WO2019042441A1 - 电池均衡***、车辆、电池均衡方法及存储介质 - Google Patents

电池均衡***、车辆、电池均衡方法及存储介质 Download PDF

Info

Publication number
WO2019042441A1
WO2019042441A1 PCT/CN2018/103685 CN2018103685W WO2019042441A1 WO 2019042441 A1 WO2019042441 A1 WO 2019042441A1 CN 2018103685 W CN2018103685 W CN 2018103685W WO 2019042441 A1 WO2019042441 A1 WO 2019042441A1
Authority
WO
WIPO (PCT)
Prior art keywords
equalization
module
battery
control
needs
Prior art date
Application number
PCT/CN2018/103685
Other languages
English (en)
French (fr)
Inventor
罗红斌
王超
沈晓峰
王成志
曾求勇
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019042441A1 publication Critical patent/WO2019042441A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of battery pack equalization, and in particular to a battery equalization system, a vehicle, a battery equalization method, and a storage medium.
  • battery packs are an important part of it. Since the battery pack is formed by connecting a plurality of single cells in series, the difference between the cells in the battery pack gradually increases with the use of the battery, resulting in poor consistency between the battery cells. Due to the short board effect of the battery, the battery pack capacity cannot be fully utilized, resulting in a decrease in the overall capacity of the battery pack. Therefore, effective balancing management of the battery pack of the electric vehicle is beneficial to improving the consistency of each unit battery in the battery pack, reducing the capacity loss of the battery, prolonging the service life of the battery and the driving range of the electric vehicle. significance.
  • the hardware cost of the battery equalization system is high; and since the battery sampling and equalization are performed simultaneously, the equalization current affects the battery voltage, thereby affecting the accuracy of the battery voltage sampling.
  • the purpose of the present application is to provide a battery equalization system, a vehicle, a battery equalization method, and a storage medium, which are used to solve the technical problem of high hardware cost of the battery equalization system in the related art.
  • the present application provides a battery equalization system, including an acquisition module, an equalization module, and a control module, wherein the control module is selectively connected to an acquisition module and an equalization module corresponding to the same single cell through a control channel;
  • the collection module is configured to collect parameter information of a single battery in the battery group
  • the equalization module is configured to perform equalization processing on the single cells in the battery pack;
  • the control module is configured to control the equalization module to perform the balancing of the single cells that need to be turned on when determining that a single battery in the battery pack needs to be balanced according to the parameter information of the single battery in the battery pack. Balance processing.
  • control module includes a control chip, and the control chip is connected to an acquisition module and an equalization module corresponding to the same single cell through a pin, and the pin passes through the control channel and the equalization module and The collection module is connected.
  • the battery equalization system is used for a plurality of single cells
  • the control module includes a control chip
  • the plurality of single cells are connected to the plurality of pins of the control chip through a plurality of channels.
  • control module includes a first control unit disposed in the battery information collector and a second control unit disposed in the battery management controller, the first control unit and the second control unit selectively pairing A balanced single cell is required for equalization control.
  • the acquisition module includes an acquisition circuit
  • the equalization module includes an equalization circuit
  • the acquisition circuit and the equalization circuit of the same single cell are connected to the control module through a selection switch, and the selection switch is selectively connected to the The acquisition circuit or the equalization circuit.
  • the collection module corresponding to the single battery is connected to the control module through the corresponding control channel; or
  • the acquisition module and the equalization module corresponding to the single battery are time-divisionally connected to the control module.
  • control module is further configured to control, according to the target equalization duration and the equalization duty ratio of the unit that needs to be turned on by the parameter information of the battery pack, to control the equalization module to open the required
  • the equalized single cell performs equalization processing, and the equalization duty ratio is a ratio of a duration of occupying the control channel by the equalization module to a total duration occupied by the control channel.
  • control module is further configured to determine an equalization period and an acquisition period according to the target equalization duration and the equalization duty ratio, where the sum of the equalization period and the collection period is equal to the control
  • the control channel is connected to the collection module, so that the collection module collects parameter information of the battery pack.
  • control module is configured to obtain, by using the following manner, a target equalization duration of the single battery that needs to be turned on:
  • the target equalization time of the single battery that needs to be turned on is calculated according to the parameter information of the battery pack.
  • the selection switch is disposed on the control channel, and the control module is further configured to: when the collection module is required to collect parameter information of the battery pack, control the selection switch to be connected to the collection module, Connecting the control channel to the acquisition module; and controlling the selection switch to be connected to the equalization module when the equalization module is required to perform equalization processing on the battery cells in the battery pack to enable the control The channel is connected to the equalization module.
  • the selection switch is a single-pole double-throw switch
  • the control module is connected to the dynamic end of the single-pole double-throw switch
  • the collection module is connected to the first fixed end of the single-pole double-throw switch.
  • the equalization module is coupled to the second fixed end of the single pole double throw switch.
  • the collection module of the single battery is connected to the control module through the corresponding control channel.
  • control module is further configured to control the equalization module to discharge the single battery when a difference between a cell voltage and a minimum voltage in each of the cells is greater than a preset voltage difference threshold.
  • control module is further configured to control the equalization module to charge the single battery when a difference between a voltage of the single battery and a maximum voltage in each of the single cells is greater than a preset voltage difference threshold.
  • the parameter information of the battery pack includes at least one of a voltage value, a SOC value, a self-discharge rate, a single-cell internal resistance value, a current value, and a temperature value.
  • the application also provides a vehicle including the battery equalization system described above.
  • the present application also provides a battery equalization method applied to a battery equalization system.
  • the battery equalization system includes a control module, an acquisition module, and an equalization module; the control module is connected to an acquisition module and an equalization module corresponding to the same single battery in the battery pack through a control channel, and the acquisition module and the equalization module are time-sharing Reusing the control channel; the method includes:
  • control module controlling, by the control module, the equalization module to perform equalization processing on the single battery that needs to be turned on.
  • the determining, by the control module, determining, according to the parameter information of the battery group, that a single battery in the battery pack needs to be turned on includes:
  • the control module Determining, by the control module, the target equalization time and the equalization duty ratio of the single cell that needs to be turned on, the cell that needs to be turned on, and the equalization duty according to the parameter information of the battery.
  • the equalizing module controls the equalization module to perform equalization processing on the single-cell battery that needs to be balanced, including:
  • the balancing module controls the equalization module to perform equalization processing on the unit cells that need to be equalized according to the target equalization duration and the equalization duty ratio of the unit cells that need to be turned on according to the need for the control module.
  • the method further includes:
  • control module determining, by the control module, an equalization period and an acquisition period according to the target equalization duration and the equalization duty ratio, where the sum of the equalization period and the collection period is equal to a total duration of the control channel being occupied.
  • the connecting the control channel to the collection module includes:
  • the equalizing module corresponding to the single-cell battery that needs to be turned on and equalized by the control channel includes:
  • control channel is connected to the equalization module corresponding to the unit cell that needs to be turned on.
  • the determining, according to the parameter information of the battery group, the target equalization duration of the single-cell that needs to be turned on including:
  • the target equalization time of the single cell that needs to be turned on is calculated.
  • the method further includes:
  • the collection module of the single battery is connected to the control module through the corresponding control channel.
  • FIG. 1 is a block diagram of a battery equalization system, according to an exemplary embodiment
  • FIG. 2 is another block diagram of a battery equalization system, according to an exemplary embodiment
  • FIG. 3 is a flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 4 is another flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 5 is a flowchart of determining, in a step included in a battery equalization method, a cell that needs to turn on equalization and a target equalization time thereof according to an exemplary embodiment
  • FIG. 6 is another flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 7 is another flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 8 is a block schematic diagram of a vehicle, according to an exemplary embodiment.
  • the battery equalization system generally includes: a battery management controller and a plurality of battery information collectors, wherein each battery information collector includes three modules: a control unit, a battery sampling circuit, and a battery equalization circuit. And the battery sampling circuit and the battery equalization circuit respectively apply different channels. Each cell of the battery pack is provided with a battery detection circuit channel and a battery equalization circuit channel.
  • the workflow is as follows: the battery sampling circuit is responsible for real-time sampling of the battery voltage information, the control unit of the battery information collector sends battery sampling information to the battery management controller, and the battery management controller determines whether it is necessary to turn on the equalization, and then to the battery information collector. The control unit sends an equalization command, and the control unit of the battery information collector controls the battery equalization circuit to turn on the equalization.
  • the present application proposes a battery equalization system, which reduces the number of channels by multiplexing one control channel, thereby reducing the cost, and separately separating the battery acquisition and equalization so that the equalization current does not affect the battery voltage. Thereby greatly improving the accuracy of battery voltage sampling.
  • FIG. 1 is a block diagram of a battery equalization system, according to an exemplary embodiment.
  • the battery equalization system includes an acquisition module 12 , an equalization module 13 , and a control module 14 , wherein the battery pack 11 is formed by connecting a plurality of single cells 111 in series.
  • the control module 14 is connected to the acquisition module 12 and the equalization module 13 corresponding to the same single cell 111 through a control channel 140.
  • the acquisition module 12 and the equalization module 13 time-multiplex the control channels. 140.
  • the control module 14 includes a control chip, and the control chip is connected to the acquisition module 12 and the equalization module 13 corresponding to the same single cell 111 through a pin, and the pin passes through the control channel 140 and the equalization module. 13 is connected to the acquisition module 12.
  • the control channel refers to the transmission path of the control command of the control module, that is, the part from the control end to the execution end, that is, the part of the control module that is connected with the acquisition module or the equalization module.
  • the present application corresponds to a control channel 140 of the same unit cell 111 and the equalization module 13 sharing a control channel 140 of the control module 14, so that the number of channels of the required control module 14 is reduced, thereby reducing the number of channels required for the control module 14.
  • the N single cells correspond to 2N control channels.
  • the acquisition module and the equalization module of the same single battery share the control channel and the control module, and the N single cells correspond to N control channels, thereby reducing the number of control channels and reducing the cost of the control module.
  • the N single cells correspond to 2N control channels, and 2N control channels need to be controlled.
  • the acquisition module and the equalization module of the same single battery share the control channel of the control module, so that the N single cells correspond to the N control channels, and only the N control channels need to be controlled, which simplifies the control flow and reduces The misoperation rate of the control module.
  • the N single cells correspond to 2N control channels, and the pass rate of the control module is controlled by the control channel by the pass rate of 2N control channels.
  • the acquisition module and the equalization module of the same single battery share a control channel of the control module, and the N single cells correspond to N control channels, and the pass rate of the control module is controlled by the pass rate of the N control channels. In this way, the total pass rate of the plurality of single cells in the entire system through the control channel to the control module can be improved, thereby improving the pass rate of the battery equalization system.
  • the collecting module 12 is configured to collect parameter information of the single battery 111 in the battery pack 11 , and send the collected parameter information of the battery pack to the control module 14 , the battery pack 11 .
  • the unit cells 111 in the one-to-one correspondence with the acquisition module 12.
  • the parameter information includes information such as a battery voltage and a temperature.
  • the control module 14 controls the collection module 12 to collect parameter information of the battery pack 11 by connecting the control channel 140 to the acquisition module 12 .
  • control module 14 collects the parameter information of the battery pack 11 through the acquisition module 12 by connecting the control channel 140 to the acquisition module 12 during the acquisition period of the unit period.
  • the unit period includes an acquisition period and an equalization period
  • the parameter information of the battery 11 includes at least one of a voltage value, an SOC value, a self-discharge rate, a single-cell internal resistance value, a current value, and a temperature value.
  • the collecting module acquires the battery information of each single battery of the battery pack, and the control module determines the single battery that needs to be equalized.
  • the cells that need to be equalized are equalized.
  • the battery cells that do not need to be equalized stop acquiring the battery information of the corresponding single cells.
  • the equalization module performs equalization processing on the battery pack and the acquisition module independently performs the collection of the battery information in different time periods without mutual interference, thereby avoiding the collection of the battery information and the equalization of the single battery simultaneously, thereby avoiding the equalization current.
  • the influence of collecting the battery information of the single battery can improve the accuracy of sampling the battery information of the single battery.
  • the control module 14 is respectively connected to the collection module 12 and the equalization module 13 .
  • the control module 14 is configured to receive parameter information of the battery pack 11 when the control channel 140 is communicated with the acquisition module 12.
  • the control module 14 connects the control channel 140 to the equalization module when determining, according to the parameter information of the battery pack 11, that there is a single cell 111 in the multi-cell cell 111 that needs to be equalized.
  • the equalization module 13 performs equalization processing on the unit cell 111.
  • control module 14 determines the target cell 111 that needs to be equalized, and adjusts the target equalization time of the cell 111 as needed, and controls the equalization period of one or more unit periods.
  • the equalization module 13 corresponding to the unit cell 111 that needs to be equalized equalizes the unit cell 111 so that the cumulative equalization period of the unit cell 111 in the equalization period of one or more unit periods reaches its corresponding target. Equilibrium duration.
  • the equalization module 13 is configured to perform equalization processing on the single cells 111 in the battery pack 11 , and the single cells 111 in the battery pack 11 are in one-to-one correspondence with the equalization module 13 .
  • the control module 14 controls the equalization module 13 to the unit that needs to be balanced by connecting the control channel 140 to the equalization module 13.
  • the battery 111 performs equalization processing.
  • the control module 14 stops acquiring the corresponding single cell 111 for the single cell 111 that does not need to be equalized during the equalization period of the one or more unit periods.
  • the parameter information is up to the acquisition period of the next unit period, that is, in the equalization period, only the equalization module 13 corresponding to the cell 111 that needs to be balanced operates and the equalization processing for each unit cell 111 is performed simultaneously.
  • the equalization module 13 and all the acquisition modules 12 corresponding to the single cells 111 other than the unit cells 111 that need to be equalized in the battery pack 11 are stopped.
  • the performance parameters of each of the single cells 111 and the performance parameter reference values may be determined, and according to the performance parameters and performance parameters of each of the single cells 111.
  • the value determines the unit cell 111 that needs to be equalized, and equalizes the unit cells 111 that need to be equalized according to the equalization manner according to the equalization judgment.
  • the parameter information is SOC value, internal resistance value, self-discharge rate, voltage change rate, power change rate or time change rate, determine the method and balance of the cell to be balanced. The corresponding relationship of the way.
  • the performance parameter is the SOC value
  • the performance parameter reference value is the minimum SOC value in the battery group to determine whether the battery needs to be turned on.
  • the specific method is: first, calculating the SOC value of each unit battery; then, selecting the SOC value of the battery with the smallest SOC among all the batteries as the reference value; finally, comparing the remaining batteries with the SOC reference value, judging Whether the threshold for equalization is reached (for example, the artificially set threshold is 10).
  • the threshold for equalization for example, the artificially set threshold is 10
  • the self-discharge rate of the single cell refers to the ability of the stored battery to maintain the power under certain conditions in an open state (ie, stop charging or stop discharging).
  • the self-discharge rate of a single cell is an important parameter for characterizing the characteristics of a single cell, and can effectively characterize the capacity loss and capacity loss rate of a single cell.
  • the voltage change rate of a single cell refers to the rate of change of voltage of a single cell during charging (or discharging), including the rate of change of voltage with charging (or discharging) time dv/dt and the rate of change of voltage with capacity dv/dq .
  • the rate of change in the amount of electricity of a single cell refers to the amount of charge (or discharge) required to charge (or drop) a unit voltage during charging (or discharging) of a single cell, that is, dq/dv.
  • the time rate of change of the single cell refers to the time required for the cell to rise (or fall) by the same voltage value during charging (or discharging), that is, dt/dv.
  • Passive equalization refers to discharging a single cell 111 that needs to be equalized.
  • a resistor connected in parallel with the unit cell 111 to be equalized is disposed in the equalization module 13.
  • the control module 14 controls the parallel loop conduction between the unit cell 111 to be equalized and its corresponding resistor.
  • the resistor may be a positive temperature coefficient thermistor, and the resistance value may change with temperature, thereby adjusting the equalization current generated during the equalization, thereby automatically adjusting the heat generation of the battery equalization system, and finally Effectively control the temperature of the battery equalization system.
  • passive equalization mainly refers to the equilibrium mode of energy dissipation.
  • a method in which the energy of a high-energy battery is directly discharged by a discharge, and the energy of a battery having a high energy is balanced with the energy of a battery having a low energy that is, a passive equalization method.
  • the control module 14 may further determine that the balance needs to be turned on by the following manner.
  • Single cell 111
  • the smallest voltage value among the voltage values of the single cells 111 in the battery pack 11 is used as a reference voltage value.
  • the unit cell 111 having a voltage difference greater than or equal to the preset voltage difference threshold is determined as It is described that the balanced unit cell 111 needs to be turned on.
  • the active equalization means that the equalization module 13 adopts an equalization processing method for charging the single-cell battery 111 that needs to be equalized, for example, connecting the single-cell battery 111 that needs to be equalized to a generator or a battery of the vehicle.
  • the unit cell 111 that needs to be equalized is further charged by the generator or the battery.
  • active equalization refers to an equalization method that does not have the ability to waste dissipation, such as transferring energy from a battery with high energy to a battery with low energy to achieve a balanced manner; or for a battery with low energy.
  • a method of balancing the energy of a battery that is energized to achieve energy that is, an active equalization method.
  • the control module 14 can determine that the balance needs to be turned on by the following manner.
  • Single battery 111
  • the maximum voltage value among the voltage values of the single cells 111 in the battery pack 11 is used as a reference voltage value.
  • the unit cell 111 having a voltage difference greater than or equal to the preset voltage difference threshold is determined as It is described that the balanced unit cell 111 needs to be turned on.
  • the collection module 12 of the single cell 111 is connected to the control module 14 through a corresponding control channel 140.
  • the control module 14 determines that the unit cell 111 ends the equalization, the control module 14 disconnects the equalization module 13 corresponding to the unit cell 111 from the control channel 140, and controls the corresponding collection of the unit cell 111.
  • Module 12 is in communication with control channel 140.
  • control module 14 may further control, according to the target equalization duration of the unit cells 111 that need to be turned on, determined by the parameter information of the battery pack 11, to control the equalization module 13 to open the balance.
  • the unit cell 111 is subjected to equalization processing.
  • the control module 14 can obtain the target equalization duration of the unit cell 111 that needs to be turned on by the following method: determining the battery pack 11 according to the parameter information of the battery pack 11 collected by the collection module 12 Whether the single battery 111 needs to be turned on and equalized; when it is determined that the single battery 111 needs to be turned on in the battery pack 11, the target of the unit cell 111 that needs to be turned on is calculated according to the parameter information of the battery pack 11.
  • the control module 14 controls the duration of the equalization processing performed by the equalization module 13 on the unit cell 111 that needs to be turned on, according to the target equalization duration.
  • the minimum voltage value among the voltage values of the individual cells 111 of the battery pack 11 may be used as the reference voltage value, and the preset voltage difference threshold may be 5 mV (or other value).
  • the control module 14 connects the control channel 140 to the collection module 12, and then controls the collection module 12 to collect the voltage values of the single cells 111 of the battery pack 11;
  • the control module 14 compares the minimum voltage value Vmin in each of the single cells 111, and determines whether the difference between the voltage value of each of the single cells 111 of the battery pack 11 and Vmin is less than 5 mV. If so, the battery pack 11 has a good balance and does not need to be equalized; if it is greater than 5 mV, the single-cell battery 111 having a difference between the voltage value and Vmin of more than 5 mV is used as the single-cell battery 111 that needs to be turned on.
  • the control module 14 communicates the control channel 140 with the equalization module 13, and the control module 14 controls the equalization module 13 to meet the needs according to the target equalization duration of the unit cell 111 that needs to be turned on.
  • the equalized single cell 111 is turned on for discharging.
  • the control module 14 counts the discharge duration of the equalization module 13 for the unit cell 111 that needs to be turned on, and the difference between the discharge duration of the unit cell 111 and the target equalization period. When the value is within the threshold range, the discharge is stopped and the equalization ends. The control module 14 disconnects the equalization module 13 corresponding to the unit cell 111 from the control channel 140, and controls the collection module 12 corresponding to the unit cell 111 to communicate with the control channel 140.
  • control module in the present application is time-multiplexed with one channel of the voltage sampling module and the equalization module of each unit cell, the number of channels of the control module is reduced, thereby reducing hardware cost; and due to battery sampling and equalization Separate, the equalization current does not affect the battery voltage, which improves the accuracy of the battery voltage sampling.
  • control module 14 can further control the equalization module 13 to perform equalization processing on the single-cell battery 111 that needs to be turned on according to the target equalization duration and the equalization duty ratio, and the equalization duty
  • the ratio of the duration of the control channel 140 to the total duration of the control channel 140 is occupied by the equalization module 13; wherein the total duration of the control channel 140 is occupied by the equalization module 13
  • the control module 14 first connects the control channel 140 to the acquisition module 12 , and further controls the acquisition module 12 to collect parameter information of the battery pack 11; then, the control module 14 is According to the parameter information of the single battery 111 in the battery pack 11, when the single battery 111 in the battery pack 11 needs to be turned on, the target equalization time and the balanced duty of the single battery 111 that needs to be turned on are obtained. And the control channel 140 is connected to the equalization module 13 corresponding to the unit cell 111 that needs to be turned on. Then, the control module 14 turns on the target equalization period of the balanced unit cell 111 according to the requirement. And the equalization duty ratio control, the equalization module 13 performs equalization processing on the single-cell battery 111 that needs to be turned on.
  • control module 14 determines an equalization period and an acquisition period according to the target equalization duration and the equalization duty.
  • the sum of the equalization period and the collection period is equal to the control channel 140.
  • the total length of the occupied time; the control channel 140 is connected to the collection module 12, so that the collection module 12 collects the parameter information of the battery pack 11; during the equalization period,
  • the control channel 140 is connected to the equalization module 13 that needs to perform equalization processing, so that the equalization module 13 performs equalization processing on the unit cells 111 in the battery pack 11 that need to be balanced.
  • the equalization duration of the unit cells that need to be turned on can be preset, for example, according to multiple equalization tests or experience.
  • the battery equalization system includes an acquisition module 12, an equalization module 13, and a control module 14.
  • the difference from the battery equalization system of FIG. 1 is that a selection switch 141 is provided on the control channel 140 of the battery equalization system 10 of FIG.
  • the control module 14 controls the selection switch 141 to be connected to the collection module 12, so that the control channel 140 The collection module 12 is connected.
  • the control module 14 controls the selection switch 141 to be connected to the equalization module. 13 such that the control channel 140 is connected to the equalization module 13.
  • the selection switch 141 may be a single-pole double-throw switch, the control module 14 is connected to the dynamic end of the single-pole double-throw switch, and the acquisition module 12 is connected to the single-pole double-throw switch.
  • the equalization module 13 is connected to the second fixed end of the single pole double throw switch.
  • the control module 14 controls the dynamic end of the single-pole double-throw switch to be connected to the first fixed end; during the equalization period, the control module 14 controls the single-pole double-throw
  • the movable end of the switch is connected to the second fixed end.
  • the selection switch 141 can also be a MOS transistor, wherein the control channel 140 is connected to or disconnected from the acquisition module or the equalization module by controlling the turn-on and turn-off of the MOS transistor.
  • the application can physically disconnect the control module from the acquisition module and the equalization module, thereby avoiding misoperations, for example, an incorrect equalization instruction exists during the acquisition period.
  • the selection switch is not connected, the control module is disconnected from the equalization module, the equalization module cannot receive the wrong equalization instruction, thereby avoiding erroneous operation; and can achieve no sampling when equalizing, when sampling The unbalanced effect, so that the equalization current does not affect the battery voltage, thereby improving the accuracy of the battery voltage sampling.
  • the present invention sets a selection switch on the control channel, and when the parameter information of the battery pack needs to be collected, the selection switch is connected to the acquisition module, and when the equalization is needed, the selection switch is connected to the equalization module, and the time division multiplexing is realized.
  • the control channel reduces the number of channels required for the control module, thereby reducing the hardware cost;
  • the present application sets the selection switch between the control module and the acquisition module and the equalization module.
  • the control module can adjust the state of the selection switch to achieve the function of acquisition and equalization, and can achieve no sampling during equalization. The unbalanced effect, so that the equalization current does not affect the battery voltage, thereby improving the accuracy of the battery voltage sampling.
  • the battery equalization system may be used for a plurality of single cells, and the control module includes a control chip, and the plurality of single cells are in one-to-one correspondence with the plurality of pins of the control chip through multiple channels. connection.
  • each single battery corresponds to two control channels, and each control channel corresponds to one pin of the control chip, that is, N single cells. Corresponds to 2N pins.
  • the acquisition module and the equalization module of the same single battery share a control channel and a control module, and one control channel corresponds to one pin, that is, N single cells correspond to N control channels, corresponding to N pins, so that Reducing the need for control chip pins, based on the prior art, can reduce the number of pins by half, effectively reducing the cost of the control chip.
  • control module includes a first control unit disposed in the battery information collector and a second control unit disposed in the battery management controller.
  • the collecting module sends, by using the first control unit, the parameter information of the single battery in the collected battery group to the second control unit, where the collecting module and the equalizing module of the same single battery correspond to the first A connection channel of a control unit.
  • the first control unit may be connected to the collection module by controlling the connection channel, thereby controlling the collection module to collect parameter information of the single battery in the battery group.
  • the second control unit may also send an acquisition instruction to the first control unit through the communication unit, so that the connection channel is connected to the collection module by the first control unit.
  • the first control unit may be connected to the equalization module by controlling the connection channel, thereby controlling the equalization module to perform equalization processing on the single battery that needs to be balanced.
  • the first control unit may send parameter information of the battery pack collected by the acquisition circuit to the second control unit, and the second control unit determines, according to parameter information of the battery pack, a single battery that needs to be turned on, and And transmitting, by the communication unit, the equalization instruction to the first control unit, to control, by the first control unit, the connection channel to be connected to the equalization module.
  • the acquisition module in the battery equalization system sends the parameter information of the single battery in the collected battery pack to the second control unit through the first control unit
  • the acquisition module and the equalization module of the same single battery correspond to the first control unit.
  • a connection channel reduces the number of channels required by the first control unit.
  • the first control unit of the battery information collector and the second control unit of the battery management controller can selectively perform equalization control on the unit cells that need to be equalized. That is, the first control unit may control the equalization module to perform equalization processing on the unit cells that need to be equalized, and the second control unit may also control the equalization module to perform equalization processing on the unit cells that need to be equalized.
  • the first control unit or the second control unit determines the unit cells that need to be equalized according to the parameter information of the battery pack collected by the collection module.
  • the first control unit receives the parameter information of the battery pack, and determines according to the parameter information of the battery group.
  • the control equalization module performs equalization processing on the single battery that needs to be turned on.
  • the first control unit receives parameter information of the battery pack, and determines, according to parameter information of the battery pack, When a single battery in the battery pack needs to be turned on, the control equalization module performs equalization processing on the single battery that needs to be turned on.
  • the first control unit receives the parameter information of the battery group, and determines, according to the parameter information of the battery group, that the battery group has a single
  • the control equalization module performs equalization processing on the single cells that need to be turned on.
  • the battery information collector and the battery management controller can selectively control the equalization system through the first control unit and the second control unit, respectively, so that one of the battery information collector and the battery management controller can be disabled or malfunctioned. In this case, the normal operation of the battery equalization system is still guaranteed.
  • the present application also provides a vehicle 100, as shown in FIG. 8, that includes the battery equalization system 110 described above.
  • the battery equalization system included in the vehicle is described in detail in the embodiment of the above battery equalization system, and will not be described in detail herein.
  • FIG. 3 is a flow chart showing a battery equalization method according to an exemplary embodiment.
  • the battery equalization method is applied to a battery equalization system, and the battery equalization system includes a battery pack, a control module, an acquisition module, and an equalization module; the control module passes through a control channel and corresponds to the same in the battery pack.
  • the collection module of the single battery is connected to the equalization module, and the acquisition module and the equalization module time-multiplex the control channel; the method comprises the following steps.
  • Step S31 the control channel is connected to the collection module.
  • Step S32 collecting, by the collecting module, parameter information of the single battery in the battery group.
  • Step S33 determining, by the control module, that a single battery in the battery pack needs to be turned on according to parameter information of the battery pack.
  • Step S34 Connect the control channel to the equalization module corresponding to the unit cell that needs to be turned on.
  • Step S35 The equalization module is controlled by the control module to perform equalization processing on the single battery that needs to be turned on.
  • FIG. 4 is another flow chart of a battery equalization method according to an exemplary embodiment. As shown in FIG. 4, the method includes the following steps.
  • Step S41 connecting the control channel to the collection module.
  • Step S42 collecting, by the collecting module, parameter information of the single battery in the battery group.
  • Step S43 the control module determines, according to the parameter information of the battery pack, the target equalization time and the equalization duty ratio of the single-cell battery that needs to be turned on, and the single-cell battery that needs to be balanced.
  • the ratio is the ratio of the duration of the equalization module occupying the control channel to the total duration occupied by the control channel.
  • Step S44 Connect the control channel to the equalization module corresponding to the unit cell that needs to be turned on.
  • step S45 the equalization module controls the equalization module to perform equalization processing on the unit cells that need to be balanced according to the target equalization duration and the equalization duty ratio of the unit cells that need to be turned on according to the need.
  • the determining, according to the parameter information of the battery group, the target equalization duration of the single-cell that needs to be turned on including:
  • Step S431 the control module determines, according to the collected parameter information of the battery pack, whether a single battery needs to be turned on in the battery pack;
  • Step S432 when it is determined that a single battery in the battery pack needs to be turned on, the control module calculates a target equalization time of the single battery that needs to be turned on according to the parameter information of the battery.
  • the method further includes: determining, by the control module, an equalization period and an acquisition period according to the target equalization duration and the equalization duty, where a sum of the equalization period and the collection period is equal to The total length of time that the control channel is occupied;
  • the connecting the control channel to the collection module includes: connecting the control channel to the collection module during the collection period;
  • the equalizing module corresponding to the single-cell battery that needs to be turned on and equalized by the control channel includes: in the equalizing period, the control channel is connected to the equalization corresponding to the single-cell battery that needs to be turned on and equalized Module.
  • FIG. 6 is another flow chart of a battery equalization method according to an exemplary embodiment. As shown in Figure 6, the method includes the following steps. As shown in Figure 6, the method includes the following steps.
  • Step S61 the control channel is connected to the collection module.
  • Step S62 collecting, by the collecting module, parameter information of the single battery in the battery group.
  • Step S63 determining, by the control module, that a single battery in the battery pack needs to be turned on according to parameter information of the battery pack.
  • step S64 the control channel is connected to the equalization module corresponding to the unit cell that needs to be turned on.
  • Step S65 The equalization module is controlled by the control module to discharge the single-cell battery that needs to be turned on.
  • Step S66 When the single battery in the battery pack does not need to perform equalization processing, the collection module of the single battery is connected to the control module through the corresponding control channel.
  • FIG. 7 is another flow chart of a battery equalization method according to an exemplary embodiment. As shown in Figure 7, the method includes the following steps. As shown in Figure 7, the method includes the following steps. As shown in Figure 7, the method includes the following steps.
  • Step S71 the control channel is connected to the collection module.
  • Step S72 collecting, by the collecting module, parameter information of the single battery in the battery group.
  • Step S73 determining, by the control module, that a single battery in the battery pack needs to be turned on according to parameter information of the battery pack.
  • step S74 the control channel is connected to the equalization module corresponding to the unit cell that needs to be turned on.
  • Step S75 the equalization module is controlled by the control module to charge the single battery that needs to be turned on.
  • Step S76 when the single battery in the battery pack does not need to be equalized, the collection module of the single battery is connected to the control module through the corresponding control channel.
  • the present application also provides a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the battery equalization method described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池均衡***、车辆、电池均衡方法及存储介质。电池均衡***包括采集模块(12)、均衡模块(13)和控制模块(14),控制模块(14)通过一个控制通道(140)选择性地与对应于同一单体电池(111)的采集模块(12)和均衡模块(13)连接;控制模块(14)与采集模块(12)连接时,采集模块(12)用于采集电池组(11)中单体电池(111)的参数信息;控制模块(14)与均衡模块(13)连接时,均衡模块(13)用于对电池组(11)中的单体电池(111)进行均衡处理。

Description

电池均衡***、车辆、电池均衡方法及存储介质
相关申请的交叉引用
本申请基于申请号为201710775028.6,申请日为2017年8月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池组均衡领域,具体地,涉及一种电池均衡***、车辆、电池均衡方法及存储介质。
背景技术
在电动汽车中,电池组是其重要的组成部分。由于电池组是由多个单体电池串联连接而成,随着电池的使用,电池组中各单体间的差异性逐渐扩大,导致电池单体间一致性差。由于电池的短板效应,使电池组容量不能充分发挥,导致电池组的整体容量减少。因此,对电动汽车的电池组进行有效的均衡管理,有利于提高电池组中各单体电池的一致性,减少电池的容量损失,延长电池的使用寿命及电动汽车续驶里程,具有十分重要的意义。
在相关均衡技术中,电池均衡***的硬件成本较高;并且由于电池采样和均衡同时进行,均衡电流会影响电池电压,从而影响电池电压采样的精度。
发明内容
本申请的目的是提供一种电池均衡***、车辆、电池均衡方法及存储介质,用于解决相关技术中电池均衡***的硬件成本较高的技术问题。
为了实现上述目的,本申请提供一种电池均衡***,包括采集模块、均衡模块和控制模块,所述控制模块通过一个控制通道选择性地与对应于同一单体 电池的采集模块和均衡模块连接;
所述控制模块与所述采集模块连接时,所述采集模块用于采集电池组中单体电池的参数信息;
所述控制模块与所述均衡模块连接时,所述均衡模块用于对所述电池组中的单体电池进行均衡处理;
所述控制模块用于在根据所述电池组中单体电池的参数信息确定所述电池组中有单体电池需要开启均衡时,控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,所述控制模块包括控制芯片,所述控制芯片通过一个引脚与对应于同一单体电池的采集模块和均衡模块连接,所述引脚通过所述控制通道与所述均衡模块和所述采集模块连接。
可选地,所述电池均衡***用于多个单体电池,所述控制模块包括控制芯片,所述多个单体电池通过多个通道与所述控制芯片的多个引脚一一对应连接。
可选地,所述控制模块包括设置在电池信息采集器的第一控制单元和设置在电池管理控制器的第二控制单元,所述第一控制单元和所述第二控制单元选择性地对需要均衡的单体电池进行均衡控制。
可选地,所述采集模块包括采集电路,所述均衡模块包括均衡电路,同一单体电池的采集电路和均衡电路都通过选择开关与所述控制模块连接,所述选择开关选择性地连接所述采集电路或所述均衡电路。
可选地,在所述控制模块确定所述电池组中的单体电池不需要进行均衡时,对应于该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接;或者,在所述控制模块确定与所述电池组中的单体电池需要进行均衡时,对应于该单体电池的采集模块和均衡模块分时连接于所述控制模块。
可选地,所述控制模块还用于按照由所述电池组的参数信息获取的所述需要开启均衡的单体电池的目标均衡时长和均衡占空比控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理,所述均衡占空比为所述均衡模块占用 所述控制通道的时长与所述控制通道被占用的总时长之比。
可选地,所述控制模块还用于根据所述目标均衡时长和所述均衡占空比确定均衡时间段和采集时间段,所述均衡时间段和所述采集时间段之和等于所述控制通道被占用的总时长;在所述均衡时间段,所述控制通道连通所述均衡模块,以使所述均衡模块对所述电池组中的单体电池进行均衡处理;在所述采集时间段,所述控制通道连通所述采集模块,以使所述采集模块采集所述电池组的参数信息。
可选地,所述控制模块用于通过以下方式获取所述需要开启均衡的单体电池的目标均衡时长:
根据所述采集模块采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
在确定所述电池组中有单体电池需要开启均衡时,根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
可选地,所述选择开关设在所述控制通道上,所述控制模块还用于当需要所述采集模块采集电池组的参数信息时,控制所述选择开关连接于所述采集模块,以使所述控制通道连通所述采集模块;以及当需要所述均衡模块对所述电池组中的单体电池进行均衡处理时,控制所述选择开关连接于所述均衡模块,以使所述控制通道连通所述均衡模块。
可选地,所述选择开关为单刀双掷开关,所述控制模块连接于所述单刀双掷开关的动端,所述采集模块连接于所述单刀双掷开关的第一不动端,所述均衡模块连接于所述单刀双掷开关的第二不动端。
可选地,当所述电池组中的单体电池不需要进行均衡处理时,该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接。
可选地,所述控制模块还用于在单体电池电压与各个单体电池中的最小电压的差值大于预设电压差阈值时,控制所述均衡模块对所述单体电池进行放电。
可选地,所述控制模块还用于在单体电池的电压与各个单体电池中的最大 电压的差值大于预设电压差阈值时控制所述均衡模块对所述单体电池进行充电。
可选地,所述电池组的参数信息包括电压值、SOC值、自放电率、单体电池内阻值、电流值、温度值中的至少一种。
本申请还提供了一种车辆,包括上述的电池均衡***。
本申请还提供了一种电池均衡方法,应用于电池均衡***,
所述电池均衡***包括控制模块、采集模块和均衡模块;所述控制模块通过一个控制通道与对应于电池组中同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道;该方法包括:
将所述控制通道连通所述采集模块;
通过所述采集模块采集电池组中单体电池的参数信息;
通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡;
将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块;
通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,所述通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡,包括:
通过所述控制模块根据所述电池组的参数信息确定所述需要开启均衡的单体电池、所述需要开启均衡的单体电池的目标均衡时长和均衡占空比,所述均衡占空比为所述均衡模块占用所述控制通道的时长与所述控制通道被占用的总时长之比;
所述通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理,包括:
通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长和所述均衡占空比控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,该方法还包括:
通过所述控制模块根据所述目标均衡时长和所述均衡占空比确定均衡时间段和采集时间段,所述均衡时间段和所述采集时间段之和等于所述控制通道被占用的总时长;
所述将所述控制通道连通所述采集模块,包括:
在所述采集时间段,将所述控制通道连通所述采集模块;
所述将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块,包括:
在所述均衡时间段,所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
可选地,所述根据所述电池组的参数信息确定所述需要开启均衡的单体电池的目标均衡时长,包括:
根据采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
在确定所述电池组中有单体电池需要开启均衡时,计算所述需要开启均衡的单体电池的目标均衡时长。
可选地,当所述电池组中的单体电池不需要进行均衡处理时,该方法还包括:
将该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是根据一示例性实施例示出的一种电池均衡***的框图;
图2是根据一示例性实施例示出的一种电池均衡***的另一框图;
图3是根据一示例性实施例示出的一种电池均衡方法的流程图;
图4是根据一示例性实施例示出的一种电池均衡方法的另一流程图;
图5是根据一示例性实施例示出的一种电池均衡方法包括的步骤中确定需要开启均衡的单体电池及其目标均衡时长的流程图;
图6是根据一示例性实施例示出的一种电池均衡方法的另一流程图;
图7是根据一示例性实施例示出的一种电池均衡方法的另一流程图;以及
图8是根据一示例性实施例示出的一种车辆的方框示意图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在相关均衡技术中,电池均衡***通常包括:一个电池管理控制器、多个电池信息采集器,其中,每个电池信息采集器都包括控制单元、电池采样电路、电池均衡电路等三个模块,且电池采样电路和电池均衡电路分别应用不同的通道。电池组的每节单体电池配置一个电池检测电路通道和电池均衡电路通道。其工作流程为:电池采样电路负责对电池电压信息进行实时采样,电池信息采集器的控制单元向电池管理控制器发送电池采样信息,电池管理控制器判断是否需要开启均衡,然后向电池信息采集器的控制单元发送均衡指令,由电池信息采集器的控制单元控制电池均衡电路开启均衡。
在相关均衡技术实际应用中,由于控制单元与每一节单体电池的电压采样电路和均衡电路之间各需要一个控制通道,增加了对控制器的通道数量要求,导致硬件成本较高;并且由于电池采样和均衡同时进行,均衡电流会影响电池电压,从而影响电池电压采样的精度。
为解决上述问题,本申请提出了一种电池均衡***,通过复用一个控制通道,减少通道数量的要求,进而降低成本,并且将电池采集和均衡分开进行,使得均衡电流不会影响电池电压,从而大大提高了电 池电压采样的精度。
图1是根据一示例性实施例示出的一种电池均衡***的框图。如图1所示,所述电池均衡***包括采集模块12、均衡模块13以及控制模块14,其中,电池组11是由多个单体电池111串联连接而成。
在图1中,所述控制模块14通过一个控制通道140与对应于同一单体电池111的采集模块12和均衡模块13连接,该采集模块12和该均衡模块13分时复用所述控制通道140。所述控制模块14包括控制芯片,所述控制芯片通过一个引脚与对应于同一单体电池111的采集模块12和均衡模块13连接,所述引脚通过所述控制通道140与所述均衡模块13和所述采集模块12连接。其中,控制通道指的是控制模块的控制指令的传输途径,即从控制端到执行端之间的这一部分,也就是,控制模块与采集模块或均衡模块相连通的部分。
本申请对应于同一单体电池111的采集模块12和均衡模块13共用控制模块14的一个控制通道140,使得所需控制模块14的通道数减少,进而减少了对控制模块14的通道数量要求。
例如,在现有的采集模块、均衡模块分别通过一个控制通道与控制模块相连接时,N个单体电池对应有2N个控制通道。而本申请同一单体电池的采集模块和均衡模块共用一个控制通道与控制模块连接,N个单体电池对应有N个控制通道,从而能够减少控制通道的数量,减小控制模块的成本。
在现有的采集模块、均衡模块分别通过一个控制通道与控制模块相连接时,N个单体电池对应2N个控制通道,需要对2N个控制通道进行控制。本申请同一单体电池的采集模块和均衡模块共用控制模块的一个控制通道,这样N个单体电池对应N个控制通道,仅需要对N个控制通道进行控制,这样可以简化控制流程,减小控制模块的误操作率。
在现有的采集模块、均衡模块分别通过一个控制通道与控制模块相连接时,N个单体电池对应2N个控制通道,通过控制通道接通控制模块的合格率由2N个控制通道的合格率决定。本申请同一单体电池的采集模块和均衡模块共用控 制模块的一个控制通道,N个单体电池对应N个控制通道,通过控制通道接通控制模块的合格率由N个控制通道的合格率决定,这样可以提高整个***中多个单体电池通过控制通道接通控制模块的总合格率,进而提高电池均衡***的合格率。
如图1所示,所述采集模块12用于采集电池组11中单体电池111的参数信息,并向所述控制模块14发送采集到的所述电池组的参数信息,所述电池组11中的单体电池111与采集模块12一一对应。其中,所述参数信息包括电池电压、温度等信息。所述控制模块14通过将控制通道140连通于所述采集模块12,进而控制所述采集模块12采集电池组11的参数信息。
在一个实施例中,在单位周期的采集时间段内,所述控制模块14通过将控制通道140连通于所述采集模块12,进而通过所述采集模块12采集电池组11的参数信息,其中,单位周期包括采集时间段和均衡时间段,电池组11的参数信息包括电压值、SOC值、自放电率、单体电池内阻值、电流值、温度值中的至少一种。
需要说明的是,在采集时间段内,所有的采集模块12同时工作,而所有的均衡模块13均停止工作,也就是说电池组11中各个单体电池111的电池信息是同步采集的。
具体地,在单位周期的采样时段内,采集模块获取电池组的各单体电池的电池信息,控制模块确定需要进行均衡的单体电池。在单位周期的均衡时段内,对需要进行均衡的单体电池进行均衡。在均衡时段内,对不需要进行均衡的单体电池停止获取对应单体电池的电池信息。通过这样的方案,均衡模块对电池组进行均衡处理和采集模块对电池信息的采集分时间段独立执行,互不干扰,可以避免电池信息的采集和单体电池的均衡同时进行,从而避免均衡电流对采集单体电池的电池信息的影响,可以提高单体电池的电池信息采样的精度。
如图1所示,所述控制模块14分别连接于所述采集模块12和所述均衡模块13。当所述将控制通道140连通于所述采集模块12时,所述控制模块14用 于接收所述电池组11的参数信息。所述控制模块14在根据所述电池组11的参数信息确定所述多节单体电池111中有需要均衡的单体电池111时,所述控制模块14将控制通道140连通于所述均衡模块13,以使该均衡模块13对该单体电池111进行均衡处理。
在一个实施例中,所述控制模块14确定需要进行均衡的单体电池111,并根据需要进行均衡的单体电池111的目标均衡时长,在一个或多个单位周期的均衡时间段内,控制需要进行均衡的单体电池111对应的均衡模块13对该单体电池111进行均衡,以使该单体电池111在一个或多个单位周期的均衡时间段内的累计均衡时长达到其对应的目标均衡时长。
如图1所示,所述均衡模块13用于对所述电池组11中的单体电池111进行均衡处理,所述电池组11中的单体电池111与所述均衡模块13一一对应。当所述电池组11中有需要均衡的单体电池111时,所述控制模块14通过将控制通道140连通于所述均衡模块13,进而控制所述均衡模块13对所述需要均衡的单体电池111进行均衡处理。
在一个实施例中,在均衡时间段内,所述控制模块14在该一个或多个单位周期的均衡时间段内,对不需要进行均衡的单体电池111则停止获取对应单体电池111的参数信息,直到下一个单位周期的采集时间段,也就是说,在均衡时间段内,只有需要均衡的单体电池111对应的均衡模块13工作且对各单体电池111的均衡处理是同时进行的,电池组11中除需要均衡的单体电池111以外的单体电池111所对应的均衡模块13和所有的采集模块12均停止工作。
在一个实施例中,在获取到各单体电池111的参数信息后,可确定出各单体电池111的性能参数以及性能参数参考值,并根据各单体电池111的性能参数和性能参数参考值确定出需要进行均衡的单体电池111,且根据均衡判断的方式按照对应的均衡方式对需要进行均衡的单体电池111进行均衡处理。
参见下述表1,当参数信息分别为SOC值、单体电池内阻值、自放电率、电压变化率、电量变化率或时间变化率时,判断需要进行均衡的单体电池的方 法和均衡方式的对应关系。
表1
Figure PCTCN2018103685-appb-000001
Figure PCTCN2018103685-appb-000002
Figure PCTCN2018103685-appb-000003
Figure PCTCN2018103685-appb-000004
举例而言,参见表1,以性能参数为SOC值、性能参数参考值为电池组中的最小SOC值来判断电池是否需要开启均衡的为例。具体方法是:首先,计算获得各个单体电池的SOC值;然后,选择所有电池中SOC最小的那节电池的SOC值作为基准值;最后,把其余的每节电池与SOC基准值比较,判断是否达到均衡开启的阈值(如:人为设定阈值为10)。由此,可以判断电池是否需要开启均衡。其中,如果判断电池需要进行均衡处理,确定对电池进行放电,执行被动均衡。
在本申请的实施例中,单体电池的自放电率是指单体电池在开路状态(即停止充电或者停止放电)下,其所存储的电量在一定条件下的保持能力。单体电池的自放电率是表征单体电池特性的重要参数,可有效表征单体电池的容量损失情况和容量损失速率。
单体电池的电压变化率是指单体电池在充电(或放电)过程中的电压变化率,包括电压随充电(或放电)时间的变化速率dv/dt和电压随容量的变化速率dv/dq。
单体电池的电量变化率是指单体电池在充电(或放电)过程中,其上升(或下降)一个单位电压所需充入(或放出)的电量,即dq/dv。
单体电池的时间变化率是指单体电池在充电(或放电)过程中,其上升(或下降)相同电压值所需的时间,即dt/dv。
被动均衡是指对需要进行均衡的单体电池111进行放电。例如,在均衡模块13中设置与待均衡单体电池111并联的电阻,在单位周期的均衡时间段内,控制模块14控制该待均衡单体电池111与其对应的电阻之间的并联回路导通,以执行对该单体电池111的被动均衡,以达到电池组11中各单体电池111均衡的效果。可选地,所述电阻可为正温度系数的热敏电阻,其阻值可随温度的变化而变化,从而可调节均衡时产生的均衡电流,进而自动调节电池均衡***的发热量,并最终对电池均衡***的温度进行有效控制。需要说明的是,被动均衡主要是指能量耗散型的均衡方式。如把能量高的电池的能量直接通过放电的 形式把电量放掉,让能量高的电池的能量与能量低的电池的能量平衡的方法,即被动均衡方式。
当所述电池均衡***采用被动均衡方式对单体电池进行均衡处理,即对所述需要开启均衡的单体电池111进行放电时,所述控制模块14还可以通过以下方式确定所述需要开启均衡的单体电池111:
首先,根据所述采集模块12采集到的所述电池组11中各单体电池111的电压值,将所述电池组11中各单体电池111的电压值中最小的电压值作为参考电压值;
然后,根据所述电池组11中各单体电池111的电压值与所述参考电压值之间的电压差值,将电压差值大于或等于预设电压差阈值的单体电池111确定为所述需要开启均衡的单体电池111。主动均衡是指所述均衡模块13采用对所述需要进行均衡的单体电池111进行充电的均衡处理方式,比如,将所述需要进行均衡的单体电池111连接于车辆的发电机或蓄电池,进而通过所述发电机或所述蓄电池对所述需要均衡的单体电池111进行充电。需要说明的是,主动均衡是指没有能力浪费耗散的均衡方式,如把能量高的电池中的能量转移到能量低的电池中,以达到二者平衡的方式;或者对能量低的电池进行充电补充能量以达到能量高的电池的能量的平衡方法,即主动均衡方式。
当所述电池均衡***采用主动均衡方式对单体电池进行均衡处理,即对所述需要开启均衡的单体电池111进行充电时,所述控制模块14可以通过以下方式确定所述需要开启均衡的单体电池111:
首先,根据所述采集模块12采集到的所述电池组11中各单体电池111的电压值,将所述电池组11中各单体电池111的电压值中最大的电压值作为参考电压值;
然后,根据所述电池组11中各单体电池111的电压值与所述参考电压值之间的电压差值,将电压差值大于或等于预设电压差阈值的单体电池111确定为所述需要开启均衡的单体电池111。
可选地,当所述电池组11中的单体电池111不需要进行均衡处理时,该单体电池111的采集模块12通过对应的控制通道140与所述控制模块14连接。即所述控制模块14确定该单体电池111结束均衡时,所述控制模块14将控制该单体电池111对应的均衡模块13与控制通道140断开,并控制该单体电池111对应的采集模块12连通于控制通道140。
可选地,所述控制模块14还可以按照由所述电池组11的参数信息确定的所述需要开启均衡的单体电池111的目标均衡时长控制所述均衡模块13对所述需要开启均衡的单体电池111进行均衡处理。所述控制模块14可以通过以下方式获取所述需要开启均衡的单体电池111的目标均衡时长:根据所述采集模块12采集到的所述电池组11的参数信息,确定所述电池组11中是否有单体电池111需要开启均衡;在确定所述电池组11中有单体电池111需要开启均衡时,根据所述电池组11的参数信息计算所述需要开启均衡的单体电池111的目标均衡时长,所述控制模块14根据所述目标均衡时长控制所述均衡模块13对所述需要开启均衡的单体电池111进行均衡处理的时长。
举例来讲,可以将所述电池组11的各单体电池111的电压值中最小的电压值作为所述参考电压值,所述预设电压差阈值可以为5mV(或者其它数值)。首先,所述控制模块14将控制通道140连通于所述采集模块12,进而控制所述述采集模块12采集电池组11的各单体电池111电压值;
接着,所述控制模块14经比较得到各单体电池111中最小电压值Vmin,并判定所述电池组11的各单体电池111的电压值与Vmin的差值是否小于5mV。如果是,则所述电池组11均衡一致性很好,不需要均衡;如果大于5mV,则将电压值与Vmin的差值大于5mV的单体电池111作为需要开启均衡的单体电池111。
然后,在确定所述需要开启均衡的单体电池111后,可以根据所述需要开启均衡的单体电池111的电压值和Vmin,计算所述需要开启均衡的单体电池111的目标均衡时长,进而,所述控制模块14将控制通道140连通于所述均衡 模块13,进而所述控制模块14按照所述需要开启均衡的单体电池111的目标均衡时长控制所述均衡模块13对所述需要开启均衡的单体电池111进行放电。
接着,在放电开始后,所述控制模块14统计所述均衡模块13对所述需要开启均衡的单体电池111的放电时长,当该单体电池111的放电时长与所述目标均衡时长的差值在阈值范围内时,停止放电,均衡结束。所述控制模块14将控制该单体电池111对应的均衡模块13与控制通道140断开,并控制该单体电池111对应的采集模块12连通于控制通道140。
由于本申请中的控制模块与每一节单体电池的电压采样模块和均衡模块分时复用一个通道,减少了对控制模块的通道数量要求,进而降低了硬件成本;并且由于电池采样和均衡分开进行,均衡电流不会影响电池电压,从而提高了电池电压采样的精度。
请继续参照图1,所述控制模块14还可以根据所述目标均衡时长和均衡占空比控制所述均衡模块13对所述需要开启均衡的单体电池111进行均衡处理,所述均衡占空比为所述均衡模块13占用所述控制通道140的时长与所述控制通道140被占用的总时长之比;其中,所述控制通道140被占用的总时长包括所述均衡模块13占用所述控制通道140的时长以及所述采集模块12占用所述控制通道140的时长。
如图1所示,首先,所述控制模块14将控制通道140连通于所述采集模块12,进而可以控制所述述采集模块12采集电池组11的参数信息;接着,所述控制模块14在根据所述电池组11中单体电池111的参数信息确定所述电池组11中有单体电池111需要开启均衡时,获取所述需要开启均衡的单体电池111的目标均衡时长和均衡占空比,并将所述控制通道140联通于所述需要开启均衡的单体电池111所对应的均衡模块13;然后,所述控制模块14按照所述需要开启均衡的单体电池111的目标均衡时长和均衡占空比控制该均衡模块13对所述需要开启均衡的单体电池111进行均衡处理。
可选地,所述控制模块14根据所述目标均衡时长和所述均衡占空比确定 均衡时间段和采集时间段,所述均衡时间段和所述采集时间段之和等于所述控制通道140被占用的总时长;在所述采集时间段,所述控制通道140连通所述采集模块12,以使所述采集模块12采集所述电池组11的参数信息;在所述均衡时间段,所述控制通道140连通需要进行均衡处理的均衡模块13,以使所述均衡模块13对所述电池组11中需要开启均衡的单体电池111进行均衡处理。
需要说明是,在一个实施例中,需要开启均衡的单体电池的均衡时长可预先设定,例如可根据多次均衡试验或者经验进行设定。
图2是根据一示例性实施例示出的一种电池均衡***的另一框图。如图2所示,所述电池均衡***包括采集模块12、均衡模块13以及控制模块14。与图1中的电池均衡***的区别在于,在图2中电池均衡***10的所述控制通道140上设有选择开关141。
当需要所述采集模块12采集电池组11的参数信息时,即在所述采集时间段,所述控制模块14控制所述选择开关141连接于所述采集模块12,以使所述控制通道140连通所述采集模块12。当需要所述均衡模块13对所述电池组11中的单体电池111进行均衡处理时,即在所述均衡时间段,所述控制模块控14制所述选择开关141连接于所述均衡模块13,以使所述控制通道140连通所述均衡模块13。
如图2所示,所述选择开关141可以为单刀双掷开关,所述控制模块14连接于所述单刀双掷开关的动端,所述采集模块12连接于所述单刀双掷开关的第一不动端,所述均衡模块13连接于所述单刀双掷开关的第二不动端。在所述采集时间段,所述控制模块14控制所述单刀双掷开关的动端连接于所述第一不动端;在所述均衡时间段,所述控制模块14控制所述单刀双掷开关的动端连接于所述第二不动端。需要说明的是,选择开关141还可以为MOS管,其中,通过控制MOS管的导通和关断,以使控制通道140与采集模块或均衡模块连通或断开。
本申请通过在控制模块的控制通道上设置选择开关,在物理上可以断开控 制模块与采集模块、均衡模块之间的联系,可以避免误操作,比如,在采集时间段内存在错误的均衡指令时,由于选择开关没有连接时,所述控制模块与所述均衡模块之间断开,所述均衡模块不能接受到错误的均衡指令,从而避免了误操作;并且能够实现均衡时不采样,采样时不均衡的效果,从而均衡电流不会影响电池电压,从而提高了电池电压采样时的精度。
本申请通过在控制通道上设置选择开关,在需要采集电池组的参数信息时,将选择开关连接于采集模块,而在需要均衡时,将选择开关连接于均衡模块,实现了分时复用一个控制通道,减少了对控制模块的通道数量要求,进而降低了硬件成本;
另外,本申请通过将选择开关设置在控制模块与采集模块、均衡模块之间,所述控制模块可以通过调节选择开关的状态,达到采集和均衡的作用,并且能够实现均衡时不采样,采样时不均衡的效果,从而均衡电流不会影响电池电压,从而提高了电池电压采样时的精度。
可选地,所述电池均衡***可以用于多个单体电池,所述控制模块包括控制芯片,所述多个单体电池通过多个通道与所述控制芯片的多个引脚一一对应连接。
在现有的采集模块、均衡模块分别通过一个控制通道与控制模块相连接时,每个单体电池对应两个控制通道,每个控制通道对应控制芯片的一个引脚,即N个单体电池对应2N个引脚。而本申请同一单体电池的采集模块和均衡模块共用一个控制通道与控制模块连接,一个控制通道对应一个引脚,即N个单体电池对应N个控制通道,对应N个引脚,这样能够减少控制芯片引脚的需求,在现有技术的基础上,可以减少一半的引脚数量,有效降低了控制芯片成本。
可选地,所述控制模块包括设置在电池信息采集器中的第一控制单元,和设置在电池管理控制器中的第二控制单元。可选地,所述采集模块通过所述第一控制单元向所述第二控制单元发送采集到的电池组中单体电池的参数信息;其中,同一单体电池的采集模块和均衡模块对应第一控制单元的一个连接通道。
所述第一控制单元可以通过控制所述连接通道连接于所述采集模块,进而控制所述采集模块采集电池组中单体电池的参数信息。所述第二控制单元也可以通过通讯单元向所述第一控制单元发送采集指令,以通过所述第一控制单元控制所述连接通道连接于所述采集模块。
所述第一控制单元可以通过控制所述连接通道连接于所述均衡模块,进而控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。所述第一控制单元可以将所述采集电路采集的电池组的参数信息发给所述第二控制单元,所述第二控制单元根据电池组的参数信息确定需要开启均衡的单体电池,并通过通讯单元向所述第一控制单元发送均衡指令,以通过所述第一控制单元控制所述连接通道连接于所述均衡模块。
当电池均衡***中的采集模块是通过第一控制单元向第二控制单元发送采集到的电池组中单体电池的参数信息时,同一单体电池的采集模块和均衡模块对应第一控制单元的一个连接通道,减少了第一控制单元所需通道的数量。
电池信息采集器的第一控制单元和电池管理控制器的第二控制单元可以选择性地对需要均衡的单体电池进行均衡控制。即,第一控制单元可以控制均衡模块对需要进行均衡的单体电池进行均衡处理,第二控制单元也可以控制均衡模块对需要进行均衡的单体电池进行均衡处理。其中,第一控制单元或第二控制单元根据采集模块采集的电池组的参数信息确定需要进行均衡的单体电池。
所述电池信息采集器在预设时长未收到所述电池管理控制器发送的均衡指令时,所述第一控制单元接收所述电池组的参数信息,并根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡时,控制均衡模块对需要开启均衡的单体电池进行均衡处理。
所述电池信息采集器收到用于指示所述电池信息采集器进行均衡处理的指令时,所述第一控制单元接收所述电池组的参数信息,并根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡时,控制均衡模块对需要开启均衡的单体电池进行均衡处理。
所述电池信息采集器收到电池管理控制器故障报文时,所述第一控制单元接收所述电池组的参数信息,并根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡时,控制均衡模块对需要开启均衡的单体电池进行均衡处理。
电池信息采集器和电池管理控制器可以分别通过第一控制单元和第二控制单元选择性地对均衡***进行控制,这样能够在电池信息采集器和电池管理控制器二者之一失效或故障等情况下,依然保证电池均衡***的正常运行。
本申请还提供了一种车辆100,如图8所示,其包括上述的电池均衡***110。
关于上述实施例中的车辆,其中车辆包括的电池均衡***在上述电池均衡***的实施例中进行了详细描述,此处将不做详细阐述说明。
图3是根据一示例性实施例示出的一种电池均衡方法的流程图。如图3所示,所述电池均衡方法应用于电池均衡***,所述电池均衡***包括电池组、控制模块、采集模块和均衡模块;所述控制模块通过一个控制通道与对应于电池组中同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道;该方法包括以下步骤。
步骤S31,将所述控制通道连通所述采集模块。
步骤S32,通过所述采集模块采集电池组中单体电池的参数信息。
步骤S33,通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡。
步骤S34,将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
步骤S35,通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
图4是根据一示例性实施例示出的一种电池均衡方法的另一流程图。如图4所示,该方法包括以下步骤。
步骤S41,将所述控制通道连通所述采集模块。
步骤S42,通过所述采集模块采集电池组中单体电池的参数信息。
步骤S43,通过所述控制模块根据所述电池组的参数信息确定所述需要开启均衡的单体电池、所述需要开启均衡的单体电池的目标均衡时长和均衡占空比,所述均衡占空比为所述均衡模块占用所述控制通道的时长与所述控制通道被占用的总时长之比。
步骤S44,将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
步骤S45,通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长和所述均衡占空比控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,如图5所示,所述根据所述电池组的参数信息确定所述需要开启均衡的单体电池的目标均衡时长,包括:
步骤S431,通过所述控制模块根据采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
步骤S432,在确定所述电池组中有单体电池需要开启均衡时,通过所述控制模块根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
可选地,该方法还包括:通过所述控制模块根据所述目标均衡时长和所述均衡占空比确定均衡时间段和采集时间段,所述均衡时间段和所述采集时间段之和等于所述控制通道被占用的总时长;
其中,所述将所述控制通道连通所述采集模块,包括:在所述采集时间段,将所述控制通道连通所述采集模块;
所述将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块,包括:在所述均衡时间段,所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
图6是根据一示例性实施例示出的一种电池均衡方法的另一流程图。如图6所示,该方法包括以下步骤。如图6所示,该方法包括以下步骤。
步骤S61,将所述控制通道连通所述采集模块。
步骤S62,通过所述采集模块采集电池组中单体电池的参数信息。
步骤S63,通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡。
步骤S64,将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
步骤S65,通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行放电。
步骤S66,当所述电池组中的单体电池不需要进行均衡处理时,将该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接。
图7是根据一示例性实施例示出的一种电池均衡方法的另一流程图。如图7所示,该方法包括以下步骤。如图7所示,该方法包括以下步骤。如图7所示,该方法包括以下步骤。
步骤S71,将所述控制通道连通所述采集模块。
步骤S72,通过所述采集模块采集电池组中单体电池的参数信息。
步骤S73,通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡。
步骤S74,将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
步骤S75,通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行充电。
步骤S76,当所述电池组中的单体电池不需要进行均衡处理时,将该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接。
关于上述实施例中的电池均衡方法,其中各个步骤的具体方式已经在有关 该电池信均衡***的实施例中进行了详细描述,此处将不做详细阐述说明。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述的电池均衡方法。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (20)

  1. 一种电池均衡***,其特征在于,包括采集模块、均衡模块和控制模块,所述控制模块通过一个控制通道选择性地与对应于同一单体电池的采集模块和均衡模块连接;
    所述控制模块与所述采集模块连接时,所述采集模块用于采集电池组中单体电池的参数信息;
    所述控制模块与所述均衡模块连接时,所述均衡模块用于对所述电池组中的单体电池进行均衡处理;
    所述控制模块用于在根据所述电池组中单体电池的参数信息确定所述电池组中有单体电池需要开启均衡时,控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  2. 根据权利要求1所述的电池均衡***,其特征在于,所述控制模块包括控制芯片,所述控制芯片通过一个引脚与对应于同一单体电池的采集模块和均衡模块连接,所述引脚通过所述控制通道与所述均衡模块和所述采集模块连接。
  3. 根据权利要求1所述的电池均衡***,其特征在于,所述电池均衡***用于多个单体电池,所述多个单体电池通过多个通道与所述控制芯片的多个引脚一一对应连接。
  4. 根据权利要求1所述的电池均衡***,其特征在于,所述控制模块包括设置在电池信息采集器的第一控制单元和设置在电池管理控制器的第二控制单元,所述第一控制单元和所述第二控制单元选择性地对需要均衡的单体电池进行均衡控制。
  5. 根据权利要求1-4任意一项所述的电池均衡***,其特征在于,所述采集模块包括采集电路,所述均衡模块包括均衡电路,同一单体电池的采集电路和均衡电路都通过选择开关与所述控制模块连接,所述选择开关选择性地连接 所述采集电路或所述均衡电路。
  6. 根据权利要求1-5任意一项所述的电池均衡***,其特征在于,在所述控制模块确定所述电池组中的单体电池不需要进行均衡时,对应于该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接;或者,在所述控制模块确定与所述电池组中的单体电池需要进行均衡时,对应于该单体电池的采集模块和均衡模块分时连接于所述控制模块。
  7. 根据权利要求1-6任意一项所述的电池均衡***,其特征在于,所述控制模块还用于按照由所述电池组的参数信息获取的所述需要开启均衡的单体电池的目标均衡时长和均衡占空比控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理,所述均衡占空比为所述均衡模块占用所述控制通道的时长与所述控制通道被占用的总时长之比。
  8. 根据权利要求7所述的电池均衡***,其特征在于,所述控制模块还用于根据所述目标均衡时长和所述均衡占空比确定均衡时间段和采集时间段,所述均衡时间段和所述采集时间段之和等于所述控制通道被占用的总时长;在所述均衡时间段,所述控制通道连通所述均衡模块,以使所述均衡模块对所述电池组中的单体电池进行均衡处理;在所述采集时间段,所述控制通道连通所述采集模块,以使所述采集模块采集所述电池组的参数信息。
  9. 根据权利要求7所述的电池均衡***,其特征在于,所述控制模块用于通过以下方式获取所述需要开启均衡的单体电池的目标均衡时长:
    根据所述采集模块采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
    在确定所述电池组中有单体电池需要开启均衡时,根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
  10. 根据权利要求1-9任意一项所述的电池均衡***,其特征在于,电池均衡***还包括选择开关,所述选择开关设在所述控制通道上,
    所述控制模块还用于当需要所述采集模块采集电池组的参数信息时,控制 所述选择开关连接于所述采集模块,以使所述控制通道连通所述采集模块;以及当需要所述均衡模块对所述电池组中的单体电池进行均衡处理时,所述选择开关连接于所述均衡模块,以使所述控制通道连通所述均衡模块。
  11. 根据权利要求10所述的电池均衡***,其特征在于,所述选择开关为单刀双掷开关,所述控制模块连接于所述单刀双掷开关的动端,所述采集模块连接于所述单刀双掷开关的第一不动端,所述均衡模块连接于所述单刀双掷开关的第二不动端。
  12. 根据权利要求1-11任意一项所述的电池均衡***,其特征在于,所述控制模块还用于在单体电池电压与各个单体电池中的最小电压的差值大于预设电压差阈值时,控制所述均衡模块对所述单体电池进行放电。
  13. 根据权利要求1-11任意一项所述的电池均衡***,其特征在于,所述控制模块还用于在单体电池的电压与各个单体电池中的最大电压的差值大于预设电压差阈值时控制所述均衡模块对所述单体电池进行充电。
  14. 根据权利要求1-13任意一项所述的电池均衡***,其特征在于,所述电池组的参数信息包括电压值、SOC值、自放电率、单体电池内阻值、电流值、温度值中的至少一种。
  15. 一种车辆,其特征在于,包括权利要求1-14中任一项所述的电池均衡***。
  16. 一种电池均衡方法,应用于电池均衡***,其特征在于,所述电池均衡***包括控制模块、采集模块和均衡模块;所述控制模块通过一个控制通道与对应于电池组中同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道;该方法包括:
    将所述控制通道连通所述采集模块;
    通过所述采集模块采集电池组中单体电池的参数信息;
    通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡;
    将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块;
    通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  17. 根据权利要求16所述的方法,其特征在于,所述通过所述控制模块根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡,包括:
    通过所述控制模块根据所述电池组的参数信息确定所述需要开启均衡的单体电池、所述需要开启均衡的单体电池的目标均衡时长和均衡占空比,所述均衡占空比为所述均衡模块占用所述控制通道的时长与所述控制通道被占用的总时长之比;
    所述通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理,包括:
    通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长和所述均衡占空比控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  18. 根据权利要求17所述的方法,其特征在于,该方法还包括:
    通过所述控制模块根据所述目标均衡时长和所述均衡占空比确定均衡时间段和采集时间段,所述均衡时间段和所述采集时间段之和等于所述控制通道被占用的总时长;
    所述将所述控制通道连通所述采集模块,包括:
    在所述采集时间段,将所述控制通道连通所述采集模块;
    所述将所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块,包括:
    在所述均衡时间段,所述控制通道连通所述需要开启均衡的单体电池所对应的均衡模块。
  19. 根据权利要求17所述的方法,其特征在于,所述根据所述电池组的参数信息确定所述需要开启均衡的单体电池的目标均衡时长,包括:
    根据采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
    在确定所述电池组中有单体电池需要开启均衡时,计算所述需要开启均衡的单体电池的目标均衡时长。
  20. 根据权利要求16-19任意一项所述的方法,其特征在于,当所述电池组中的单体电池不需要进行均衡处理时,该方法还包括:
    将该单体电池的采集模块通过对应的所述控制通道与所述控制模块连接。
PCT/CN2018/103685 2017-08-31 2018-08-31 电池均衡***、车辆、电池均衡方法及存储介质 WO2019042441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710775028.6 2017-08-31
CN201710775028.6A CN110015173B (zh) 2017-08-31 2017-08-31 电池均衡***、车辆、电池均衡方法及存储介质

Publications (1)

Publication Number Publication Date
WO2019042441A1 true WO2019042441A1 (zh) 2019-03-07

Family

ID=65526206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103685 WO2019042441A1 (zh) 2017-08-31 2018-08-31 电池均衡***、车辆、电池均衡方法及存储介质

Country Status (2)

Country Link
CN (1) CN110015173B (zh)
WO (1) WO2019042441A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526513A (zh) * 2023-11-13 2024-02-06 无锡市晶源微电子股份有限公司 一种电池均衡电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189490A (ja) * 2001-12-14 2003-07-04 Honda Motor Co Ltd 蓄電装置の残容量均等化装置
JP2009148127A (ja) * 2007-12-18 2009-07-02 Panasonic Corp 蓄電装置
CN104079016A (zh) * 2013-03-28 2014-10-01 比亚迪股份有限公司 电池组均衡***及其均衡控制方法
CN105711434A (zh) * 2016-02-04 2016-06-29 金龙联合汽车工业(苏州)有限公司 一种电动汽车动力电池管理***
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡***及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680901B1 (ko) * 2006-02-28 2007-02-09 김금수 배터리 관리 시스템 및 그 제어 방법
CN102496979A (zh) * 2011-11-28 2012-06-13 上海交通大学 一种极性自动切换的锂离子电池组均衡电路
CN103166257A (zh) * 2011-12-14 2013-06-19 比亚迪股份有限公司 电池组电压均衡***及均衡方法
JP6003932B2 (ja) * 2014-03-11 2016-10-05 トヨタ自動車株式会社 電力変換装置及びその起動方法
CN106549454A (zh) * 2016-12-15 2017-03-29 深圳晶福源科技股份有限公司 一种电压采样与电量均衡共线的电池管理***和管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189490A (ja) * 2001-12-14 2003-07-04 Honda Motor Co Ltd 蓄電装置の残容量均等化装置
JP2009148127A (ja) * 2007-12-18 2009-07-02 Panasonic Corp 蓄電装置
CN104079016A (zh) * 2013-03-28 2014-10-01 比亚迪股份有限公司 电池组均衡***及其均衡控制方法
CN105711434A (zh) * 2016-02-04 2016-06-29 金龙联合汽车工业(苏州)有限公司 一种电动汽车动力电池管理***
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡***及车辆

Also Published As

Publication number Publication date
CN110015173A (zh) 2019-07-16
CN110015173B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US11292360B2 (en) Battery equalization method and system, vehicle, storage medium, and electronic device
CN110015178B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042365A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435778B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015187B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435775B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042362A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
CN109428355B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042364A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042401A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042410A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042438A1 (zh) 电池均衡***及车辆
WO2019042416A1 (zh) 电池均衡方法、***、车辆及电子设备
WO2019042399A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042440A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
WO2019042354A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
WO2019042353A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
CN110015179B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042441A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
CN109435770B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015174B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042439A1 (zh) 电池均衡***、车辆、电池均衡方法及存储介质
CN111002870B (zh) 一种新能源车bms***的主动均衡控制方法
CN109435758B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435774B (zh) 电池均衡方法、***、车辆、存储介质及电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849710

Country of ref document: EP

Kind code of ref document: A1