WO2019074206A1 - 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈 - Google Patents

전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈 Download PDF

Info

Publication number
WO2019074206A1
WO2019074206A1 PCT/KR2018/010232 KR2018010232W WO2019074206A1 WO 2019074206 A1 WO2019074206 A1 WO 2019074206A1 KR 2018010232 W KR2018010232 W KR 2018010232W WO 2019074206 A1 WO2019074206 A1 WO 2019074206A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
movable
pair
bus bars
fixed
Prior art date
Application number
PCT/KR2018/010232
Other languages
English (en)
French (fr)
Inventor
지호준
김경모
문정오
박진용
이정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880036437.7A priority Critical patent/CN110710027B/zh
Priority to EP18866237.3A priority patent/EP3637501B1/en
Priority to US16/617,115 priority patent/US11302998B2/en
Priority to JP2019564812A priority patent/JP7045558B2/ja
Priority to PL18866237T priority patent/PL3637501T3/pl
Publication of WO2019074206A1 publication Critical patent/WO2019074206A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bus bar assembly for electrode lead bonding and a battery module including the same, and more particularly, to a bus bar assembly and a battery module including the same, which can be coupled to a bus bar without bending electrode leads.
  • nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries and lithium secondary batteries are commercially available.
  • lithium secondary batteries have almost no memory effect compared with nickel- The discharge rate is very low and the energy density is high.
  • the lithium secondary batteries mainly use a lithium-based oxide and a carbonaceous material as a cathode active material and an anode active material, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate each coated with such a positive electrode active material and a negative electrode active material are disposed with a separator interposed therebetween, and an outer casing, that is, a battery case, for sealingly storing the electrode assembly together with the electrolyte solution.
  • a lithium secondary battery can be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can, and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the casing.
  • the electric vehicle includes a hybrid electric vehicle, a plug-in hybrid electric vehicle, a pure electric car driven only by an electric motor and a battery without an internal combustion engine, and the like.
  • the battery module / pack of the middle- or large-sized apparatus is usually implemented through serial and / or parallel connection of the pouch type secondary batteries.
  • the electrode leads 20 of the pouch type secondary battery 10 are bent, as shown in FIG. 1, to come in contact with the active surface of the bus bar, and then welded (40).
  • the bus bar refers to a bar-shaped conductor made of a material such as copper, silver, tin-plated copper, or the like. Such a bus bar can securely energize a high-capacity current compared to a copper wire, and is widely used as a wiring member in a power supply device including a battery module of an electric vehicle.
  • a bus bar assembly for electrically connecting a plurality of battery cells having electrode leads, comprising: a stationary bus bar provided in the form of a bar-shaped conductor; A pair of movable bus bars centering the fixed bus bar and spaced apart from both sides of the fixed bus bar to form a fitting space into which at least one electrode lead can be inserted between the fixed bus bars; And a contact member for moving the pair of movable bus bars close to the stationary bus bar and bringing the electrode leads into close contact with the stationary bus bar while the electrode leads are located in the fitting space .
  • the pair of movable bus bars each have a tight contact portion provided in parallel with the fixed bus bar and a gap adjusting portion formed to be bent at both ends of the tight contact portion so as to be symmetrical with respect to the center of the fixed bus bar And may be configured to surround the periphery of the fixed bus bar.
  • the contact member may be a leaf spring whose opposite ends are coupled to the pair of movable bus bars to move the pair of movable bus bars in opposite directions with an elastic restoring force.
  • the two plate springs are provided in pairs, and both ends of the plate spring can be coupled to the end portions of the gap adjusting portions facing each other in the pair of movable bus bars.
  • a slit capable of passing through the electrode lead at a position corresponding to the fitting space, wherein the pair of movable bus bars are movable with respect to the stationary bus bar so that the pair of movable bus bars and the stationary bus And a bus bar support frame for supporting the bar.
  • the bus bar support frame may include spacing protrusions provided between the spacing adjusting portions of the pair of movable bus bars so as to be insertable and removable.
  • the bus bar support frame may further include a cantilever beam having a free end located behind the gap adjusting portion, and the gap retaining protrusion may be provided at the free end.
  • the cantilever may further include a protrusion protruding from the gap holding protrusion.
  • the bus bar support frame further includes a corner bracket configured to surround and support four corners of the pair of movable bus bars while the pair of movable bus bars are spaced farthest from both sides of the fixed bus bar can do.
  • a battery module including the above-described bus bar assembly can be provided.
  • the battery module may be used as an energy source for an electric vehicle, a hybrid vehicle or a power storage device.
  • the present invention it is possible to provide a bus bar assembly and a battery module including the bus bar assembly, wherein the electrode leads are connected to the bus bar without bending the electrode leads so that the electrode leads and the bus bar can be closely contacted.
  • the manual process for bending the electrode leads can be eliminated to improve the automation ratio of the battery module production line.
  • FIG. 1 is a schematic view showing a connection structure of an electrode lead and a bus bar according to the prior art
  • FIG. 2 and FIG. 3 are perspective views schematically showing a main configuration of a bus bar assembly and a battery cell stack body according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a bus bar support frame according to an embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a configuration of a bus bar assembly in a state before insertion of an electrode lead according to an embodiment of the present invention.
  • FIG. 6 is an enlarged view of the main part of Fig.
  • FIG. 7 is a perspective view illustrating a configuration of a bus bar assembly in a state after an electrode lead is inserted according to an embodiment of the present invention.
  • FIG. 8 is an enlarged view of the main part of Fig.
  • FIG. 9 and FIG. 10 are views schematically showing a configuration before and after bonding of the electrode lead and the bus bar assembly according to an embodiment of the present invention.
  • FIG. 2 and FIG. 3 are perspective views schematically showing a main configuration of a bus bar assembly and a battery cell stack body according to an embodiment of the present invention.
  • a bus bar assembly 1 is a bus bar assembly 1 for electrically connecting electrode leads 20 of a plurality of battery cells 10, A pair of movable bus bars 200 and a contact member 300 that allows the pair of movable bus bars 200 to move relative to the fixed bus bar 100 .
  • the electrode lead 20 of the battery cell 10 includes a positive electrode lead 21 and a negative electrode lead 22.
  • the cathode lead 21 and the anode lead 22 are inserted directly into the fitting space S of the bus bar assembly 1 according to the present invention and are assembled by the bus bar assembly 1
  • the welding can be performed after the end is clamped. Therefore, it is unnecessary to perform the bending process of the electrode lead 20 as in the prior art, thereby increasing the automation ratio of the production line.
  • the electrode leads 20 can be welded in a state in which mechanical compression is applied, so that even when two or more electrode leads 20 are joined in parallel, the reliability of electrical connection and mechanical bonding strength Can be maintained.
  • bus bar assembly 1 according to the present invention will be described in detail.
  • the fixed bus bar 100 may be made of a material such as copper, silver, and tin-plated copper having a rod-like electrical conductivity.
  • the fixed bus bar 100 can safely energize a high-capacity current.
  • the positive electrode leads 21 and the negative electrode leads 22 can be welded to and welded to these fixed bus bars and electrically connected to each other.
  • the positive electrode leads of the three battery cells are overlapped and the negative electrode leads of the other three battery cells are overlapped with each other, And then the end portions thereof may be closely contacted and welded to both sides of the fixed bus bar 100 to energize them.
  • the pair of movable bus bars 200 may be made of a metal material such as copper, silver, tin plating, or copper having electrical conductivity such as the fixed bus bar 100.
  • the pair of movable bus bars 200 are spaced apart from both sides of the fixed bus bar 100 by the center of the fixed bus bar 100 so that the fitting space S is formed between the fixed bus bar 100 and the fixed bus bar 100 . That is, the fitting space S is formed on two sides of the fixed bus bar 100.
  • the pair of movable bus bars 200 may be movable in a horizontal direction with respect to the fixed bus bar 100.
  • the pair of movable bus bars 200 can be moved close to the fixed bus bar 100 as shown in FIG. 3 while being spaced apart from both sides of the fixed bus bar 100 as shown in FIG.
  • the width of the fitting space S can be adjusted according to the horizontal movement of the pair of movable bus bars 200.
  • the electrode leads 20 inserted in the fitting space S are connected to the fixed bus bar 100 Can be mechanically biased by the pair of movable bus bars (200).
  • the movable bus bar 200 can include the tight fitting portion 210 and the gap adjusting portion 220 in a substantially " C " form.
  • the tight fitting portion 210 may be defined as a portion disposed in parallel with the fixed bus bar 100 and the gap adjusting portion 220 may be formed at both ends of the tight fitting portion 210 to bend toward the fixed bus bar 100, As shown in Fig.
  • the movable bus bar 200 may have a pair of two fixed bus bars 100 disposed symmetrically around the fixed bus bar 100 and surrounding the fixed bus bar 100. At this time, a fitting space S may be formed between the two tight fitting portions 210 and the opposite side surfaces of the fixed bus bar 100, and the gap adjusting portion 220 of one of the movable bus bars 200 The spacing adjusting part 220 of the movable bus bar 200 of FIG. Therefore, power can be supplied between the pair of movable bus bars 200.
  • the width of the fitting space S may be determined according to the length of the gap adjusting part 220.
  • the movable bus bar 200 since the movable bus bar 200 forms the fitting space S and urges the electrode lead 20, the movable bus bar 200 may not necessarily be made of an electrically conductive material.
  • the movable bus bar 200 may be made of a material different from that of the fixed bus bar 100 because the electric current between the positive electrode leads 21 and the negative electrode leads 22 is sufficiently made possible by the fixed bus bar 100.
  • the movable bus bar 200 when the movable bus bar 200 is manufactured with an insulating material, a better effect may be obtained in terms of prevention of electrical short circuit in the battery module.
  • the contact member 300 is configured to move the pair of movable bus bars 200 close to the fixed bus bar 100 so that the electrode leads 20 can be brought into close contact with the fixed bus bar 100.
  • the contact member 300 of this embodiment is a plate spring 300 that is coupled to a pair of movable bus bars 200 so that both ends thereof move in a direction opposite to each other with a pair of movable bus bars 200 with an elastic restoring force have.
  • the leaf spring 300 may be coupled to the spacing adjusting portion 220 of the movable bus bar 200.
  • one end of the leaf spring 300 is connected to the left movable bus
  • the other end of the bar 200 may be coupled to the right movable bus bar 200.
  • the leaf springs 300 are provided in pairs, and both ends of the plate springs 300 are coupled to the ends of the mutually opposing spacers 220 located at the upper and lower portions of the fixed bus bar 100, respectively.
  • the leaf spring 300 is opened by an external force.
  • the leaf spring 300 is again brought into the original state by the elastic restoring force.
  • the movable bus bar 200 can move close to the fixed bus bar 100 by the action of the leaf spring 300.
  • FIG. 4 is a perspective view of a bus bar support frame according to an embodiment of the present invention
  • FIGS. 5 and 6 are perspective views illustrating a configuration of a bus bar assembly in a state before insertion of an electrode lead according to an embodiment of the present invention
  • FIGS. 7 and 8 are perspective views illustrating a configuration of a bus bar assembly in a state after insertion of an electrode lead according to an embodiment of the present invention, and an enlarged view of a main part thereof.
  • FIG. 4 is a perspective view of a bus bar support frame according to an embodiment of the present invention
  • FIGS. 5 and 6 are perspective views illustrating a configuration of a bus bar assembly in a state before insertion of an electrode lead according to an embodiment of the present invention
  • FIGS. 7 and 8 are perspective views illustrating a configuration of a bus bar assembly in a state after insertion of an electrode lead according to an embodiment of the present invention, and an enlarged view of a main part thereof.
  • a bus bar assembly 1 includes a bus bar support frame 400, which provides a place where the fixed bus bar 100 and the pair of movable bus bars 200 can be supported, ). ≪ / RTI >
  • the bus bar support frame 400 may be attached to the front / rear surface of the stack of battery cells 10.
  • the battery cell stack can be housed in a module housing (not shown).
  • the module housing may be provided in the form of an open front / rear tube, and the bus bar support frame 400 may be coupled to the front / rear surfaces of the module housing to be located at the front / rear of the battery cell stack .
  • the bus bar support frame 400 is a plate-like structure, and the bus bar support frame 400 is provided at a position corresponding to the fitting space S between the fixed bus bar 100 and the pair of movable bus bars 200, And a slit 410 through which the movable bus bar 200 can pass, and the pair of movable bus bars 200 are configured to support the bus bars so as to be horizontally movable with respect to the fixed bus bar 100 .
  • the bus bar support frame 400 may further include a gap retaining protrusion 420, a cantilever beam 430, and a corner bracket 450.
  • the spacing protrusions 420 are spaced apart from each other by a pair of movable bus bars 200 so as to secure a sufficient space S between the movable bus bars 100.
  • the gap retaining protrusions 420 can be inserted and released between the gap adjusting portions 220 of the pair of movable bus bars 200.
  • the spacing protrusions 420 may be interposed between the spacing regulators 220 of the movable bus bars 200 pulled apart from each other.
  • the gap holding protrusions 420 are held between the gap adjusting portions 220 so that the leaf springs 300 can be kept open so that the fitting spaces S are sufficiently secured and the plurality of electrode leads 20 Can be inserted and arranged.
  • the spacing protrusions 420 are provided on the cantilever beam 430 so that the spacing protrusions 420 can be inserted and removed between the spacing control portions 220 by pressing the cantilever beam 430 lightly.
  • the free end of the cantilever beam 430 may be located at the rear of the gap adjusting part 220.
  • the free end of the cantilever beam 430 is fixed at one end and the other end is free.
  • the cantilever beam 430 may be formed by cutting one side of the plate surface of the bus bar support frame 400 and may include a spacing protrusion 420 at the free end thereof.
  • the cantilever beam 430 may further include a pressing protrusion 440 formed at a position spaced apart from the gap holding protrusion 420.
  • the pushing protrusion 440 pushes the cantilever beam 430 more easily.
  • the pressing projection 440 is pressed by a welding jig (not shown) before welding the electrode lead 20, and the cantilever beam 430 is moved backward, so that the gap retaining protrusion 420 is inserted into the movable bus bars 200
  • the gap adjusting portions 220 of the movable bus bars 200 can be brought into contact with each other because the elastic restoring force of the leaf spring 300 is exerted. In this case, the fitting space S becomes narrow, and the electrode leads 20 interposed therebetween can be tightly attached to the fixed bus bar 100 and the pair of movable bus bars 200.
  • the movable bus bar 200 is configured to be fluidly mounted on the bus bar support frame 400 .
  • the corner bracket 450 of the bus bar support frame 400 plays a role of supporting the movable bus bar 200 while allowing fluidity of the movable bus bar 200.
  • the corner bracket 450 there are four corner brackets 450 in total, and the four corner brackets 450 are positioned at corner portions of the movable bus bar 200 to restrain the movable bus bar 200. More specifically, the corner bracket 450 is configured such that a pair of movable bus bars 200 are spaced farthest from both sides of the fixed bus bar 100, that is, And may be configured to enclose the four corner portions of the bar 200. In other words, the four corner brackets 450 restrain the pair of movable bus bars 200 vertically and horizontally. For example, in a state in which the gap retaining protrusions 420 are missing, So that the movable bus bar 200 can flow in the flow allowance space of the corner bracket 450.
  • the present embodiment is an example in which three battery cells are connected in parallel and the positive electrode leads 21 and the negative electrode leads 22 are connected to the bus bar assembly 1.
  • the fitting space S of the bus bar assembly 1 is sufficiently secured as shown in FIG.
  • the movable bus bar 200 is pulled out to interpose the gap retaining protrusion 420 in the space between the space adjusting portions 220 of the movable bus bar 200 to secure the fitting space S sufficiently .
  • the fitting space S is two sides on both sides of the fixed bus bar 100 as a reference.
  • the positive electrode leads 21 and the negative electrode leads 22 are inserted into the fitting space S in a bundle unit.
  • a pair of movable bus bars 200 are moved close to the stationary bus bar 100 to bring the cathode leads 21 and the cathode leads 22 into close contact with the fixed bus bar 100 .
  • the gap holding protrusion 420 is pulled out between the pair of movable bus bars 200 by pressing the cantilever beam 430 using a welding jig (not shown).
  • the pair of movable bus bars 200 are moved in directions opposite to each other due to the elastic restoring force of the plate spring 300, and the end portions of the cathode leads 21 and the end portions of the cathode leads 22 are integrally fixed And can be pressed between the bus bar 100 and the movable bus bar 200. In this state, the positive electrode leads 21 and the negative electrode leads 22 are welded.
  • the bending process of the electrode leads 20 is not required at all in the welding process of the electrode leads 20, unlike the prior art (see FIG. Therefore, the manual process for bending the electrode leads 20 can be eliminated and the automation ratio of the battery module production line can be improved.
  • the electrode leads 20 can be welded in a mechanically pressed state, the reliability of the electrical connection and the mechanical bonding strength can be improved regardless of the number of the electrode leads 20 in the parallel connection structure.
  • the battery module may include the bus bar assembly 1 described above.
  • the battery module includes a battery cell stack, a module housing for housing the battery cell stack, various devices (not shown) for controlling charging and discharging of the battery cells such as a BMS (Battery Management System), a current sensor, a fuse As shown in FIG.
  • BMS Battery Management System
  • a current sensor As shown in FIG.
  • Such a battery module may be used as an energy source for an electric vehicle, a hybrid car or a power storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 버스바 조립체를 개시한다. 본 발명의 버스바 조립체는 전극 리드를 구비한 복수의 배터리 셀들을 전기적으로 연결시키는 버스바 조립체로서, 막대형 전도체 형태로 마련된 고정형 버스바; 상기 고정형 버스바를 가운데 두고 상기 고정형 버스바의 양쪽 옆으로 이격 배치되어 상기 고정형 버스바와의 사이에 적어도 하나씩의 전극 리드를 삽입할 수 있는 끼움 공간을 형성하는 한 쌍의 이동형 버스바; 및 상기 전극 리드가 상기 끼움 공간에 위치한 상태에서 상기 한 쌍의 이동형 버스바를 상기 고정형 버스바에 근접하게 이동시켜 상기 전극 리드를 상기 고정형 버스바에 밀착시키는 밀착부재를 포함한다.

Description

전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈
본 발명은, 전극 리드 접합용 버스바 조립체와 이를 포함하는 배터리 모듈에 관한 것으로서, 보다 상세하게는 전극 리드들을 벤딩하지 않고 버스바에 결합할 수 있는 버스바 조립체와 이를 포함하는 배터리 모듈에 관한 것이다.
본 출원은 2017년 10월 10일자로 출원된 한국 특허출원 번호 제10-2017-0129091호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
현재 상용화된 이차 전지는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐만 아니라, 내연 기관 및/또는 전기 모터를 이용해서 구동력을 확보하려는 전기 자동차에도 이차 전지가 널리 이용되고 있다. 상기 전기 자동차에는 하이브리드 자동차, 플러그인 하이브리드 자동차 및 내연 기관 없이 전기 모터와 배터리로만 구동되는 순수 전기 자동차등이 포함된다.
이러한 전기 자동차에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차 전지가 전기적으로 연결된다. 특히, 중대형 장치에는 적층이 용이하다는 장점으로 인해 파우치형 이차 전지가 많이 이용된다. 따라서 통상적으로 중대형 장치의 배터리 모듈/팩은 상기 파우치형 이차 전지들의 직렬 및/또는 병렬연결을 통해 구현되고 있다.
한편, 배터리 모듈을 구성할 때 파우치형 이차 전지(10)의 전극 리드(20)들을, 도 1과 같이, 벤딩하여 버스바의 성단면 위에 접촉시킨 다음, 이를 용접(40)하여 접합시킨다. 여기서 상기 버스바(bus bar)는 구리, 은, 주석도금 동과 같은 재질로 바 형태로 제작된 막대형 전도체를 의미한다. 이러한 버스 바는 동선에 비해 고용량의 전류를 안전하게 통전시킬 수 있어 전기 자동차의 배터리 모듈 등을 비롯한 전원공급장치 내에 결선부재로 많이 사용되고 있다.
그런데 종래 기술의 경우, 전극 리드(20)들의 벤딩 형상을 유지하기 위해 작업자에 의한 다수의 수작업이 요구되고, 금속 재질의 전극 리드(20)들의 탄성 회복력에 의해 전극 리드(20)들과 버스바(30)가 잘 밀착되지 않는 문제점이 있다.
특히, 3개 내지 4개 이상의 전극 리드들 간의 병렬연결 시 다수의 전극 리드를 버스바 상에 겹쳐 놓아야 하기 때문에 용접을 수행하기가 더욱 난해하며, 이 경우 용접 품질도 저하되는 문제점이 있다.
따라서, 본 발명이 이루고자 하는 기술적 과제는, 전극 리드들을 벤딩하지 않고 버스바에 결합하여 전극 리드들과 버스바의 밀착이 가능한 버스바 조립체 및 이를 포함하는 배터리 모듈을 제공하는 것을 목적으로 한다.
다만, 본 발명이 이루고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따르면, 전극 리드를 구비한 복수의 배터리 셀들을 전기적으로 연결시키는 버스바 조립체로서, 막대형 전도체 형태로 마련된 고정형 버스바; 상기 고정형 버스바를 가운데 두고 상기 고정형 버스바의 양쪽 옆으로 이격 배치되어 상기 고정형 버스바와의 사이에 적어도 하나씩의 전극 리드를 삽입할 수 있는 끼움 공간을 형성하는 한 쌍의 이동형 버스바; 및 상기 전극 리드가 상기 끼움 공간에 위치한 상태에서 상기 한 쌍의 이동형 버스바를 상기 고정형 버스바에 근접하게 이동시켜 상기 전극 리드를 상기 고정형 버스바에 밀착시키는 밀착부재를 포함하는 버스바 조립체가 제공될 수 있다.
상기 한 쌍의 이동형 버스바는 각각 상기 고정형 버스바에 나란하게 마련되는 밀착부와, 상기 밀착부의 양쪽 끝단에서 절곡되게 연장 형성되는 간격 조절부를 구비하고, 상기 고정형 버스바를 가운데 두고 상호 간 대칭되게 배치되어 상기 고정형 버스바의 둘레를 에워싸도록 구성될 수 있다.
상기 밀착부재는, 양단부가 상기 한 쌍의 이동형 버스바에 결합되어 탄성 복원력으로 상기 한 쌍의 이동형 버스바를 상호 간 대향하는 방향으로 이동시키는 판 스프링일 수 있다.
상기 판 스프링은 2개가 한 쌍으로 마련되고, 상기 한 쌍의 이동형 버스바에서 상호 마주하는 상기 간격 조절부들의 끝단부에 양단부가 결합될 수 있다.
판형 구조물로서, 상기 끼움 공간에 대응하는 위치에 상기 전극 리드가 통과할 수 있는 슬릿을 구비하며, 상기 한 쌍의 이동형 버스바가 상기 고정형 버스바에 대해 이동 가능하게 상기 한 쌍의 이동형 버스바와 상기 고정형 버스바를 지지하는 버스바 지지 프레임을 더 포함할 수 있다.
상기 버스바 지지 프레임은, 상기 한 쌍의 이동형 버스바의 간격 조절부들 사이에 삽입 및 삽입 해제 가능하게 마련되는 간격유지 돌기를 구비할 수 있다.
상기 버스바 지지 프레임은, 상기 간격 조절부의 배후에 위치하는 자유단을 갖는 캔틸레버보를 더 구비하고, 상기 간격유지 돌기는 상기 자유단에 마련될 수 있다.
상기 캔틸레버보는, 상기 간격유지 돌기와 이격된 위치에 돌출 형성된 가압용 돌기를 더 구비할 수 있다.
상기 버스바 지지 프레임은, 상기 한 쌍의 이동형 버스바가 상기 고정형 버스바의 양쪽 옆으로 가장 멀리 이격된 상태에서 상기 한 쌍의 이동형 버스바의 4개의 코너 부분을 감싸며 지지하도록 마련된 코너 브라켓을 더 구비할 수 있다.
본 발명의 다른 양태에 따르면, 상술한 버스바 조립체를 포함하는 배터리 모듈이 제공될 수 있다. 상기 배터리 모듈은 전기 자동차나 하이브리드 자동차 또는 전력 저장장치의 에너지원으로 사용될 수도 있다.
본 발명에 따르면, 전극 리드들을 벤딩하지 않고 버스바에 결합하여 전극 리드들과 버스바의 밀착이 가능한 버스바 조립체 및 이를 포함하는 배터리 모듈이 제공될 수 있다.
또한, 일체의 전극 리드들이 기계적으로 압박된 상태에서 용접될 수 있으므로 병렬연결 구조에서 전극 리드들의 개수와 무관하게 전기적 연결성 및 기계적 접합강도 신뢰성이 향상될 수 있다.
또한, 전극 리드들의 벤딩을 위한 수작업 공정이 제거되어 배터리 모듈 생산 라인의 자동화 비율이 향상될 수 있다.
본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래 기술에 따른 전극 리드와 버스바의 접합 구성을 개략적으로 도시한 도면이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 버스바 조립체의 주요 구성과 배터리 셀 적층체를 개략적으로 도시한 사시도들이다.
도 4는 본 발명의 일 실시예에 따른 버스바 지지 프레임의 사시도이다.
도 5는 본 발명의 일 실시예에 따른 전극 리드 삽입 전 상태의 버스바 조립체의 구성을 도시한 사시도이다.
도 6은 도 5의 주요 부분 확대도이다.
도 7은 본 발명의 일 실시예에 따른 전극 리드 삽입 후 상태의 버스바 조립체의 구성을 도시한 사시도이다.
도 8은 도 7의 주요 부분 확대도이다.
도 9 및 도 10은 본 발명의 일 실시예에 따른 전극 리드와 버스바 조립체의 접합 전/후 구성을 개략적으로 도시한 도면들이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 실시형태는 통상의 기술자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이므로 도면에서의 구성요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 따라서, 각 구성요소의 크기나 비율은 실제적인 크기나 비율을 전적으로 반영하는 것은 아니다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 버스바 조립체의 주요 구성과 배터리 셀 적층체를 개략적으로 도시한 사시도들이다.
이들 도면들을 참조하면, 본 발명의 일 실시예에 따른 버스바 조립체(1)는, 복수의 배터리 셀(10)들의 전극 리드(20)들을 전기적으로 연결시키는 버스바 조립체(1)로서, 고정형 버스바(100)와 한 쌍의 이동형 버스바(200), 상기 고정형 버스바(100)에 대해 상기 한 쌍의 이동형 버스바(200)를 상대 이동 가능하게 하는 밀착부재(300)를 포함할 수 있다.
배터리 셀(10)의 전극 리드(20)는 양극 리드(21)와 음극 리드(22)를 포함한다. 자세히 후술하겠지만, 본 발명에 따르면, 상기 양극 리드(21)와 음극 리드(22)는 본 발명에 따른 버스바 조립체(1)의 끼움 공간(S)에 바로 삽입되어 버스바 조립체(1)에 의해 그 단부가 클램핑된 후 용접이 수행될 수 있다. 따라서 종래와 같은 전극 리드(20) 벤딩 작업 과정 없이 필요 없어져 생산 라인의 자동화 비율을 높일 수 있다. 또한, 본 발명에 의하면 기계적 압박이 가해진 상태에서 전극 리드(20)들이 용접될 수 있어, 2개 이상의 전극 리드(20)를 병렬적으로 접합할 경우에도, 전기적 연결성과 기계적 접합 강도에 대한 신뢰성이 유지될 수 있다.
이하에서 이러한 본 발명에 따른 버스바 조립체(1)를 자세히 살펴본다.
먼저, 고정형 버스바(100)는 막대형으로 전기 전도성을 갖는 구리, 은, 주석도금 동과 같은 재질로 마련될 수 있다. 상기 고정형 버스바(100)는 고용량의 전류를 안전하게 통전시킬 수 있다. 양극 리드(21)들과 음극 리드(22)들은 이러한 고정형 버스바에 밀착 및 용접되어 서로 통전될 수 있다. 이를테면, 총 6개의 배터리 셀(10)을 3개씩 병렬 연결한 구성으로, 도 2 내지 도 3에 도시한 바와 같이, 3개의 배터리 셀의 양극 리드들을 겹치고 다른 3개의 배터리 셀의 음극 리드를 겹쳐서 상기 끼움 공간(S)에 삽입한 후 그 단부들을 고정형 버스바(100)의 양 측면에 밀착 및 용접하여 이들을 통전시킬 수 있다.
한 쌍의 이동형 버스바(200)는 고정형 버스바(100)와 같이 전기 전도성을 갖는 구리, 은, 주석도금, 동과 같은 금속 재질로 마련될 수 있다.
상기 한 쌍의 이동형 버스바(200)는 고정형 버스바(100)를 가운데 두고 고정형 버스바(100)의 양쪽 옆으로 이격 배치되어 상기 고정형 버스바(100)와의 사이에 상기 끼움 공간(S)을 형성할 수 있다. 즉, 상기 끼움 공간(S)은 고정형 버스바(100) 양쪽 옆 2곳에 형성된다.
또한, 상기 한 쌍의 이동형 버스바(200)는 상기 고정형 버스바(100)에 대해 수평 방향으로 이동 가능하게 마련될 수 있다. 한 쌍의 이동형 버스바(200)는 도 2와 같이 고정형 버스바(100)의 양쪽 옆으로 이격 배치된 상태에서 도 3과 같이 고정형 버스바(100)에 근접하게 이동할 수 있다. 따라서 끼움 공간(S)은 한 쌍의 이동형 버스바(200)의 수평 이동에 따라 폭이 조절될 수 있고 이러한 끼움 공간(S)에 삽입된 전극 리드(20)들은 고정형 버스바(100)와 한 쌍의 이동형 버스바(200)에 의해 기계적으로 압박될 수 있다.
보다 구체적으로, 본 실시예에 따른 이동형 버스바(200)는 대략 "ㄷ" 형태로 밀착부(210)와 간격 조절부(220)를 포함할 수 있다.
밀착부(210)는 고정형 버스바(100)에 나란하게 배치되는 부분으로 정의될 수 있고, 간격 조절부(220)는 상기 밀착부(210)의 양쪽 끝단에서 고정형 버스바(100)를 향해 절곡되게 연장 형성되는 부분으로 정의될 수 있다.
이와 같은 이동형 버스바(200)는 2개를 한 쌍으로 하여 고정형 버스바(100)를 가운데 두고 상호 간 대칭되게 배치되며 고정형 버스바(100)의 둘레를 에워싸는 형태를 취할 수 있다. 이때 2개의 밀착부(210)와 고정형 버스바(100)의 양쪽 측면 사이에 끼움 공간(S)이 형성될 수 있으며, 어느 하나의 이동형 버스바(200)의 간격 조절부(220)와 다른 하나의 이동형 버스바(200)의 간격 조절부(220)는 서로 맞닿을 수 있게 구성될 수 있다. 따라서 상기 한 쌍의 이동형 버스바(200) 간에도 통전이 가능해질 수 있다. 그리고 간격 조절부(220)의 길이에 따라 끼움 공간(S)의 폭이 결정될 수 있다.
한편, 본 실시예와 달리, 이동형 버스바(200)는 끼움 공간(S)을 형성하고 전극 리드(20)를 압박하는 구성이므로 반드시 전기 전도성을 갖는 재질로 마련되지 않더라도 무방할 수 있다. 즉 양극 리드(21)들과 음극 리드(22)들 간의 통전은 고정형 버스바(100)로 충분히 가능하므로 이동형 버스바(200)는 고정형 버스바(100)와 다른 절연 소재로 마련될 수도 있다. 본 실시예의 대안으로 절연 소재로 이동형 버스바(200)를 제작할 경우 배터리 모듈 내 전기적 단락 방지 측면에서 보다 나은 효과를 얻을 수도 있을 것으로 본다.
밀착부재(300)는 상기 한 쌍의 이동형 버스바(200)를 상기 고정형 버스바(100)에 근접하게 이동시켜 전극 리드(20)가 고정형 버스바(100)에 밀착될 수 있게 하는 구성이다.
본 실시예의 밀착부재(300)는 양단부가 한 쌍의 이동형 버스바(200)에 결합되어 탄성 복원력으로 한 쌍의 이동형 버스바(200)를 상호 대향하는 방향으로 이동시키는 판 스프링(300)일 수 있다.
이를테면, 다시 도 2와 도 3을 참조하여 살펴보면, 판 스프링(300)은 이동형 버스바(200)의 간격 조절부(220)에 결합될 수 있으며, 이때 판 스프링(300)의 일단은 좌측 이동형 버스바(200)에 타단은 우측 이동형 버스바(200)에 결합될 수 있다. 보다 구체적으로, 상기 판 스프링(300)은 2개가 한 쌍으로 마련되고, 고정형 버스바(100)의 상부와 하부에 위치한 상호 마주하는 간격 조절부(220)의 끝단부에 각각 양단부가 결합된다.
이러한 판 스프링(300)은, 도 2와 같이, 어떤 외력에 의해 벌려진 상태였다가 도 3과 같이 외력이 없어지면, 다시 탄성 복원력에 의해 원 상태로 오므려진다. 이동형 버스바(200)는 이러한 판 스프링(300)의 작용에 의해 고정형 버스바(100)에 대해 근접하게 이동할 수 있다.
도 4는 본 발명의 일 실시예에 따른 버스바 지지 프레임의 사시도, 도 5 및 도 6은 본 발명의 일 실시예에 따른 전극 리드 삽입 전 상태의 버스바 조립체의 구성을 도시한 사시도와 그 주요 부분 확대도, 도 7 및 도 8은 본 발명의 일 실시예에 따른 전극 리드 삽입 후 상태의 버스바 조립체의 구성을 도시한 사시도와 그 주요 부분 확대도이다.
이들 도면들을 참조하면, 본 발명에 따른 버스바 조립체(1)는 상술한 고정형 버스바(100)와 한 쌍의 이동형 버스바(200)가 지지될 수 있는 장소를 제공하는 버스바 지지 프레임(400)을 더 포함할 수 있다.
버스바 지지 프레임(400)은 배터리 셀(10) 적층체의 전/후면에 부착될 수 있다. 예컨대, 배터리 셀 적층체는 모듈 하우징(미도시)에 수납될 수 있다. 상기 모듈 하우징은 전/후면이 오픈된 각 관 형태로 제공될 수 있고, 버스바 지지 프레임(400)은 이러한 모듈 하우징의 전/후면에 결합되어 배터리 셀 적층체의 전/후면에 위치할 수 있다.
도 4에 도시한 바와 같이, 버스바 지지 프레임(400)은 판형 구조물로서, 고정형 버스바(100)와 한 쌍의 이동형 버스바(200) 사이의 끼움 공간(S)에 대응하는 위치에 전극 리드(20)가 통과할 수 있는 슬릿(410)을 구비하며, 상기 한 쌍의 이동형 버스바(200)가 상기 고정형 버스바(100)에 대해 수평 이동 가능하게 상기 버스바들을 지지할 수 있게 구성된다.
이를 위해 버스바 지지 프레임(400)은 간격유지 돌기(420), 캔틸레버보(430) 및 코너 브라켓(450)을 더 구비할 수 있다.
먼저, 간격유지 돌기(420)는 끼움 공간(S)을 충분히 확보할 수 있도록 한 쌍의 이동형 버스바(200)를 고정형 버스바(100)의 양쪽 옆으로 이격 배치시켜주는 역할을 하는 구성이다.
도 5 내지 도 8에 도시한 바와 같이, 간격유지 돌기(420)는 한 쌍의 이동형 버스바(200)의 간격 조절부(220)들 사이에 삽입 및 삽입 해제 가능하게 마련될 수 있다.
다시 말하면, 간격유지 돌기(420)는 서로 멀어지게 잡아 당겨진 이동형 버스바(200)들의 간격 조절부(220)들 사이에 개재될 수 있다. 간격유지 돌기(420)가 간격 조절부(220)들 사이에 끼여 있게 됨으로써 판 스프링(300)이 벌려진 상태로 유지될 수 있고 이에 따라 끼움 공간(S)을 충분히 확보하고 다수의 전극 리드(20)들을 삽입 배치시킬 수 있다.
그리고 간격유지 돌기(420)는 캔틸레버보(430)에 마련되어 상기 캔틸레버보(430)를 가볍게 눌러주면 간격유지 돌기(420)가 간격 조절부(220)들 사이에서 삽입 해제될 수 있다.
캔틸레버보(430)는 한쪽 끝이 고정되고 다른 끝은 자유단 상태로 되어있는 보로서 상기 자유단이 간격 조절부(220)의 배후에 위치할 수 있다. 이러한 캔틸레버보(430)는 버스바 지지 프레임(400)의 판면 일 부분을 절개한 형태로 마련될 수 있으며 상기 자유단에 간격유지 돌기(420)가 구비될 수 있다.
또한, 캔틸레버보(430)는 간격유지 돌기(420)와 이격된 위치에 돌출 형성되는 가압용 돌기(440)를 더 구비할 수 있다. 가압용 돌기(440)는 캔틸레버보(430)를 보다 수월하게 눌러주기 위한 구성이다. 예컨대, 전극 리드(20) 용접 전 용접 지그(미도시)에 의해 상기 가압용 돌기(440) 부분이 눌려져 캔틸레버보(430)가 뒤로 제껴지면서 간격유지 돌기(420)가 이동형 버스바(200)들의 간격 조절부(220)들 사이에서 빠지고 판 스프링(300)의 탄성 복원력이 작용해 이동형 버스바(200)들의 간격 조절부(220)들이 서로 맞닿게 될 수 있다. 이 경우, 끼움 공간(S)이 좁아져 이에 개재되는 전극 리드(20)들은 고정형 버스바(100)와 한 쌍의 이동형 버스바(200)에 타이트하게 밀착될 수 있다.
한편, 고정형 버스바(100)는 버스바 지지 프레임(400) 상에 고정적으로 부착되는 구성이지만, 이동형 버스바(200)는 버스바 지지 프레임(400) 상에 유동적일 수 있게 부착되어야 하는 구성이다.
버스바 지지 프레임(400)의 코너 브라켓(450)은 이러한 이동형 버스바(200)의 유동성을 허용하면서 이동형 버스바(200)를 지지하는 역할을 담당한다.
본 실시예에서 코너 브라켓(450)은 총 4개이며, 상기 4개의 코너 브라켓(450)이 이동형 버스바(200)의 코너 부분에 위치하여 이동형 버스바(200)를 유동 가능하게 구속한다. 구체적으로 코너 브라켓(450)은 한 쌍의 이동형 버스바(200)가 고정형 버스바(100)의 양쪽 옆으로 가장 멀리 이격된 상태 즉, 간격유지 돌기(420)가 끼워진 상태에서 한 쌍의 이동형 버스바(200)의 4개의 코너 부분을 감싸도록 구성될 수 있다. 다시 말하면, 4개의 코너 브라켓(450)은 한 쌍의 이동형 버스바(200)를 상하좌우로 구속하되, 예컨대 간격유지 돌기(420)가 빠진 상태에서 도 8의 D로 표시한 만큼의 유동 허용공간을 가져 상기 코너 브라켓(450)의 유동 허용공간 내에서 이동형 버스바(200)의 유동이 가능하다.
이어서 도 9 내지 도 10을 참조하여 본 발명에 따른 버스바 조립체(1)의 작동 및 전극 리드(20) 접합 방법을 간략히 알아본다. 본 실시예는 3개씩의 배터리 셀들을 병렬연결하고 이들의 양극 리드(21)들과 음극 리드(22)들을 버스바 조립체(1)에 접합시킨 예이다.
먼저, 도 9와 같이 버스바 조립체(1)의 끼움 공간(S)을 충분히 확보한다. 이때, 전술한 바와 같이 이동형 버스바(200)를 잡아당겨 이동형 버스바(200)의 간격 조절부(220) 사이 공간에 간격유지 돌기(420)를 개재시킴으로써 상기 끼움 공간(S)을 충분히 확보할 수 있다.
그 다음, 양극 리드(21)들의 단부와 음극 리드(22)들의 단부를 각각 끼움 공간(S)에 삽입 배치시킨다. 상기 끼움 공간(S)은 고정형 버스바(100)를 기준으로 그 양쪽 옆 2 곳이다. 양극 리드(21)들과 음극 리드(22)들을 각각 한 묶음 단위로 그 단부들만 상기 끼움 공간(S)에 삽입 배치시킨다.
그 다음, 도 10과 같이 한 쌍의 이동형 버스바(200)를 고정형 버스바(100)에 근접하게 이동시켜 양극 리드(21)들과 음극 리드(22)들을 고정형 버스바(100)에 밀착시킨다. 부연하면, 용접 지그(미도시)를 사용하여 캔틸레버보(430)를 눌러서 간격유지 돌기(420)를 한 쌍의 이동형 버스바(200) 사이에서 빼낸다. 이때, 한 쌍의 이동형 버스바(200)는 판 스프링(300)의 탄성 복원력에 의해 서로 대향하는 방향으로 이동하게 되고 상기 양극 리드(21)들의 단부와 음극 리드(22)들의 단부는 일체로 고정형 버스바(100)와 이동형 버스바(200) 사이에 압박될 수 있다. 이 상태에서 상기 양극 리드(21)들과 음극 리드(22)들에 용접을 수행한다.
이와 같은 본 발명에 따른 버스바 조립체(1) 구조와 작용에 따르면, 종래 기술과 달리(도 1 참조) 전극 리드(20) 용접 과정에서 전극 리드(20) 벤딩 과정이 전혀 필요하지 아니한다. 따라서 전극 리드(20)들의 벤딩을 위한 수작업 공정이 제거되어 배터리 모듈 생산 라인의 자동화 비율이 향상될 수 있다.
또한, 일체의 전극 리드(20)들이 기계적으로 압박된 상태에서 용접될 수 있으므로 병렬연결 구조에서 전극 리드(20)들의 개수와 무관하게 전기적 연결성 및 기계적 접합강도 신뢰성이 향상될 수 있다.
한편, 본 발명에 따른 배터리 모듈은 상술한 버스바 조립체(1)를 포함하여 구성될 수 있다. 또한, 배터리 모듈은 배터리 셀 적층체, 상기 배터리 셀 적층체를 수납하는 모듈 하우징, 배터리 셀들의 충방전을 제어하기 위한 각종 장치(미도시), 예컨대 BMS(Battery Management System), 전류 센서, 퓨즈 등을 더 포함할 수 있다. 이러한 배터리 모듈은 전기 자동차나 하이브리드 자동차 또는 전력 저장장치의 에너지원으로 사용될 수도 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 상, 하, 좌, 우와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (10)

  1. 전극 리드를 구비한 복수의 배터리 셀들을 전기적으로 연결시키는 버스바 조립체로서,
    막대형 전도체 형태로 마련된 고정형 버스바;
    상기 고정형 버스바를 가운데 두고 상기 고정형 버스바의 양쪽 옆으로 이격 배치되어 상기 고정형 버스바와의 사이에 적어도 하나씩의 전극 리드를 삽입할 수 있는 끼움 공간을 형성하는 한 쌍의 이동형 버스바; 및
    상기 전극 리드가 상기 끼움 공간에 위치한 상태에서 상기 한 쌍의 이동형 버스바를 상기 고정형 버스바에 근접하게 이동시켜 상기 전극 리드를 상기 고정형 버스바에 밀착시키는 밀착부재를 포함하는 것을 특징으로 하는 버스바 조립체.
  2. 제1항에 있어서,
    상기 한 쌍의 이동형 버스바는 각각
    상기 고정형 버스바에 나란하게 마련되는 밀착부와, 상기 밀착부의 양쪽 끝단에서 절곡되게 연장 형성되는 간격 조절부를 구비하고,
    상기 고정형 버스바를 가운데 두고 상호 간 대칭되게 배치되어 상기 고정형 버스바의 둘레를 에워싸는 것을 특징으로 하는 버스바 조립체.
  3. 제2항에 있어서,
    상기 밀착부재는,
    양단부가 상기 한 쌍의 이동형 버스바에 결합되어 탄성 복원력으로 상기 한 쌍의 이동형 버스바를 상호 간 대향하는 방향으로 이동시키는 판 스프링인 것을 특징으로 하는 버스바 조립체.
  4. 제3항에 있어서,
    상기 판 스프링은 2개가 한 쌍으로 마련되고,
    상기 한 쌍의 이동형 버스바에서 상호 마주하는 상기 간격 조절부들의 끝단부에 양단부가 결합되는 것을 특징으로 하는 버스바 조립체.
  5. 제4항에 있어서,
    판형 구조물로서, 상기 끼움 공간에 대응하는 위치에 상기 전극 리드가 통과할 수 있는 슬릿을 구비하며, 상기 한 쌍의 이동형 버스바가 상기 고정형 버스바에 대해 이동 가능하게 상기 한 쌍의 이동형 버스바와 상기 고정형 버스바를 지지하는 버스바 지지 프레임을 더 포함하는 것을 특징으로 하는 버스바 조립체.
  6. 제5항에 있어서,
    상기 버스바 지지 프레임은,
    상기 한 쌍의 이동형 버스바의 간격 조절부들 사이에 삽입 및 삽입 해제 가능하게 마련되는 간격유지 돌기를 구비하는 것을 특징으로 하는 버스바 조립체.
  7. 제6항에 있어서,
    상기 버스바 지지 프레임은, 상기 간격 조절부의 배후에 위치하는 자유단을 갖는 캔틸레버보를 더 구비하고, 상기 간격유지 돌기는 상기 자유단에 마련되는 것을 특징으로 하는 버스바 조립체.
  8. 제7항에 있어서,
    상기 캔틸레버보는,
    상기 간격유지 돌기와 이격된 위치에 돌출 형성된 가압용 돌기를 더 구비하는 것을 특징으로 하는 버스바 조립체.
  9. 제5항에 있어서,
    상기 버스바 지지 프레임은,
    상기 한 쌍의 이동형 버스바가 상기 고정형 버스바의 양쪽 옆으로 가장 멀리 이격된 상태에서 상기 한 쌍의 이동형 버스바의 4개의 코너 부분을 감싸며 지지하도록 마련된 코너 브라켓을 더 구비하는 것을 특징으로 하는 버스바 조립체.
  10. 제1항 내지 제2항에 따른 버스바 조립체를 포함하는 것을 특징으로 하는 배터리 모듈.
PCT/KR2018/010232 2017-10-10 2018-09-03 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈 WO2019074206A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880036437.7A CN110710027B (zh) 2017-10-10 2018-09-03 汇流条组件和包括该汇流条组件的电池模块
EP18866237.3A EP3637501B1 (en) 2017-10-10 2018-09-03 Bus bar assembly for electrode lead bonding and battery module including same
US16/617,115 US11302998B2 (en) 2017-10-10 2018-09-03 Bus bar assembly for electrode lead bonding and battery module including same
JP2019564812A JP7045558B2 (ja) 2017-10-10 2018-09-03 電極リード接合用バスバー組立体及びそれを含むバッテリーモジュール
PL18866237T PL3637501T3 (pl) 2017-10-10 2018-09-03 Zespół szyny zbiorczej do połączenia wyprowadzenia elektrod i zawierający go moduł akumulatorowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0129091 2017-10-10
KR1020170129091A KR102273184B1 (ko) 2017-10-10 2017-10-10 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈

Publications (1)

Publication Number Publication Date
WO2019074206A1 true WO2019074206A1 (ko) 2019-04-18

Family

ID=66101479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010232 WO2019074206A1 (ko) 2017-10-10 2018-09-03 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈

Country Status (7)

Country Link
US (1) US11302998B2 (ko)
EP (1) EP3637501B1 (ko)
JP (1) JP7045558B2 (ko)
KR (1) KR102273184B1 (ko)
CN (1) CN110710027B (ko)
PL (1) PL3637501T3 (ko)
WO (1) WO2019074206A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3934010A4 (en) * 2019-06-25 2022-04-06 LG Energy Solution, Ltd. BATTERY MODULE AND BATTERY PACK WITH IT
US20220131236A1 (en) * 2019-03-27 2022-04-28 Sanyo Electric Co., Ltd. Power supply device, electric vehicle comprising power supply device, and power storage device
JP2022544977A (ja) * 2019-12-06 2022-10-24 エルジー エナジー ソリューション リミテッド バッテリーモジュール、該バッテリーモジュールを含むバッテリーパック及び自動車
EP3916825A4 (en) * 2019-11-14 2023-04-05 LG Energy Solution, Ltd. BATTERY MODULE, METHOD OF MAKING A BATTERY MODULE, AND BATTERY PACK COMPRISING A BATTERY MODULE
EP4020696A4 (en) * 2019-10-08 2023-08-30 Lg Energy Solution, Ltd. CONNECTING ELEMENT CONNECTED TO AN ELECTRODE WIRE BY PHYSICAL COUPLING, AND STACK OF BATTERY CELLS INCLUDING THE SAME

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102541537B1 (ko) * 2019-06-25 2023-06-08 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20210059433A (ko) * 2019-11-15 2021-05-25 주식회사 엘지화학 외부 브릿지 버스바를 포함하는 고전압 전지모듈
EP4303997A1 (en) * 2021-03-01 2024-01-10 Vehicle Energy Japan Inc. Assembled battery and method for manufacturing assembled battery
EP4203171A1 (en) * 2021-05-03 2023-06-28 LG Energy Solution, Ltd. Battery module and battery pack including same
WO2023039123A1 (en) 2021-09-10 2023-03-16 Milwaukee Electric Tool Corporation Battery pack
KR102359235B1 (ko) 2021-09-16 2022-02-08 주식회사 신룡 버스바 조립용 리드 자동 성형장치 및 그것을 이용한 리드 자동 성형방법
KR102434262B1 (ko) 2021-09-17 2022-08-22 주식회사 신룡 버스바 조립용 리드 자동 성형장치 및 그것을 이용한 리드 자동 성형방법
WO2023228030A1 (en) * 2022-05-25 2023-11-30 Molex, Llc Busbar assembly for joining battery cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206844A (ja) * 2012-03-29 2013-10-07 Captex Co Ltd ラミネートセル型電池における電極接続構造
KR20140091102A (ko) * 2012-12-27 2014-07-21 에스케이이노베이션 주식회사 배터리 셀 탭 연결 장치 및 이를 이용한 배터리 모듈
KR20140140744A (ko) * 2013-05-30 2014-12-10 삼성에스디아이 주식회사 배터리 모듈
KR20160097013A (ko) * 2015-02-06 2016-08-17 주식회사 엘지화학 전지 모듈
KR20170087084A (ko) * 2016-01-19 2017-07-28 에스케이이노베이션 주식회사 배터리 팩
KR20170129091A (ko) 2017-11-17 2017-11-24 엘지디스플레이 주식회사 전기영동 디스플레이 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125951A (ja) 1997-07-07 1999-01-29 Sanyo Electric Co Ltd 電 池
JP4832018B2 (ja) * 2005-07-22 2011-12-07 トヨタ自動車株式会社 組電池
JP2007087907A (ja) 2005-09-26 2007-04-05 Fuji Heavy Ind Ltd 蓄電体セルのケース構造
JP5225246B2 (ja) * 2009-10-20 2013-07-03 日本航空電子工業株式会社 電池間接続装置
JP2014002905A (ja) * 2012-06-18 2014-01-09 Captex Co Ltd 電極接続構造
KR102024002B1 (ko) 2012-07-05 2019-09-23 에스케이이노베이션 주식회사 전지팩
JP2014053104A (ja) * 2012-09-05 2014-03-20 Captex Co Ltd 電極接続構造
KR101732285B1 (ko) * 2012-11-09 2017-05-02 닛산 지도우샤 가부시키가이샤 조전지 및 조전지의 제조 방법
KR20140093424A (ko) 2013-01-18 2014-07-28 타이코에이엠피(유) 전지모듈
JP6062266B2 (ja) 2013-01-30 2017-01-18 矢崎総業株式会社 バスバモジュール及び電源装置
JP6011876B2 (ja) * 2013-09-13 2016-10-19 株式会社オートネットワーク技術研究所 蓄電モジュール
JP5929937B2 (ja) * 2014-01-30 2016-06-08 トヨタ自動車株式会社 組電池および組電池の接続切換方法
KR101565115B1 (ko) 2014-03-31 2015-11-02 (주)탑전지 배터리 팩 및 그 제조 방법
KR102214538B1 (ko) 2014-05-30 2021-02-09 에스케이이노베이션 주식회사 단위전지모듈 및 이를 포함하는 전지모듈
KR102381777B1 (ko) 2015-02-25 2022-04-01 삼성에스디아이 주식회사 배터리 팩
KR102424640B1 (ko) 2015-12-29 2022-07-25 에이치그린파워 주식회사 배터리 모듈 및 이의 조립 방법
KR102258819B1 (ko) * 2017-11-24 2021-05-31 주식회사 엘지에너지솔루션 전기적 연결 안전성이 향상된 배터리 모듈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206844A (ja) * 2012-03-29 2013-10-07 Captex Co Ltd ラミネートセル型電池における電極接続構造
KR20140091102A (ko) * 2012-12-27 2014-07-21 에스케이이노베이션 주식회사 배터리 셀 탭 연결 장치 및 이를 이용한 배터리 모듈
KR20140140744A (ko) * 2013-05-30 2014-12-10 삼성에스디아이 주식회사 배터리 모듈
KR20160097013A (ko) * 2015-02-06 2016-08-17 주식회사 엘지화학 전지 모듈
KR20170087084A (ko) * 2016-01-19 2017-07-28 에스케이이노베이션 주식회사 배터리 팩
KR20170129091A (ko) 2017-11-17 2017-11-24 엘지디스플레이 주식회사 전기영동 디스플레이 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637501A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131236A1 (en) * 2019-03-27 2022-04-28 Sanyo Electric Co., Ltd. Power supply device, electric vehicle comprising power supply device, and power storage device
US11978924B2 (en) * 2019-03-27 2024-05-07 Sanyo Electric Co., Ltd. Power supply device, electric vehicle comprising power supply device, and power storage device
EP3934010A4 (en) * 2019-06-25 2022-04-06 LG Energy Solution, Ltd. BATTERY MODULE AND BATTERY PACK WITH IT
EP4020696A4 (en) * 2019-10-08 2023-08-30 Lg Energy Solution, Ltd. CONNECTING ELEMENT CONNECTED TO AN ELECTRODE WIRE BY PHYSICAL COUPLING, AND STACK OF BATTERY CELLS INCLUDING THE SAME
EP3916825A4 (en) * 2019-11-14 2023-04-05 LG Energy Solution, Ltd. BATTERY MODULE, METHOD OF MAKING A BATTERY MODULE, AND BATTERY PACK COMPRISING A BATTERY MODULE
JP2022544977A (ja) * 2019-12-06 2022-10-24 エルジー エナジー ソリューション リミテッド バッテリーモジュール、該バッテリーモジュールを含むバッテリーパック及び自動車
JP7372447B2 (ja) 2019-12-06 2023-10-31 エルジー エナジー ソリューション リミテッド バッテリーモジュール、該バッテリーモジュールを含むバッテリーパック及び自動車

Also Published As

Publication number Publication date
EP3637501A1 (en) 2020-04-15
US20200350547A1 (en) 2020-11-05
KR20190040402A (ko) 2019-04-18
EP3637501B1 (en) 2021-03-10
JP2020521297A (ja) 2020-07-16
US11302998B2 (en) 2022-04-12
JP7045558B2 (ja) 2022-04-01
PL3637501T3 (pl) 2021-07-12
EP3637501A4 (en) 2020-08-05
KR102273184B1 (ko) 2021-07-05
CN110710027B (zh) 2022-03-15
CN110710027A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2019074206A1 (ko) 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈
WO2019074211A1 (ko) 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈
WO2018066797A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019088803A1 (ko) 조립 구조가 향상된 배터리 팩
WO2019107734A1 (ko) 셀 조립체에 대한 초기 가압력 강화 구조를 갖는 배터리 모듈 및 그 제조방법
WO2017150807A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017052050A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2012023754A1 (ko) 전압 검출 어셈블리 및 이를 포함하는 전지모듈
WO2018038513A1 (ko) 전지모듈 내에서 공간을 적게 점유하는 상호 연결 부재 및 이를 포함하는 전지모듈
WO2017146384A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019172545A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2018230819A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020067659A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019050173A1 (ko) 레이저 용접 지그 및 이를 포함하는 레이저 용접 장치
WO2018216872A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2015152527A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2020009483A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2018216873A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법
WO2021256673A1 (ko) 버스바 연결용 솔더 핀을 구비한 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018236022A1 (ko) 배터리 팩
WO2022019550A1 (ko) 전극 리드와 전압 센싱부재 간의 연결을 단순화한 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021112656A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
WO2017030312A1 (ko) 셀 리드 연결 장치 및 이를 포함하는 배터리 모듈
WO2022173200A2 (ko) 배터리 모듈, 배터리 팩, 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564812

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018866237

Country of ref document: EP

Effective date: 20200108

NENP Non-entry into the national phase

Ref country code: DE