WO2018216873A1 - 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법 - Google Patents

배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법 Download PDF

Info

Publication number
WO2018216873A1
WO2018216873A1 PCT/KR2018/000360 KR2018000360W WO2018216873A1 WO 2018216873 A1 WO2018216873 A1 WO 2018216873A1 KR 2018000360 W KR2018000360 W KR 2018000360W WO 2018216873 A1 WO2018216873 A1 WO 2018216873A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
electrode lead
battery module
electrode
battery
Prior art date
Application number
PCT/KR2018/000360
Other languages
English (en)
French (fr)
Inventor
지호준
이정훈
문정오
박진용
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019538258A priority Critical patent/JP6816290B2/ja
Priority to EP18806385.3A priority patent/EP3547394B1/en
Priority to US16/346,021 priority patent/US11362402B2/en
Priority to CN201880004906.7A priority patent/CN110050361B/zh
Publication of WO2018216873A1 publication Critical patent/WO2018216873A1/ko
Priority to US17/740,603 priority patent/US11923564B2/en
Priority to US18/430,124 priority patent/US20240178530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery module, a battery pack including the same, and a method for producing a battery module, and more particularly, a battery module capable of coupling to a bus bar without bending electrode leads, and a battery pack and a battery module including the same. It is about a method.
  • Such lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and a packaging material that seals the electrode assembly together with the electrolyte solution, that is, a battery case.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween, and a lithium secondary battery (LIB) and a lithium polymer battery according to which of the positive electrode active material and the negative electrode active material are used. , PLIB) and the like.
  • the electrode of these lithium secondary batteries is formed by apply
  • FIG. 1 is a diagram in which an electrode lead and a bus bar of a conventional battery cell are electrically coupled.
  • the electrode leads 20 provided in each of the plurality of battery cells 10 are bent to contact the bus bar 30, and then coupled by welding 40.
  • a plurality of manual operations are required by an operator to maintain the bending shape of the electrode leads 20, and the electrode leads 20 and the bus bar 30 are closely contacted by the elastic recovery force of the metal electrode leads 20.
  • the plurality of electrode leads 20 overlap at one point of the bus bar 30 and then weld 40, there is a problem in that weldability is deteriorated.
  • an aspect of the present invention is to provide a battery module capable of closely contacting electrode leads and a bus bar by bonding the electrode leads without bending the electrode leads, a battery pack including the same, and a method of producing the battery module.
  • a battery pack including the same and a battery module production method that can improve the weldability because the electrode leads do not overlap.
  • a battery cell stack in which a plurality of battery cells are stacked; And a plurality of bus bars respectively disposed in proximity to electrode leads provided in the plurality of battery cells, wherein each of the electrode leads provided in the plurality of battery cells is electrically coupled to each of the plurality of bus bars.
  • a battery module may be provided.
  • At least one of the plurality of busbars may be disposed between the electrode leads.
  • An inclination portion may be formed in the bus bar.
  • the electrode lead may be formed with a first bent portion bent at an inclination corresponding to the inclination of the inclined portion such that the electrode lead contacts the inclined portion of the bus bar.
  • the electrode lead may be welded to the inclined portion of the bus bar and coupled to the bus bar.
  • bus bar may be formed with an inclined portion, and a horizontal portion extending horizontally from the inclined portion.
  • the electrode lead may include a first bent portion that is bent at an inclination corresponding to the inclination of the inclined portion such that the electrode lead contacts the inclined portion of the bus bar, and the electrode lead is in the horizontal portion of the bus bar.
  • a second bent portion bent to correspond to the horizontal portion may be formed to contact.
  • the electrode lead may be welded to the horizontal portion of the bus bar and coupled to the bus bar.
  • the method may further include an elastic member configured to press the electrode leads to couple each of the electrode leads to each of the plurality of bus bars.
  • the elastic member the support portion supported in contact with the bus bar on the upper side of the bus bar; And a plurality of pressing portions extending from the support portion and pressing the electrode leads.
  • an inclination portion is formed in the bus bar, and the elastic member may press the electrode leads to couple the electrode leads to each inclination portion of the plurality of bus bars.
  • a battery pack including the battery module described above may be provided, and an automobile including the battery module may be provided.
  • a step of stacking a plurality of battery cells Arranging a plurality of bus bars, respectively, in proximity to electrode leads provided in the plurality of battery cells; A welding jig pressing the electrode leads to contact the electrode leads with each busbar; And welding the electrode lead and the bus bar through an opening formed in the welding jig.
  • an inclination portion is formed in the bus bar, and the electrode lead may be welded to the inclination portion of the bus bar and coupled to the bus bar.
  • the bus bar may include an inclined portion and a horizontal portion extending horizontally from the inclined portion, and the electrode lead may be welded to the horizontal portion of the bus bar and coupled to the bus bar.
  • Embodiments of the present invention because the electrode leads are coupled to the bus bar without bending, the electrode leads are not restored by the elastic restoring force, whereby the electrode leads and the bus bar can be in close contact with the effect.
  • the electrode leads are respectively coupled to the plurality of busbars, the electrode leads do not overlap, whereby the weldability is improved.
  • FIG. 1 is a diagram in which an electrode lead and a bus bar of a conventional battery cell are electrically coupled.
  • FIG. 2 is a schematic side cross-sectional view before an electrode lead is coupled to a busbar in a battery module according to a first embodiment of the present invention.
  • FIG 3 is a schematic side cross-sectional view after the electrode lead is coupled to the busbar in the battery module according to the first embodiment of the present invention.
  • 4 (a) to 4 (d) illustrate a process in which an electrode lead is coupled to a bus bar in the battery module according to the first embodiment of the present invention.
  • 5 (a) to 5 (d) illustrate a process in which an electrode lead is coupled to a bus bar in the battery module according to the second embodiment of the present invention.
  • FIG. 6 is a schematic side cross-sectional view before an electrode lead is coupled to a busbar in a battery module according to a third embodiment of the present invention.
  • FIG. 7 is a schematic side cross-sectional view after the electrode lead is coupled to the busbar in the battery module according to the third embodiment of the present invention.
  • 8 (a) to 8 (c) illustrate a process in which an electrode lead is coupled to a bus bar in the battery module according to the third embodiment of the present invention.
  • the term 'bonding' or 'connection' is used indirectly or indirectly coupled to another member through a joint member as well as when one member and the other member are directly joined or directly connected. It also includes the case where it is connected.
  • FIG. 2 is a schematic side cross-sectional view before the electrode leads are coupled to the busbar in the battery module according to the first embodiment of the present invention
  • FIG. 3 is the electrode leads coupled to the busbar in the battery module according to the first embodiment of the present invention. Is a schematic cross-sectional view after being completed.
  • a battery module according to an embodiment of the present invention includes a battery cell stack 100 and a plurality of bus bars 200.
  • the battery cell stack 100 may be configured to stack a plurality of battery cells 110.
  • the battery cells 110 may have various structures, and the plurality of battery cells 110 may be stacked in various ways.
  • the battery cell 110 stores a unit cell arranged in the order of a positive plate, a separator, and a negative electrode, or a bi-cell arranged in the order of a positive plate, a separator, a negative plate, a separator, a positive plate, a separator, and a negative plate. It may have a structure in which a plurality of laminated to suit the capacity.
  • the battery cell 110 may be provided with an electrode lead 111.
  • the electrode lead 111 is a kind of terminal exposed to the outside and connected to an external device, and a conductive material may be used.
  • the electrode lead 111 may include a positive electrode lead and a negative electrode lead.
  • the positive electrode lead and the negative electrode lead may be arranged in opposite directions with respect to the longitudinal direction of the battery cell 110, or the positive electrode lead and the negative electrode lead may be in the same direction with respect to the longitudinal direction of the battery cell 110. It may be located.
  • the electrode lead 111 is electrically coupled to the bus bar 200 described later.
  • the battery cell stack 100 may include a plurality of cartridges (not shown) that accommodate the battery cell 110.
  • Each cartridge (not shown) may be manufactured by injection molding of plastic, and a plurality of cartridges (not shown) in which an accommodating part for accommodating the battery cell 110 is formed may be stacked.
  • the cartridge assembly in which a plurality of cartridges (not shown) are stacked may be provided with a connector element or a terminal element.
  • the connector element may include, for example, various types of electrical connection parts or connection members for connection to a battery management system (BMS) or the like, which may provide data on voltage or temperature of the battery cell 110.
  • BMS battery management system
  • the terminal element is a main terminal connected to the battery cell 110 and includes a positive terminal and a negative terminal, and the terminal element may be provided with a terminal bolt to be electrically connected to the outside. Meanwhile, the battery cell 110 may have various shapes.
  • the bus bar 200 is coupled to the electrode lead 111 to electrically connect the electrode leads 111.
  • the electrical warfare connection may include a series or parallel.
  • the bus bar 200 is disposed close to the electrode leads 111 to contact the electrode leads 111 provided in the battery cell 110.
  • the bus bar 200 may be disposed between the electrode leads 111.
  • at least one of the plurality of bus bars 200 may be disposed between the electrode leads 111 that are adjacent to each other, and the bus bars 200 disposed at the outermost side are adjacent to the predetermined electrode leads 111.
  • each of the electrode leads 111 provided in the plurality of battery cells 110 contacts and electrically couples each of the plurality of bus bars 200.
  • the bus bar 200 may be formed in various shapes.
  • the inclination part 210 may be formed in the bus bar 200 as shown in FIGS. 2 and 3.
  • a first bent part 115 (see FIG. 3) bent at an inclination corresponding to the inclination of the inclination part 210 may be formed in the electrode lead 111. That is, after the electrode lead 111 is bent at the first bent portion 115 of the electrode lead 111, the electrode lead 111 may contact the inclined portion 210 of the bus bar 200.
  • the electrode lead 111 may be welded 500 to the bus bar 200 at the inclined portion 210 of the bus bar 200.
  • the first bent portion 115 can be formed in the). That is, after the plurality of busbars 200 are disposed between the electrode leads 111 or in close proximity to the electrode leads 111, the welding jig 300 may be formed, for example, on the upper side of the electrode leads 111. When the 111 is pressed downward, the electrode leads 111 are bent toward the inclined portion 210 side of the bus bar 200 and contact the inclined portion 210 of the bus bar 200.
  • the welding lead 300 may be formed through the opening 330 of the welding jig 300, for example, laser welding, thereby forming a plurality of electrode leads 111.
  • Each of the bus bars 200 may be electrically coupled to the inclined portions 210.
  • the welding jig 300 is a bus bar contact portion 310 which is in contact with the upper side of the bus bar 200 and a pressure bending forming portion 320 extending from the bus bar contact portion 310 and pressing and bending the electrode lead 111. It may include.
  • an opening 330 for the welding 500 in the welding jig 300 may be provided in the pressure bending forming part 320.
  • 4 (a) to 4 (d) illustrate a process in which an electrode lead is coupled to a bus bar in the battery module according to the first embodiment of the present invention.
  • 4 (a) to 4 (d) show only a part of FIG. 2, that is, part A of FIG. 2.
  • the bus bar 200 is disposed close to the electrode lead 111.
  • the welding jig 300 moves from the upper side to the lower side, while the electrode lead ( Referring to FIG. 4 (c), the electrode lead 111 is bent to contact the inclined portion 210 of the bus bar 200.
  • the welding jig The electrode lead 111 is electrically coupled to the inclined portion 210 of the busbar 200 by welding 500, for example, laser welding, through the opening 330 of 300.
  • the electrode leads 111 may be coupled to the bus bar 200 without bending the electrode leads 111, so that the electrode leads 111 may be in close contact with the bus bar 200, and the plurality of electrode leads 111 may be connected to the bus bars 200. Since they are respectively coupled to the 200, overlapping of the electrode leads 111 is prevented, thereby improving weldability.
  • 5 (a) to 5 (d) illustrate a process in which an electrode lead is coupled to a bus bar in the battery module according to the second embodiment of the present invention.
  • the second embodiment of the present invention differs from the first embodiment in that the electrode lead 111 is welded on the horizontal portion 220 of the bus bar 200 instead of the inclined portion 210 of the bus bar 200. have.
  • the bus bar 200 may be formed with a horizontal portion 220 extending horizontally from the inclined portion 210 as well as the inclined portion 210.
  • the first bent part 115 and the second bent part 116 are formed in the electrode lead 111.
  • the first bent part 115 has an inclination corresponding to the inclination of the inclined portion 210 so that the electrode lead 111 can contact the inclined portion 210 of the bus bar 200.
  • the lead 111 may be formed to be bent.
  • the second bent part 116 may be formed such that the electrode lead 111 is bent to correspond to the horizontal part 220 so that the electrode lead 111 may contact the horizontal part 220 of the bus bar 200. Can be.
  • the electrode lead 111 may be welded 500 at the horizontal portion 220 of the bus bar 200 to be coupled to the bus bar 200, and an opening for the welding 500 in the welding jig 300.
  • the 330 may be provided in the bus bar contact portion 310.
  • the bus bar 200 is disposed close to the electrode lead 111.
  • the welding jig 300 moves from the upper side to the lower side, and the electrode lead ( Referring to FIG. 5C, the electrode lead 111 is bent to contact the inclined portion 210 of the bus bar 200 and the horizontal portion 220 of the bus bar 200.
  • the electrode lead 111 is welded to the horizontal portion 220 of the bus bar 200 by welding 500, for example, laser welding, through the opening 330 of the welding jig 300. Electrically coupled.
  • FIG. 6 is a schematic side cross-sectional view of an electrode lead before coupling to a bus bar 200 in the battery module according to the third embodiment of the present invention
  • FIG. 7 is an electrode lead in the battery module according to the third embodiment of the present invention.
  • FIGS. 8 (a) to 8 (c) illustrate a process in which an electrode lead is coupled to a busbar in a battery module according to a third embodiment of the present invention.
  • 8 (a) to 8 (c) show only a part of FIG. 6, that is, part B of FIG. 6.
  • the third embodiment of the present invention differs from the first and second embodiments in that the electrode lead 111 is coupled to the bus bar 200 by the elastic member 400, not by welding.
  • the elastic member 400 may be configured to couple the electrode leads 111 to each of the plurality of bus bars 200 by pressing the electrode leads 111. That is, since the electrode leads 111 are pressed by the elastic force of the elastic member 400, the electrode leads 111 may be electrically coupled to the bus bar 200 without welding.
  • the elastic member 400 may be configured in various ways, for example, may be provided as a leaf spring.
  • the elastic member 400 may include a support part 410 and a pressing part 420.
  • the support part 410 is supported by being in contact with the bus bar 200 from the upper side of the bus bar 200.
  • the support part 410 may contact the horizontal part 220 of the bus bar 200, for example.
  • the pressing unit 420 may extend from the supporting unit 410 and may be configured to press the electrode lead 111 while moving from the upper side to the lower side of the electrode lead 111, for example.
  • the pressing unit 420 may be provided in plural as the number corresponding to the number of electrode leads 111.
  • the welding jig 300 is removed after the electrode lead 111 and the bus bar 200 are coupled, but in the third embodiment, the elastic member 400 is the bus bar 200.
  • the electrode lead 111 is inserted in between to maintain the electrode lead 111 to be in contact with the bus bar 200.
  • the inclined portion 210 may be formed in the bus bar 200, and the elastic member 400 may fix the electrode leads 111.
  • the electrode leads 111 are coupled to the inclined portions 210 of the plurality of bus bars 200.
  • the present invention is not limited thereto, and the elastic member 400 may press the electrode leads 111 such that the electrode leads 111 are in contact with both the inclined portion 210 and the horizontal portion 220 of the bus bar 200. have.
  • the bus bar 200 is disposed close to the electrode lead 111.
  • the elastic member 400 moves from the upper side to the lower side, and the electrode lead ( Referring to FIG. 8C, the electrode lead 111 contacts the inclined portion 210 of the bus bar 200 by the elastic member 400 and is electrically coupled thereto.
  • a battery pack (not shown) according to an embodiment of the present invention may include one or more battery modules according to an embodiment of the present invention as described above.
  • the battery pack may further include a case for accommodating the battery module, various devices for controlling charging and discharging of the battery module, such as a BMS, a current sensor, and a fuse, in addition to the battery module. .
  • a vehicle (not shown) according to an embodiment of the present invention may include the above-described battery module or a battery pack (not shown), the battery pack (not shown) may include the battery module.
  • the battery module according to an embodiment of the present invention may be applied to a predetermined vehicle (not shown) provided to use electricity, such as an automobile, for example, an electric vehicle or a hybrid vehicle.
  • a plurality of battery cells 110 are stacked to form a battery cell stack 100.
  • the number of battery cells 110 is not limited.
  • the bus bars 200 are disposed close to the electrode leads 111 provided in the battery cells 110, respectively.
  • the bus bar 200 may be disposed between the electrode leads 111 adjacent to each other.
  • the welding jig 300 presses the electrode leads 111 while moving from the upper side to the lower side of the electrode leads 111, for example, and makes the electrode leads 111 contact each bus bar 200.
  • the pressure bending forming part 320 of the welding jig 300 may press the electrode lead 111.
  • the electrode lead 111 and the bus bar 200 are welded 500, for example, laser welded through the opening 330 formed in the welding jig 300, whereby the electrode lead 111 and the bus bar are thereby welded. 200 may be electrically coupled.
  • the inclined portion 210 may be formed in the bus bar 200, and the electrode lead 111 may be bent by the welding jig 300 and then welded 500 in the inclined portion 210 of the bus bar 200. May be coupled to the busbar 200.
  • the inclination part 210 and the horizontal part 220 extending horizontally from the inclination part 210 may be formed in the bus bar 200, and the electrode lead 111 is bent by the welding jig 300. After the welding is 500 in the horizontal portion 220 of the bus bar 200 may be coupled to the bus bar 200.
  • the present invention relates to a battery module, a battery pack including the same, and a method for producing a battery module, and particularly, can be used in industries related to secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

배터리 모듈이 개시된다. 본 발명의 일 실시예에 따른 배터리 모듈은, 복수의 배터리 셀이 적층되는 배터리 셀 적층체; 및 복수의 배터리 셀에 각각 구비된 전극 리드에 근접하게 각각 배치되는 복수의 버스바를 포함하며, 복수의 배터리 셀에 구비된 각각의 전극 리드가 복수의 버스바 각각에 전기적으로 결합되는 것을 특징으로 한다.

Description

배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법
본 출원은 2017년 05월 25일자로 출원된 한국 특허 출원번호 제10-2017-0064794호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은, 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법에 관한 것으로서, 보다 상세하게는, 전극 리드들을 벤딩하지 않고 버스바에 결합할 수 있는 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지 수요가 급격히 증가하고 있으며, 종래 이차 전지로서 니켈카드뮴 전지 또는 수소이온 전지가 사용되었으나, 최근에는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충전 및 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 리튬 이차 전지가 많이 사용되고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
리튬 이차 전지는 양극, 음극 및 이들 사이에 개재되는 세퍼레이터 및 전해질로 이루어지며, 양극 활물질과 음극 활물질을 어떤 것을 사용하느냐에 따라 리튬 이차 전지(Lithium Ion Battery, LIB), 리튬 폴리머 전지(Polymer Lithium Ion Battery, PLIB) 등으로 나누어진다. 통상, 이들 리튬 이차 전지의 전극은 알루미늄 또는 구리 시트(sheet), 메시(mesh), 필름(film), 호일(foil) 등의 집전체에 양극 또는 음극 활물질을 도포한 후 건조시킴으로써 형성된다.
도 1은 종래 배터리 셀에 구비된 전극 리드와 버스바가 전기적으로 결합된 도면이다. 도 1을 참조하면, 종래 기술의 경우, 복수의 배터리 셀(10)에 각각 구비된 전극 리드(20)들을 벤딩하여 버스바(30) 면에 접촉시킨 후 용접(40)을 통해 결합하였는데, 이 경우 전극 리드(20)들의 벤딩 형상을 유지하기 위해 작업자에 의한 다수의 수작업이 요구되고, 금속 재질의 전극 리드(20)들의 탄성 회복력에 의해 전극 리드(20)들과 버스바(30)가 밀착되지 않으며, 또한 복수의 전극 리드(20)들이 버스바(30)의 하나의 지점에서 겹쳐진 후 용접(40)되므로 용접성이 저하되는 문제점이 있다.
따라서, 본 발명이 이루고자 하는 기술적 과제는, 전극 리드들을 벤딩하지 않고 버스바에 결합하여 전극 리드들과 버스바의 밀착이 가능한 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법을 제공하는 것이다.
또한, 전극 리드들이 겹쳐지지 않으므로 용접성이 향상될 수 있는 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법을 제공하는 것이다.
또한, 전극 리드들의 벤딩을 위한 수작업 공정이 제거되어 생산 라인의 자동화 비율이 향상될 수 있는 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법을 제공하는 것이다.
본 발명의 일 측면에 따르면, 복수의 배터리 셀이 적층되는 배터리 셀 적층체; 및 상기 복수의 배터리 셀에 각각 구비된 전극 리드에 근접하게 각각 배치되는 복수의 버스바를 포함하며, 상기 복수의 배터리 셀에 구비된 각각의 전극 리드가 상기 복수의 버스바 각각에 전기적으로 결합되는 것을 특징으로 하는 배터리 모듈이 제공될 수 있다.
또한, 상기 복수의 버스바 중 적어도 하나는 상기 전극 리드들 사이에 배치될 수 있다.
그리고, 상기 버스바에는 경사부가 형성될 수 있다.
또한, 상기 전극 리드에는, 상기 전극 리드가 상기 버스바의 상기 경사부에 접촉되도록 상기 경사부의 경사에 대응되는 기울기로 절곡되는 제1 절곡부가 형성될 수 있다.
그리고, 상기 전극 리드는 상기 버스바의 상기 경사부에서 용접되어 상기 버스바에 결합될 수 있다.
또한, 상기 버스바에는 경사부와, 상기 경사부로부터 수평으로 연장되는 수평부가 형성될 수 있다.
그리고, 상기 전극 리드에는, 상기 전극 리드가 상기 버스바의 상기 경사부에 접촉되도록 상기 경사부의 경사에 대응되는 기울기로 절곡되는 제1 절곡부와, 상기 전극 리드가 상기 버스바의 상기 수평부에 접촉도록 상기 수평부에 대응되게 절곡되는 제2 절곡부가 형성될 수 있다.
또한, 상기 전극 리드는 상기 버스바의 상기 수평부에서 용접되어 상기 버스바에 결합될 수 있다.
그리고, 상기 전극 리드들을 가압하여 상기 전극 리드들 각각을 상기 복수의 버스바 각각에 결합시키는 탄성부재를 더 포함할 수 있다.
또한, 상기 탄성부재는, 상기 버스바의 상측에서 상기 버스바에 접촉되어 지지되는 지지부; 및 상기 지지부로부터 연장되며 상기 전극 리드들을 가압하는 복수의 가압부를 포함할 수 있다.
그리고, 상기 버스바에는 경사부가 형성되며, 상기 탄성부재는 상기 전극 리드들을 가압하여 상기 전극 리드들을 상기 복수의 버스바의 각각의 경사부에 결합시킬 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전술한 배터리 모듈을 포함하는 배터리 팩이 제공될 수 있고, 또한, 상기 배터리 모듈을 포함하는 자동차가 제공될 수 있다.
한편, 본 발명의 또다른 측면에 따르면, 복수의 배터리 셀이 적층되는 단계; 상기 복수의 배터리 셀에 각각 구비된 전극 리드들에 근접하게 복수의 버스바가 각각 배치되는 단계; 용접 지그가 상기 전극 리드들을 가압하여 상기 전극 리드들을 각각의 버스바에 접촉시키는 단계; 및 상기 용접 지그에 형성된 개구를 통해 상기 전극 리드와 상기 버스바를 용접시키는 단계를 포함하는 배터리 모듈 생산 방법이 제공될 수 있다.
또한, 상기 버스바에는 경사부가 형성되며, 상기 전극 리드는 상기 버스바의 상기 경사부에서 용접되어 상기 버스바에 결합될 수 있다.
그리고, 상기 버스바에는 경사부와, 상기 경사부로부터 수평으로 연장되는 수평부가 형성되며, 상기 전극 리드는 상기 버스바의 상기 수평부에서 용접되어 상기 버스바에 결합될 수 있다.
본 발명의 실시예들은, 전극 리드들을 벤딩하지 않고 버스바에 결합하므로 전극 리드들이 탄성 회복력에 의해 복원되지 않으며, 이에 의해 전극 리드들과 버스바의 밀착이 가능한 효과가 있다.
또한, 복수의 전극 리드들이 복수의 버스바에 각각 결합되므로 전극 리드들이 겹쳐지지 않으며, 이에 의해 용접성이 향상될 수 있는 효과가 있다.
또한, 전극 리드들의 벤딩을 위한 수작업 공정이 제거되어 생산 라인의 자동화 비율이 향상될 수 있는 효과가 있다.
도 1은 종래 배터리 셀에 구비된 전극 리드와 버스바가 전기적으로 결합된 도면이다.
도 2는 본 발명의 제1 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되기 전의 개략적인 측단면도이다.
도 3은 본 발명의 제1 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합된 후의 개략적인 측단면도이다.
도 4(a) 내지 도 4(d)는 본 발명의 제1 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되는 과정을 도시한 도면이다.
도 5(a) 내지 도 5(d)는 본 발명의 제2 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되는 과정을 도시한 도면이다.
도 6은 본 발명의 제3 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되기 전의 개략적인 측단면도이다.
도 7은 본 발명의 제3 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합된 후의 개략적인 측단면도이다.
도 8(a) 내지 도 8(c)는 본 발명의 제3 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되는 과정을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따라 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
본 명세서에서 사용되는 '결합' 또는 '연결'이라는 용어는, 하나의 부재와 다른 부재가 직접 결합되거나, 직접 연결되는 경우뿐만 아니라 하나의 부재가 이음부재를 통해 다른 부재에 간접적으로 결합되거나, 간접적으로 연결되는 경우도 포함한다.
도 2는 본 발명의 제1 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되기 전의 개략적인 측단면도이고, 도 3은 본 발명의 제1 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합된 후의 개략적인 측단면도이다.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈은, 배터리 셀 적층체(100)와, 복수의 버스바(200)를 포함한다.
배터리 셀 적층체(100)는 복수의 배터리 셀(110)이 적층되도록 구성될 수 있다. 배터리 셀(110)은 다양한 구조를 가질 수 있으며, 또한, 복수의 배터리 셀(110)은 다양한 방식으로 적층될 수 있다. 배터리 셀(110)은 양극판-세퍼레이터-음극판의 순서로 배열되는 단위 셀(Unit Cell) 또는 양극판-세퍼레이터-음극판-세퍼레이터-양극판-세퍼레이터-음극판의 순서로 배열된 바이 셀(Bi-Cell)을 전지 용량에 맞게 복수개 적층시킨 구조를 가질 수 있다.
배터리 셀(110)에는 전극 리드(111)가 구비될 수 있다. 전극 리드(111)는 외부로 노출되어 외부 기기에 연결되는 일종의 단자로서 전도성 재질이 사용될 수 있다. 전극 리드(111)는 양극 전극 리드와 음극 전극 리드를 포함할 수 있다. 양극 전극 리드와 음극 전극 리드는 배터리 셀(110)의 길이 방향에 대해 서로 반대 방향에 배치될 수도 있고, 또는 양극 전극 리드와 음극 전극 리드가 배터리 셀(110)의 길이 방향에 대해 서로 동일한 방향에 위치될 수도 있다. 전극 리드(111)는 후술하는 버스바(200)에 전기적으로 결합된다.
배터리 셀 적층체(100)는 배터리 셀(110)을 수납하는 복수의 카트리지들(미도시)이 구비될 수 있다. 각각의 카트리지(미도시)는 플라스틱의 사출 성형으로 제조될 수 있고, 배터리 셀(110)을 수납할 수 있는 수납부가 형성된 복수의 카트리지들(미도시)이 적층될 수 있다. 복수의 카트리지들(미도시)이 적층된 카트리지 조립체에는 커넥터 요소 또는 단자 요소가 구비될 수 있다. 커넥터 요소는, 예를 들어, 배터리 셀(110)의 전압 또는 온도에 대한 데이터를 제공할 수 있는 BMS(Battery Management System, 미도시) 등에 연결되기 위한 다양한 형태의 전기적 연결 부품 내지 연결 부재가 포함될 수 있다. 그리고, 단자 요소는 배터리 셀(110)에 연결되는 메인 단자로서 양극 단자와 음극 단자를 포함하며, 단자 요소는 터미널 볼트가 구비되어 외부와 전기적으로 연결될 수 있다. 한편, 배터리 셀(110)은 다양한 형상을 가질 수 있다.
버스바(200)는 전극 리드(111)에 결합되어 전극 리드(111)들을 전기적으로 연결한다. 여기서, 전기전 연결에는 직렬 또는 병렬이 포함될 수 있다. 버스바(200)는 배터리 셀(110)에 구비된 전극 리드(111)에 접촉되기 위해 전극 리드(111)들에 근접하게 배치된다. 도 2를 참조하면, 버스바(200)는 전극 리드(111)들 사이에 배치될 수 있다. 여기서, 복수의 버스바(200) 중 적어도 하나는 상호 이웃하는 전극 리드(111)들 사이에 각각 배치될 수 있으며, 가장 외측에 배치된 버스바(200)는 소정의 전극 리드(111)에 근접하게 배치될 수 있다. 그리고, 도 3을 참조하면, 복수의 배터리 셀(110)에 구비된 각각의 전극 리드(111)가 복수의 버스바(200) 각각에 접촉되어 전기적으로 결합된다.
버스바(200)는 다양한 형상으로 형성될 수 있으며, 예를 들면 도 2 및 도 3에서와 같이 버스바(200)에 경사부(210)가 형성될 수 있다. 그리고, 전극 리드(111)에는 경사부(210)의 경사에 대응되는 기울기로 절곡되는 제1 절곡부(115, 도 3 참조)가 형성될 수 있다. 즉, 전극 리드(111)의 제1 절곡부(115)에서 전극 리드(111)가 절곡된 후 전극 리드(111)가 버스바(200)의 경사부(210)에 접촉될 수 있다. 그리고, 전극 리드(111)가 버스바(200)의 경사부(210)에서 용접(500)되어 버스바(200)에 결합될 수 있다. 이를 위해, 버스바(200)의 경사부(210)에 대응되는 경사가 구비된 용접 지그(300)가 예를 들어 전극 리드(111)의 상측에서 전극 리드(111)를 가압하여 전극 리드(111)에 제1 절곡부(115)를 형성할 수 있다. 즉, 복수의 버스바(200)가 전극 리드(111)를 사이 또는 전극 리드(111)에 근접하게 각각 배치된 후 용접 지그(300)가 예를 들어 전극 리드(111)들의 상측에서 전극 리드(111)들을 하측 방향으로 가압하면 전극 리드(111)들은 버스바(200)의 경사부(210)측으로 절곡되면서 버스바(200)의 경사부(210)에 접촉된다. 여기서, 용접 지그(300)에는 개구(330)가 형성될 수 있으므로 용접 지그(300)의 개구(330)를 통해 용접(500), 예를 들어 레이저 용접을 실시하여 전극 리드(111)들을 복수의 버스바(200) 각각의 경사부(210)에 전기적으로 결합시킬 수 있다. 용접 지그(300)는 버스바(200)의 상측에 접촉되는 버스바 접촉부(310)와, 버스바 접촉부(310)로부터 연장되며 전극 리드(111)를 가압하여 절곡시키는 가압 절곡형성부(320)를 포함할 수 있다. 그리고, 용접 지그(300)에서 용접(500)을 위한 개구(330)는 가압 절곡형성부(320)에 마련될 수 있다.
이하, 도면을 참조하여 본 발명의 제1 실시예에 따른 배터리 모듈의 작용 및 효과에 대해 설명한다.
도 4(a) 내지 도 4(d)는 본 발명의 제1 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되는 과정을 도시한 도면이다. 도 4(a) 내지 도 4(d)에서는 도 2의 일부분, 즉 도 2의 A 부분만을 도시하였다.
도 4(a)를 참조하면, 버스바(200)가 전극 리드(111)에 근접하게 배치되고, 도 4(b)를 참조하면, 용접 지그(300)가 상측에서 하측으로 이동하면서 전극 리드(111)를 가압하며, 도 4(c)를 참조하면, 전극 리드(111)가 절곡되어 버스바(200)의 경사부(210)에 접촉되고, 도 4(d)를 참조하면, 용접 지그(300)의 개구(330)를 통해 용접(500), 예를 들어 레이저 용접으로 전극 리드(111)가 버스바(200)의 경사부(210)에 전기적으로 결합된다.
이에 의해, 전극 리드(111)들을 벤딩하지 않고 버스바(200)에 결합하여 전극 리드(111)들과 버스바(200)의 밀착이 가능할 뿐만 아니라 복수의 전극 리드(111)들이 복수의 버스바(200)에 각각 결합되므로 전극 리드(111)들의 겹침이 방지되어 용접성이 향상되는 효과가 있다.
도 5(a) 내지 도 5(d)는 본 발명의 제2 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되는 과정을 도시한 도면이다.
이하, 도면을 참조하여 본 발명의 제2 실시예에 따른 배터리 모듈의 작용 및 효과에 대해 설명하되, 본 발명의 제1 실시예에 따른 배터리 모듈에서 설명한 내용과 공통되는 부분은 전술한 설명으로 대체한다.
본 발명의 제2 실시예는 전극 리드(111)가 버스바(200)의 경사부(210)가 아닌 버스바(200)의 수평부(220)에서 용접된다는 점에서 제1 실시예와 차이가 있다.
도 5(a) 내지 도 5(d)를 참조하면, 버스바(200)에는 경사부(210) 뿐만 아니라 경사부(210)로부터 수평으로 연장되는 수평부(220)가 형성될 수 있다. 그리고, 전극 리드(111)에는 제1 절곡부(115)와 제2 절곡부(116)가 형성된다. 제1 절곡부(115)는 제1 실시예에서와 마찬가지로 전극 리드(111)가 버스바(200)의 경사부(210)에 접촉될 수 있게 경사부(210)의 경사에 대응되는 기울기로 전극 리드(111)가 절곡되도록 형성될 수 있다. 그리고, 제2 절곡부(116)는 전극 리드(111)가 버스바(200)의 수평부(220)에 접촉될 수 있도록 수평부(220)에 대응되게 전극 리드(111)가 절곡되도록 형성될 수 있다.
그리고, 전극 리드(111)는 버스바(200)의 수평부(220)에서 용접(500)되어 버스바(200)에 결합될 수 있으며, 용접 지그(300)에서 용접(500)을 위한 개구(330)는 버스바 접촉부(310)에 마련될 수 있다.
도 5(a)를 참조하면, 버스바(200)가 전극 리드(111)에 근접하게 배치되고, 도 5(b)를 참조하면, 용접 지그(300)가 상측에서 하측으로 이동하면서 전극 리드(111)를 가압하며, 도 5(c)를 참조하면, 전극 리드(111)가 절곡되어 버스바(200)의 경사부(210)와 버스바(200)의 수평부(220)에 접촉되고, 도 5(d)를 참조하면, 용접 지그(300)의 개구(330)를 통해 용접(500), 예를 들어 레이저 용접으로 전극 리드(111)가 버스바(200)의 수평부(220)에 전기적으로 결합된다.
도 6은 본 발명의 제3 실시예에 따른 배터리 모듈에서 전극 리드가 버스바(200)에 결합되기 전의 개략적인 측단면도이고, 도 7은 본 발명의 제3 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합된 후의 개략적인 측단면도이며, 도 8(a) 내지 도 8(c)는 본 발명의 제3 실시예에 따른 배터리 모듈에서 전극 리드가 버스바에 결합되는 과정을 도시한 도면이다. 도 8(a) 내지 도 8(c)에서는 도 6의 일부분, 즉 도 6의 B 부분만을 도시하였다.
이하, 도면을 참조하여 본 발명의 제3 실시예에 따른 배터리 모듈의 작용 및 효과에 대해 설명하되, 본 발명의 제1 실시예 및 제2 실시예에 따른 배터리 모듈에서 설명한 내용과 공통되는 부분은 전술한 설명으로 대체한다.
본 발명의 제3 실시예는 용접이 아니라 탄성부재(400)에 의해 전극 리드(111)가 버스바(200)에 결합된다는 점에서 제1 실시예 및 제2 실시예와 차이가 있다.
도 6 및 도 7을 참조하면, 탄성부재(400)는 전극 리드(111)들을 가압하여 전극 리드(111)들 각각을 복수의 버스바(200) 각각에 결합시키도록 구성될 수 있다. 즉, 탄성부재(400)의 탄성력에 의해 전극 리드(111)들이 가압되므로 용접없이 전극 리드(111)들을 버스바(200)에 전기적으로 결합시킬 수 있다.
탄성부재(400)는 다양하게 구성될 수 있으며, 예를 들어 판 스프링 등으로 마련될 수 있다. 탄성부재(400)는 지지부(410)와 가압부(420)를 포함할 수 있다. 지지부(410)는 버스바(200)의 상측에서 버스바(200)에 접촉되어 지지된다. 지지부(410)는 예를 들어 버스바(200)의 수평부(220)에 접촉될 수 있다. 가압부(420)는 지지부(410)로부터 연장되며 예를 들어 전극 리드(111)의 상측에서 하측으로 이동하면서 전극 리드(111)를 가압하도록 구성될 수 있다. 가압부(420)는 전극 리드(111)들의 개수에 대응되는 개수만큼 복수로 구비될 수 있다. 제1 실시예 및 제2 실시예에서 용접 지그(300)는 전극 리드(111)와 버스바(200)가 결합된 후 제거되지만, 제3 실시예에서 탄성부재(400)는 버스바(200) 사이에 삽입되어 전극 리드(111)가 버스바(200)에 접촉될 수 있도록 유지된다.
도 6 및 도 7을 참조하면, 제1 실시예 및 제2 실시예에서와 마찬가지로 버스바(200)에는 경사부(210)가 형성될 수 있으며, 탄성부재(400)는 전극 리드(111)들을 가압하여 전극 리드(111)들을 복수의 버스바(200)의 각각의 경사부(210)에 결합시킨다. 다만, 이에 한정되는 것은 아니며, 탄성부재(400)는 전극 리드(111)들이 버스바(200)의 경사부(210)와 수평부(220) 모두에 접촉되도록 전극 리드(111)를 가압할 수도 있다.
도 8(a)를 참조하면, 버스바(200)가 전극 리드(111)에 근접하게 배치되고, 도 8(b)를 참조하면, 탄성부재(400)가 상측에서 하측으로 이동하면서 전극 리드(111)를 가압하며, 도 8(c)를 참조하면, 탄성부재(400)에 의해 전극 리드(111)가 버스바(200)의 경사부(210)에 접촉되어 전기적으로 결합된다.
한편, 본 발명의 일 실시예에 따른 배터리 팩(미도시)은, 전술한 바와 같은 본 발명의 일 실시예에 따른 배터리 모듈을 하나 이상 포함할 수 있다. 또한, 상기 배터리 팩(미도시)은, 이러한 배터리 모듈 이외에, 이러한 배터리 모듈을 수납하기 위한 케이스, 배터리 모듈의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS, 전류 센서, 퓨즈 등이 더 포함될 수 있다.
한편, 본 발명의 일 실시예에 따른 자동차(미도시)는 전술한 배터리 모듈 또는 배터리 팩(미도시)을 포함할 수 있으며, 상기 배터리 팩(미도시)에는 상기 배터리 모듈이 포함될 수 있다. 그리고, 본 발명의 일 실시예에 따른 배터리 모듈은, 상기 자동차(미도시), 예를 들어, 전기 자동차나 하이브리드 자동차와 같은 전기를 사용하도록 마련되는 소정의 자동차(미도시)에 적용될 수 있다.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 배터리 모듈의 생산 방법에 대해 설명한다.
우선, 복수의 배터리 셀(110)이 적층되어 배터리 셀 적층체(100)를 형성한다. 배터리 셀(110)의 개수는 제한이 없다. 그리고, 복수의 버스바(200)가 복수의 배터리 셀(110)에 각각 구비된 전극 리드(111)들에 근접하게 각각 배치된다. 여기서, 버스바(200)는 서로 이웃하는 전극 리드(111)들 사이에 배치될 수 있다. 그리고, 용접 지그(300)가 예를 들어 전극 리드(111)들의 상측으로부터 하측으로 이동하면서 전극 리드(111)들을 가압하며, 전극 리드(111)들을 각각의 버스바(200)에 접촉시킨다. 여기서, 용접 지그(300)의 가압 절곡형성부(320)가 전극 리드(111)를 가압할 수 있다. 그리고, 용접 지그(300)에 형성된 개구(330)를 통해 전극 리드(111)와 버스바(200)를 용접(500), 예를 들어 레이저 용접하며, 이에 의해, 전극 리드(111)와 버스바(200)를 전기적으로 결합할 수 있다.
그리고, 버스바(200)에 경사부(210)가 형성될 수 있으며, 전극 리드(111)는 용접 지그(300)에 의해 절곡된 후 버스바(200)의 경사부(210)에서 용접(500)되어 버스바(200)에 결합될 수 있다. 또는, 버스바(200)에 경사부(210)와, 경사부(210)로부터 수평으로 연장되는 수평부(220)가 형성될 수 있으며, 전극 리드(111)는 용접 지그(300)에 의해 절곡된 후 버스바(200)의 수평부(220)에서 용접(500)되어 버스바(200)에 결합될 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명은 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법에 관한 것으로서, 특히, 이차전지와 관련된 산업에 이용 가능하다.

Claims (16)

  1. 복수의 배터리 셀이 적층되는 배터리 셀 적층체; 및
    상기 복수의 배터리 셀에 각각 구비된 전극 리드에 근접하게 각각 배치되는 복수의 버스바를 포함하며,
    상기 복수의 배터리 셀에 구비된 각각의 전극 리드가 상기 복수의 버스바 각각에 전기적으로 결합되는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 복수의 버스바 중 적어도 하나는 상기 전극 리드들 사이에 배치되는 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 버스바에는 경사부가 형성되는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 전극 리드에는, 상기 전극 리드가 상기 버스바의 상기 경사부에 접촉되도록 상기 경사부의 경사에 대응되는 기울기로 절곡되는 제1 절곡부가 형성되는 것을 특징으로 하는 배터리 모듈.
  5. 제4항에 있어서,
    상기 전극 리드는 상기 버스바의 상기 경사부에서 용접되어 상기 버스바에 결합되는 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 버스바에는 경사부와, 상기 경사부로부터 수평으로 연장되는 수평부가 형성되는 것을 특징으로 하는 배터리 모듈.
  7. 제6항에 있어서,
    상기 전극 리드에는, 상기 전극 리드가 상기 버스바의 상기 경사부에 접촉되도록 상기 경사부의 경사에 대응되는 기울기로 절곡되는 제1 절곡부와, 상기 전극 리드가 상기 버스바의 상기 수평부에 접촉도록 상기 수평부에 대응되게 절곡되는 제2 절곡부가 형성되는 것을 특징으로 하는 배터리 모듈.
  8. 제7항에 있어서,
    상기 전극 리드는 상기 버스바의 상기 수평부에서 용접되어 상기 버스바에 결합되는 것을 특징으로 하는 배터리 모듈.
  9. 제1항에 있어서,
    상기 전극 리드들을 가압하여 상기 전극 리드들 각각을 상기 복수의 버스바 각각에 결합시키는 탄성부재를 더 포함하는 것을 특징으로 하는 배터리 모듈.
  10. 제9항에 있어서,
    상기 탄성부재는,
    상기 버스바의 상측에서 상기 버스바에 접촉되어 지지되는 지지부; 및
    상기 지지부로부터 연장되며 상기 전극 리드들을 가압하는 복수의 가압부를 포함하는 것을 특징으로 하는 배터리 모듈.
  11. 제9항에 있어서,
    상기 버스바에는 경사부가 형성되며,
    상기 탄성부재는 상기 전극 리드들을 가압하여 상기 전극 리드들을 상기 복수의 버스바의 각각의 경사부에 결합시키는 것을 특징으로 하는 배터리 모듈.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을 포함하는 배터리 팩.
  13. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을 포함하는 자동차.
  14. 복수의 배터리 셀이 적층되는 단계;
    상기 복수의 배터리 셀에 각각 구비된 전극 리드들에 근접하게 복수의 버스바가 각각 배치되는 단계;
    용접 지그가 상기 전극 리드들을 가압하여 상기 전극 리드들을 각각의 버스바에 접촉시키는 단계; 및
    상기 용접 지그에 형성된 개구를 통해 상기 전극 리드와 상기 버스바를 용접시키는 단계를 포함하는 배터리 모듈 생산 방법.
  15. 제14항에 있어서,
    상기 버스바에는 경사부가 형성되며, 상기 전극 리드는 상기 버스바의 상기 경사부에서 용접되어 상기 버스바에 결합되는 것을 특징으로 하는 배터리 모듈 생산 방법.
  16. 제14항에 있어서,
    상기 버스바에는 경사부와, 상기 경사부로부터 수평으로 연장되는 수평부가 형성되며, 상기 전극 리드는 상기 버스바의 상기 수평부에서 용접되어 상기 버스바에 결합되는 것을 특징으로 하는 배터리 모듈 생산 방법.
PCT/KR2018/000360 2017-05-25 2018-01-08 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법 WO2018216873A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019538258A JP6816290B2 (ja) 2017-05-25 2018-01-08 バッテリーモジュール、これを含むバッテリーパック及びバッテリーモジュールの生産方法
EP18806385.3A EP3547394B1 (en) 2017-05-25 2018-01-08 Battery module, battery pack comprising same
US16/346,021 US11362402B2 (en) 2017-05-25 2018-01-08 Battery module, battery pack including the same, and method for producing battery module
CN201880004906.7A CN110050361B (zh) 2017-05-25 2018-01-08 电池模块、包括电池模块的电池组以及用于制造电池模块的方法
US17/740,603 US11923564B2 (en) 2017-05-25 2022-05-10 Method for producing battery module
US18/430,124 US20240178530A1 (en) 2017-05-25 2024-02-01 Method for producing battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170064794A KR102157377B1 (ko) 2017-05-25 2017-05-25 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법
KR10-2017-0064794 2017-05-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/346,021 A-371-Of-International US11362402B2 (en) 2017-05-25 2018-01-08 Battery module, battery pack including the same, and method for producing battery module
US17/740,603 Division US11923564B2 (en) 2017-05-25 2022-05-10 Method for producing battery module

Publications (1)

Publication Number Publication Date
WO2018216873A1 true WO2018216873A1 (ko) 2018-11-29

Family

ID=64395642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000360 WO2018216873A1 (ko) 2017-05-25 2018-01-08 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법

Country Status (6)

Country Link
US (3) US11362402B2 (ko)
EP (1) EP3547394B1 (ko)
JP (1) JP6816290B2 (ko)
KR (1) KR102157377B1 (ko)
CN (1) CN110050361B (ko)
WO (1) WO2018216873A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087815A (ko) * 2020-01-03 2021-07-13 주식회사 엘지에너지솔루션 개선된 결합 구조를 갖는 배터리 팩 및 이를 포함하는 자동차
KR20220009251A (ko) 2020-07-15 2022-01-24 주식회사 엘지에너지솔루션 전극리드의 절곡 및 용접 장치 및 이를 이용한 전극리드의 용접 방법
DE102020123851A1 (de) * 2020-09-14 2022-03-17 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer elektrischen Kopplung von Batteriezellen eines Batteriemoduls und Batteriemodul
KR20220045851A (ko) * 2020-10-06 2022-04-13 주식회사 엘지에너지솔루션 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2023163469A1 (ko) * 2022-02-22 2023-08-31 주식회사 엘지에너지솔루션 전극리드 정렬 마스킹 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109275A (ja) * 2005-12-01 2012-06-07 Nec Corp 電気デバイス集合体
KR20130113145A (ko) * 2012-04-05 2013-10-15 주식회사 엘지화학 안전성이 향상된 단위모듈 어셈블리 및 이를 포함하는 전지모듈
JP2013214497A (ja) * 2012-03-08 2013-10-17 Nissan Motor Co Ltd 組電池
KR20140093424A (ko) * 2013-01-18 2014-07-28 타이코에이엠피(유) 전지모듈
KR20170032098A (ko) * 2015-09-14 2017-03-22 주식회사 엘지화학 배터리 모듈 및 이에 적용되는 보호구조물
KR20170064794A (ko) 2015-12-02 2017-06-12 이지형 병뚜껑의 크기에 관계없이 사용할 수 있는 병따개

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001024A (en) * 1989-10-31 1991-03-19 Eberle William J Storage battery and method of manufacturing
JP2001076790A (ja) * 1999-09-02 2001-03-23 Sumitomo Wiring Syst Ltd 端子の接続構造
JP4227762B2 (ja) 2002-05-31 2009-02-18 富士重工業株式会社 組電池ユニットおよび組電池ユニットの接続方法
JP4237552B2 (ja) * 2003-06-05 2009-03-11 矢崎総業株式会社 バッテリ接続プレート
JP4690013B2 (ja) * 2004-10-29 2011-06-01 日本電気株式会社 接続装置およびそれを用いた電気デバイス集合体
JP2007087907A (ja) 2005-09-26 2007-04-05 Fuji Heavy Ind Ltd 蓄電体セルのケース構造
JP4829587B2 (ja) * 2005-10-14 2011-12-07 日本電気株式会社 電気デバイス集合体及びその製造方法
JP5252836B2 (ja) * 2007-05-29 2013-07-31 三洋電機株式会社 パック電池
JP5340676B2 (ja) * 2008-08-29 2013-11-13 三洋電機株式会社 バッテリシステム
JP5094783B2 (ja) * 2009-04-28 2012-12-12 エネルギー コントロール リミテッド 高導電効率接続構造
CN101877413B (zh) * 2009-04-30 2013-10-30 比亚迪股份有限公司 一种单体电池及包含该单体电池的动力电池组
JP5582815B2 (ja) 2010-02-18 2014-09-03 日本航空電子工業株式会社 電池間接続装置
JP5615045B2 (ja) * 2010-05-28 2014-10-29 日本航空電子工業株式会社 電池間接続構造及び接続方法
JP2012059362A (ja) 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd 組電池
KR101023184B1 (ko) 2010-11-01 2011-03-18 쓰리피시스템(주) 배터리 모듈의 용접 시스템 및 방법
CN102064291B (zh) * 2010-12-14 2013-04-10 长丰集团有限责任公司 一体压紧叠加式电池模块
JP6076965B2 (ja) * 2011-04-26 2017-02-08 エルジー ケム. エルティーディ. 新規な構造のバスバー及びこれを備えた電池モジュール
US20120295150A1 (en) * 2011-05-17 2012-11-22 GM Global Technology Operations LLC Battery module and method of manufacturing the same
WO2012173451A2 (ko) * 2011-06-17 2012-12-20 주식회사 엘지화학 솔더링 커넥터와, 이를 포함하는 배터리 모듈 및 배터리 팩
US8609276B2 (en) * 2011-06-23 2013-12-17 Samsung Sdi Co., Ltd. Battery pack
JP5834769B2 (ja) * 2011-10-26 2015-12-24 株式会社オートネットワーク技術研究所 電池用配線モジュール
KR102024002B1 (ko) * 2012-07-05 2019-09-23 에스케이이노베이션 주식회사 전지팩
US9136621B1 (en) 2012-08-14 2015-09-15 Ciena Corporation Guides and tab arrangement to retain a card having an edge connector and method of use
JP6011876B2 (ja) * 2013-09-13 2016-10-19 株式会社オートネットワーク技術研究所 蓄電モジュール
US10218027B2 (en) * 2013-11-11 2019-02-26 A123 Systems, LLC Vehicle starter battery
KR20150067694A (ko) * 2013-12-10 2015-06-18 한국단자공업 주식회사 배터리모듈용 연결장치
KR101558694B1 (ko) * 2013-12-18 2015-10-07 현대자동차주식회사 차량의 고전압배터리
JP6289899B2 (ja) * 2013-12-26 2018-03-07 株式会社東芝 非水電解質電池、組電池及び蓄電池装置
PL3109925T3 (pl) 2014-03-31 2022-07-18 Lg Energy Solution, Ltd. Moduł akumulatorowy i zawierający go pakiet akumulatorowy
KR101565115B1 (ko) 2014-03-31 2015-11-02 (주)탑전지 배터리 팩 및 그 제조 방법
KR101750597B1 (ko) * 2014-04-30 2017-06-23 주식회사 엘지화학 레이저 용접장치
JP6359362B2 (ja) * 2014-07-07 2018-07-18 株式会社東芝 電池モジュール
CN204991788U (zh) * 2015-05-08 2016-01-20 余正明 一种电池连接件及电池连接器
CN105024224A (zh) * 2015-08-18 2015-11-04 德力西电气有限公司 一种插件组件
CN205069739U (zh) * 2015-10-11 2016-03-02 深圳市沃特玛电池有限公司 一种电池极耳连接件及具有该电池极耳连接件的锂电池
CN106025162B (zh) * 2016-06-30 2019-11-08 上海捷新动力电池***有限公司 一种软包电池模块连接结构
CN106207067B (zh) 2016-08-30 2018-12-07 中航锂电(洛阳)有限公司 极片连接结构、极片连接方法、集流体及锂电池
CN206179972U (zh) * 2016-11-29 2017-05-17 宁德时代新能源科技股份有限公司 电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109275A (ja) * 2005-12-01 2012-06-07 Nec Corp 電気デバイス集合体
JP2013214497A (ja) * 2012-03-08 2013-10-17 Nissan Motor Co Ltd 組電池
KR20130113145A (ko) * 2012-04-05 2013-10-15 주식회사 엘지화학 안전성이 향상된 단위모듈 어셈블리 및 이를 포함하는 전지모듈
KR20140093424A (ko) * 2013-01-18 2014-07-28 타이코에이엠피(유) 전지모듈
KR20170032098A (ko) * 2015-09-14 2017-03-22 주식회사 엘지화학 배터리 모듈 및 이에 적용되는 보호구조물
KR20170064794A (ko) 2015-12-02 2017-06-12 이지형 병뚜껑의 크기에 관계없이 사용할 수 있는 병따개

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547394A4

Also Published As

Publication number Publication date
US20190267603A1 (en) 2019-08-29
JP6816290B2 (ja) 2021-01-20
KR20180129170A (ko) 2018-12-05
US20220271404A1 (en) 2022-08-25
KR102157377B1 (ko) 2020-09-17
EP3547394A4 (en) 2019-12-25
JP2020514985A (ja) 2020-05-21
US11923564B2 (en) 2024-03-05
US20240178530A1 (en) 2024-05-30
CN110050361B (zh) 2023-04-28
EP3547394A1 (en) 2019-10-02
US11362402B2 (en) 2022-06-14
CN110050361A (zh) 2019-07-23
EP3547394B1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2018216873A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법
WO2018021680A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018216872A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2014171559A1 (ko) 신규한 구조의 전지모듈 및 이를 포함하는 전지팩
WO2017073908A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019107734A1 (ko) 셀 조립체에 대한 초기 가압력 강화 구조를 갖는 배터리 모듈 및 그 제조방법
WO2012023754A1 (ko) 전압 검출 어셈블리 및 이를 포함하는 전지모듈
WO2019107795A1 (ko) 배터리 팩
WO2016105013A1 (ko) Bms 통합형 컴팩트 이차전지 모듈
WO2019054619A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2014073808A1 (ko) 버스 바 어셈블리를 포함하는 전지모듈 및 이를 포함하는 전지팩
WO2011099703A2 (ko) 용접 신뢰성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2017200177A1 (ko) 리드 용접 장치, 이러한 리드 용접 장치를 통해 제조되는 배터리 모듈 및 이러한 배터리 모듈을 포함하는 배터리 팩
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2018093038A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018236018A1 (ko) 배터리 팩
WO2019074206A1 (ko) 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈
WO2019050173A1 (ko) 레이저 용접 지그 및 이를 포함하는 레이저 용접 장치
WO2017052104A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈용 케이싱 제조 방법
WO2019066229A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019031723A1 (ko) 배터리 모듈 및 배터리 모듈의 제조 방법
WO2018174388A1 (ko) 배터리 팩
WO2017061707A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018236022A1 (ko) 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018806385

Country of ref document: EP

Effective date: 20190628

Ref document number: 2019538258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE