of the annular groove may be any one of a U shape, an arc shape, and a trapezoidal shape.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示器件,包括基板、设置于基板的第一表面的OLED模块以及设置于基板的第二表面的走线区域,其中第二表面与第一表面相对,走线区域与OLED模块电性连接。

Description

一种显示器件 技术领域
本发明涉及显示技术领域,具体涉及一种显示器件。
发明背景
OLED(Organic Light Emitting Diode,有机发光二极管)因具备全固态、超轻薄、响应速度快、发光效率高、对比度高、功耗低、易实现柔性显示和3D显示等优点,被认为是最有发展前景的显示技术之一,已广泛应用于手机屏幕、电脑显示器和全彩电视等电子产品上。
随着OLED技术的发展及人类对显示屏要求的提高,显示器件正向着窄边框甚至是全面屏、可折叠方向发展。然而,由于现有技术都会将电路走线、绑定区等非显示区设置于显示器件的周边,使得显示器在展平状态下难以实现全面屏显示。目前一般通过将非显示区弯折至显示器件的背面以实现全面屏显示效果。但是,对显示器件的非显示区进行弯折时,很容易损伤该区域的线路及其他结构,导致显示器件功能失效,因此,显示器件全面屏或窄边框显示的实现还存在较大困难。
发明内容
有鉴于此,本发明实施例提供了一种显示器件,解决了现有技术中显示器件实现全面屏或窄边框显示较为困难的问题。
本发明一实施例提供的一种显示器件,包括基板、设置于基板的第一表面的OLED模块以及设置于基板的第二表面的走线区域,其中第二表面与第一表面相对,走线区域与OLED模块电性连接。
在一个实施例中,基板包括过孔,走线区域的电路走线通过过孔连接至OLED模块。
在一个实施例中,显示器件进一步包括绑定区域,绑定区域设置于基板的第二表面,绑定区域的引线通过过孔连接至OLED模块。
在一个实施例中,显示器件进一步包括绑定区域,绑定区域设置于基板的第一表面。
在一个实施例中,所述绑定区域设置于所述基板的第一表面的短边边缘,所述走线区域设置于所述基板第二表面的两长边的边缘处。
在一个实施例中,基板为超薄玻璃。
在一个实施例中,基板包括封合为一体的第一基板层和第二基板层,第一基板层和第二基板层中的至少一层为超薄玻璃。
在一个实施例中,第一基板层和第二基板层通过OCA、阻隔性OCA、UV胶、硅橡胶或玻璃胶封合为一体。
在一个实施例中,显示器件进一步包括第一保护层,第一保护层覆盖OLED模块并与基板封合为一体。
在一个实施例中,显示器件进一步包括第二保护层,第二保护层覆盖走线区域并与基板封合为一体。
在一个实施例中,第一保护层和第二保护层的材料为超薄玻璃,分别通过OCA、阻隔性OCA、UV胶、硅橡胶或玻璃胶与基板封合。
在一个实施例中,显示器件进一步包括第一保护层、第二保护层以及设置于第一保护层和第二保护层之间的封装层,封装层的中部包括空槽区域,基板和OLED模块设置于空槽区域中。
在一个实施例中,OLED模块包括多个功能层,多个功能层中的相邻功能层间设置有应变隔断层,应变隔断层包括腔室和包围在腔室***的弹性材料层。
在一个实施例中,空槽区域和/或腔室内填充有气体或液体,封装层和/或弹性材料层由低弹性模量的材料组成。
在一个实施例中,空槽区域的底面积尺寸大于基板的尺寸。
在一个实施例中,OLED模块与第一保护层之间设置有第一硅油层,和/或,基板与第二保护层之间设置有第二硅油层。
在一个实施例中,封装层包括至少一个导气槽和用于密封至少一个导气槽的密封材料。
在一个实施例中,显示器件进一步包括第一保护层和第二保护层,第二保护层设置有凹槽,基板和OLED模块设置于凹槽内,第一保护层设置于OLED模块上。
在一个实施例中,第一保护层位于第二保护层的凹槽中,且第一保护层的上表面与第二保护层的上表面持平。
在一个实施例中,凹槽的横截面积大于基板的横截面积。
在一个实施例中,第一保护层的周边与第二保护层的凹槽的侧边采用激光烧结玻璃粉工艺完成封装。
在本实施例提供的显示器件中,将非显示部分的走线区域设置于基板的背面,使其与正面的OLED模块电性连接完成走线功能的同时,大大减小了显示器件正面的非显示区域面积,使得器件实现了窄边框甚至是全面屏的显示,从而增强了 屏幕的显示效果,提升了用户的视觉体验。
附图简要说明
图1所示为本发明一实施例提供的一种显示器件的结构示意图。
图2所示为本发明另一实施例提供的一种显示器件的结构示意图。
图3(a)所示为本发明一实施例提供的一种显示器件的基板的正面结构示意图。
图3(b)所示为本发明一实施例提供的一种显示器件的基板的背面结构示意图。
图4(a)所示为本发明另一实施例提供的一种显示器件的基板的正面结构示意图。
图4(b)所示为本发明另一实施例提供的一种显示器件的基板的背面结构示意图。
图5所示为本发明另一实施例提供的一种显示器件的结构示意图。
图6所示为本发明另一实施例提供的一种显示器件的结构示意图。
图7所示为本发明另一实施例提供的一种显示器件的结构示意图。
图8所示为本发明另一实施例提供的一种显示器件的结构示意图。
图9所示为本发明另一实施例提供的一种显示器件的结构示意图。
图10所示为本发明另一实施例提供的一种显示器件的结构示意图。
图11所示为本发明另一实施例提供的一种显示器件的结构示意图。
实施本发明的方式
为使本发明的目的、技术手段和优点更加清楚明白,以下结合附图对本发明作进一步详细说明。
图1所示为本发明一实施例提供的一种显示器件的结构示意图。如图1所示,该显示器件包括基板1a、设置于基板1a第一表面的OLED模块2以及设置于基板1a第二表面的走线区域3,其中第二表面为与第一表面相对的表面,该走线区域3与第一表面的OLED模块2电性连接。
在本实施例中,基板1a的第一表面即为正面,其上可依次设置TFT阵列层、阳极层、有机发光层和阴极层等,这些功能层共同构成OLED模块2,成为显示器件的显示区域。基板1a的第二表面即为背面,走线区域3作为非显示部分设置于基板1a背面的相应位置,如四周的边缘区域,大大减小了器件正面非显示区域的面积,使得器件可实现窄边框甚至是全面屏的显示效果。
在本实施例提供的显示器件中,将非显示部分的走线区域设置于基板的背面, 使其与正面的OLED模块电性连接完成走线功能的同时,大大减小了显示器件正面的非显示区域面积,使得器件实现了窄边框甚至是全面屏的显示,从而增强了屏幕的显示效果,提升了用户的视觉体验。
在本发明一实施例中,基板1a包括过孔,则走线区域3的电路走线可通过基板1a上的过孔连接至位于正面的OLED模块2。具体地,该过孔结构可以与电路走线一一对应设置,也可以设置一个过孔对应多条电路走线,或者一个过孔对应所有电路走线。对于过孔的形成,可通过激光进行打孔,也可通过化学方法实现,孔壁可蒸镀如铜等各种导电介质。这样,基板1a背面走线区域3的电路走线就可通过过孔与正面的OLED模块2形成电性连接。当然也可采用其他方式使背面的走线区域3与基板1a的第一表面实现电性连接,本发明对此不做限定。
对于基板,其既可为硬性材质的玻璃基板,也可为可弯折的超薄玻璃,或由PI(聚酰亚胺)、PET(聚对苯二甲酸乙二酯)或PEN(聚萘二甲酸乙二醇酯)等材料制成的柔性基板。
在本发明一较优的实施例中,基板1a为一层,且为超薄玻璃。则可在超薄玻璃的正面制备TFT阵列层、阳极层、有机发光层和阴极层等有机发光结构形成显示器件的显示区域,在其背面制备电路走线形成显示器件的走线区域,在其上制作正、反面导通的通孔,从而使背面的电路走线通过该过孔与正面的显示区域形成电性连接。上述三个工艺过程的先后顺序不是固定的,本领域的技术人员可根据实际工艺需求进行相应的调整。
超薄玻璃相对于普通的玻璃基板,其不仅厚度更小,如可选择为0.1mm-0.5mm,而且它具有良好的挠性,可用作可弯折的柔性基板,满足显示器件的可折叠需求。另外,超薄玻璃还具有较好的挺度,其一层的挺度就可相当于PI/PET等数层膜层叠加所具有的挺度,而且在超薄玻璃上打孔其精度也更高。所以本实施例提供的显示器件通过采用超薄玻璃代替传统的如PI、PET或PEN等基板,既满足了可折叠的需求,提高了制作精度,又避免了现有技术中因利用PI、PET或PEN等材料所引起的挺度与折叠后膜层易***的矛盾,满足了用户对于挺度要求的同时,也保证了显示器件的品质。
在本发明另一实施例中,如图2所示,基板1b包括封合为一体的第一基板层11和第二基板层12,其中,第一基板层11和第二基板层12中的至少一层为超薄玻璃。也就是说,第一基板层11和第二基板层12可以都为超薄玻璃,也可以其中一个为超薄玻璃。在第一基板层11远离第二基板层12的表面(即基板1b的正面)上设有OLED模块2,在第二基板层12远离第一基板层11的表面(即基板1b的背面)上设有走线区域3。第一基板层11和第二基板层12的对应位置都设置有过孔结构,则设置于第二基板层12上的走线区域3通过两个基板层的过孔即 可电性连接至第一基板层11上的OLED模块2。
第一基板层11和第二基板层12之间如可采用OCA(Optical ClearAdhesive,光学胶)、具有阻隔作用的OCA、硅橡胶、UV(Ultraviolet Rays,紫外光固化)胶或其他粘结剂等进行封合。当第一基板层11和第二基板层12都为超薄玻璃时,两层超薄玻璃间也可选用Frit(玻璃胶)的方式进行封合。因玻璃胶中含有与超薄玻璃材质同质性的硅材料,其能够更好地封合两层超薄玻璃,使得封合后的基板1b整体具有更好的阻水性能。
对于粘结剂的分布方式,可以是多种多样的,如可为块状、条状或其他规则或不规则的封闭图形,也可为分布于基板四周的环形,只要能够使两个基板层稳固封合为一体即可,本发明对此不做限定。
另外,由于第一基板层11和第二基板层12间互相贴近的表面都没有设置部件,所以可采用全面积封合的方式将二者封合为一体,这样的封合方式可进一步提高器件的可靠性。
本实施例提供的显示器件通过将基板设置为两层基板层封合为一体,且其中至少一层为超薄玻璃的结构,进一步增强了显示器件的挺性,且将OLED模块和走线区域分别设置于不同基板层相背离的两面,避免了因设置于同一基板的正、反两面而产生的对彼此或基板结构的影响,降低了制作工艺的难度。
为了向OLED模块传输驱动信号和驱动电源,需要绑定COF(Chip on Film,覆晶薄膜)、FPC(Flexible Printed Circuit,挠性印刷电路板)等柔性薄膜电路板和驱动IC,这些柔性薄膜电路板和驱动IC构成显示器件的绑定区。
在本发明一实施例中,如图3(a)和图3(b)所示,走线区域3设置于基板的背面,绑定区域4a则设置于基板的正面(即第一表面),可与显示器件的摄像头或听筒等部件区共用。在本实施例中,弯折区域5设置于与基板两相对长边垂直且处于两相对短边的中间位置,将绑定区域4a设置于基板正面的一短边边缘处,将走线区域3设置于基板背面两长边的边缘处,走线区域3的电路走线则通过过孔9电性连接至基板的正面。由于本实施例中的过孔9被背面的走线区域3覆盖,所以在图3(b)中未标出。
应当理解,虽然图3(a)中在走线区域3的对应位置标示出8个通孔9,但在实际设计与应用中,通孔9的具体数量及位置可根据不同情况而做不同设定。弯折区域也可根据实际需要设置于其他位置,如与基板两相对短边垂直且处于两相对长边的中间位置或沿基板的对角线方向进行设置,走线区域3和绑定区域4a的位置也可做相应的调整,本发明对此都不做具体限定。
当基板为一层超薄玻璃或其第一基板层为超薄玻璃时,基板和柔性薄膜电路板及驱动IC之间利用ACF(Anisotropic Conductive Film,异方向导电膜)通过 FOG(Film on Glass)和COG(Chip on Glass)绑定工序绑定在一起。当基板的第一基板层为PI基板层时,基板和柔性薄膜电路板及驱动IC之间则可通过FOP(Film on PI)和COP(Chip on PI)绑定工序绑定在一起。此两种绑定方式都可使显示器件实现窄边框的显示效果。
在本发明另一实施例中,如图4(a)和图4(b)所示,绑定区域4b与走线区域3都设置于基板的背面(即第二表面),同时,绑定区域4b的引线也可通过基板上的过孔9连接至OLED模块2,从而与正面进行导通,实现全面屏的显示效果。
在本实施例,基板1a上与绑定区域4b对应的位置设有2个用于引线通过的过孔9,实际上,绑定区域4b的引线也可与走线区域3的电路走线共用通孔9,本实施例中通孔9的数量及位置也只是作为本发明的一个示例,并不用于限制本发明。
本实施例提供的显示器件采用超薄玻璃作为柔性基板,实现了器件可弯折性能的同时,还起到了很好的支撑作用,提高了器件整体的挺性。另外,本实施例还将绑定区域从显示器件的正面移至背面,进一步减小了器件正面的非显示区域面积,实现了全面屏显示。
在本发明一实施例中,如图5和图6所示,该柔性显示器件进一步包括第一保护层,该第一保护层覆盖OLED模块2并与基板1a封合为一体,用于保护基板1a的显示区域。当然,当绑定区域设置于基板1a的正面时,第一保护层也用于保护绑定区域的柔性薄膜电路板和驱动IC。第一保护层的材料可为超薄玻璃,例如,图5所示实施例中的第一保护层6a即为超薄玻璃。
当第一保护层为超薄玻璃时,第一保护层与基板1a间可通过四周封装、块状封装或整面封装等方式进行封合。例如,图5所示实施例是通过四周封装方式进行封合的,该封装层7a具体可为OCA、阻隔性OCA、硅橡胶、玻璃胶、UV胶等。在本实施例中,第一保护层6a设置于OLED模块2的正面,封装层7a设置于OLED模块2的周围,第一保护层6a与封装层7a密封相接,则基板1a上只需预留很窄的边框就可使基板1a与封装层7a紧密封合,进而与第一保护层6a封合为一体。该预留的边框只需要满足封合的基本需求即可,几乎不会对器件的全面屏显示产生任何影响,且本实施例采用超薄玻璃作为保护层进一步提高了器件整体的挺度。
当然,第一保护层也可为薄膜封装材料,如图6所示,可在OLED模块2的四周和正面都附上薄膜层形成第一保护层6b。具体地,该薄膜封装层可为有机薄膜和无机薄膜交替叠加所形成的透明薄膜层,其具有良好的水氧阻隔性。由于透明薄膜层轻薄,其厚度一般不超过3μm,采用薄膜进行整面封装,不影响光学显 示的同时也可达到很好的封合效果。
在本发明另一实施例中,如图7所示,该显示器件进一步包括第二保护层8a,该第二保护层8a覆盖走线区域3并与基板1a封合为一体,用于保护电路走线,并且当绑定区域也位于基板1a的背面时,第二保护层8a同样用于保护绑定区域的柔性薄膜电路板和驱动IC。在本实施例中,第二保护层8a的材料为薄膜封装材料,在其他实施例中,其也可为超薄玻璃。第二保护层8a与基板1a间也可采用OCA、阻隔性OCA、硅橡胶、玻璃胶、UV等胶体进行封合。
本实施例提供的显示器件通过在基板的背面增设另一保护层,使基板背面的电路走线和/或柔性薄膜电路板、驱动IC等部件也得到了相应的保护,进一步增加了器件整体的可靠性。
在本发明一实施例中,第一保护层和第二保护层都为超薄玻璃,如图8所示,显示器件包括第一保护层6c和第二保护层8b、以及设置在第一保护层6c和第二保护层8b之间的封装层7b和显示面板10(包括基板和OLED模块)。封装层7b中部包括空槽区域1031,显示面板10设置在封装层7b的空槽区域1031中,其中空槽区域1031的底面积尺寸大于显示面板10的尺寸。
由此可见,本发明实施例采用超薄玻璃替代现有柔性显示器件中的上、下盖板。由于超薄玻璃本身具有优良的挺度和耐弯折性能,可有效解决现有显示器件在挺度和预防膜层***之间存在需求矛盾的问题。同时,由于显示面板10是设置在第一保护层6c和第二保护层8b之间的空槽区域1031中,且空槽区域1031的底面积尺寸大于显示面板10的尺寸(即基板的尺寸),这样当柔性显示面板10发生弯折时,显示面板10可在空槽区域1031中相对于第一保护层6c和第二保护层8b滑动,从而缓解了弯折应力,可有效避免显示面板10内部的膜层分层,进一步提高了显示器件的耐弯折性能,提高了产品的可靠性。
在本发明一实施例中,为了使得显示面板10在弯折过程中在空槽区域1031中的滑动更加灵活顺畅,可在显示面板10和第一保护层6c之间(即OLED模块和第一保护层6c之间)设置第一硅油层,和/或在显示面板10和第二保护层8b之间(即基板和第二保护层8b之间)设置第二硅油层。然而应当理解,即使没有第一硅油层和第二硅油层,显示面板10也是可以在空槽区域1031中滑动的,本发明对该显示器件是否包括该第一硅油层和第二硅油层不做限定。
在一个实施例中,该显示器件的封装层7b包括至少一个导气槽以及用于密封导气槽的密封材料。这些导气槽可在贴合第一保护层6c的过程中,将贴合过程所产生的气泡导出,以避免这些气泡遗留在第一保护层6c和显示面板10之间。在第一保护层6c的贴合过程完成后,利用密封材料将该至少一个导气槽密封。
在本发明另一实施例中,第一保护层和第二保护层也都为超薄玻璃,显示器 件的结构如图9所示,其中,第二保护层8c带有凹槽,显示面板10设置于凹槽内,第一保护层6d则设置于显示面板10上。
该中间带有凹槽的第二保护层8c可以通过在一块超薄玻璃的中间通过刻蚀等方法进行挖槽制备,其可自己制备,也可直接通过玻璃销售公司购买得来,其中的凹槽可通过刻蚀等工艺方法制得,本发明对该中间带有凹槽的第二保护层8c的来源或制备方式不作限定。
可以采用光学胶的贴合方式将显示面板10设置在第二保护层8c的凹槽中。由于凹槽的存在,有效的限制了第一保护层6d的滑动范围,防止第一保护层6d在弯折的过程中发生过度的位置偏移而导致显示器件整体失效。
可通过光学胶将第一保护层6d贴合在显示面板10上,并且贴合完成后,第一保护层6d的上表面应当与第二保护层8c的上表面保持同一水平。在本发明一实施例中,中间带有凹槽的第二保护层8c的凹槽的横截面积要大于显示面板10的横截面积,这样显示器件在弯折过程中,显示面板10可以在凹槽中滑动,从而可进一步分散弯折应力,避免显示面板10的断裂失效。并且第一保护层6d应当位于第二保护层8c的凹槽中,由于第二保护层8c的存在,有效的抑制了第一保护层6d的滑移,提高了显示器件的耐弯折特性。
应当理解,显示面板10设置在第二保护层8b的凹槽内的方式可以是通过光学胶粘合或通过硅油贴合等,当通过硅油贴合时,显示面板10可在凹槽内更好地滑动以缓解弯折应力,但本发明对具体的设置方式和所采用的结合材料不作限定。
在本发明一实施例中,第一保护层6d的周边与第二保护层8c的凹槽的侧边采用激光烧结玻璃粉工艺完成封装。封装后的玻璃粉层103如图10所示。激光烧结后的玻璃粉层103填充了第一保护层6d的周边和第二保护层8c的凹槽的侧边之间的缝隙,从而避免了外部水氧进入显示面板10。内部封装完成后的显示面板10上表面覆盖有第一保护层6d,下表面和侧边覆盖有第二保护层8c的保护,四周有玻璃粉层103进行保护,有效地阻隔了水分和氧气的进入,提升了该显示器件的水氧阻隔性能。
另外,为了减小显示器件各材料层间的应力,防止其发生断裂分层现象,在本发明一实施例中,在相邻两材料层中增设应变隔断层。
图11所示为本发明一实施例提供的显示器件的结构示意图。如图11所示,本发明实施例提供的显示器件包括:叠加的第一模组材料层1001和第二模组材料层1003;以及至少一个设置在第一模组材料层1001和第二模组材料层1003之间的应变隔断层1002;其中,应变隔断层1002包括腔室22以及包围在腔室***的弹性材料层21。
应当理解,模组材料层为构成显示器件的功能单元,每个功能单元又有可能 由多个功能层构成。模组材料层可以是第一保护层、第二保护层、或OLED模块中的功能层(例如TFT阵列层、触摸屏和偏振光片等),为了将不同的模组材料层区分开,本发明实施例引入了第一和第二等限定词,如第一模组材料层1001和第二模组材料层1003等。例如,当第一模组材料层1001和第二模组材料层1003分别为第一保护层和第二保护层时,第一模组材料层1001和第二模组材料层1003之间的应变隔断层1002即为图8所示实施例中的封装层7b,其中腔室22对应封装层7b中的空槽区域1031,其内设置有显示面板10,包围在腔室22***的弹性材料层21即对应空槽区域1031周围的封装材料。
在一个实施例中,腔室22内可填充有气体、液体(如硅油)也可为真空状态,都可起到隔断应变的作用,然而腔室22内填充有气体时,可以平衡腔室22内外部的气压。
在一个实施例中,弹性材料层21可由低弹性模量的材料组成,其弹性模量可为几KPa至几十KPa,远远低于第一模组材料层1001和第二模组材料层1003(例如,显示器件中的模组材料层的弹性模量为几十GPa至上百GPa)。这样可以利用弹性材料层21变形过程中尤其是在受到剪应力时的变形能力,为第一模组材料层1001和第二模组材料层1003之间的滑移提供有效通道。
在一个实施例中,弹性材料层21的材质可为硅橡胶,然而本发明不限于此,弹性材料层21的材质也可为其他低弹性模量的材质。
本发明实施例提供的显示器件在第一模组材料层1001和第二模组材料层1003之间设置应变隔断层1002。由于应变隔断层1002可以有效地将第一模组材料层1001和第二模组材料层1003的应变隔断,因此可以有效地阻止发生弯曲变形时第一模组材料层1001和第二模组材料层1003之间的应变的传递,降低第一模组材料层1001和第二模组材料层1003的应变从而显著提高了显示器件的耐弯折性能,提高了产品的可靠性。
然而应当理解,本发明实施例提供柔性显示模组不限于仅包括图11所示的第一模组材料层1001和第二模组材料层1003,也可包括更多层模组材料层,并且相邻的两层模组材料层之间均可设置应变隔断层1002。本发明实施例对模组材料层的层数以及相邻的哪些模组材料层之间设置应变隔断层1002不作具体限定。
在本发明一实施例中,当所要制备的最终显示屏产品需要有预设的曲面形状时(例如中间为平面且四周为曲面的2.5D曲面,或中间和四周均为曲面的3D曲面),可先制备一个具有该预设曲面形状的边框,然后再将本发明实施例所提供的可弯折的显示器件安装到该边框内。该边框的周长可小于显示器件的周长。由于当器件为柔性显示器件时,其本身具有可弯曲特性,当将该整体安装到周长比该整体小的边框中时,该整体便由平面弯曲成了曲面。
在一个实施例中,将柔性显示器件安装到边框内可包括:将边框以框贴的方式贴合到柔性器件的整体的四周。为了确保柔性AMOLED面板和超薄玻璃安装的更牢靠,可以在边框的内表面设置环形凹槽。
环形凹槽的深度优选3-5毫米,这样既可以保证安装牢靠,又不至于使边框过于厚重。环形凹槽的宽度可等于柔性显示器件的厚度。
环形凹槽的断面形状可以是U形、弧形、梯形中的任一种。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种显示器件,包括:
    基板、
    设置于所述基板的第一表面的OLED模块、以及
    设置于所述基板的第二表面的走线区域,其中所述第二表面与所述第一表面相对,所述走线区域与所述OLED模块电性连接。
  2. 根据权利要求1所述的显示器件,其中,所述基板为超薄玻璃,所述基板包括过孔,所述走线区域的电路走线通过所述过孔连接至所述OLED模块。
  3. 根据权利要求2所述的显示器件,其中,进一步包括绑定区域,所述绑定区域设置于所述基板的所述第二表面,所述绑定区域的引线通过所述过孔连接至所述OLED模块。
  4. 根据权利要求1所述的显示器件,其中,进一步包括绑定区域,所述绑定区域设置于所述基板的所述第一表面。
  5. 根据权利要求4所述的显示器件,其中,所述绑定区域设置于所述基板的第一表面的短边边缘,所述走线区域设置于所述基板第二表面的两长边的边缘处。
  6. 根据权利要求1所述的显示器件,其中,所述基板包括封合为一体的第一基板层和第二基板层,所述第一基板层和第二基板层中的至少一层为超薄玻璃。
  7. 根据权利要求6所述的显示器件,其中,所述第一基板层和所述第二基板层通过OCA、阻隔性OCA、UV胶、硅橡胶或玻璃胶封合为一体。
  8. 根据权利要求1所述的显示器件,其中,进一步包括第一保护层,所述第一保护层覆盖所述OLED模块并与所述基板封合为一体。
  9. 根据权利要求8所述的显示器件,其中,进一步包括第二保护层,所述第二保护层覆盖所述走线区域并与所述基板封合为一体。
  10. 根据权利要求9所述的显示器件,其中,所述第一保护层和/或所述第二保护层的材料为超薄玻璃,分别通过OCA、阻隔性OCA、UV胶、硅橡胶或玻璃胶与所述基板封合。
  11. 根据权利要求1所述的显示器件,其中,进一步包括第一保护层、第二保护层以及设置于所述第一保护层和所述第二保护层之间的封装层,所述封装层的中部包括空槽区域,所述基板和所述OLED模块设置于所述空槽区域中。
  12. 根据权利要求11所述的显示器件,其中,所述OLED模块包括多个功能层,所述多个功能层中的相邻功能层间设置有应变隔断层,所述应变隔断层包括腔室和包围在所述腔室***的弹性材料层。
  13. 根据权利要求12所述的显示器件,其中,所述空槽区域和/或所述腔室 内填充有气体或液体,所述封装层和/或所述弹性材料层由低弹性模量的材料组成。
  14. 根据权利要求11至13任意一项所述的显示器件,其中,所述空槽区域的底面积尺寸大于所述基板的尺寸。
  15. 根据权利要求11至13任意一项所述的显示器件,其中,所述OLED模块与所述第一保护层之间设置有第一硅油层,和/或,所述基板与所述第二保护层之间设置有第二硅油层。
  16. 根据权利要求11至13任意一项所述的显示器件,其中,所述封装层包括至少一个导气槽和用于密封所述至少一个导气槽的密封材料。
  17. 根据权利要求1所述的显示器件,其中,进一步包括第一保护层和第二保护层,所述第二保护层设置有凹槽,所述基板和所述OLED模块设置于所述凹槽内,所述第一保护层设置于所述OLED模块上。
  18. 根据权利要求17所述的显示器件,其中,所述第一保护层位于所述第二保护层的所述凹槽中,且所述第一保护层的上表面与所述第二保护层的上表面持平。
  19. 根据权利要求18所述的显示器件,其中,所述凹槽的横截面积大于所述基板的横截面积。
  20. 根据权利要求19所述的显示器件,其中,所述第一保护层的周边与所述第二保护层的所述凹槽的侧边采用激光烧结玻璃粉工艺完成封装。
PCT/CN2018/091264 2017-10-31 2018-06-14 一种显示器件 WO2019085493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/582,193 US11600799B2 (en) 2017-10-31 2019-09-25 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711044437.5A CN107833978B (zh) 2017-10-31 2017-10-31 一种显示器件
CN201711044437.5 2017-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/582,193 Continuation US11600799B2 (en) 2017-10-31 2019-09-25 Display device

Publications (1)

Publication Number Publication Date
WO2019085493A1 true WO2019085493A1 (zh) 2019-05-09

Family

ID=61651055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091264 WO2019085493A1 (zh) 2017-10-31 2018-06-14 一种显示器件

Country Status (4)

Country Link
US (1) US11600799B2 (zh)
CN (1) CN107833978B (zh)
TW (1) TWI716705B (zh)
WO (1) WO2019085493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020095928A1 (ja) * 2018-11-09 2021-04-08 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いた樹脂フィルム、樹脂付金属箔、金属張積層板、配線基板及び回路実装品

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833978B (zh) 2017-10-31 2021-12-10 昆山国显光电有限公司 一种显示器件
CN108337342A (zh) * 2018-05-14 2018-07-27 维沃移动通信有限公司 一种显示屏及移动终端
CN111047980B (zh) * 2018-10-12 2021-12-14 华为技术有限公司 柔性显示面板及终端设备
CN109449194A (zh) * 2018-12-17 2019-03-08 武汉华星光电半导体显示技术有限公司 全屏显示面板
CN109949705A (zh) * 2019-03-29 2019-06-28 昆山国显光电有限公司 一种阵列基板及显示装置
CN110379322A (zh) * 2019-07-15 2019-10-25 深圳市华星光电半导体显示技术有限公司 显示面板、显示模组及显示装置
TWI754829B (zh) * 2019-07-17 2022-02-11 瑩耀科技股份有限公司 有機發光二極體封裝結構及其製造方法
CN110910774A (zh) * 2019-11-04 2020-03-24 深圳市华星光电半导体显示技术有限公司 显示面板、制造方法以及拼接显示面板
CN111584562A (zh) 2020-05-08 2020-08-25 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
TWI742681B (zh) * 2020-05-21 2021-10-11 友達光電股份有限公司 顯示裝置
CN113744630B (zh) * 2020-05-28 2023-06-23 云谷(固安)科技有限公司 显示模组、显示模组的制造方法及显示装置
TWI747700B (zh) * 2021-01-06 2021-11-21 致伸科技股份有限公司 鍵盤
CN112864337A (zh) * 2021-01-12 2021-05-28 深圳市华星光电半导体显示技术有限公司 柔性显示面板及其制备方法
CN114200727A (zh) * 2021-12-20 2022-03-18 昆山龙腾光电股份有限公司 便于开孔设计的基板以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454030A (zh) * 2002-04-25 2003-11-05 Lg.菲利浦Lcd株式会社 有机电致发光显示器件
US20070120157A1 (en) * 2005-11-29 2007-05-31 Eunah Kim Organic light emitting display device
CN202601095U (zh) * 2012-03-27 2012-12-12 京东方科技集团股份有限公司 柔性显示装置
US20160111678A1 (en) * 2014-10-21 2016-04-21 Samsung Display Co., Ltd. Light-transmitting adhesive film and display device comprising the same
CN106495468A (zh) * 2016-10-11 2017-03-15 武汉理工大学 一种低表面张力的超薄玻璃及其制备方法
CN106847864A (zh) * 2017-01-09 2017-06-13 张帆 一种窄边框触控显示面板及显示装置及其制作方法
CN107833978A (zh) * 2017-10-31 2018-03-23 昆山国显光电有限公司 一种显示器件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742057B2 (ja) * 1988-07-14 1998-04-22 シャープ株式会社 薄膜elパネル
TW517356B (en) * 2001-10-09 2003-01-11 Delta Optoelectronics Inc Package structure of display device and its packaging method
KR100563057B1 (ko) * 2003-11-14 2006-03-24 삼성에스디아이 주식회사 초박형 유기 전계 발광 표시장치 및 그 제조방법
JP4337852B2 (ja) * 2006-08-30 2009-09-30 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置とその製造方法及び電子機器
CN201114861Y (zh) * 2007-06-27 2008-09-10 东莞彩显有机发光科技有限公司 一种可产生白光的有机电致发光器件
CN104597651B (zh) * 2009-05-02 2017-12-05 株式会社半导体能源研究所 显示设备
KR101108157B1 (ko) * 2009-11-19 2012-01-31 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
TWI562422B (en) * 2010-12-16 2016-12-11 Semiconductor Energy Lab Co Ltd Light-emitting device and lighting device
US20140307398A1 (en) * 2011-12-01 2014-10-16 Sumitomo Bakelite Company Limited Image display device
KR101802558B1 (ko) * 2013-04-09 2017-11-29 주식회사 엘지화학 디스플레이 소자의 제조방법 및 이를 이용하여 제조된 디스플레이 소자
US9470919B2 (en) * 2013-05-14 2016-10-18 Microsoft Technology Licensing, Llc Methods for producing a glass-based non planar digital display
CN103346163B (zh) * 2013-06-19 2016-12-28 青岛海信电器股份有限公司 一种柔性显示装置及其制造方法
EP3087559B1 (en) * 2013-12-24 2021-05-05 Flexterra, Inc. Support structures for a flexible electronic component
JP6305759B2 (ja) * 2013-12-26 2018-04-04 株式会社ジャパンディスプレイ 表示装置
CN104035253A (zh) * 2014-05-26 2014-09-10 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板
JP6801664B2 (ja) * 2015-09-17 2020-12-16 コニカミノルタ株式会社 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
CN105206625B (zh) * 2015-10-29 2018-10-12 京东方光科技有限公司 一种阵列基板、显示面板及显示装置
KR102427668B1 (ko) * 2017-09-11 2022-08-02 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454030A (zh) * 2002-04-25 2003-11-05 Lg.菲利浦Lcd株式会社 有机电致发光显示器件
US20070120157A1 (en) * 2005-11-29 2007-05-31 Eunah Kim Organic light emitting display device
CN202601095U (zh) * 2012-03-27 2012-12-12 京东方科技集团股份有限公司 柔性显示装置
US20160111678A1 (en) * 2014-10-21 2016-04-21 Samsung Display Co., Ltd. Light-transmitting adhesive film and display device comprising the same
CN106495468A (zh) * 2016-10-11 2017-03-15 武汉理工大学 一种低表面张力的超薄玻璃及其制备方法
CN106847864A (zh) * 2017-01-09 2017-06-13 张帆 一种窄边框触控显示面板及显示装置及其制作方法
CN107833978A (zh) * 2017-10-31 2018-03-23 昆山国显光电有限公司 一种显示器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020095928A1 (ja) * 2018-11-09 2021-04-08 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いた樹脂フィルム、樹脂付金属箔、金属張積層板、配線基板及び回路実装品
US11345784B2 (en) 2018-11-09 2022-05-31 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and resin film, metal foil with resin, metal clad laminate, wiring board, and circuit mount component using same

Also Published As

Publication number Publication date
US11600799B2 (en) 2023-03-07
CN107833978A (zh) 2018-03-23
CN107833978B (zh) 2021-12-10
US20200020881A1 (en) 2020-01-16
TWI716705B (zh) 2021-01-21
TW201919227A (zh) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019085493A1 (zh) 一种显示器件
CN110597420B (zh) 触控组件和显示装置
CN108122497B (zh) 一种柔性阵列基板、柔性显示装置及组装方法
WO2019085484A1 (zh) 一种柔性显示模组及其制备方法
WO2019085486A1 (zh) 柔性基板及柔性基板制作方法
JP6364061B2 (ja) フレキシブルディスプレイ装置
CN111128011B (zh) 柔性显示设备和包括该柔性显示设备的电子装置
US20130222314A1 (en) Touch-sensitive device and touch-sensitive display device
US20110291987A1 (en) Touch-sensitive device
KR20200048205A (ko) 플렉서블 회로 필름 및 이를 포함하는 전자 기기
TWI737182B (zh) 顯示面板、顯示裝置及顯示面板的製造方法
TWI670849B (zh) 柔性顯示模組及柔性顯示模組製備方法
EP3620851B1 (en) Display device
CN111064829B (zh) 一种显示装置及终端设备
US20180198089A1 (en) Display device
KR20160054132A (ko) 연성인쇄회로기판 및 표시 장치
KR20230047339A (ko) 배선 필름 및 그를 포함한 표시 장치
WO2020103241A1 (zh) 一种oled显示器
CN116264049A (zh) 显示设备及其制造方法
KR20220075554A (ko) 표시장치
US9363903B2 (en) Supporting member for attaching functional panel to display panel, display device having the same, and method for fabricating display device
US20230343722A1 (en) Display device
US11899892B2 (en) Display device
JP2013250304A (ja) 表示装置
KR20150137223A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874636

Country of ref document: EP

Kind code of ref document: A1