WO2019047848A1 - 一种中药组合物中十八种成分的分离方法 - Google Patents

一种中药组合物中十八种成分的分离方法 Download PDF

Info

Publication number
WO2019047848A1
WO2019047848A1 PCT/CN2018/104148 CN2018104148W WO2019047848A1 WO 2019047848 A1 WO2019047848 A1 WO 2019047848A1 CN 2018104148 W CN2018104148 W CN 2018104148W WO 2019047848 A1 WO2019047848 A1 WO 2019047848A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
peak
ods
water
column
Prior art date
Application number
PCT/CN2018/104148
Other languages
English (en)
French (fr)
Inventor
沈硕
张创峰
毕丹
魏峰
孙云波
Original Assignee
石家庄以岭药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄以岭药业股份有限公司 filed Critical 石家庄以岭药业股份有限公司
Priority to EP18853153.7A priority Critical patent/EP3680248A4/en
Priority to KR1020207009024A priority patent/KR102404533B1/ko
Priority to US16/643,632 priority patent/US11458417B2/en
Priority to SG11202001801PA priority patent/SG11202001801PA/en
Publication of WO2019047848A1 publication Critical patent/WO2019047848A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/265Adsorption chromatography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/63Oleaceae (Olive family), e.g. jasmine, lilac or ash tree
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/562Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with nitrogen as the only hetero atom
    • C07C45/565Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with nitrogen as the only hetero atom by reaction with hexamethylene-tetramine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/79Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/738Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • C07H17/07Benzo[b]pyran-4-ones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/50Methods involving additional extraction steps
    • A61K2236/55Liquid-liquid separation; Phase separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention belongs to the field of quality analysis and control of traditional Chinese medicine, and particularly relates to a method for separating eighteen components in a traditional Chinese medicine composition.
  • the traditional Chinese medicine compound is the main form of traditional Chinese medicine. After thousands of years of clinical use, the compound can obtain a stronger therapeutic effect than the single-flavored medicine, which has fully proved the scientific nature of the compound composition.
  • the pharmaceutical composition consists of 13 traditional Chinese medicines such as forsythia, honeysuckle and ephedra, which has the effects of clearing away phlegm and detoxifying, and venting lung and releasing heat, and is used for treating influenza. Clinical studies have confirmed that the pharmaceutical composition is effective and effective in treating influenza and acute upper respiratory tract infections.
  • the object of the present invention is to provide a method for separating eighteen components in a traditional Chinese medicine composition based on the diversity of the chemical constituents of the traditional Chinese medicine compound and the complexity of the chemical structure, so that the macroporous component is difficult to achieve rapid separation.
  • the composite reverse rapid separation technology can effectively separate the large polar components of traditional Chinese medicine compound in a short time, and obtain a series of representative compounds.
  • the present invention provides a method for separating eighteen components in a traditional Chinese medicine composition, which is prepared from the following raw materials by weight: Forsythia 200-300, Ephedra 60-100, Rhubarb 40- 60, Houttuynia cordata 200-300, honeysuckle 200-300, Ban GmbH 200-300, patchouli 60-100, Mianma Guanzhong 200-300, Rhodiola 60-100, menthol 5-9, bitter almond 60 -100, licorice 60-100, gypsum 200-300, the separation method comprises the following steps:
  • the total extract of the traditional Chinese medicine composition is separated by a macroporous resin of AB-8 type, and sequentially eluted with water, 10% ethanol, 30% ethanol, and a 30% ethanol eluate is collected, and the solvent is recovered to obtain a 30% ethanol extract. ;
  • step (2) Add the 30% ethanol extract obtained in step (1) to the reverse phase silica gel ODS-AQ-HG, S-50 ⁇ m, and mix the sample. After the ODS is naturally dried, the mixed ODS is added to the sample. In the column, the liquid phase was separated by medium pressure. The column packing was ODS-AQ-HG, S-50 ⁇ m, and 10% methanol was used in sequence. According to the elution order, 5 fractions were obtained, which were numbered 10%-1.
  • the dry paste obtained by the step (2) is 10%-1, dissolved in 30% methanol, and the solution is passed through a 0.45 ⁇ m microporous membrane for preliminary separation by high performance liquid chromatography.
  • the mobile phase is Methanol-water 22:78, flow rate 1 ml/min, detection wavelength 210 nm, collection retention times 3-9 min, 9-11 min, 19-22 min, 22-26 min, 26-30 min, 37-41 min and 44-48 min, respectively.
  • the peaks were collected and the solvent was recovered under reduced pressure to separate the following:
  • 22-26min peak further purified by high performance liquid chromatography, mobile phase: methanol-water, 16:84, flow rate: 10ml/min, detection wavelength 210nm, column: YMC-Pack R&D ODS-A, 250 ⁇ 20mm , S-10 ⁇ m, under this condition, collect the chromatographic peak with retention time of 32-37min, and recover the solvent under reduced pressure to obtain compound 18:3,4-dihydroxybenzaldehyde;
  • 26-30min peak further purified by high performance liquid chromatography, mobile phase: methanol-water, 18:82, flow rate: 10ml/min, detection wavelength 210nm, column: YMC-Pack R&D ODS-A, 250 ⁇ 20mm , S-10 ⁇ m, under this condition, a chromatographic peak with a retention time of 38-42 min was collected, and the solvent was recovered under reduced pressure to give a mixture of compound 11:D-myrofin and compound 12:L-arachitoside;
  • the peak of 44-48min was further purified by high performance liquid chromatography.
  • Mobile phase methanol-water, 22:78, flow rate: 10ml/min, detection wavelength 210nm, column: YMC-Pack R&D ODS-A, 250 ⁇ 20mm , S-10 ⁇ m, under this condition, collect the chromatographic peak with retention time of 41-44min, and recover the solvent under reduced pressure to obtain compound 15:4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone;
  • the dry paste obtained by the step (2) is numbered 20%-2, dissolved in 30% methanol, filtered through a 0.45 ⁇ m microporous membrane, and subjected to preliminary separation by high performance liquid chromatography.
  • Mobile phase methanol - water, 22:78, flow rate: 10 ml/min, detection wavelength 210 nm, column: YMC-Pack R&D ODS-A, 250 x 20 mm, S-10 ⁇ m, retention time 14-17 min, 17-19 min, 22 -24min, 29-34min and 35-40min peaks, and the solvent was recovered under reduced pressure, and the following separations were carried out separately:
  • 35-40min peak further purified by high performance liquid chromatography, mobile phase: acetonitrile-water, 16:84, flow rate: 10ml/min, detection wavelength 210nm, column: YMC-Pack R&D ODS-A, 250 ⁇ 20mm , S-10 ⁇ m, under this condition, collect the chromatographic peak with retention time of 34-45min, and recover the solvent under reduced pressure to obtain compound 1: forsythiaside A;
  • 35-40min peak further purified by high performance liquid chromatography, mobile phase: methanol-water, 25:75, flow rate: 12ml/min, detection wavelength 210nm, column: YMC-Pack R&D ODS-A, 250 ⁇ 20mm , S-10 ⁇ m, under this condition, a chromatographic peak with a retention time of 26-29 min was collected, and after recovering the solvent under reduced pressure, Compound 4: Lugrandoside was obtained.
  • the concentration of methanol and ethanol used in each separation step are both volume concentration (vol%);
  • methanol-water as a mobile phase when preliminary separation by high performance liquid chromatography The acetonitrile-water ratio is a volume ratio;
  • the chromatographic peaks of each retention time collected after preliminary separation by high performance liquid chromatography are further purified by high performance liquid chromatography, which means further purification of each retention.
  • the sample corresponding to the fraction of the peak of the time is recovered by the solvent.
  • the amount of the eluent water, 10% ethanol, and 30% ethanol is 1 g of the total extract of the traditional Chinese medicine composition, 40 ml of water, 10 % ethanol 17.6 ml, 30% ethanol 45 ml.
  • the amount of the reverse phase silica gel ODS-AQ-HG in the step (2) is: 1 g of the 30% ethanol extract obtained in the step (1) is reversed by 8 g.
  • the step (2) 10 parts of methanol are sequentially used, and 5 fractions are obtained according to the elution order, and the eluent amount of each fraction is: 1 g of the 30% ethanol extract obtained in the step (1) is 66.7. Ml 10% methanol; 20% methanol elution, according to the elution order to get 6 fractions, the eluent dosage of each fraction is: 1g step (1) 30% ethanol extract with 44.4-66.7ml 20% methanol.
  • the traditional Chinese medicine composition is made of the following raw materials by weight:
  • Forsythia 200 Honeysuckle 300, Ban GmbH 200, Rhubarb 40, Patchouli 60, Mianma Guanzhong 300, Rhodiola 100, Menthol 9, Ephedra 60, Bitter Almond 100, Houttuynia 200, Licorice 100, Gypsum 200 .
  • the traditional Chinese medicine composition is made of the following bulk parts of the drug substance:
  • Forsythia 300 Honeysuckle 200, Ban GmbH 300, Rhubarb 60, Patchouli 100, Mianma Guanzhong 200, Rhodiola 60, Menthol 5, Ephedra 100, Bitter Almond 60, Houttuynia 300, Licorice 60, Gypsum 300 .
  • the traditional Chinese medicine composition is made of the following bulk parts of the drug substance:
  • the total extract of the traditional Chinese medicine composition is prepared by the following steps:
  • the clear paste obtained in the step (4) is combined with the alcohol extract obtained in the step (3), and concentrated to a clear paste having a relative density of 1.15 - 1.20 at 60 ° C, and dried to obtain a total extract, which is ready for use.
  • the pharmaceutical composition of the invention consists of 13 traditional Chinese medicines such as forsythia, honeysuckle and ephedra, and has the effects of clearing away phlegm and detoxifying, and releasing lung and releasing heat, and is used for treating influenza. It is effective and effective in the treatment of influenza and acute upper respiratory tract infections.
  • systematic research on its material basis is necessary.
  • the compound 2 to the compound 8, the compound 10, and the compound 13 to the compound 18 are isolated from the total extract of the present invention for the first time, and the compound 4 to the compound 6, the compound 10, the compound 15, and the compound 16 are not seen from the compound single.
  • the separation of the drug was reported, and the nuclear magnetic data of Compound 8 in DMSO-d6 solvent was first assigned.
  • the present invention has less organic reagent consumption and less environmental pollution during the separation process.
  • a method for separating eighteen components in a traditional Chinese medicine composition is prepared from the following raw materials by weight: Forsythia 200-300, Ephedra 60-100, Rhubarb 40-60 Houttuynia 200-300, Honeysuckle 200-300, Ban GmbH 200-300, Patchouli 60-100, Mianma Guanzhong 200-300, Rhodiola 60-100, Menthol 5-9, Bitter Almond 60- 100, licorice 60-100, gypsum 200-300, the separation method comprises the following steps:
  • the traditional Chinese medicine composition is prepared into a total extract of the traditional Chinese medicine composition, and then separated by a large pore resin of AB-8 type, and sequentially eluted with water, a volume concentration of 10% ethanol, a volume concentration of 30% ethanol, and a volume concentration of 30% ethanol is collected. The eluent is recovered, and the solvent is recovered to obtain a 30% ethanol extract;
  • the 30% ethanol extract obtained in the step (1) is added to the reverse phase silica gel ODS-AQ-HG, S-50 ⁇ m, and stirred to obtain the mixed ODS; after the ODS is naturally dried, the mixed ODS is added.
  • the medium phase is used to prepare the liquid phase for separation;
  • the medium pressure separation column (for example, 40 cm in length and 5 cm in diameter) is ODS-AQ-HG, S-50 ⁇ m, First eluted with 10% methanol in volume, and 5 fractions were obtained according to the elution order, numbered 10%-1, 10%-2, 10%-3, 10%-4, 10%-5;
  • the volume concentration was 20% methanol elution, and 6 fractions were obtained according to the elution order, numbered 20%-1, 20%-2, 20%-3, 20%-4, 20%-5 and 20%-6 respectively.
  • the eluted dry paste numbered 10%-1 obtained in the step (2) was dissolved in a volume concentration of 30% methanol as a solution, and the solution was passed through a 0.45 ⁇ m microporous membrane membrane by high performance liquid chromatography. The initial separation was carried out.
  • the mobile phase was methanol-water with a methanol to water volume ratio of 22:78, a flow rate of 1 ml/min, and a detection wavelength of 210 nm.
  • the retention times were 3-9 min, 9-11 min, and 19-22 min, respectively.
  • the sample after 3-9 min of the chromatographic peak was recovered by solvent, and further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water, wherein the volume ratio of methanol to water was 5:95, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm; the column: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m, under this condition, the corresponding fraction of the chromatographic peak with retention time of 25-27 min is collected, and the solvent is recovered under reduced pressure to obtain a compound. 14: Cornoside;
  • the sample after the 9-11min peak corresponding to the solvent recovery was further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water with a methanol to water volume ratio of 12:88 and a flow rate of 10 ml/min.
  • the detection wavelength is 210 nm; the column: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m, under this condition, the corresponding fraction of the chromatographic peak with retention time of 32-35 min is collected, and the solvent is recovered under reduced pressure to obtain a compound.
  • 10 Ferruginoside B;
  • the sample with the corresponding fraction of the 19-22 min chromatographic peak was further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water, and the volume ratio of methanol to water was 18:82, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with a retention time of 31-35 min is collected, and the solvent is recovered under reduced pressure to obtain a compound. 9: Forsythiaside E;
  • the sample after the 22-26min peak corresponding to the solvent recovery was further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water with a methanol to water volume ratio of 16:84 and a flow rate of 10 ml/min.
  • the detection wavelength is 210 nm, and the column is YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with retention time of 32-37 min is collected, and the solvent is recovered under reduced pressure to obtain a compound. 18:3,4-dihydroxybenzaldehyde;
  • the sample after 26-30 min of the chromatographic peak was recovered by solvent, and further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water, and the volume ratio of methanol to water was 18:82, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm, and the column is YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with a retention time of 38-42 min is collected, and the solvent is recovered under reduced pressure to obtain a compound.
  • 11 a mixture of D-Amygdalin and Compound 12: L-Amygdalin;
  • the sample after the solvent recovery of the 37-41min peak was further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water with a methanol to water volume ratio of 18:82 and a flow rate of 10 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with a retention time of 52-56 min is collected, and the solvent is recovered under reduced pressure to obtain a compound. 13: Sambnigrin;
  • the sample after the solvent recovery of the 44-48min peak was further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water with a methanol to water volume ratio of 22:78 and a flow rate of 10 ml/min.
  • the detection wavelength is 210 nm, and the column is YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with a retention time of 41-44 min is collected, and the solvent is recovered under reduced pressure to obtain a compound. 15:4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone;
  • the eluted dry paste numbered 20%-2 obtained in the step (2) was dissolved in a volume concentration of 30% methanol, filtered through a 0.45 ⁇ m microporous membrane, and subjected to preliminary separation by high performance liquid chromatography.
  • the phase is methanol-water, wherein the volume ratio of methanol to water is 22:78, the flow rate is 10 ml/min, the detection wavelength is 210 nm, and the column: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m, respectively collected.
  • the retention time is the fraction corresponding to the chromatographic peaks of 14-17 min, 17-19 min, 22-24 min, 29-34 min and 35-40 min, and the solvent is recovered under reduced pressure, and the following separations are respectively carried out (the object to be separated here is the above)
  • the sample corresponding to the peak of each retention time is recovered by the solvent.
  • the following 14-17min peak, 17-19min peak, 22-24min peak, 29-34min peak, 35-40min peak Corresponding to the number can be: stream 14-17, stream 17-19, stream 22-24, stream 29-34, stream 35-40 of these streams):
  • the sample after 14-17 min peak corresponding to the solvent recovery was further purified by high performance liquid chromatography.
  • the mobile phase was acetonitrile-water, and the volume ratio of acetonitrile to water was 15:85, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m.
  • the sample after 17-19 min of the chromatographic peak was recovered by solvent and further purified by high performance liquid chromatography.
  • the mobile phase was acetonitrile-water, and the volume ratio of acetonitrile to water was 15:85, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fractions of the chromatographic peaks with retention times of 28-30 min and 37-44 min are collected and recovered under reduced pressure.
  • compound 16 is obtained: Liriodendrin and compound 2: forsythiaside I;
  • the sample after the 22-24min peak corresponding to the solvent recovery was further purified by high performance liquid chromatography.
  • the mobile phase was acetonitrile-water, and the volume ratio of acetonitrile to water was 17:83, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with a retention time of 22-25 min is collected, and the solvent is recovered under reduced pressure to obtain Compound 8: Calceolarioside C;
  • the sample after the solvent recovery of the 35-40 min peak was further purified by high performance liquid chromatography.
  • the mobile phase was acetonitrile-water, and the volume ratio of acetonitrile to water was 16:84, and the flow rate was 10 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with retention time of 34-45 min is collected, and the solvent is recovered under reduced pressure to obtain Compound 1: Forsythiaside A;
  • step (2) Combining the fraction numbered 20%-4 obtained in step (2) with the fraction of 20%-5, dissolving in a volume concentration of 30% methanol, and filtering through a 0.45 ⁇ m microporous membrane, high-performance liquid phase Chromatography was carried out for preliminary separation.
  • the mobile phase was acetonitrile-water.
  • the volume ratio of acetonitrile to water was 15:85, the flow rate was 15 ml/min, and the detection wavelength was 210 nm.
  • the sample after 15-17 min chromatographic peak was recovered by solvent and further purified by high performance liquid chromatography.
  • the mobile phase was acetonitrile-water, and the volume ratio of acetonitrile to water was 15:85, and the flow rate was 12 ml/min.
  • the detection wavelength is 210 nm, and the column is: YMC-Pack R&D ODS-A, 250 ⁇ 20 mm, S-10 ⁇ m. Under this condition, the corresponding fraction of the chromatographic peak with a retention time of 15-16 min is collected, and the solvent is recovered under reduced pressure to obtain Compound 5: Isolugrandoside;
  • the sample after 35-40 min of the peak corresponding to the solvent recovery was further purified by high performance liquid chromatography.
  • the mobile phase was methanol-water, and the volume ratio of methanol to water was 25:75, and the flow rate was 12 ml/ Min, detection wavelength is 210nm, column: YMC-Pack R&D ODS-A, 250 ⁇ 20mm, S-10 ⁇ m, under this condition, collect the corresponding fraction of the chromatographic peak with retention time of 26-29min, and recover the solvent under reduced pressure.
  • Compound 4 was obtained: Lugrandoside.
  • the water as the eluent, the volume concentration of 10% ethanol, and the volume concentration of 30% ethanol are: 1 g of the total extract of the traditional Chinese medicine composition 40 ml of water, 1 g of the traditional Chinese medicine combination
  • the total extract was 17.6 ml of 10% ethanol
  • the total extract of 1 g of the traditional Chinese medicine composition was 45 ml of 30% ethanol.
  • the amount of the reverse phase silica gel ODS-AQ-HG in the step (2) is: 1 g of the 30% ethanol extract obtained in the step (1), and 8 g of the reverse phase silica gel ODS-AQ-HG, wherein 3 g
  • the reverse phase silica gel ODS-AQ-HG was used for mixing with 1 g of the 30% ethanol extract obtained in the step (1), and the remaining 5 g was used as a filler for the medium pressure separation column.
  • the step (2) is sequentially eluted with 10% methanol and 20% methanol; when eluted with 10% methanol, 5 fractions are obtained according to the elution order, and the eluent of each fraction is obtained.
  • the dosage is: 1 g of the 30% ethanol extract obtained in the step (1) is 66.7 ml of 10% methanol; when eluted with 20% methanol, 6 fractions are obtained according to the elution order, and the eluent amount of each fraction is : 1 g of the 30% ethanol extract obtained in the step (1) using 44.4-66.7 ml of 20% methanol.
  • the traditional Chinese medicine composition is made up of the following weight parts of the drug substance: Forsythia 200, Honeysuckle 300, Ban GmbH 200, Rhubarb 40, Patchouli 60, Mianma Guanzhong 300, Rhodiola 100, Menthol 9, Ephedra 60, Bitter Almond 100, Houttuynia cordata 200, Licorice 100, Gypsum 200.
  • the traditional Chinese medicine composition is made up of the following weight parts of the drug substance: Forsythia 300, Honeysuckle 200, Ban GmbH 300, Rhubarb 60, Patchouli 100, Mianma Guanzhong 200, Rhodiola 60, Menthol 5, Ephedra 100, Bitter Almond 60, Houttuynia 300, Licorice 60, Gypsum 300.
  • the traditional Chinese medicine composition is made up of the following weight parts of the drug substance: Forsythia 278, Honeysuckle 294, Radix Isatidis 285, Rhubarb 55, Patchouli 95, Mianma Guanzhong 290, Rhodiola 87, Menthol 8.5, Ephedra 88, bitter almond 80, Houttuynia cordata 284, licorice 95, gypsum 277.
  • the total extract of the traditional Chinese medicine composition as described above is produced by the following steps:
  • the traditional Chinese medicine composition is made of the following raw materials of weight: Forsythia 20kg, 30g of honeysuckle, 20kg of Radix, 4kg of rhubarb, 6kg of patchouli, 30kg of Mianmaguan, 10kg of Rhodiola, 0.9kg of menthol, 6kg of ephedra , bitter almond 10kg, houttuynia 20kg, licorice 10kg, gypsum 20kg; the traditional Chinese medicine composition total extract is made by the following steps:
  • Milli-Q pure water purifier (Millipore, USA);
  • TGL-16G centrifuge (Shanghai Anting Scientific Instrument Factory);
  • YMC-Pack R&D ODS-A (length 250 ⁇ diameter 20 mm, filler particle size S-10 ⁇ m, Japan YMC);
  • the chemical reagents used in this application are analytically pure reagents (Beijing Chemical Plant).
  • the total extract of the pharmaceutical composition of the present invention is 5 kg (batch number: B1509001), adsorbed by AB-8 macroporous resin, and sequentially used 200 liters of water, 88 liters of 10% ethanol, 225 liters of 30% ethanol, and 250 liters of 50%. Ethanol, 150 liters of 70% ethanol and 162 liters of 95% ethanol were eluted, and the solvent was recovered to obtain a corresponding extract, in which 305.0% of ethanol was eluted with a portion of the extract.
  • the supernatant was further purified by high performance liquid phase (mobile phase: acetonitrile-water, acetonitrile to water volume ratio: 16:84, flow rate: 10 ml/min, detection wavelength 210 nm, column: YMC-Pack R&D ODS-A (250 ⁇ 20 mm, S-10 ⁇ m)), under this condition, the fraction corresponding to the chromatographic peak of the retention time of 40-45 min was collected, and the solvent was recovered under reduced pressure to give Compound 3 (19 mg).
  • the sample after 35-40 min of the peak corresponding to the solvent recovery was further purified by high performance liquid chromatography (mobile phase: methanol-water, methanol to water volume ratio of 25:75, flow rate: 12 ml/min, detection wavelength 210 nm, column: YMC-Pack R&D ODS-A (250 ⁇ 20 mm, S-10 ⁇ m)), under this condition, collect the fraction corresponding to the chromatographic peak of retention time 26-29 min, and recover the solvent under reduced pressure to obtain compound 4 (32mg).
  • high performance liquid chromatography mobile phase: methanol-water, methanol to water volume ratio of 25:75, flow rate: 12 ml/min, detection wavelength 210 nm, column: YMC-Pack R&D ODS-A (250 ⁇ 20 mm, S-10 ⁇ m)
  • the sample after 15-17 min of the peak corresponding to the solvent recovery was further purified by high performance liquid chromatography (mobile phase: acetonitrile-water, acetonitrile to water volume ratio: 15:85, flow rate: 12 ml/min, detection)
  • the wavelength is 210 nm
  • the column is YMC-Pack R&D ODS-A (250 ⁇ 20 mm, S-10 ⁇ m).
  • the fraction corresponding to the chromatographic peak with a retention time of 15-16 min is collected, and the solvent is recovered under reduced pressure to obtain a compound. 5 (4 mg).
  • Compound 5 a transparent glassy solid (methanol), ESI-MS m/z: 639.2 [MH] - , which was determined by NMR data to be C 29 H 36 O 16 .
  • Compound 11 and Compound 12 a white powdery solid (methanol), and a nuclear magnetic resonance spectrum showed that the component to be tested was a mixture of a pair of epimers.
  • the nuclear magnetic data was compared with the reference [9], and it was confirmed that the component was a mixture of D-Amyglyin and L-Amygdalin, and the molecular weight of the mixture was ESI-MS m/z: 456.2 [MH] - .
  • Compound 15 was formed as an amorphous solid (methanol), ESI-MS m/z: 195.1 [MH] - , which was determined by NMR data to be C 10 H 12 O 4 .
  • the traditional Chinese medicine composition is prepared from the following raw materials: 30 kg of forsythia, 20 kg of honeysuckle, 30 kg of radix isatidis, 6 kg of rhubarb, 10 kg of patchouli, 20 kg of cotton horse, 6 kg of Rhodiola, 0.5 kg of menthol, ephedra 10kg, bitter almond 6kg, houttuynia 30kg, licorice 6kg, gypsum 30kg; the traditional Chinese medicine composition total extract is made by the following steps:
  • the clear paste obtained in the step (4) is combined with the alcohol extract obtained in the step (3), and concentrated to a clear paste having a relative density of 1.15 at 60 ° C, and dried to obtain a total extract, which is ready for use.
  • Example 2 The separation method procedure was the same as in Example 1, and as a result, the eighteen compounds described in Example 1 were isolated.
  • the traditional Chinese medicine composition is prepared from the following raw materials by weight: 27.8kg for forsythia, 29.4kg for honeysuckle, 28.5kg for radix isatidis, 5.5kg for rhubarb, 9.5kg for patchouli, 29kg for cotton horse, 8.7kg for Rhodiola, Menthol 0.85kg, ephedra 8.8kg, bitter almond 8kg, houttuynia 28.4kg, licorice 9.5kg, gypsum 27.7kg; the traditional Chinese medicine composition total extract is made by the following steps:
  • the clear paste obtained in the step (4) is combined with the alcohol extract obtained in the step (3), and concentrated to a clear paste having a relative density of 1.18 at 60 ° C, and dried to obtain a total extract, which is ready for use.
  • Example 2 The separation method procedure was the same as in Example 1, and as a result, the eighteen compounds described in Example 1 were isolated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)

Abstract

本发明属于中药的质量分析控制领域,提供一种中药组合物中十八种成分的分离方法,所述分离方法包括:(1)将中药组合物制备成中药组合物总浸膏后,经树脂分离,依次用水、10%乙醇、30%乙醇洗脱,收集30%乙醇洗脱液,得到30%乙醇浸膏;(2)将30%乙醇浸膏加入反相硅胶ODS-AQ-HG,在中压分离柱中进行分离,得到不同编号的洗脱干膏;(3)将不同编号的洗脱干膏用30%甲醇作为溶解液进行溶解,溶解液经过0.45μm微孔滤膜,采用高效液相色谱法进行初步分离,分别收集不同保留时间的色谱峰,再经高效液相色谱进一步纯化;最终制得十八种成分的化合物。本发明的分离方法能够对药物组合物的化学成分进行深入研究。

Description

一种中药组合物中十八种成分的分离方法 技术领域
本发明属于中药的质量分析控制领域,具体的涉及到一种中药组合物中十八种成分的分离方法。
背景技术
中药复方是中医用药的主要形式,在经过几千年的临床使用中,复方可以获得比单味药更强的治疗效果,这已经充分证明了复方构成的科学性。
由连翘、金银花和麻黄等13味中药组成药物组合物,具有清瘟解毒、宣肺泄热之功效,用于治疗流行性感冒。临床研究证实,该药物组合物治疗流感、急性上呼吸道感染疗效确切、效果显著。
为了阐明该复方的药理作用机制以及复方药物配伍规律的科学内涵,对其物质基础进行***的研究是十分必要的。
发明内容
本发明的目的在于,基于中药复方化学成分种类的多样性、化学结构的复杂性而使其大极性成分难以实现快速分离的问题,提供一种中药组合物中十八种成分的分离方法,采用复合型反向快速分离技术,可在短时间内实现中药复方大极性成分的有效分离,获得一系列代表性化合物。
为了实现上述目的,本发明提供一种中药组合物中十八种成分的分离方法,该中药组合物由如下重量份的原料药制成:连翘200-300、麻黄60-100、大黄40-60、鱼腥草200-300、金银花200-300、板蓝根200-300、广藿香60-100、绵马贯众200-300、红景天60-100、薄荷脑5-9、苦杏仁60-100、甘草60-100、石膏200-300,所述分离方法包括以下步骤:
(1)该中药组合物总浸膏经AB-8型号大孔树脂分离,依次用水、10%乙醇、30%乙醇洗脱,收集30%乙醇洗脱液,回收溶剂,得30% 乙醇浸膏;
(2)将步骤(1)得到的30%乙醇浸膏,加入反相硅胶ODS-AQ-HG,S-50μm,拌样,待拌样ODS自然晾干后,将拌样ODS加入到上样柱内,采用中压制备液相进行分离,分离柱填料为ODS-AQ-HG,S-50μm,依次用10%甲醇,根据洗脱顺序得到5个流份,分别编号为10%-1、10%-2、10%-3、10%-4、10%-5;20%甲醇洗脱,根据洗脱顺序得到6个流份,分别编号为20%-1、20%-2、20%-3、20%-4、20%-5和20%-6,分别收集洗脱液,回收溶剂,得编号为10%-1、10%-2、10%-3、10%-4、10%-5洗脱干膏和20%-1、20%-2、20%-3、20%-4、20%-5和20%-6洗脱干膏;
(3)将步骤(2)得到的编号为10%-1洗脱干膏,用30%甲醇溶解,溶解液过0.45μm微孔滤膜,采用高效液相色谱法进行初步分离,流动相为甲醇-水22:78,流速为1ml/min,检测波长210nm,分别收集保留时间为3-9min、9-11min、19-22min、22-26min、26-30min、37-41min和44-48min的色谱峰,并减压回收溶剂,分别进行以下分离:
3-9min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,5:95,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间25-27min的色谱峰,减压回收溶剂后,得到化合物14:Cornoside;
9-11min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,12:88,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间32-35min的色谱峰,减压回收溶剂后,得到化合物10:Ferruginoside B;
19-22min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间31-35min的色谱峰,减压回收溶剂后,得到化合物9:连翘酯苷E;
22-26min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间32-37min 的色谱峰,减压回收溶剂后,得到化合物18:3,4-二羟基苯甲醛;
26-30min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间38-42min的色谱峰,减压回收溶剂后得到化合物11:D-苦杏仁苷和化合物12:L-苦杏仁苷的混合物;
37-41min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间52-56min的色谱峰,减压回收溶剂后,得到化合物13:Sambunigrin;
44-48min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间41-44min的色谱峰,减压回收溶剂后,得到化合物15:4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone;
(4)将步骤(2)得到的编号为20%-2洗脱干膏,用30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离,流动相:甲醇-水,22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,分别收集保留时间为14-17min、17-19min、22-24min、29-34min和35-40min的色谱峰,并减压回收溶剂,并分别进行以下分离:
14-17min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,15:85,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间38-40min和45-47min的色谱峰,其中45-47min色谱峰减压回收溶剂后,得到化合物化合物7:Lianqiaoxingan C;保留时间为38-40min色谱峰,减压回收溶剂后再经高效液相色谱法纯化,流动相:乙腈-水,13:87,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,收集此条件下52-56min色谱峰,减压回收溶剂,得到化合物6:Ferruginoside A;
17-19min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,15:85,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间28-30min和37-44min的色谱峰,减压回收溶剂后,分别得到化合物16:Liriodendrin,和化合物2:连翘酯苷I;
22-24min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,17:83,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间22-25min的色谱峰,减压回收溶剂后,得到化合物8:Calceolarioside C;
29-34min色谱峰,在减压回收溶剂后,在室温下放置,待溶剂挥发后,有白色固体析出,5000rpm离心得到化合物17:甘草素-7-O-β-D-葡萄糖苷;上清液经高效液相进一步纯化,流动相:乙腈-水,16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间40-45min的色谱峰,减压回收溶剂后,得到化合物3:连翘酯苷H;
35-40min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间34-45min的色谱峰,减压回收溶剂后,得到化合物1:连翘酯苷A;
(5)将步骤(2)得到的编号为20%-4和20%-5流份合并,采用30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离,流动相:乙腈-水,15:85,流速:15ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,分别收集保留时间为15-17min和35-40min的色谱峰,并减压回收溶剂;其中,
15-17min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,15:85,流速:12ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间15-16min的色谱峰,减压回收溶剂后,得到化合物5:Isolugrandoside;
35-40min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,25:75,流速:12ml/min,检测波长210nm,色谱柱:YMC-Pack  R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间26-29min的色谱峰,减压回收溶剂后,得到化合物4:Lugrandoside。
在本发明中,(1)各个分离的步骤中所用的甲醇、乙醇的浓度均为体积浓度(vol%);(2)采用高效液相色谱法进行初步分离时,作为流动相的甲醇-水、乙腈-水的用量比均为体积比;(3)经高效液相色谱法进行初步分离后收集的各保留时间的色谱峰再经高效液相色谱法进一步纯化分离,是指进一步纯化各保留时间的色谱峰所对应流份经溶剂回收后的样品。
根据本发明提供的十八种成分的分离方法,优选地,所述步骤(1)中,洗脱剂水、10%乙醇、30%乙醇的用量为1g中药组合物总浸膏用水40ml、10%乙醇17.6ml、30%乙醇45ml。
根据本发明提供的十八种成分的分离方法,优选地,所述步骤(2)中反相硅胶ODS-AQ-HG的用量为:1g步骤(1)所得30%乙醇浸膏用8g反相硅胶ODS-AQ-HG,其中3g用于与1g步骤(1)所得30%乙醇浸膏拌样,5g用做中压分离柱的填料。
优选地,所述步骤(2)中依次用10%甲醇,根据洗脱顺序得到5个流份,每个流份的洗脱剂用量为:1g步骤(1)所得30%乙醇浸膏用66.7ml的10%甲醇;20%甲醇洗脱,根据洗脱顺序得到6个流份,每个流份的洗脱剂用量为:1g步骤(1)所得30%乙醇浸膏用44.4-66.7ml的20%甲醇。
根据本发明提供的十八种成分的分离方法,优选地,所述中药组合物是由如下重量份的原料药制成:
连翘200、金银花300、板蓝根200、大黄40、广藿香60、绵马贯众300、红景天100、薄荷脑9、麻黄60、苦杏仁100、鱼腥草200、甘草100、石膏200。
优选地,所述中药组合物是由如下重量份的原料药制成:
连翘300、金银花200、板蓝根300、大黄60、广藿香100、绵马贯众200、红景天60、薄荷脑5、麻黄100、苦杏仁60、鱼腥草300、甘草60、石膏300。
优选地,所述中药组合物是由如下重量份的原料药制成:
连翘278、金银花294、板蓝根285、大黄55、广藿香95、绵马贯众290、红景天87、薄荷脑8.5、麻黄88、苦杏仁80、鱼腥草284、甘草95、石膏277。
根据本发明提供的十八种成分的分离方法,优选地,所述中药组合物总浸膏由以下步骤制成:
(1)按照原料药重量比例称取中药材,净选,碎断;
(2)广藿香碎断,加10倍量水提取挥发油,提油时间8小时,收集挥发油,备用;提取液过滤后,残渣弃去,滤液备用;
(3)连翘、麻黄、鱼腥草、大黄,用12倍量70%的乙醇提取3次,每次2.5小时,提取液合并过滤,回收乙醇,滤液备用;
(4)金银花、石膏、板蓝根、绵马贯众、甘草、红景天,加12倍量水煎煮至沸,加入苦杏仁,煎煮2次,每次1小时,提取液合并过滤,所得滤液与步骤(2)广藿香提油后的滤液合并,浓缩成在60℃时测定相对密度为1.10-1.15的清膏,加入乙醇,调节至醇浓度为70%,冷藏(例如,4℃)放置,过滤,回收乙醇至无醇味,得清膏备用;
(5)将步骤(4)所得清膏与步骤(3)所得醇提液合并,浓缩至在60℃时测定相对密度为1.15-1.20的清膏,干燥,得总浸膏,备用。
本发明的药物组合物由连翘、金银花和麻黄等13味中药组成,具有清瘟解毒、宣肺泄热之功效,用于治疗流行性感冒。其在治疗流感、急性上呼吸道感染时疗效确切、效果显著。为阐明复方的药理作用机制以及复方药物配伍规律的科学内含,对其物质基础进行***的研究十分必要。
基于此,对于本发明所述药物组合物(详情参见公开号为CN1483463A的专利文件)的化学成分进行了深入研究,在其总浸膏大孔吸附树脂柱的30%乙醇部位分离并鉴定了18个化合物,分别为连翘酯苷A(1)、连翘酯苷I(2)、连翘酯苷H(3)、Lugrandoside(4)、Isolugrandoside(5)、Ferruginoside A(6)、Lianqiaoxingan C(7)、Calceolarioside C(8)、连翘酯苷E(9)、Ferruginoside B(10)、D-苦杏仁苷(11)、L-苦杏仁苷(12)、Sambunigrin(13)、Cornoside(14)、4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone (15)、Liriodendrin(16)、甘草素-7-O-β-D-葡萄糖苷(17)、3,4-二羟基苯甲醛(18)。
其中,化合物2~化合物8、化合物10、化合物13~化合物18为首次从本发明所述的总浸膏中分离得到,化合物4~化合物6、化合物10、化合物15、化合物16未见从复方单味药中分离的报道,并首次对化合物8在DMSO-d6溶剂中的核磁数据进行归属。
本发明技术方案的有益效果在于:
(1)将大孔树脂吸附柱色谱、反相中低压柱色谱和高压制备液相色谱技术相结合,实现了对中药复方大极性成分有效分离;
(2)本发明对复方中药化学成分的分离效率高,在短时间内即可得到复方中具有代表性的单体化合物;
(3)与现有采用单一的硅胶柱色谱技术相比,本发明在实施分离的过程中,有机试剂消耗量少,环境污染小。
具体实施方式
为了能够详细地理解本发明的技术特征和内容,下面将更详细地描述本发明的优选实施方式。虽然实施例中描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
在本发明的一种示例中,中药组合物中十八种成分的分离方法,该中药组合物由如下重量份的原料药制成:连翘200-300、麻黄60-100、大黄40-60、鱼腥草200-300、金银花200-300、板蓝根200-300、广藿香60-100、绵马贯众200-300、红景天60-100、薄荷脑5-9、苦杏仁60-100、甘草60-100、石膏200-300,所述分离方法包括以下步骤:
(1)将中药组合物制备成中药组合物总浸膏后,经AB-8型号大孔树脂分离,依次用水、体积浓度10%乙醇、体积浓度30%乙醇洗脱,收集体积浓度30%乙醇洗脱液,回收溶剂,得到30%乙醇浸膏;
(2)将步骤(1)得到的30%乙醇浸膏,加入反相硅胶ODS-AQ-HG,S-50μm,搅拌得到拌样ODS;待拌样ODS自然晾干后,将拌样ODS 加入到上样柱内(例如,长8cm,直径4cm),采用中压制备液相进行分离;中压分离柱(例如,长40cm,直径5cm)的填料为ODS-AQ-HG,S-50μm,先用体积浓度10%甲醇洗脱,根据洗脱顺序得到5个流份,分别编号为10%-1、10%-2、10%-3、10%-4、10%-5;再用体积浓度20%甲醇洗脱,根据洗脱顺序得到6个流份,分别编号为20%-1、20%-2、20%-3、20%-4、20%-5和20%-6,分别收集10%甲醇洗脱液和20%甲醇洗脱液,回收溶剂,得编号为10%-1、10%-2、10%-3、10%-4、10%-5的洗脱干膏和20%-1、20%-2、20%-3、20%-4、20%-5和20%-6的洗脱干膏;
(3)将步骤(2)得到的编号为10%-1的洗脱干膏,用体积浓度30%甲醇作为溶解液进行溶解,溶解液经过0.45μm微孔滤膜,采用高效液相色谱法进行初步分离,流动相为甲醇-水,其中的甲醇与水体积比为22:78,流速为1ml/min,检测波长为210nm,分别收集保留时间为3-9min、9-11min、19-22min、22-26min、26-30min、37-41min和44-48min的色谱峰,并减压回收溶剂,并分别进行以下分离(在这里进行分离的对象是上述各保留时间的色谱峰所对应流份经溶剂回收后的样品,下述出现的3-9min色谱峰、9-11min色谱峰、19-22min色谱峰、22-26min色谱峰、26-30min色谱峰、37-41min色谱峰以及44-48min色谱峰分别对应的是编号可依次为:流份3-9、流份9-11、流份19-22、流份22-26、流份26-30、流份37-41、流份44-48的这些流份):
3-9min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为5:95,流速为10ml/min,检测波长为210nm;色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间25-27min的色谱峰所对应流份,减压回收溶剂后,得到化合物14:Cornoside;
9-11min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为12:88,流速为10ml/min,检测波长为210nm;色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间32-35min 的色谱峰所对应流份,减压回收溶剂后,得到化合物10:Ferruginoside B;
19-22min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为18:82,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间31-35min的色谱峰所对应流份,减压回收溶剂后,得到化合物9:连翘酯苷E;
22-26min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为16:84,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间32-37min的色谱峰所对应流份,减压回收溶剂后,得到化合物18:3,4-二羟基苯甲醛;
26-30min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为18:82,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间38-42min的色谱峰所对应流份,减压回收溶剂后,得到化合物11:D-苦杏仁苷和化合物12:L-苦杏仁苷的混合物;
37-41min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为18:82,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间52-56min的色谱峰所对应流份,减压回收溶剂后,得到化合物13:Sambunigrin;
44-48min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水体积比为22:78,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间41-44min的色谱峰所对应流份,减压回收溶剂后,得到化合物15:4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone;
(4)将步骤(2)得到的编号为20%-2的洗脱干膏,用体积浓度30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离,流动相为甲醇-水,其中的甲醇与水体积比为22:78,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,分别收集保留时间为14-17min、17-19min、22-24min、29-34min和35-40min的色谱峰所对应流份,且减压回收溶剂,并分别进行以下分离(在这里进行分离的对象是上述各保留时间的色谱峰所对应流份经溶剂回收后的样品,下述出现的14-17min色谱峰、17-19min色谱峰、22-24min色谱峰、29-34min色谱峰、35-40min色谱峰分别对应的是编号可依次为:流份14-17、流份17-19、流份22-24、流份29-34、流份35-40的这些流份):
14-17min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为乙腈-水,其中的乙腈与水的体积比为15:85,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间38-40min和45-47min的色谱峰所对应流份,其中45-47min色谱峰所对应的流份减压回收溶剂后,得到化合物7:Lianqiaoxingan C;保留时间为38-40min色谱峰所对应流份,减压回收溶剂后再经高效液相色谱法纯化,流动相为乙腈-水,其中的乙腈与水的体积比为13:87,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,收集此条件下52-56min色谱峰所对应流份,减压回收溶剂,得到化合物6:Ferruginoside A;
17-19min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为乙腈-水,其中的乙腈与水的体积比为15:85,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间28-30min和37-44min的色谱峰所对应流份,减压回收溶剂后,分别得到化合物16:Liriodendrin和化合物2:连翘酯苷I;
22-24min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为乙腈-水,其中的乙腈与水的体积比为17: 83,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间22-25min的色谱峰所对应流份,减压回收溶剂后,得到化合物8:Calceolarioside C;
29-34min色谱峰所对应流份,减压回收溶剂后,在室温下放置,待溶剂挥发后,有白色固体析出,经5000rpm离心得到化合物17:甘草素-7-O-β-D-葡萄糖苷;离心所得上清液经高效液相进一步纯化,流动相为乙腈-水,其中的乙腈与水的体积比为16:84,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间40-45min的色谱峰所对应流份,减压回收溶剂后,得到化合物3:连翘酯苷H;
35-40min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为乙腈-水,其中的乙腈与水的体积比为16:84,流速为10ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间34-45min的色谱峰所对应流份,减压回收溶剂后,得到化合物1:连翘酯苷A;
(5)将步骤(2)得到的编号为20%-4的流份和20%-5的流份合并,采用体积浓度30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离,流动相为乙腈-水,其中的乙腈与水的体积比为15:85,流速为15ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,分别收集保留时间为15-17min和35-40min的色谱峰所对应流份,并减压回收溶剂;其中,
15-17min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化,流动相为乙腈-水,其中的乙腈与水的体积比为15:85,流速为12ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间15-16min的色谱峰所对应流份,减压回收溶剂后,得到化合物5:Isolugrandoside;
35-40min的色谱峰所对应流份经溶剂回收后的样品,经高效液相 色谱法进一步纯化,流动相为甲醇-水,其中的甲醇与水的体积比为25:75,流速为12ml/min,检测波长为210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间26-29min的色谱峰所对应流份,减压回收溶剂后,得到化合物4:Lugrandoside。
在一些优选实施方式中,所述步骤(1)中,作为洗脱液的水、体积浓度10%乙醇、体积浓度30%乙醇的用量为:1g中药组合物总浸膏用水40ml,1g中药组合物总浸膏用10%乙醇17.6ml,1g中药组合物总浸膏用30%乙醇45ml。
在一些优选实施方式中,所述步骤(2)中反相硅胶ODS-AQ-HG的用量为:1g步骤(1)所得30%乙醇浸膏用8g反相硅胶ODS-AQ-HG,其中3g反相硅胶ODS-AQ-HG用于与1g步骤(1)所得30%乙醇浸膏拌样,剩余5g用作中压分离柱的填料。
优选地,所述步骤(2)中依次用10%甲醇洗脱和20%甲醇洗脱;用10%甲醇洗脱时,根据洗脱顺序得到5个流份,每个流份的洗脱液用量为:1g步骤(1)所得30%乙醇浸膏用66.7ml的10%甲醇;用20%甲醇洗脱时,根据洗脱顺序得到6个流份,每个流份的洗脱液用量为:1g步骤(1)所得30%乙醇浸膏用44.4-66.7ml的20%甲醇。
在一些示例中,所述中药组合物是由如下重量份的原料药制成:连翘200、金银花300、板蓝根200、大黄40、广藿香60、绵马贯众300、红景天100、薄荷脑9、麻黄60、苦杏仁100、鱼腥草200、甘草100、石膏200。
在一些示例中,所述中药组合物是由如下重量份的原料药制成:连翘300、金银花200、板蓝根300、大黄60、广藿香100、绵马贯众200、红景天60、薄荷脑5、麻黄100、苦杏仁60、鱼腥草300、甘草60、石膏300。
在一些示例中,所述中药组合物是由如下重量份的原料药制成:连翘278、金银花294、板蓝根285、大黄55、广藿香95、绵马贯众290、红景天87、薄荷脑8.5、麻黄88、苦杏仁80、鱼腥草284、甘草95、石膏277。
如上所述中药组合物总浸膏由以下步骤制成:
(1)按照原料药的重量比例称取中药材,净选,碎断;
(2)将广藿香进一步碎断,加水提取挥发油,其中加水的重量为广藿香重量份的10倍;提油时间为8小时,收集挥发油,备用;将提取液过滤后,残渣弃去,所得滤液备用;
(3)将连翘、麻黄、鱼腥草、大黄,用质量浓度为70%的乙醇提取3次,每次提取时间为2.5小时;其中加入70%的乙醇重量为连翘、麻黄、鱼腥草、大黄重量和的12倍;再将提取液合并过滤,回收乙醇,所得滤液备用;
(4)将金银花、石膏、板蓝根、绵马贯众、甘草、红景天,加水煎煮至沸腾,其中加入水的重量为金银花、石膏、板蓝根、绵马贯众、甘草、红景天总重量的12倍;再加入苦杏仁,煎煮2次,每次1小时,然后将提取液合并过滤,所得滤液与步骤(2)中广藿香提油后的滤液合并,浓缩成在60℃时测定相对密度为1.10-1.15的清膏,加入乙醇,调节至乙醇质量浓度为70%,冷藏(例如,4℃)放置,过滤,回收乙醇至无醇味,得清膏备用;
(5)将步骤(4)所得清膏与步骤(3)所得醇提液合并,浓缩至在60℃时测定相对密度为1.15-1.20的清膏,干燥后得到总浸膏,备用。
实施例1
中药组合物是由如下重量份的原料药制成:连翘20kg、金银花30kg、板蓝根20kg、大黄4kg、广藿香6kg、绵马贯众30kg、红景天10kg、薄荷脑0.9kg、麻黄6kg、苦杏仁10kg、鱼腥草20kg、甘草10kg、石膏20kg;所述中药组合物总浸膏由以下步骤制成:
(1)按照原料药重量比例称取中药材,净选,碎断;
(2)将广藿香进一步碎断,加水提取挥发油,其中加水的重量为广藿香重量份的10倍;提油时间8小时,收集挥发油,备用;提取液过滤后,残渣弃去,滤液备用;
(3)将连翘、麻黄、鱼腥草、大黄,用质量浓度70%的乙醇提取3次,每次2.5小时;其中加入质量浓度70%的乙醇重量为连翘、麻 黄、鱼腥草、大黄重量和的12倍;再将提取液合并过滤,回收乙醇,所得滤液备用;
(4)将金银花、石膏、板蓝根、绵马贯众、甘草、红景天,加水煎煮至沸腾,其中加入水的重量为金银花、石膏、板蓝根、绵马贯众、甘草、红景天总重量的12倍;再加入苦杏仁,煎煮2次,每次1小时,提取液合并过滤,所得滤液与步骤(2)广藿香提油后的滤液合并,浓缩成在60℃时测定相对密度为1.15的清膏,加入乙醇,调节至乙醇质量浓度为70%,4℃冷藏放置,过滤,回收乙醇至无醇味,得清膏备用;
(5)将步骤(4)所得清膏与步骤(3)所得醇提液合并,浓缩至在60℃时测定相对密度为1.20的清膏,干燥,得所述中药组合物总浸膏(批号:B1509001),备用。
该分离方法的步骤如下:
1.仪器和材料
Bruker AVIIIHD 600核磁共振波谱仪(瑞士Bruker公司);
Agilent NMR VNMRS 600核磁共振波谱仪(美国Agilent公司);
Synapt G2-S Mass质谱仪(美国Waters公司);
Combi Flash Rf中低压制备液相色谱仪(美国Teledvne ISCO公司);
Waters 2489-1525制备液相色谱仪(美国Waters公司);
NU3000型制备液相色谱仪(江苏汉邦科技有限公司);
Milli-Q纯水净化器(美国Millipore公司);
AL204分析电子天平(美国Mettler Toledo公司);
AB135-S分析电子天平(美国Mettler Toledo公司);
TGL-16G离心机(上海安亭科学仪器厂);
YMC ODS-A-HG 50μm反相硅胶(日本YMC公司);
YMC-Pack R&D ODS-A(长250×直径20mm,填料粒径S-10μm,日本YMC公司);
AB-8大孔树脂(天津市西金纳环保材料科技有限公司);
本发明药物组合物总浸膏(石家庄以岭药业股份有限公司,批号: B1509001);
色谱纯乙腈、甲醇(上海阿达玛斯试剂公司);
没有特别说明的情况下,本申请中使用的化学试剂均为分析纯试剂(北京化工厂)。
在没有特别说明的情况下,本申请实施例在高效液相色谱法中以上几个液相色谱仪的选择跟技术方案中色谱的使用条件有关。
提取和分离
(1)本发明的药物组合物总浸膏5kg(批号:B1509001),经AB-8大孔树脂吸附,顺次采用200升水、88升10%乙醇、225升30%乙醇、250升50%乙醇、150升70%乙醇和162升95%乙醇洗脱,回收溶剂得到相应浸膏,其中30%乙醇洗脱部分浸膏625.0g。
(2)取30%乙醇洗脱部分浸膏90.0g,加入反相硅胶YMC ODS-AQ-HG(S-50μm)270.0g拌样,待拌样ODS自然晾干后,将拌样ODS加入上样柱内,采用Combi Flash Rf中低压制备液相色谱仪进行分离(分离柱规格:49×460mm,填料:450g ODS-AQ-HG(S-50μm)),分别用30升10%甲醇、32升20%甲醇、24升30%甲醇、22升35%甲醇、18升40%甲醇、18升45%甲醇、12升50%甲醇、10升70%甲醇、6升无水甲醇洗脱,各洗脱部分采用减压方式回收溶剂;其中10%甲醇洗脱部分根据洗脱顺序得到5个流份(每个流份的溶剂用量为6升),分别编号为10%-1的洗脱干膏4.5g、10%-2的洗脱干膏4.0g、10%-3的洗脱干膏3.5g、10%-4的洗脱干膏2.0g和10%-5的洗脱干膏0.9g;其中20%甲醇洗脱部分根据洗脱顺序得到6个流份(每个流份的溶剂用量为6升),分别编号为20%-1的洗脱干膏2.4g、20%-2的洗脱干膏8.6g、20%-3的洗脱干膏3.8g、20%-4的洗脱干膏3.1g、20%-5的洗脱干膏4.0g和20%-6的洗脱干膏1.7g。
(3)取流份编号为10%-1的洗脱干膏2.5g,采用30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离(流动相:甲醇-水,甲醇与水体积比为22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)), 分别收集保留时间为3-9min、9-11min、19-22min、22-26min、26-30min、37-41min、和44-48min的色谱峰所对应流份,并减压回收溶剂;上述流份经过进一步的高效液相色谱法纯化得到多个单体化合物,具体分离条件如下:
化合物14的分离:3-9min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为5:95,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间25-27min的色谱峰所对应的流份,减压回收溶剂后得到化合物14(22mg)。
化合物10的分离:9-11min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为12:88,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间32-35min的色谱峰所对应的流份,减压回收溶剂后得到化合物10(15mg)。
化合物9的分离:19-22min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间31-35min的色谱峰所对应的流份,减压回收溶剂后得到化合物9(79mg)。
化合物18的分离:22-26min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间32-37min的色谱峰所对应的流份,减压回收溶剂后得到化合物18(8mg)。
化合物11和化合物12的分离:26-30min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为18:82,流速:10ml/min,检测波长210nm,色谱柱: YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间38-42min的色谱峰所对应的流份,减压回收溶剂后得到化合物11和12混合物(159mg)。
化合物13的分离:37-41min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间52-56min的色谱峰所对应的流份,减压回收溶剂后得到化合物13(8mg)。
化合物15的分离:44-48min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间41-44min的色谱峰所对应的流份,减压回收溶剂后得到化合物15(10mg)。
(4)取流份编号为20%-2的洗脱干膏2.9g,采用30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离(流动相:甲醇-水,甲醇与水体积比为22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),分别收集保留时间为14-17min、17-19min、22-24min、29-34min和35-40min的色谱峰所对应的流份,并减压回收溶剂;上述各流份经过进一步的高效液相色谱法纯化得到多个单体化合物,具体分离条件如下:
化合物6和化合物7的分离:14-17min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:乙腈-水,乙腈与水体积比为15:85,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间38-40min和45-47min的色谱峰所对应的流份,减压回收溶剂后得到38-40min的色谱峰对应流份和化合物7(4mg),38-40min的色谱峰对应流份再经高效液相色谱法纯化(流动相:乙腈-水,乙腈与 水体积比为13:87,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),收集此条件下52-56min色谱峰所对应的流份,减压回收溶剂,得到化合物6(4mg)。
化合物16和化合物2的分离:17-19min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:乙腈-水,乙腈与水体积比为15:85,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间28-30min和37-44min的色谱峰所对应的流份,减压回收溶剂后得到化合物16(3mg)和化合物2(117mg)。
化合物8的分离:22-24min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:乙腈-水,乙腈与水体积比为17:83,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间22-25min的色谱峰所对应的流份,减压回收溶剂后得到化合物8(36mg)。
化合物17和化合物3的分离:29-34min色谱峰所对应的流份,在减压回收溶剂后,在室温下放置,待溶剂挥发后,有白色固体析出,5000rpm离心得到化合物17(10mg),上清液经高效液相进一步纯化(流动相:乙腈-水,乙腈与水体积比为16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间40-45min的色谱峰所对应的流份,减压回收溶剂后得到化合物3(19mg)。
化合物1的分离:35-40min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:乙腈-水,乙腈与水体积比为16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间34-45min的色谱峰所对应的流份,减压回收溶剂后得到化合物1(161mg)。
(5)化合物4和化合物5的分离:将编号为20%-4和编号为20%-5的流份合并,取混合流份2.0g,采用30%甲醇溶解,并经过0.45μm 微孔滤膜过滤,高效液相色谱法进行初步分离(流动相:乙腈-水,乙腈与水体积比为15:85,流速:15ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),分别收集保留时间为13-15min和15-17min的色谱峰所对应的流份,并减压回收溶剂。
35-40min色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:甲醇-水,甲醇与水体积比为25:75,流速:12ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间26-29min的色谱峰所对应的流份,减压回收溶剂后得到化合物4(32mg)。
15-17min的色谱峰所对应流份经溶剂回收后的样品,经高效液相色谱法进一步纯化(流动相:乙腈-水,乙腈与水体积比为15:85,流速:12ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A(250×20mm,S-10μm)),在此条件下收集保留时间15-16min的色谱峰所对应的流份,减压回收溶剂后得到化合物5(4mg)。
结构鉴定
化合物1:浅绿色玻璃状固体(甲醇),ESI-MS m/z:623.2[M-H] -,结合NMR数据确定该化合物的分子式为C 29H 36O 15
1H-NMR(DMSO-d 6,600MHz)δ H:6.63(1H,d,J=1.9Hz,H-2),6.64(1H,d,J=8.1Hz,H-5),6.50(1H,dd,J=8.1,1.9Hz,H-6),2.69(2H,m,H-7),4.31(1H,d,J=7.8Hz,H-1'),4.51(1H,br s,H-1”),1.05(1H,d,J=6.2Hz,H-6”),7.05(1H,br s,H-2”'),6.77(1H,d,J=8.1Hz,H-5”'),7.00(1H,br s,H-6”'),7.50(1H,d,J=15.8Hz,H-7”'),6.26(1H,d,J=15.8Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.3(C-1),115.6(C-2),145.1(C-3),143.6(C-4),116.4(C-5),119.6(C-6),35.2(C-7),70.4(C-8),103.0(C-1'),73.1(C-2'),73.6(C-3'),71.0(C-4'),74.0(C-5'),66.2(C-6'),100.6(C-1”),70.7(C-2”),70.4(C-3”),71.9(C-4”),68.5(C-5”),17.9(C-6”),125.6(C-1”'),115.0(C-2”'),145.7(C-3”'),148.6(C-4”'),115.9(C-5”'),121.5(C-6”'),145.7(C-7”'),113.9(C-8”'),166.0(C-9”')。
以上氢谱特征及碳谱数据与参考文献[1]报道基本一致,鉴定该化合物为连翘酯苷A。
化合物2:浅绿色玻璃状固体(甲醇),ESI-MS m/z:623.2[M-H] -,结合NMR数据确定该化合物的分子式为C 29H 36O 15
1H-NMR(DMSO-d 6,600MHz)δ H:6.62(1H,d,J=1.8Hz,H-2),6.64(1H,d,J=8.1Hz,H-5),6.50(1H,dd,J=8.1,1.8Hz,H-6),2.69(2H,m,H-7),4.35(1H,d,J=7.7Hz,H-1'),4.60(1H,br s,H-1”),1.14(1H,d,J=6.2Hz,H-6”),7.05(1H,br s,H-2”'),6.77(1H,d,J=8.0Hz,H-5”'),7.01(1H,dd,J=8.0,1.7Hz,H-6”'),7.47(1H,d,J=15.8Hz,H-7”'),6.28(1H,d,J=15.8Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.3(C-1),115.6(C-2),144.9(C-3),143.6(C-4),116.4(C-5),119.7(C-6),35.2(C-7),70.3(C-8),102.8(C-1'),71.5(C-2'),77.6(C-3'),68.3(C-4'),75.2(C-5'),66.6(C-6'),100.8(C-1”),70.8(C-2”),70.6(C-3”),72.0(C-4”),68.5(C-5”),18.1(C-6”),125.8(C-1”'),114.9(C-2”'),145.7(C-3”'),148.4(C-4”'),115.9(C-5”'),121.3(C-6”'),145.1(C-7”'),114.8(C-8”'),166.2(C-9”')。
以上氢谱特征及碳谱数据与参考文献[1]报道基本一致,鉴定该化合物为连翘酯苷I。
化合物3:透明玻璃状固体(甲醇),ESI-MS m/z:623.2[M-H] -,结合NMR数据确定该化合物的分子式为C 29H 36O 15
1H-NMR(DMSO-d 6,600MHz)δ H:6.54(1H,br s,H-2),6.55(1H,d,J=8.2Hz,H-5),6.41(1H,dd,J=8.2,2.0Hz,H-6),2.56(2H,m,H-7),4.49(1H,d,J=8.1Hz,H-1'),4.60(1H,br s,H-1”),1.14(1H,d,J=6.8Hz,H-6”),7.06(1H,d,J=1.9Hz,H-2”'),6.77(1H,d,J=8.2Hz,H-5”'),7.02(1H,dd,J=8.2,1.9Hz,H-6”'),7.49(1H,d,J=15.8Hz,H-7”'),6.28(1H,d,J=15.8Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.1(C-1),115.4(C-2),144.8(C-3),143.4(C-4),116.2(C-5),119.5(C-6),35.0(C-7),69.8(C-8),100.2(C-1'),73.4(C-2'),74.1(C-3'),70.6(C-4'),75.4(C-5'),66.6(C-6'),100.7(C-1”),70.4(C-2”),70.3(C-3”),71.9(C-4”),68.4(C-5”),17.9(C-6”), 125.6(C-1”'),114.9(C-2”'),145.5(C-3”'),148.3(C-4”'),115.8(C-5”'),121.2(C-6”'),144.8(C-7”'),114.2(C-8”'),165.6(C-9”')。
以上氢谱特征及碳谱数据与参考文献[2]报道基本一致,鉴定该化合物为连翘酯苷H。
化合物4:透明玻璃状固体(甲醇),ESI-MS m/z:639.2[M-H] -,结合NMR数据确定该化合物的分子式为C 29H 36O 16
1H-NMR(DMSO-d 6,600MHz)δ H:6.64(1H,o,H-2),6.64(1H,o,H-5),6.51(1H,br d,J=7.3Hz,H-6),2.69(2H,m,H-7),4.31(1H,d,J=7.5Hz,H-1'),4.19(1H,d,J=7.7Hz,H-1”),7.06(1H,br s,H-2”'),6.77(1H,o,H-5”'),7.01(1H,d,J=7.1Hz,H-6”'),7.49(1H,d,J=15.8Hz,H-7”'),6.26(1H,d,J=15.8Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.7(C-1),116.8(C-2),145.4(C-3),140.0(C-4),116.3(C-5),120.0(C-6),35.5(C-7),71.7(C-8),103.1(C-1'),73.9(C-2'),74.4(C-3'),70.7(C-4'),73.7(C-5'),68.6(C-6'),103.7(C-1”),74.0(C-2”),77.0(C-3”),70.4(C-4”),77.3(C-5”),61.4(C-6”),125.9(C-1”'),115.4(C-2”'),146.1(C-3”'),149.1(C-4”'),116.0(C-5”'),121.9(C-6”'),145.4(C-7”'),114.2(C-8”'),166.7(C-9”')。
以上碳谱数据与参考文献[3]报道基本一致,鉴定该化合物为Lugrandoside。
化合物5:透明色玻璃状固体(甲醇),ESI-MS m/z:639.2[M-H] -,结合NMR数据确定该化合物的分子式为C 29H 36O 16
1H-NMR(DMSO-d 6,600MHz)δ H:6.64(2H,br s,H-2,5),6.52(1H,dd,J=8.0,1.7Hz,H-6),2.69(2H,m,H-7),4.36(1H,d,J=7.7Hz,H-1'),4.25(1H,d,J=7.7Hz,H-1”),7.06(1H,br s,H-2”'),6.78(1H,d,J=7.9Hz,H-5”'),7.01(1H,d,J=7.9Hz,H-6”'),7.48(1H,d,J=15.9Hz,H-7”'),6.30(1H,d,J=15.9Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.8(C-1),116.8(C-2),145.3(C-3),143.9(C-4),116.3(C-5),120.1(C-6),35.5(C-7),70.6(C-8),103.0(C-1'),71.9(C-2'),78.0(C-3'),68.3(C-4'),75.8(C-5'),68.5(C-6'),103.8(C-1”),74.0(C-2”),77.3(C-3”),70.5(C-4”),77.1(C-5”),61.5(C-6”), 126.1(C-1”'),116.0(C-2”'),145.4(C-3”'),148.7(C-4”'),116.3(C-5”'),121.7(C-6”'),146.0(C-7”'),115.2(C-8”'),166.6(C-9”')。
以上氢谱特征及碳谱数据与参考文献[4]报道基本一致,鉴定该化合物为Isolugrandoside。
化合物6:浅棕色玻璃状固体(甲醇),ESI-MS m/z:639.2[M-H] -,结合NMR数据确定该化合物的分子式为C 29H 36O 16
1H-NMR(DMSO-d 6,600MHz)δ H:6.55(1H,br s,H-2),6.54(1H,d,J=8.0Hz,H-5),6.42(1H,dd,J=8.0,1.9Hz,H-6),2.56(2H,m,H-7),4.49(1H,d,J=8.1Hz,H-1'),4.24(1H,d,J=7.8Hz,H-1”),7.06(1H,br s,H-2”'),6.77(1H,d,J=8.1Hz,H-5”'),7.02(1H,dd,J=8.1,1.9Hz,H-6”'),7.49(1H,d,J=15.8Hz,H-7”'),6.28(1H,d,J=15.8Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.3(C-1),115.9(C-2),145.0(C-3),143.5(C-4),116.3(C-5),119.7(C-6),35.1(C-7),69.9(C-8),100.2(C-1'),74.3(C-2'),75.8(C-3'),70.2(C-4'),73.5(C-5'),68.4(C-6'),103.5(C-1”),73.6(C-2”),77.0(C-3”),70.1(C-4”),76.8(C-5”),61.2(C-6”),125.7(C-1”'),115.5(C-2”'),145.7(C-3”'),148.4(C-4”'),115.5(C-5”'),121.4(C-6”'),145.2(C-7”'),115.0(C-8”'),165.8(C-9”')。
以上氢谱特征及碳谱数据与参考文献[4]报道基本一致,鉴定该化合物为Ferruginoside A。
化合物7:浅棕色玻璃状固体(甲醇),ESI-MS m/z:609.2[M-H] -,结合NMR数据确定该化合物的分子式为C 28H 34O 15
1H-NMR(DMSO-d 6,600MHz)δ H:6.63(1H,brs,H-2),6.62(1H,d,J=8.0Hz,H-5),6.50(1H,dd,J=8.0,2.0Hz,H-6),2.69(2H,m,H-7),4.33(1H,d,J=7.7Hz,H-1'),4.89(1H,t,J=9.4Hz,H-3'),4.19(1H,d,J=7.6Hz,H-1”),7.05(1H,br s,H-2”'),6.77(1H,d,J=8.0Hz,H-5”'),7.01(1H,dd,J=8.0,1.9Hz,H-6”'),7.47(1H,d,J=15.7Hz,H-7”'),6.29(1H,d,J=15.7Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.3(C-1),116.5(C-2),145.1(C-3),143.6(C-4),115.9(C-5),119.7(C-6),35.2(C-7),70.3(C-8),102.7(C-1'),71.5(C-2'),77.6(C-3'),67.9(C-4'),75.4(C-5'),68.1(C-6'),104.2 (C-1”),73.4(C-2”),76.7(C-3”),69.7(C-4”),65.8(C-5”),125.8(C-1”'),114.8(C-2”'),145.7(C-3”'),148.4(C-4”'),115.6(C-5”'),121.3(C-6”'),145.1(C-7”'),114.9(C-8”'),166.3(C-9”')。
以上氢谱特征与参考文献[5]报道基本一致,进一步结合二维光谱对该化合物的结构进行确认,并对碳信号进行归属,鉴定该化合物为Lianqiaoxingan C。
化合物8:浅棕色玻璃状固体(甲醇),ESI-MS m/z:609.2[M-H] -,结合NMR数据确定该化合物的分子式为C 28H 34O 15
1H-NMR(DMSO-d 6,600MHz)δ H:6.64(1H,brs,H-2),6.63(1H,d,J=8.0Hz,H-5),6.51(1H,dd,J=8.0,1.8Hz,H-6),2.70(2H,m,H-7),3.62,3.89(2H,m,H-8),4.30(1H,d,J=8.1Hz,H-1'),4.64(1H,t,J=9.8Hz,H-4'),4.15(1H,d,J=7.6Hz,H-1”),7.06(1H,br s,H-2”'),6.77(1H,d,J=7.9Hz,H-5”'),7.02(1H,dd,J=7.9,1.4Hz,H-6”'),7.49(1H,d,J=15.8Hz,H-7”'),6.27(1H,d,J=15.8Hz,H-8”')。
13C-NMR(DMSO-d 6,150MHz)δ C:129.3(C-1),115.6(C-2),145.7(C-3),143.6(C-4),116.4(C-5),119.6(C-6),35.2(C-7),70.3(C-8),102.8(C-1'),74.0(C-2'),73.6(C-3'),71.3(C-4'),73.3(C-5'),68.2(C-6'),103.9(C-1”),73.4(C-2”),76.5(C-3”),69.6(C-4”),65.8(C-5”),125.6(C-1”'),115.0(C-2”'),145.0(C-3”'),148.6(C-4”'),115.9(C-5”'),121.6(C-6”'),145.8(C-7”'),113.9(C-8”'),166.3(C-9”')。
以上氢谱特征及碳谱数据与参考文献[6]报道基本一致,并通过二维核磁数据对碳氢信号进行了归属,鉴定该化合物为Calceolarioside C。
化合物9:透明玻璃状固体(甲醇),ESI-MS m/z:461.2[M-H] -,结合NMR数据确定该化合物的分子式为C 20H 30O 12
1H-NMR(DMSO-d 6,400MHz)δ H:6.59(1H,d,J=3.2Hz,H-2),6.61(1H,d,J=8.0Hz,H-5),6.47(1H,dd,J=8.0,2.0Hz,H-6),2.64(2H,t,J=7.6Hz,H-7),1.11(3H,d,J=6.4Hz,H-6″)。
13C-NMR(DMSO-d 6,100MHz)δ C:129.3(C-1),116.3(C-2),144.9(C-3),143.5(C-4),115.5(C-5),119.5(C-6),35.2(C-7),70.1(C-8),103.0 (C-1′),73.4(C-2′),76.7(C-3′),70.2(C-4′),75.4(C-5′),67.0(C-6′),100.8(C-1″),70.7(C-2″),70.5(C-3″),72.0(C-4″),68.4(C-5″),18.0(C-6″)。
以上氢谱特征及碳谱数据与参考文献[7]报道基本一致,鉴定该化合物为连翘酯苷E。
化合物10:透明玻璃状固体(甲醇),ESI-MS m/z:477.2[M-H] -,结合NMR数据确定该化合物的分子式为C 20H 30O 13
1H-NMR(DMSO-d 6,600MHz)δ H:6.60(1H,d,J=1.8Hz,H-2),6.61(1H,d,J=8.2Hz,H-5),6.47(1H,dd,J=8.2,1.8Hz,H-6),4.15(1H,d,J=7.8Hz,H-1′),4.22(1H,d,J=7.8Hz,H-1′)。
13C-NMR(DMSO-d 6,150MHz)δ C:129.3(C-1),116.3(C-2),144.9(C-3),143.5(C-4),115.5(C-5),119.5(C-6),35.1(C-7),70.0(C-8),102.8(C-1′),73.4(C-2′),76.7(C-3′),69.9(C-4′),75.7(C-5′),68.4(C-6′),103.3(C-1″),73.4(C-2″),76.9(C-3″),70.0(C-4″),76.7(C-5″),61.0(C-6″)。
以上氢谱特征及碳谱数据与参考文献[8]报道基本一致,鉴定该化合物为Ferruginoside B。
化合物11和化合物12:为白色粉末状固体(甲醇),核磁共振光谱显示待测成分为一对差向异构体的混合物。
将核磁数据与参考文献[9]报道对照,可以确认该成分为D-苦杏仁苷和L-苦杏仁苷的混合物,该混合物的分子量为ESI-MS m/z:456.2[M-H] -
化合物11D-苦杏仁苷核磁数据归属如下: 1H-NMR(DMSO-d 6,400MHz)δ H:7.55(2H,o,H-4,8),7.48(3H,o,H-5,6,7),5.99(1H,s,H-2),4.20-4.60(2H,o,H-1',1”); 13C-NMR(DMSO-d 6,100MHz)δ C:118.9(C-1),68.5(C-2),133.9(C-3),129.6(C-6),127.3(C-5,7),129.0(C-4,8),103.7(C-1'),73.1(C-2'),76.8(C-3'),70.1(C-4'),76.6(C-5'),66.8(C-6'),101.6(C-1”),73.8(C-2”),76.8(C-3”),70.1(C-4”),76.5(C-5”),61.1(C-6”)。
化合物12L-苦杏仁苷核磁数据归属如下: 1H-NMR(DMSO-d 6,400MHz)δ H:7.55(2H,o,H-4,8),7.48(3H,o,H-5,6,7),5.99(1H,s,H-2),4.20-4.60(2H,o,H-1',1”); 13C-NMR(DMSO-d 6,100MHz)δ C: 118.2(C-1),69.0(C-2),133.8(C-3),128.9(C-4,8),127.5(C-5,7),129.6(C-6),104.0(C-1'),72.9(C-2'),76.8(C-3'),70.3(C-4'),76.5(C-5'),67.1(C-6'),101.0(C-1”),73.6(C-2”),76.8(C-3”),70.0(C-4”),76.2(C-5”),61.1(C-6”)。
化合物13:无定形固体(甲醇)ESI-MS m/z:340.1[M+HCOO] -,结合NMR数据确定该化合物的分子式为C 14H 17NO 6
1H-NMR(DMSO-d 6,600MHz)δ H:7.56(2H,d,J=7.7Hz,H-2,6),7.48(2H,o,H-3,5),7.48(1H,o,H-4),6.03(1H,s,H-7),4.19(1H,d,J=6.6Hz,H-1'),3.70(1H,br d,J=11.6Hz,H-6'a),3.51(1H,br d,J=11.0Hz,H-6'b),3.09(4H,o,H-2',H-3',H-4',H-5'); 13C-NMR(DMSO-d 6,150MHz)δc:134.4(C-1),128.1(C-2,6),129.7(C-3,5),130.3(C-4),67.3(C-7),119.5(C-8),101.8(C-1'),73.9(C-2'),77.2(C-3'),70.6(C-4'),78.0(C-5'),61.8(C-6')。
以上氢谱特征及碳谱数据与参考文献[10]报道基本一致,鉴定该化合物为Sambunigrin。
化合物14:不定形固体(甲醇),ESI-MS m/z:315.1[M-H] -,结合NMR数据确定该化合物的分子式为C 14H 20O 8
1H-NMR(DMSO-d 6,600MHz)δ H:6.04(2H,d,J=10.1Hz,H-2,6),6.97(2H,dd,J=10.1Hz,2.6Hz H-3,5),4.07(1H,d,J=7.8Hz,H-1'),1.89(2H,m,H-1”)。
13C-NMR(DMSO-d 6,150MHz)δ C:185.3(C-1),126.4(C-2,6),153.4(C-3or C-5),153.3(C-3or C-5),67.3(C-4),39.7(C-1'),63.9(C-2'),102.9(C-1”),73.4(C-2”),76.9(C-3”),70.0(C-4”),76.7(C-5”),61.0(C-6”)。
以上氢谱特征及碳谱数据与参考文献[11]报道基本一致,鉴定该化合物为Cornoside。
化合物15不定形固体(甲醇),ESI-MS m/z:195.1[M-H] -,结合NMR数据确定该化合物的分子式为C 10H 12O 4
1H-NMR(DMSO-d 6,600MHz)δ H:7.02(2H,br d,J=10.0Hz H-2,6),6.08(2H,br d,J=10.0Hz,H-3,5),2.69(2H,s,H-1'),4.01(2H,q,J =14.2Hz,7.1Hz,H-3'),1.13(3H,td,J=7.1Hz,1.4Hz,H-4')。
13C-NMR(DMSO-d 6,150MHz)δ C:185.2(C-1),126.8(C-2,C-6),151.7(C-3,C-5),66.6(C-4),44.9(C-1'),168.6(C-2'),60.2(C-3'),14.1(C-4')。
以上氢谱特征及碳谱数据与参考文献[12]报道基本一致,鉴定该化合物为4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone。
化合物16:白色结晶(甲醇),ESI-MS m/z:787.2[M+HCOO] -,765.3[M+Na] +,结合NMR数据确定该化合物的分子式为C 34H 46O 18
1H-NMR(DMSO-d 6,600MHz)δ H:3.76(12H,s,OCH 3-2,2',6,6'),6.66(4H,s,H-3,3',5,5'),4.67(2H,d,J=3.8Hz,H-7,7'),4.20(2H,m,H-9α,9'α),3.83(2H,dd,J=9.2,3.4Hz,H-9β,9'β)。
13C-NMR(DMSO-d 6,150MHz)δc:137.3(C-1,1'),152.8(C-2,2',6,6'),104.3(C-3,3',5,5'),133.8(C-4,4'),85.2(C-7,7'),53.7(C-8,8'),71.5(C-9,9'),56.6(OCH 3-2,2',6,6'),102.8(C-1”,1”'),74.3(C-2”,2”'),77.3(C-3”,3”'),70.0(C-4”,4”'),76.6(C-5”,5”'),61.0(C-6”,6”')。
以上氢谱特征及碳谱数据与参考文献[13,14]报道基本一致,鉴定该化合物为Liriodendrin。
化合物17:白色粉末(甲醇),ESI-MS m/z:417.1[M-H] -,结合NMR数据确定该化合物的分子式为C 21H 22O 9
1H-NMR(DMSO-d 6,600MHz)δ H:5.53(1H,dd,J=12.7,2.8Hz,H-2),7.65(1H,d,J=8.6Hz,H-5),6.35(1H,d,J=2.2Hz,H-8),6.51(1H,dd,J=8.6,2.2Hz,H-6),7.45(2H,d,J=8.7Hz,H-2',6'),7.07(2H,d,J=8.8Hz,H-3',5'),3.15(1H,o,H-3a)2.68(1H,dd,J=16.7,2.9Hz,H-3b),3.2-3.5(4H,m,,2”,3”,4”,5”),4.89(1H,d,J=7.5Hz,H-6”a),3.70(1H,d,J=12.0Hz,H-6”b). 13C-NMR(DMSO-d 6,150MHz)δ C:78.8(C-2),43.3(C-3),190.0(C-4),132.5(C-5),110.7(C-6),164.8(C-7),113.6(C-8),163.2(C-9),102.7(C-10),128.5(C-1'),128.1(C-2',6'),116.3(C-3',5'),157.6(C-4'),100.4(C-1”),73.3(C-2”),76.7(C-3”),69.8(C-4”),77.2(C-5”),60.8(C-6”)。
以上氢谱特征及碳谱数据与参考文献[15]报道基本一致,鉴定该 化合物为甘草素-7-O-β-D-葡萄糖苷。
化合物18:淡黄色不定形固体(甲醇),ESI-MS m/z:137.0[M-H] -,结合NMR数据确定该化合物的分子式为C 7H 6O 3
1H-NMR(DMSO-d 6,600MHz)δ H:9.68(CHO),7.22(1H,br s,H-2),6.89(1H,d,J=8.4Hz,H-3),7.25(1H,br d,J=7.8Hz,H-4)。
13C-NMR(DMSO-d 6,150MHz)δ C:191.1(CHO),128.8(C-1),115.5(C-2),145.9(C-3),152.2(C-4),114.3(C-5),124.5(C-6)。
以上氢谱特征及碳谱数据与参考文献[16,17]报道基本一致,鉴定该化合物为3,4-二羟基苯甲醛。
实施例2
该中药组合物是由如下重量份的原料药制成:连翘30kg、金银花20kg、板蓝根30kg、大黄6kg、广藿香10kg、绵马贯众20kg、红景天6kg、薄荷脑0.5kg、麻黄10kg、苦杏仁6kg、鱼腥草30kg、甘草6kg、石膏30kg;所述中药组合物总浸膏由以下步骤制成:
(1)按照原料药重量比例称取中药材,净选,碎断;
(2)将广藿香进一步碎断,加水提取挥发油,其中加水的重量为广藿香重量份的10倍;提油时间8小时,收集挥发油,备用;提取液过滤后,残渣弃去,滤液备用;
(3)将连翘、麻黄、鱼腥草、大黄,用质量浓度70%的乙醇提取3次,每次2.5小时;其中加入质量浓度70%的乙醇重量为连翘、麻黄、鱼腥草、大黄重量和的12倍;再将提取液合并过滤,回收乙醇,所得滤液备用;
(4)将金银花、石膏、板蓝根、绵马贯众、甘草、红景天,加水煎煮至沸腾,其中加入水的重量为金银花、石膏、板蓝根、绵马贯众、甘草、红景天总重量的12倍;再加入苦杏仁,煎煮2次,每次1小时,提取液合并过滤,所得滤液与步骤(2)广藿香提油后的滤液合并,浓缩成在60℃时测定相对密度为1.10的清膏,加入乙醇,调节至乙醇质量浓度为70%,4℃冷藏放置,过滤,回收乙醇至无醇味,得清膏备用;
(5)将步骤(4)所得清膏与步骤(3)所得醇提液合并,浓缩至在60℃时测定相对密度为1.15的清膏,干燥,得总浸膏,备用。
分离方法步骤同实施例1,结果分离得到实施例1所述的十八种化合物。
实施例3
该中药组合物是由如下重量份的原料药制成:连翘27.8kg、金银花29.4kg、板蓝根28.5kg、大黄5.5kg、广藿香9.5kg、绵马贯众29kg、红景天8.7kg、薄荷脑0.85kg、麻黄8.8kg、苦杏仁8kg、鱼腥草28.4kg、甘草9.5kg、石膏27.7kg;所述中药组合物总浸膏由以下步骤制成:
(1)按照原料药重量比例称取中药材,净选,碎断;
(2)将广藿香进一步碎断,加水提取挥发油,其中加水的重量为广藿香重量份的10倍;提油时间8小时,收集挥发油,备用;提取液过滤后,残渣弃去,滤液备用;
(3)将连翘、麻黄、鱼腥草、大黄,用质量浓度70%的乙醇提取3次,每次2.5小时;其中加入质量浓度70%的乙醇重量为连翘、麻黄、鱼腥草、大黄重量和的12倍;再将提取液合并过滤,回收乙醇,所得滤液备用;
(4)将金银花、石膏、板蓝根、绵马贯众、甘草、红景天,加水煎煮至沸腾,其中加入水的重量为金银花、石膏、板蓝根、绵马贯众、甘草、红景天总重量的12倍;再加入苦杏仁,煎煮2次,每次1小时,提取液合并过滤,所得滤液与步骤(2)广藿香提油后的滤液合并,浓缩成在60℃时测定相对密度为1.13的清膏,加入乙醇,调节至乙醇质量浓度为70%,冷藏放置,过滤,回收乙醇至无醇味,得清膏备用;
(5)将步骤(4)所得清膏与步骤(3)所得醇提液合并,浓缩至在60℃时测定相对密度为1.18的清膏,干燥,得总浸膏,备用。
分离方法步骤同实施例1,结果分离得到实施例1所述的十八种化合物。
各实施例中提及的参考文献如下:
[1]范毅,陈玲,朱杰,等.连翘叶化学成分[J].中国实验方剂学杂志,2015,12(24):22-25.
[2]Wang F N,Ma Z Q,Liu Y,et al.New Phenylethanoid Glycosides from the Fruits of Forsythia Suspense(Thunb.)Vahl[J].Molecules,2009,14(3):1324-1331.
[3]郑晓珂,李军,冯卫生,等.石胆草的苯乙醇苷类成分研究[J].中草药,2002,33(10):19-21.
[4]林生,刘明韬,王素娟,等.小蜡树的粉苷及苯乙醇苷类成分[J].中国中药杂志,2010,35(8):992-996.
[5]Xia Y G,Yang B Y,Liang J,et al.Caffeoyl Phenylethanoid Glycosides from Unripe Fruits of Forsythia Suspensai[J].CHEM NAT COMPD+,2015,51(4):656-659.
[6]Nicoletti M,Galeffi C,Messana I,et al.Phenylpropanoid glycosides from Calceolaria hypericina[J].Phytochemistry,1988,27(2):639-641.
[7]Endo K,Hikino H.Structures of rengyol,rengyoxide and rengyolone,new cyclohexylethane derivatives from Forsythia suspensa fruits[J].Can.J.Chem.,1984,62(9):2011-2014.
[8]Calis I,Tasdemir D,Sticher O,et al.Phenylethanoid Glycosides from Digitalis.ferruginea subsp.farruginea(=D.aurea LiNDLEY)(Scrophulariaceae)[J].Chem.Pharm.Bull.,1999,47(9):1305-1307.
[9]萧伟,谢雪,宋亚玲,等.一种苦杏仁苷的制备方法:中国, CN105461765A[P],2016-04-06.
[10]刘华,沈娟娟,张东明,等.江香薷极性成分的研究[J].中国实验方剂学杂志,2010,16(8):84-86.
[11]Hong M L,Jin K K,Jai M J,et al.Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography[J].Arch.Pharm.Res.,2013,36(9):1104–1112.
[12]Muhammad P,Ahmad S,Nawaz H R,et al.New acetylated quinols from Ajuga parviflora[J].Fitoterapia,1999,70(3):229-232.
[13]Lami N,Kadota S,Kikuchi T,et al.Constituents of the roots of Boerhaavia diffusa L.III.Identification of Ca 2+channel antagonistic compound from the methanol extract[J].Chem.Pharm.Bull.,1991,39(6):1551-1555.
[14]赫军,张迅杰,马秉智,等.白英水提取物的化学成分研究[J].中国药学杂志,2015,50(23):2035-2038.
[15]Jin Q H,Lee C,Lee J W,et al.Chemical Constituents from the Fruits of Prunus mume[J].Nat.Prod.Sci.,2012,18(3):200-203.
[16]Kang H S,Choi J H,Cho W K,et al.A Sphingolipid and Tyrosinase Inhibitorsfrom the Fruiting Body of Phellinus linteus[J].Arch.Pharm.Res.,2004,27(7):742-750.
[17]Trimbak B M,Tushar M K,Ramakrishna G B.Oxidative decarboxylation of arylacetic acids in water:One-pot transition-metal-free synthesis of aldehydes and ketones[J].Tetrahedron Letters,2017,58(29):2822-2825.
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (8)

  1. 一种中药组合物中十八种成分的分离方法,该中药组合物由如下重量份的原料药制成:连翘200-300、麻黄60-100、大黄40-60、鱼腥草200-300、金银花200-300、板蓝根200-300、广藿香60-100、绵马贯众200-300、红景天60-100、薄荷脑5-9、苦杏仁60-100、甘草60-100、石膏200-300,其特征在于,所述分离方法包括以下步骤:
    (1)该中药组合物总浸膏经AB-8型号大孔树脂分离,依次用水、10%乙醇、30%乙醇洗脱,收集30%乙醇洗脱液,回收溶剂,得30%乙醇浸膏;
    (2)将步骤(1)得到的30%乙醇浸膏,加入反相硅胶ODS-AQ-HG,S-50μm,拌样,待拌样ODS自然晾干后,将拌样ODS加入到上样柱内,上中压制备液相进行分离,分离柱填料为ODS-AQ-HG,S-50μm,依次用10%甲醇,根据洗脱顺序得到5个流份,分别编号为10%-1、10%-2、10%-3、10%-4、10%-5;20%甲醇洗脱,根据洗脱顺序得到6个流份,分别编号为20%-1、20%-2、20%-3、20%-4、20%-5和20%-6,分别收集洗脱液,回收溶剂,得编号为10%-1、10%-2、10%-3、10%-4、10%-5洗脱干膏和20%-1、20%-2、20%-3、20%-4、20%-5和20%-6洗脱干膏;
    (3)将步骤(2)得到的编号为10%-1洗脱干膏,用30%甲醇溶解,溶解液过0.45μm微孔滤膜,采用高效液相色谱法进行初步分离,流动相为甲醇-水22:78,流速为1ml/min,检测波长210nm,分别收集保留时间为3-9min、9-11min、19-22min、22-26min、26-30min、37-41min和44-48min的色谱峰,并减压回收溶剂,并分别进行以下分离:
    3-9min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,5:95,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间25-27min的色谱峰,减压回收溶剂后,得到化合物14:Cornoside;
    9-11min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,12:88,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D  ODS-A,250×20mm,S-10μm,在此条件下收集保留时间32-35min的色谱峰,减压回收溶剂后,得到化合物10:Ferruginoside B;
    19-22min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间31-35min的色谱峰,减压回收溶剂后,得到化合物9:连翘酯苷E;
    22-26min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间32-37min的色谱峰,减压回收溶剂后,得到化合物18:3,4-二羟基苯甲醛;
    26-30min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间38-42min的色谱峰,减压回收溶剂后得到化合物11:D-苦杏仁苷和化合物12:L-苦杏仁苷的混合物;
    37-41min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,18:82,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间52-56min的色谱峰,减压回收溶剂后,得到化合物13:Sambunigrin;
    44-48min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间41-44min的色谱峰,减压回收溶剂后,得到化合物15:4-Hydroxy-4-methylenecarbomethoxy-cyclohexa-2,5-dienone;
    (4)将步骤(2)得到的编号为20%-2洗脱干膏,用30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初步分离,流动相:甲醇-水,22:78,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,分别收集保留时间为14-17min、17-19min、22-24min、29-34min和35-40min的色谱峰,并减压回收溶剂,并分别进行以下分离:
    14-17min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,15:85,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间38-40min和45-47min的色谱峰,其中45-47min色谱峰减压回收溶剂后,得到化合物化合物7:Lianqiaoxingan C;保留时间为38-40min色谱峰,减压回收溶剂后再经高效液相色谱法纯化,流动相:乙腈-水,13:87,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,收集此条件下52-56min色谱峰,减压回收溶剂,得到化合物6:Ferruginoside A;
    17-19min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,15:85,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间28-30min和37-44min的色谱峰,减压回收溶剂后,分别得到化合物16:Liriodendrin,和化合物2:连翘酯苷I;
    22-24min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,17:83,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间22-25min的色谱峰,减压回收溶剂后,得到化合物8:Calceolarioside C;
    29-34min色谱峰,在减压回收溶剂后,在放置过程中有白色固体析出,5000rpm离心得到化合物17:甘草素-7-O-β-D-葡萄糖苷;上清液经高效液相进一步纯化,流动相:乙腈-水,16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间40-45min的色谱峰,减压回收溶剂后,得到化合物3:连翘酯苷H;
    35-40min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,16:84,流速:10ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间34-45min的色谱峰,减压回收溶剂后,得到化合物1:连翘酯苷A;
    (5)将步骤(2)得到的编号为20%-4和20%-5流份合并,采用30%甲醇溶解,并经过0.45μm微孔滤膜过滤,高效液相色谱法进行初 步分离,流动相:乙腈-水,15:85,流速:15ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,分别收集保留时间为15-17min和35-40min的色谱峰,并减压回收溶剂;其中,
    15-17min色谱峰,经高效液相色谱法进一步纯化,流动相:乙腈-水,15:85,流速:12ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间15-16min的色谱峰,减压回收溶剂后,得到化合物5:Isolugrandoside;
    35-40min色谱峰,经高效液相色谱法进一步纯化,流动相:甲醇-水,25:75,流速:12ml/min,检测波长210nm,色谱柱:YMC-Pack R&D ODS-A,250×20mm,S-10μm,在此条件下收集保留时间26-29min的色谱峰,减压回收溶剂后,得到化合物4:Lugrandoside。
  2. 根据权利要求1所述的十八种成分的分离方法,其特征在于,所述步骤(1)中,洗脱剂水、10%乙醇、30%乙醇的用量为1g中药组合物总浸膏用水40ml、10%乙醇17.6ml、30%乙醇45ml。
  3. 根据权利要求1所述的十八种成分的分离方法,其特征在于,所述步骤(2)中反相硅胶ODS-AQ-HG的用量为:1g步骤(1)所得30%乙醇浸膏用8g反相硅胶ODS-AQ-HG,其中3g用于与1g步骤(1)所得30%乙醇浸膏拌样,5g用做中压分离柱的填料。
  4. 根据权利要求1所述的十八种成分的分离方法,其特征在于,所述步骤(2)中依次用10%甲醇,根据洗脱顺序得到5个流份,每个流份的洗脱剂用量为:1g步骤(1)所得30%乙醇浸膏用66.7ml的10%甲醇;20%甲醇洗脱,根据洗脱顺序得到6个流份,每个流份的洗脱剂用量为:1g步骤(1)所得30%乙醇浸膏用44.4-66.7ml的20%甲醇。
  5. 根据权利要求1-4任一项所述的十八种成分的分离方法,其特征在于,所述中药组合物是由如下重量份的原料药制成:
    连翘200、金银花300、板蓝根200、大黄40、广藿香60、绵 马贯众300、红景天100、薄荷脑9、麻黄60、苦杏仁100、鱼腥草200、甘草100、石膏200。
  6. 根据权利要求1-4任一项所述的十八种成分的分离方法,其特征在于,所述中药组合物是由如下重量份的原料药制成:
    连翘300、金银花200、板蓝根300、大黄60、广藿香100、绵马贯众200、红景天60、薄荷脑5、麻黄100、苦杏仁60、鱼腥草300、甘草60、石膏300。
  7. 根据权利要求1-4任一项所述的十八种成分的分离方法,其特征在于,所述中药组合物是由如下重量份的原料药制成:
    连翘278、金银花294、板蓝根285、大黄55、广藿香95、绵马贯众290、红景天87、薄荷脑8.5、麻黄88、苦杏仁80、鱼腥草284、甘草95、石膏277。
  8. 根据权利要求1-4任一项所述的十八种成分的分离方法,其特征在于,所述中药组合物总浸膏由以下步骤制成:
    (1)按照原料药重量比例称取中药材,净选,碎断;
    (2)将广藿香碎断,加10倍量水提取挥发油,提油时间8小时,收集挥发油,备用;提取液过滤后,残渣弃去,滤液备用;
    (3)连翘、麻黄、鱼腥草、大黄,用12倍量70%的乙醇提取3次,每次2.5小时,提取液合并过滤,回收乙醇,滤液备用;
    (4)金银花、石膏、板蓝根、绵马贯众、甘草、红景天,加12倍量水煎煮至沸,加入苦杏仁,煎煮2次,每次1小时,提取液合并过滤,所得滤液与步骤(2)广藿香提油后的滤液合并,浓缩成在60℃时测定相对密度为1.10-1.15的清膏,加入乙醇,调节至醇浓度为70%,冷藏放置,过滤,回收乙醇至无醇味,得清膏备用;
    (5)将步骤(4)所得清膏与步骤(3)所得醇提液合并,浓缩至在60℃时测定相对密度为1.15-1.20的清膏,干燥,得总浸膏,备用。
PCT/CN2018/104148 2017-09-05 2018-09-05 一种中药组合物中十八种成分的分离方法 WO2019047848A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18853153.7A EP3680248A4 (en) 2017-09-05 2018-09-05 PROCEDURE FOR SEPARATING EIGHTEEN COMPONENTS IN A COMPOSITION OF TRADITIONAL CHINESE MEDICINE
KR1020207009024A KR102404533B1 (ko) 2017-09-05 2018-09-05 전통 한약 조성물에서 18가지 성분을 분리하는 방법
US16/643,632 US11458417B2 (en) 2017-09-05 2018-09-05 Method for separating eighteen components in traditional Chinese medicine composition
SG11202001801PA SG11202001801PA (en) 2017-09-05 2018-09-05 Method for separating eighteen components in traditional chinese medicine composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710789895.5 2017-09-05
CN201710789895.5A CN109422780B (zh) 2017-09-05 2017-09-05 一种中药组合物中十八种成分的分离方法

Publications (1)

Publication Number Publication Date
WO2019047848A1 true WO2019047848A1 (zh) 2019-03-14

Family

ID=65513453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104148 WO2019047848A1 (zh) 2017-09-05 2018-09-05 一种中药组合物中十八种成分的分离方法

Country Status (6)

Country Link
US (1) US11458417B2 (zh)
EP (1) EP3680248A4 (zh)
KR (1) KR102404533B1 (zh)
CN (1) CN109422780B (zh)
SG (1) SG11202001801PA (zh)
WO (1) WO2019047848A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337586A (zh) * 2020-01-09 2020-06-26 西南大学 一种基于代谢组筛选的标记类黄酮评价金银花特性的方法
CN112014481A (zh) * 2019-05-29 2020-12-01 湖北梦阳药业股份有限公司 一种生白口服液指纹图谱的检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573539A (zh) * 2020-12-02 2022-06-03 中国科学院大连化学物理研究所 一种从桑黄药材中制备化合物Phellibaumin D的方法
CN116626183B (zh) * 2023-04-07 2024-02-06 湖南易能生物医药有限公司 一种包含黄芩的中药复方的指纹图谱构建方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483463A (zh) 2003-07-01 2004-03-24 河北以岭医药研究院有限公司 一种抗病毒中药组合物及制备方法
CN1631895A (zh) * 2003-12-24 2005-06-29 天津市南开医院 苦杏仁苷的制备方法和苦杏仁苷在制备促进心脑胰及伤口血液循环的苦杏仁苷制剂中的应用
CN105461765A (zh) 2015-11-25 2016-04-06 江苏康缘药业股份有限公司 一种苦杏仁苷的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100350916C (zh) * 2005-01-24 2007-11-28 王永钧 复方积雪草中药组合物有效成分的提取方法
CN101862391B (zh) * 2009-04-17 2014-12-17 北京以岭药业有限公司 一种中药组合物在制备治疗人禽流感药物中的应用
CN101797307B (zh) * 2010-04-09 2011-08-10 广州中医药大学 一种含苯乙醇苷的枇杷叶紫珠提取物及其制备方法
CN102727653B (zh) * 2011-04-01 2015-09-09 北京中医药大学 防治急性冠脉综合征的药物组合物的制备方法及其活性部位
CN103304609B (zh) * 2012-03-10 2016-01-20 中国科学院广州生物医药与健康研究院 鱼腥草素杂合黄酮体及其制备方法和用途
CN103800523B (zh) * 2012-11-13 2018-09-25 河北以岭医药研究院有限公司 一种抗病毒中药组合物的制备方法及指纹图谱的测定方法
CN104547209A (zh) * 2013-10-25 2015-04-29 石家庄以岭药业股份有限公司 一种中药组合物的制备方法
CN105287610B (zh) * 2014-06-27 2021-11-16 石家庄以岭药业股份有限公司 连翘酯苷i的应用及其制备方法
CN104861015A (zh) * 2015-01-16 2015-08-26 李玉山 一种甘草中有效成分的协同清洁化提取方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483463A (zh) 2003-07-01 2004-03-24 河北以岭医药研究院有限公司 一种抗病毒中药组合物及制备方法
CN1631895A (zh) * 2003-12-24 2005-06-29 天津市南开医院 苦杏仁苷的制备方法和苦杏仁苷在制备促进心脑胰及伤口血液循环的苦杏仁苷制剂中的应用
CN105461765A (zh) 2015-11-25 2016-04-06 江苏康缘药业股份有限公司 一种苦杏仁苷的制备方法

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
CALIS ITASDEMIR DSTICHER O ET AL.: "Phenylethanoid Glycosides from Digitalis. ferruginea subsp. farruginea (=D.aurea LiNDLEY)(Scrophulariaceae) [J", CHEM. PHARM. BULL., vol. 47, no. 9, 1999, pages 1305 - 1307
ENDO KHIKINO H: "Structures of rengyol, rengyoxide and rengyolone, new cyclohexylethane derivatives from Forsythia suspensa fruits [J", CAN. J. CHEM., vol. 62, no. 9, 1984, pages 2011 - 2014
FAN YI ET AL: "chemical constituents of leaves of forsythia suspense", CHINEESE JOURNAL OF EXPERIMENTAL TRADITIONAL MEDICAL FORMULAE, vol. 21, no. 24, 31 December 2015 (2015-12-31), pages 22 - 25, XP009519523, ISSN: 1005-9903 *
FAN YICHEN LINGZHU JIE ET AL.: "Chemical compositions of Forsythia leaf [J", CHINESE JOURNAL OF EXPERIMENTAL TRADITIONAL MEDICAL FORMULAE, vol. 12, no. 24, 2015, pages 22 - 25
FU NAN WANG: "New Phenylethanoid Glycosides from the Fruits of Forsythia Suspense (Thunb.) Vahl", MOLECULES, vol. 14, no. 3, 25 March 2009 (2009-03-25), pages 1328 - 1329, XP055580864 *
HE JUNZHANG XUNJIEMA BINGZHI ET AL.: "Studies on chemical constituents of Solanum lyratum thunb [J", CHINESE PHARMACEUTICAL JOURNAL, vol. 50, no. 23, 2015, pages 2035 - 2038
HONG M LJIN K KJAI M J ET AL.: "Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography[J", ARCH. PHARM. RES., vol. 36, no. 9, 2013, pages 1104 - 1112
HONG MEI LI: "Analysis of the Inhibitory Activity of Abeliophyllum Disti- chum Leaf Constituents against Aldose Reductase by Using High-Speed Counter Current Chromatography", ARCH. PHARM. RES., vol. 36, no. 9, 5 May 2013 (2013-05-05), pages 1104 - 1106, XP035312385 *
JIN Q HLEE CLEE J W ET AL.: "Chemical Constituents from the Fruits of Prunus mume [J", NAT. PROD. SCI., vol. 18, no. 3, 2012, pages 200 - 203
KANG H SCHOI J HCHO W K ET AL.: "A Sphingolipid and Tyrosinase Inhibitorsfrom the Fruiting Body of Phellinus linteus [J", ARCH. PHARM. RES., vol. 27, no. 7, 2004, pages 742 - 750, XP053007074, DOI: 10.1007/BF02980143
LAMI NKADOTA SKIKUCHI T ET AL.: "Constituents of the roots of Boerhaavia diffusa L. III. Identification of Ca2+ channel antagonistic compound from the methanol extract [J", CHEM. PHARM. BULL., vol. 39, no. 6, 1991, pages 1551 - 1555
LIN SHENGLIU MINGTAOWANG SUJUAN ET AL.: "Powder glycosides and phenylethanol glycosides of the Ligustrum sinense [J", CHINA JOURNAL OF TRADITIONAL CHINESE MEDICINE, vol. 35, no. 8, 2010, pages 992 - 996
LIU HUASHEN JUANJUANZHANG DONGMING ET AL.: "Studies on the polar components of Elsholtzia haichowensis Sun [J", CHINA JOURNAL OF EXPERIMENTAL TRADITIONAL MEDICAL FORMULAE, vol. 16, no. 8, 2010, pages 84 - 86
MUHAMMAD PAHMAD SNAWAZ H R ET AL.: "New acetylated quinols from Ajugaparviflora [J", FITOTERAPIA, vol. 70, no. 3, 1999, pages 229 - 232, XP004829757, DOI: 10.1016/S0367-326X(99)00019-2
NICOLETTI MGALEFFI CMESSANA I ET AL.: "Phenylpropanoid glycosides from Calceolaria hypericina [J", PHYTOCHEMISTRY, vol. 27, no. 2, 1988, pages 639 - 641, XP022478202, DOI: 10.1016/0031-9422(88)83164-9
See also references of EP3680248A4
SHUAI SONG: "Concurrent Quantification and Comparative Pharmacokinetic Analysis of Bioactive Compounds in the Herba Ephedrae-Semen Armenia cae Ama- rum Herb Pair", JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, vol. 109, 14 February 2015 (2015-02-14), pages 68 - 69, XP055580866 *
TRIMBAK B MTUSHAR M KRAMAKRISHNA G B: "Oxidative decarboxylation of arylacetic acids in water: One-pot transition-metal-free synthesis of aldehydes and ketones[J", TETRAHEDRON LETTERS, vol. 58, no. 29, 2017, pages 2822 - 2825, XP085110979, DOI: 10.1016/j.tetlet.2017.06.013
WANG F NMA Z QLIU Y ET AL.: "New Phenylethanoid Glycosides from the Fruits of Forsythia Suspense (Thunb.) Vahl [J", MOLECULES, vol. 14, no. 3, 2009, pages 1324 - 1331, XP055580864, DOI: 10.3390/molecules14031324
XIA Y GYANG B YLIANG J ET AL.: "Caffeoyl Phenylethanoid Glycosides from Unripe Fruits of Forsythia Suspensai [J", CHEM NAT COMPD+, vol. 51, no. 4, 2015, pages 656 - 659, XP055580842, DOI: 10.1007/s10600-015-1378-5
YONG-GANG XIA: "CAFFEOYL PHENYLETHANOID GLYCOSIDES FROM UNRIPE FRUITS OF Forsythia Suspensa", CHEMISTRY OF NATURAL COMPOUNDS, vol. 51, no. 4, 31 July 2015 (2015-07-31), XP055580842 *
ZHENG XIAOKELI JUNFENG SANITARY ET AL.: "Studies on the phenylethanol glycosides of Lithocholic grass [J", CHINESE TRADITIONAL AND HERBAL DRUGS, vol. 33, no. 10, 2002, pages 19 - 21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014481A (zh) * 2019-05-29 2020-12-01 湖北梦阳药业股份有限公司 一种生白口服液指纹图谱的检测方法
CN112014481B (zh) * 2019-05-29 2022-10-25 湖北梦阳药业股份有限公司 一种生白口服液指纹图谱的检测方法
CN111337586A (zh) * 2020-01-09 2020-06-26 西南大学 一种基于代谢组筛选的标记类黄酮评价金银花特性的方法
CN111337586B (zh) * 2020-01-09 2022-09-20 西南大学 一种基于代谢组筛选的标记类黄酮评价金银花特性的方法

Also Published As

Publication number Publication date
US20200398188A1 (en) 2020-12-24
CN109422780A (zh) 2019-03-05
KR20200040886A (ko) 2020-04-20
EP3680248A1 (en) 2020-07-15
SG11202001801PA (en) 2020-03-30
CN109422780B (zh) 2021-07-13
EP3680248A4 (en) 2021-06-16
KR102404533B1 (ko) 2022-06-02
US11458417B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2019047848A1 (zh) 一种中药组合物中十八种成分的分离方法
JP6976429B2 (ja) 漢方薬組成物から8種の成分を分離する方法
CN101220062A (zh) 一种同时制备甜菊苷和莱鲍迪苷a的方法
JP7305870B2 (ja) テトラガロイルグルコースの製造方法
CA2982200C (en) Phillygenin glucuronic acid derivative as well as preparation method and application thereof
CN113735814B (zh) 桃金娘酮类化合物及其在制备抗流感病毒药物中的应用
CN109879921B (zh) 从知母中分离的具有抗肿瘤活性的化合物及其制备方法
CN108689969B (zh) 一种分离纯化乳香中香木兰烷型二萜类化合物的方法
CN108373474B (zh) 一种从银杏叶中提取的银杏内酯化合物及其制备方法
CN108033984B (zh) 一种咖啡酸糖苷类化合物、其制备方法及应用
CN102531851A (zh) 虎杖中白藜芦醇和白藜芦醇苷的提取与纯化方法
CN110698444B (zh) 一种苯丙素类化合物及其制备方法
CN109180632B (zh) 一种从雷公藤中分离出的化合物的制备方法
JP6654754B2 (ja) イワベンケイ属植物からのヘルバセチン抽出方法
CN108530505A (zh) 一种黄酮苷类化合物及其制备方法和应用
CN103896821A (zh) 尖尾芋中一个新化合物、制备方法和药物用途
CN114539192B (zh) 松香烷型二萜化合物及其制备方法和应用
CN110078619B (zh) 从青竹标中提取及分离纯化的环丁四醇酯类化合物及其方法
CN114380821B (zh) 黄精碱a的对照品的制备方法
CN114533719B (zh) 松香烷型二萜类化合物在制备抗炎药物中的应用
CN112608306B (zh) 皂角刺中黄酮类化合物皂角新酮a的制备方法及其应用
CN111825646B (zh) 一种丁基苯肽类化合物及其制备方法和应用
CN115505014A (zh) 一种裸花紫珠提取物、其制备方法及用途
CN113582828A (zh) 一种抗肝癌的天然化合物及其制备方法和用途
CN105294410B (zh) 从狭叶金粟兰中分离纯化的一对苯基不饱和三元醇异构体化合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009024

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018853153

Country of ref document: EP

Effective date: 20200406