WO2019042401A1 - 电池均衡方法、***、车辆、存储介质及电子设备 - Google Patents

电池均衡方法、***、车辆、存储介质及电子设备 Download PDF

Info

Publication number
WO2019042401A1
WO2019042401A1 PCT/CN2018/103471 CN2018103471W WO2019042401A1 WO 2019042401 A1 WO2019042401 A1 WO 2019042401A1 CN 2018103471 W CN2018103471 W CN 2018103471W WO 2019042401 A1 WO2019042401 A1 WO 2019042401A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
battery
equalization
cell
control module
Prior art date
Application number
PCT/CN2018/103471
Other languages
English (en)
French (fr)
Inventor
罗红斌
王超
沈晓峰
曾求勇
刘苑红
张祥
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019042401A1 publication Critical patent/WO2019042401A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the field of control technologies, and in particular, to a battery equalization method, system, vehicle, storage medium, and electronic device.
  • a vehicle power battery generally consists of a plurality of single cells connected in series to form a module. With the use of the battery, the difference between the individual cells gradually expands, and the consistency between the cells is poor. Due to the short board effect of the battery, the capacity of the battery pack is limited, so that the capacity of the battery pack cannot be fully exerted, resulting in the battery pack. The overall capacity is reduced. On the other hand, the gradual enlargement of the differences between the individual cells will cause over-charging of some single cells, over-discharge of some single cells, affecting battery life, damaging the battery, and possibly generating a large amount of heat to cause the battery. Burning or exploding.
  • An object of the present disclosure is to provide a battery equalization method, system, vehicle, storage medium, and electronic device, which can more accurately determine a single cell that needs to be balanced.
  • the present disclosure provides a battery equalization method, which is applied to a battery equalization system.
  • the battery equalization system includes: an equalization module, an acquisition module, and a control module, and the control module respectively corresponds to the same single through a control channel.
  • the collection module of the battery is connected to the equalization module, and the acquisition module and the equalization module time-multiplex the control channel, and the method includes:
  • the control module acquires voltage values of the respective single cells through the collection modules corresponding to the respective single cells in the battery pack;
  • the control module determines a reference voltage value required for the equalization determination according to the voltage value of each of the single cells in the battery pack;
  • the control module determines a single cell that needs to be equalized according to a voltage value of at least one of the battery cells in the battery pack and the reference voltage value.
  • the present disclosure provides a battery equalization system, where the system includes an equalization module, an acquisition module, and a control module.
  • the control module is respectively connected to an acquisition module and an equalization module corresponding to the same single cell through a control channel.
  • the acquisition module and the equalization module time-multiplex the control channel, and the control module is configured to perform the method described in the first aspect.
  • the present disclosure provides a vehicle comprising the battery equalization system of the above second aspect.
  • the present disclosure provides a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the method of the first aspect described above.
  • an electronic device including:
  • One or more processors for executing a program in the computer readable storage medium.
  • the control module of the battery equalization system is respectively connected with the acquisition module and the equalization module corresponding to the same single cell through one control channel, thereby improving the utilization rate of the control module channel, and the battery information collection and equalization and time sharing are performed.
  • the influence of the equalization current on the accuracy of the battery information collection makes the voltage value collected by the acquisition module more accurate, and thus the single-cell battery that needs to be balanced by using the collected voltage value is also More accurate.
  • FIG. 1 is a schematic diagram of a battery equalization system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a battery equalization system in which two single cells share an equalization module according to another embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of a battery equalization method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of determining a single cell that needs to be balanced according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a battery internal resistance model according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an equalization module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a vehicle according to an embodiment of the present disclosure.
  • the single battery that needs to be equalized is determined from the power battery pack, so the battery information of each single battery in the power battery pack needs to be collected in real time, and then according to the battery information.
  • such a method may occur while collecting battery information, and also performing equalization, which may result in inaccurate battery information collected, and thus determine the unit cells that need to be balanced are not accurate.
  • SOC State of Charge
  • remaining charge indicates the ratio of the remaining capacity of the battery after a period of use or long-term suspension to its fully charged state, expressed as a percentage.
  • the self-discharge rate also known as the charge retention capability, refers to the ability of the battery to maintain the power stored under certain conditions under open conditions.
  • FIG. 1 is a schematic structural diagram of a battery equalization system according to an embodiment of the present disclosure.
  • the battery equalization system 80 includes a control module 301, an acquisition module 302, and an equalization module 303 for equalizing the battery pack 304.
  • the battery pack 304 includes a plurality of unit cells connected in series.
  • the control module 301 is connected to the acquisition module 302 and the equalization module 303 corresponding to the same single cell through a control channel 305.
  • the acquisition module 302 and the equalization module 303 time-multiplex the control channel 305 according to a unit cycle.
  • the control channel refers to the transmission path of the control module's control command to the execution end (acquisition module and equalization module).
  • One unit period includes: an acquisition period and an equalization period.
  • the control module 301 controls the acquisition module 302 to sample the battery information of the single battery during the collection period to obtain the battery information of the single battery.
  • the battery information includes at least one of the following: voltage, current, temperature, and the like.
  • the battery information may include only voltage values, whereby voltage performance parameters of the single battery may be obtained.
  • the battery information may also include a voltage value, a current value, a temperature value, and the like, thereby obtaining performance parameters such as SOC, internal resistance, and self-discharge rate of the single battery.
  • the control module 301 determines, according to the battery information of the single battery collected by the collection module 302, the single battery that needs to be equalized. For the single cell that needs to be turned on, the control module 301 controls the equalization module corresponding to the single cell that needs to be equalized, and equalizes the cell that needs to be balanced in the equalization period.
  • the acquisition module 302 and the equalization module 303 share the same control channel, and the control module 301 controls the acquisition module 302 and the equalization module 303 to time-multiplex the control channel according to the unit cycle, thereby avoiding battery information. Acquisition and equalization are performed simultaneously, and the influence of the equalization current on the accuracy of the battery information collection is avoided; on the other hand, the control is reduced by using the different channels and the control module 301 by the acquisition module 302 and the equalization module 303, respectively.
  • the module's channel number requirements save hardware costs.
  • a control switch K is provided, the control module 301 is connected to the control switch K, and the control module 301 is used to implement the time sharing and acquisition module by the control switch K.
  • 302 or equalization module 303 is connected.
  • the control switch K is connected to the acquisition module 302
  • the control module 301 controls the acquisition module 302 to collect battery information for the single battery during the collection cycle.
  • the control module 301 controls the equalization.
  • Module 303 equalizes the corresponding single cells.
  • each of the battery cells 304 is connected to an acquisition module 302 and an equalization module 303, respectively. If the battery pack includes N single cells, the number of the acquisition modules 302 is N, and the equalization module 303 is N. Thus, the control module 301 is connected to the N acquisition modules and the N equalization modules through N control channels.
  • different single cells may share an equalization module, for example, N single cells in a battery pack, may share the same equalization module, or each preset number (eg, 2, 3, or 5 equal) single cells share an equalization module and the like.
  • the equalization module and each of the at least two single cells that need to be equalized are equalized during the equalization period of the unit period.
  • the batteries are connected alternately.
  • an exemplary schematic diagram of sharing an equalization module for two single cells is shown.
  • the equalization module 303 is alternately connected with each unit cell during the equalization period of the unit period. Alternate connections may be alternate connections at a certain period. Therefore, on the basis of the time-division of the acquisition module 302 and the equalization module 303, in the equalization period, the single cells sharing the same equalization module are alternately connected with the shared equalization module to achieve equalization of the corresponding single cells.
  • the acquisition module can be a voltage acquisition chip for collecting the voltage of the single battery during the acquisition period.
  • the battery equalization method according to an embodiment of the present disclosure includes:
  • step S11 the control module acquires voltage values of the respective unit cells through acquisition modules corresponding to the respective unit cells in the battery pack.
  • step S12 the control module determines a reference voltage value required for the equalization determination according to the voltage value of each of the single cells in the battery pack.
  • step S13 the control module determines the single cells that need to be equalized according to the voltage values of the at least one single cell in the battery pack and the reference voltage value.
  • control module may include a control chip, and the control chip is connected to a control channel through a pin, and the control channel is respectively connected to the acquisition module and the equalization module corresponding to the same single battery.
  • the pins of the control chip can be saved, and the utilization of the control chip pins can be improved.
  • the voltage value obtained by the acquisition module may be a load voltage value of the single battery, or may be an open circuit voltage value, which is not limited in the embodiment of the present disclosure.
  • a single cell that needs to be equalized is determined by:
  • step S21 the control module determines a voltage difference between the voltage value of the at least one single cell and the reference voltage value.
  • step S22 the control module determines a single cell in which the voltage difference in the at least one single cell is greater than or equal to the equalization on threshold as a cell that needs to be equalized.
  • the reference voltage value can be determined in the following manner.
  • the control module determines a minimum voltage value among voltage values of each single battery in the battery pack as a reference voltage value
  • the control module determines a maximum voltage value among voltage values of each single battery in the battery pack as a reference voltage value
  • the control module determines the average value of the voltage values of the individual cells in the battery pack as the reference voltage value.
  • the equalization on threshold may be a preset threshold used to determine the equalization on condition, which may be an empirical value.
  • the embodiment of the present disclosure is not limited, for example, 0.5V, and the like.
  • the reference voltage value is a minimum value among the voltage values of the single cells
  • the at least one single cell described in steps S21 and S22 may be the one cell having the largest voltage value in the battery pack. Or a plurality of single cells having the same voltage value and being the largest; or at least one of the single cells may be all of the cells in the battery except the single cell having the lowest voltage value.
  • control module can determine the difference between the voltage value of the single cell having the highest voltage value in the battery pack and the reference voltage value, thereby determining whether the cell having the largest voltage value needs to be equalized. In this way, the control module does not need to judge all the single cells one by one, and the processing speed of the control module is faster, and at the same time, when determining that the single cell with the largest voltage value needs to be equalized, only the single largest voltage value can be used.
  • the battery is balanced, and the battery equalization system performs faster balancing.
  • control module may respectively determine a difference between a voltage value of the battery cells other than the single-cell battery whose voltage value is the minimum value and a reference voltage value in the battery pack, thereby determining other Whether there is a single cell that needs to be balanced in the single cell, and what are the cells that need to be balanced. In this way, all the cells in the battery pack that satisfy the condition of balanced opening can be equalized, and the equalization effect of the battery equalization system is better.
  • the equalization process of the subsequent cell voltages in the determined at least one cell having a voltage difference greater than or equal to the equalization threshold is:
  • the single cell discharge that needs to be balanced is controlled to perform passive equalization.
  • the at least one single cell described in steps S21 and S22 may be the one cell having the smallest voltage value in the battery pack. Or a plurality of single cells having the same voltage value and being the smallest; or at least one of the single cells may be all of the cells except the single cell having the largest voltage value in the battery.
  • control module can determine the difference between the voltage value of the single cell having the lowest voltage value in the battery pack and the reference voltage value, thereby determining whether the cell having the smallest voltage value needs to be equalized. In this way, the control module does not need to judge all the single cells one by one, and the processing speed of the control module is faster, and at the same time, when the single cell with the smallest voltage value needs to be equalized, only the single value of the voltage value can be minimized.
  • the battery is balanced, and the battery equalization system performs faster balancing.
  • control module may respectively determine a difference between a voltage value of the battery cells other than the single-cell battery whose voltage value is the maximum value and a reference voltage value, and thus may determine other Whether there is a single cell that needs to be balanced in the single cell, and what are the cells that need to be balanced. In this way, all the cells in the battery pack that satisfy the condition of balanced opening can be equalized, and the equalization effect of the battery equalization system is better.
  • the equalization process of the subsequent cell for the determined voltage difference of the at least one cell is greater than or equal to the equalization threshold: Controlling the battery charging that needs to be balanced, performing active balancing, for example, connecting a cell that needs to be balanced to a generator or a battery of the vehicle, thereby charging the cell that needs to be balanced.
  • the control module may respectively determine a difference between a voltage value of each single battery in the battery group and a reference voltage value, thereby determining Whether there is a single cell that needs to be balanced in the entire battery pack, and which ones need to be balanced. In this way, all the cells in the battery pack that satisfy the condition of balanced opening can be equalized, and the equalization effect of the battery equalization system is better.
  • the subsequent equalization processing of the cell voltage in the determined at least one cell is greater than or equal to the equalization threshold: the control voltage value is less than the reference
  • the single-cell battery of the voltage value is charged, and active equalization is performed; the single-cell battery whose control voltage value is greater than the reference voltage value is discharged, and passive equalization is performed.
  • the equalization may be determined by other parameters than the voltage, for example, SOC, internal resistance, self-discharge rate, voltage change rate, power change rate, time change rate, and the like.
  • the self-discharge rate of the single cell is used to characterize the capacity loss and capacity loss rate of the single cell.
  • the open circuit voltage value V1 of each unit battery of the power battery pack is detected and recorded; when the battery pack starts to start again (t2 time) Detecting and recording the open circuit voltage value V2 of each single cell of the power battery pack; calculating the self-discharge rate ⁇ of each single cell and calculating the self-discharge rate value ⁇ according to the open circuit voltage values of the individual cells obtained by the two tests
  • the method is:
  • the voltage change rate of the unit cell may be a voltage change amount when the unit of the specified physical quantity of the unit cell is changed.
  • a predetermined amount of electric power is charged or discharged to a single battery, a voltage variation amount (dv/dq) of the single battery, or a preset time for charging or discharging the single battery, and a voltage change of the single battery.
  • the amount (dv/dt) is taken as an example for explanation.
  • the rate of change in the amount of electricity of the unit cell may be the amount of change in the amount of electricity when the unit of the specified physical quantity of the unit cell changes.
  • the amount of charge (dq/dv) required to increase the voltage of the unit cell by one unit voltage from the initial voltage, or the amount of decrease in the unit voltage by one unit voltage from the initial voltage (dq/) Dv) is explained as an example.
  • the time change rate of the unit cell may be the amount of time change when the unit of the specified physical quantity of the unit cell changes.
  • the charging time (dt/dv) required for the voltage of the single cell to rise by one unit voltage from the initial voltage, or the discharge time required for the voltage of the single cell to drop by one unit voltage from the initial voltage (dt/) Dv) is explained as an example.
  • the equalization judgment is performed using the performance parameters of different batteries, the judgment is made according to the corresponding manner in Table 1, and the unit cell in the battery pack that needs to be equalized is determined in combination with the judgment flow when the performance parameter is the voltage.
  • step S11 the control module may not operate, so that the equalization modules corresponding to any battery are not turned on.
  • control module may perform the following steps:
  • the control module controls the equalization of the cells that need to be balanced according to the target equalization time of the single cells that need to be balanced.
  • FIG. 5 is an open circuit voltage OCV-remaining power SOC curve of a single battery according to an embodiment of the present disclosure.
  • the single battery in the single battery with the smallest difference (possibly 0) between the voltage value and the reference voltage value may be determined as the reference battery, and the reference OCV of the reference battery is determined according to the voltage value of the reference battery and the internal resistance value of the reference battery. And then determining the SOC value corresponding to the reference OCV value as the first SOC value based on the reference OCV value and the OCV-SOC curve of the reference battery.
  • the SOC value corresponding to the OCV value of the balanced unit cell is the second SOC value.
  • the battery internal resistance model is used, and the single battery is equivalent to an ideal voltage source in series with the resistor R. Then, for a single cell, the sampled voltage value V L (ie, the load voltage value) of the single cell can be converted into an open circuit voltage value according to formula (1):
  • V L is a load voltage value collected by the acquisition module during the acquisition period
  • I is a discharge current or a charging current collected by the acquisition module during the acquisition period
  • R is an internal resistance value of the single battery.
  • the internal resistance of the single cell can be preset.
  • the internal resistance of the unit cell may be determined based on the voltage and capacity of the unit cell.
  • the internal resistance value of the unit cell is determined according to the correspondence relationship between the voltage, the capacity, and the internal resistance value of the unit cell.
  • other battery models such as Thevenin model, PNGV (Partnership for a New Generation of Vehicles) model, etc., can be used to convert the load voltage of the collected single cells. Is the open circuit voltage.
  • the SOC value corresponding to the single cell can be obtained according to the OCV-SOC curve of the single cell.
  • OCV-SOC curve shown in FIG. 5 can also be converted into a correspondence table of OCV and SOC, an OCV value corresponding to an SOC value, or an OCV range corresponding to an SOC value.
  • the OCV-SOC curve or OCV-SOC correspondence table is obtained by measurement. For example, for a single cell, in the process of changing its SOC value from 0 to 100%, every time a certain SOC value is separated, the open circuit voltage OCV of the battery is measured once, and then the OCV of each point is corresponding.
  • the SOCs correspond one-to-one to form a SOC-OCV curve or an OCV-SOC correspondence table of the unit cells.
  • the load voltage of the single cell can be collected first, and then converted to the corresponding open circuit voltage OCV according to the formula (1).
  • the first SOC value of the reference battery can be obtained according to the reference voltage value, the internal resistance value of the reference battery, and the OCV-SOC curve corresponding to the reference battery.
  • the second SOC value of the cell to be balanced is obtained according to the voltage value of the cell to be balanced, the internal resistance of the cell to be balanced, and the OCV-SOC curve corresponding to the cell to be equalized.
  • ⁇ Q is the difference in electric quantity
  • ⁇ SOC is the SOC difference between the first SOC value and the second SOC value
  • C n is the usable capacity of the unit cell to be equalized.
  • the equalization duty ratio refers to the ratio of the equalization period to the unit period in the unit period.
  • the equalization duty ratio may be a value set in advance according to requirements, for example, set to 50%, and the like.
  • the cell balancing After determining the target equalization period of the cell to be balanced, the cell balancing needs to be equalized according to the target equalization time to improve the equalization efficiency and reduce the equalization cost.
  • FIG. 7 is a schematic diagram of an equalization module according to an embodiment of the present disclosure.
  • the unit cells that need to be balanced are balanced in the equalization period of the unit period, and need to be combined with the above-mentioned equalization judgment.
  • determining whether the equalization mode of the unit cells to be balanced is passive equalization (for example, discharging a single cell that needs to be balanced) or active balancing (for example, charging a single cell that needs to be balanced), and Turn on the corresponding equalization module.
  • the equalization module includes: a resistor 811, each of which corresponds to an equalization module, that is, a resistor is connected in parallel with each end of each unit cell.
  • the control module controls the parallel loop conduction between the cell that needs to be balanced and its corresponding resistor during the equalization period of the unit period to perform passive equalization of the cell. .
  • the control module is turned on by controlling the switch module 812 to realize conduction of a parallel circuit between the unit cells requiring equalization and their corresponding resistors.
  • the resistor 811 can be a fixed value resistor or a variable resistor.
  • the resistor 811 can be a positive temperature coefficient thermistor, which can be varied with temperature, thereby adjusting the equalization current generated during equalization, thereby automatically adjusting the heat generation of the battery equalization system, and finally The temperature of the battery equalization system is effectively controlled.
  • the equalization module includes a charging branch 94 connected in parallel with each of the unit cells 81 in the battery pack.
  • the charging branch 94 is in one-to-one correspondence with the unit cells 95, and each charging branch 94 is provided. Both are coupled to a generator 92 that is mechanically coupled to the engine 91 via a gear.
  • the control module controls the charging branch 94 corresponding to the cell that needs to be equalized to be turned on.
  • the generator 92 is driven to generate electricity, so that the amount of power generated by the generator 92 is supplied to the unit cells that need to be balanced, so that the amount of the cells that need to be balanced is increased.
  • the equalization module when the generator 92 is an alternator, the equalization module further includes a rectifier 93 in series with the generator 92, each of the charging branches 94 being connected in series with the rectifier 93. After the alternating current generated by the generator 92 is converted to direct current by the rectifier 93, the generator 92 can be enabled to charge the unit cells that need to be equalized.
  • control module can be turned on by controlling the switch 96 corresponding to the unit cell that needs to be balanced, so that the charging branch corresponding to the unit cell that needs to be balanced is turned on, and the active equalization of the unit cells that need to be balanced is performed. .
  • the single battery that needs to be balanced can be charged by the starting battery in the entire vehicle.
  • the single cell that needs to be balanced in addition to the parallel resistor and the single cell that needs to be balanced, as shown in FIG. 7, can be connected in parallel with the starting battery of the whole vehicle, and the single cell that needs to be balanced is discharged. The power is charged into the starting battery to achieve equalization of the cells that need to be balanced while effectively avoiding waste of energy.
  • a plurality of single cells may share one equalization module, and when at least two of the multi-cell cells sharing one equalization module need to be equalized, in a unit period During the equalization period, the equalization module is alternately connected with each of the at least two single cells that need to be equalized, and is separately equalized.
  • embodiments of the present disclosure also provide a vehicle.
  • FIG. 8 is a schematic diagram of a vehicle according to an embodiment of the present disclosure. As shown in FIG. 8, the vehicle 8 includes a battery pack 304 and the battery equalization system 80 described above, which is coupled to the battery equalization system 80.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon computer program instructions, which are implemented by a processor to implement the battery equalization method described above.
  • an embodiment of the present disclosure further provides an electronic device, comprising: the foregoing computer readable storage medium; and one or more processors for executing a program in the computer readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池均衡方法、***、车辆、存储介质及电子设备,电池均衡***(80)包括:均衡模块(303)、采集模块(302)以及控制模块(301),控制模块(301)通过一个控制通道(305)与对应于同一单体电池的采集模块(302)和均衡模块(303)连接,该采集模块(302)和该均衡模块(303)分时复用控制通道(305)。电池均衡方法包括:通过对应于电池组中各个单体电池的采集模块(302)获取各个单体电池的电压值;根据该电压值,确定均衡判断所需的参考电压值;根据电池组中至少一个单体电池的电压值和参考电压值,确定需要均衡的单体电池。

Description

电池均衡方法、***、车辆、存储介质及电子设备
相关申请的交叉引用
本公开要求比亚迪股份有限公司于2017年08月31日提交的、发明名称为“电池均衡方法、***、车辆、存储介质及电子设备”的、中国专利申请号“201710776094.5”的优先权。
技术领域
本公开涉及控制技术领域,具体地,涉及一种电池均衡方法、***、车辆、存储介质及电子设备。
背景技术
为电动汽车提供动力能源的大容量蓄电池常称作动力电池。车用动力电池一般由多个单体电池串联组成一个模块。随着电池的使用,各单体电池间的差异性逐渐扩大,单体电池间一致性差,由于电池的短板效应,电池组容量发挥受到限制,使电池组容量不能充分发挥,导致电池组的整体的容量减少。另一方面,各单体电池间的差异性逐渐扩大后,将造成某些单体电池过充电,某些单体电池过放电,影响电池寿命,损坏电池,而且还可能产生大量的热量引起电池燃烧或***。
因此,对电动汽车动力电池进行有效的均衡管理,有利于提高动力电池组中各电池的一致性,减少电池的容量损失,延长电池的使用寿命及电动汽车续驶里程,具有十分重要的意义。
发明内容
本公开的目的是提供一种电池均衡方法、***、车辆、存储介质及电子设备,该方法可以较为准确地确定出需要均衡的单体电池。
为了实现上述目的,本公开提供一种电池均衡方法,应用于电池均衡***,所述电池均衡***包括:均衡模块、采集模块以及控制模块,所述控制模块通过一个控制通道分别与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道,所述方法包括:
所述控制模块通过对应于电池组中各个单体电池的采集模块获取各个单体电池的电压值;
所述控制模块根据所述电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值;
所述控制模块根据所述电池组中至少一个单体电池的电压值和所述参考电压值,确定需要均衡的单体电池。
第二方面,本公开提供一种电池均衡***,所述***包括均衡模块、采集模块以及控制模块,所述控制模块通过一个控制通道分别与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道,所述控制模块用于执行第一方面所述的方法。
第三方面,本公开提供一种车辆,包括上述第二方面所述的电池均衡***。
第四方面,本公开提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述第一方面所述的方法。
第五方面,本公开提供一种电子设备,包括:
第四方面所述的计算机可读存储介质;以及
一个或者多个处理器,用于执行所述计算机可读存储介质中的程序。
通过上述技术方案,电池均衡***的控制模块通过一个控制通道分别与对应于同一单体电池的采集模块和均衡模块连接,提升了控制模块通道的利用率,且电池信息采集和均衡分时进行,避免电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响,使得采集模块采集到的电压值较为准确,进而使得利用采集到的电压值来判断的需要均衡的单体电池也较为准确。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一实施例的电池均衡***的示意图;
图2是本公开另一实施例的两个单体电池共用一个均衡模块的电池均衡***的示意图;
图3是本公开一实施例的电池均衡方法的流程示意图;
图4是本公开一实施例的确定需要均衡的单体电池的流程示意图;
图5是本公开一实施例的单体电池的开路电压OCV-剩余电量SOC曲线;
图6是本公开一实施例的电池内阻模型的示意图;
图7是本公开一实施例的均衡模块的示意图;
图8是本公开一实施例的车辆的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
目前,对动力电池组进行均衡管理,首先要从动力电池组中确定出需要进行均衡的单体电池,因此需要实时地对动力电池组中各单体电池的电池信息进行采集,然后根据电池信息来确定哪些单体电池需要进行均衡,进而对需要均衡的单体电池进行均衡。然而,这样的方式可能会出现采集电池信息的同时,也在进行均衡,这将可能导致采集的电池信息不准确,进而确定出的需要均衡的单体电池也不准确。
在具体描述本公开实施例之前,为了便于理解,首先对常用技术词进行介绍:
SOC(State of Charge,荷电状态),也称为剩余电量,表示电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。
自放电率,又称荷电保持能力,是指电池在开路状态下,电池所储存的电量在一定条件下的保持能力。
参见图1,为本公开一实施例的电池均衡***的结构示意图。
该电池均衡***80包括:控制模块301、采集模块302和均衡模块303,用于对电池组304进行均衡。其中,电池组304包括多个串联的单体电池。控制模块301通过一个控制通道305分别与对应于同一单体电池的采集模块302和均衡模块303连接,该采集模块302和该均衡模块303按照单位周期分时复用该控制通道305。
其中,控制通道是指控制模块的控制指令传输到执行端(采集模块和均衡模块)的传递途径。
一个单位周期包括:采集时段和均衡时段。控制模块301控制采集模块302,在采集时段内对单体电池的电池信息进行采样,以获取单体电池的电池信息。电池信息至少包括以下其中之一:电压、电流和温度等。在一个实施例中,电池信息可以只包括电压值,由此,可得到单体电池的电压性能参数。在另一实施例中,电池信息也可以同时包括电压值、电流值和温度值等,由此,可得到单体电池的SOC、内阻、自放电率等性能参数。
控制模块301,根据采集模块302采集的单体电池的电池信息,确定需要进行均衡的单体电池。对于需要开启均衡的单体电池,控制模块301控制与该需要均衡的单体电池对应的均衡模块,在均衡时段内,对该需要均衡的单体电池进行均衡。
由此,在本公开实施例中,采集模块302和均衡模块303共用同一个控制通道,控制模块301控制采集模块302和均衡模块303,按照单位周期分时复用该控制通道,避免了 电池信息采集和均衡同时进行,以及避免均衡电流对电池信息采集的精度的影响;另一方面,相比于采集模块302与均衡模块303分别用不同的通道与控制模块301连接的方式,减少了对控制模块的通道数量要求,可节省硬件成本。
在一个实施例中,在采集模块302和均衡模块303共用的控制通道中,设置有一控制开关K,控制模块301与控制开关K连接,并通过控制开关K,实现控制模块301分时与采集模块302或均衡模块303连接。当控制开关K与采集模块302连接时,控制模块301控制采集模块302,在采集周期内,对单体电池进行电池信息的采集;当控制开关K与均衡模块303连接时,控制模块301控制均衡模块303对所对应的单体电池进行均衡。
在一个实施例中,参见图1所示,电池组304中的每一单体电池分别与一采集模块302和一均衡模块303连接。若电池组包括N个单体电池,则采集模块302为N个,均衡模块303为N个,由此,控制模块301通过N个控制通道,分别与N个采集模块和N个均衡模块连接。
在另一些实施例中,不同的单体电池可共用均衡模块,例如,电池组中的N个单体电池,可共用同一个均衡模块,或每预设数量(例如,2个、3个或5个等)个单体电池共用一个均衡模块等。当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接。
参见图2,为两个单体电池共用一个均衡模块的一示例性示意图。当电池组304中共用一个均衡模块303的两节单体电池均需要均衡时,在单位周期的均衡时段内,该均衡模块303与每节单体电池交替连接。交替连接可为按照一定的周期交替性的连接。由此,在采集模块302和均衡模块303分时导通的基础上,在均衡时段内,共用同一均衡模块的单体电池交替的与该共用的均衡模块连接以实现对应单体电池的均衡。
在一个实施例中,采集模块可为电压采集芯片,用于在采集时段,对单体电池的电压进行采集。
参见图3,基于上述图1、图2任一实施例所示的电池均衡***,本公开一实施例的电池均衡方法包括:
在步骤S11中,控制模块通过对应于电池组中各个单体电池的采集模块获取各个单体电池的电压值。
在步骤S12中,控制模块根据电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值。
在步骤S13中,控制模块根据电池组中至少一个单体电池的电压值和参考电压值,确定需要均衡的单体电池。
可选的,控制模块可以包括控制芯片,控制芯片通过一个引脚连接一个控制通道,该控制通道分别与对应于同一单体电池的采集模块和均衡模块连接。这样,可以节约控制芯片的引脚,提升控制芯片引脚的利用率。
采集模块获取的电压值可以是单体电池的负载电压值,或者也可以是开路电压值,本公开实施例对此不作限定。
可选的,请参见图4,在本公开的一实施例中,通过以下方式确定需要均衡的单体电池:
在步骤S21中,控制模块确定至少一个单体电池的电压值与参考电压值之间的电压差值。
在步骤S22中,控制模块将至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池。
在本公开的一实施例中,可以通过以下方式确定参考电压值。
控制模块将电池组中各单体电池的电压值中的最小电压值确定为参考电压值;或,
控制模块将电池组中各单体电池的电压值中的最大电压值确定为参考电压值;或,
控制模块将电池组中各单体电池的电压值的平均值确定为参考电压值。
均衡开启阈值可以是预先设定的用来判断均衡开启条件的阈值,可以是经验值。对于均衡开启阈值究竟为多少,本公开实施例不作限定,例如,0.5V,等等。可选的,当参考电压值为各单体电池的电压值中的最小值时,在步骤S21和步骤S22中所述的至少一个单体电池可以是电池组中电压值最大的一个单体电池或电压值相等且为最大的多个单体电池;或者至少一个单体电池也可以是电池组中除电压值最小的单体电池外的全部单体电池。
在一个实施例中,控制模块可以确定电池组中电压值最大的单体电池的电压值与参考电压值之间的差值,进而确定电压值最大的单体电池是否需要均衡。这样,控制模块无需对所有的单体电池一一进行判定,控制模块的处理速度较快,同时,在确定电压值最大的单体电池需要进行均衡时,也可以只对该电压值最大的单体电池进行均衡,电池均衡***进行均衡的速度较快。
在另一实施例中,控制模块可以分别确定电池组中除电压值为最小值的单体电池之外的其他单体电池的电压值与参考电压值之间的差值,进而可以确定出其他单体电池中是否有需要均衡的单体电池,以及需要均衡的单体电池有哪些。这样,可以对电池组中所有满足均衡开启的条件的单体电池进行均衡,电池均衡***的均衡效果较好。
可选的,当参考电压值为各单体电池的电压值中的最小值时,后续对确定的至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池的均衡处理为:控制该需要均衡 的单体电池放电,执行被动均衡。可选的,当参考电压值为各单体电池的电压值中的最大值时,在步骤S21和步骤S22中所述的至少一个单体电池可以是电池组中电压值最小的一个单体电池或电压值相等且为最小的多个单体电池;或者至少一个单体电池也可以是电池组中除电压值最大的单体电池外的全部单体电池。
在一个实施例中,控制模块可以确定电池组中电压值最小的单体电池的电压值与参考电压值之间的差值,进而确定电压值最小的单体电池是否需要均衡。这样,控制模块无需对所有的单体电池一一进行判定,控制模块的处理速度较快,同时,在确定电压值最小的单体电池需要进行均衡时,也可以只对该电压值最小的单体电池进行均衡,电池均衡***进行均衡的速度较快。
在另一实施例中,控制模块可以分别确定电池组中除电压值为最大值的单体电池之外的其他单体电池的电压值与参考电压值之间的差值,进而可以确定出其他单体电池中是否有需要均衡的单体电池,以及需要均衡的单体电池有哪些。这样,可以对电池组中所有满足均衡开启的条件的单体电池进行均衡,电池均衡***的均衡效果较好。
可选的,当参考电压值为各单体电池的电压值中的最大值时,后续对确定的至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池的均衡处理为:控制该需要均衡的单体电池充电,执行主动均衡,比如,将需要均衡的单体电池连接至车辆的发电机或蓄电池,进而对该需要均衡的单体电池充电。
可选的,当参考电压值为各单体电池的电压值的平均值时,控制模块可以分别确定电池组中各个单体电池的电压值与参考电压值之间的差值,进而可以确定出整个电池组中是否有需要均衡的单体电池,以及需要均衡的单体电池有哪些。这样,可以对电池组中所有满足均衡开启的条件的单体电池进行均衡,电池均衡***的均衡效果较好。
当参考电压值为各单体电池的电压值的平均值时,后续对确定的至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池的均衡处理为:控制电压值小于参考电压值的单体电池充电,执行主动均衡;控制电压值大于参考电压值的单体电池放电,执行被动均衡。
本公开实施例中,还可以通过除电压以外的其他参数来判断均衡,例如,SOC、内阻、自放电率、电压变化率、电量变化率、时间变化率等等。
应理解,参见下述表1,当用于判断均衡的参数分别为SOC、内阻、自放电率、电压变化率、电量变化率或时间变化率时,均衡判断方法和均衡方式的对应关系表。
其中,单体电池的自放电率,用于表征单体电池的容量损失情况和容量损失速率。在一个实施例中,在电池组停止工作并达到稳定状态时(t1时刻),检测并记录动力电池组各单体电池的开路电压值V1;当电池组再次启动开始工作的瞬间(t2时刻),检测并记录 动力电池组各单体电池的开路电压值V2;根据两次检测得到的各单体电池开路电压值,计算出各单体电池的自放电率η,自放电率值η的计算方法为:
(1)基于电池的OCV(Open Circuit Voltage,开路电压)-SOC曲线(比如图5所示的曲线),根据检测到的V1和V2找出V1对应的SOC值和V2对应的SOC值;
(2)根据分别对应与V1和V2的两个SOC值计算出电池的SOC变化值ΔSOC;
(3)根据ΔSOC与电池满电容量C,计算出电池自放电放出的电池容量,ΔQ=ΔSOC*C;
(4)计算电池自放电率η的值:η=ΔQ/(t1-t2)。
单体电池的电压变化率可以为单体电池的指定物理量发生单位改变时的电压变化量。例如,本公开中以对单体电池充入或放出预设电量,单体电池的电压变化量(dv/dq);或者对单体电池进行充电或放电预设时长,单体电池的电压变化量(dv/dt)为例进行说明。
单体电池的电量变化率可以为单体电池的指定物理量发生单位改变时的电量变化量。例如,本公开中以单体电池的电压从初始电压上升一个单位电压所需充入的电量(dq/dv),或单体电池的电压从初始电压下降一个单位电压所减少的电量(dq/dv)为例进行说明。
单体电池的时间变化率可以为单体电池的指定物理量发生单位改变时的时间变化量。例如,本公开中以单体电池的电压从初始电压上升一个单位电压所需的充电时间(dt/dv),或单体电池的电压从初始电压下降一个单位电压所需的放电时间(dt/dv)为例进行说明。
表1
Figure PCTCN2018103471-appb-000001
Figure PCTCN2018103471-appb-000002
Figure PCTCN2018103471-appb-000003
Figure PCTCN2018103471-appb-000004
由此,当采用不同的电池的性能参数进行均衡判断时,按照表1中相应的方式进行判断,结合上述性能参数为电压时的判断流程,确定出电池组中的需要均衡的单体电池。
应理解,若确定没有需要进行均衡的单体电池,则流程回到步骤S11,继续根据下一个采集时段采集的信息进行均衡的判断。当根据采集时段采集的信息,确定没有需要进行均衡的单体电池时,在均衡时段,控制模块可不进行动作,使得任一电池对应的均衡模块均不被开启。
可选的,在确定需要均衡的单体电池后,控制模块还可以执行以下步骤:
根据需要均衡的单体电池的电压值以及参考电压值,确定需要均衡的单体电池的目标均衡时长;
控制模块按照需要均衡的单体电池的目标均衡时长,控制需要均衡的单体电池的均衡。
以下对可能的根据需要均衡的单体电池的电压值以及参考电压值,确定需要均衡的单体电池的目标均衡时长的方式进行说明。
首先,请参见图5,为本公开一实施例的单体电池的开路电压OCV-剩余电量SOC曲线。
可以将单体电池中,电压值与参考电压值之差最小(可能为0)的单体电池确定为参考电池,根据参考电池的电压值及参考电池的内阻值,确定参考电池的参考OCV值;而后,根据参考OCV值及参考电池的OCV-SOC曲线,将参考OCV值对应的SOC值确定为 第一SOC值。
根据需要均衡的单体电池的电压值及需要均衡的单体电池的内阻值,确定需要均衡的单体电池的OCV值;而后,根据需要均衡的单体电池的OCV-SOC曲线,确定需要均衡的单体电池的OCV值对应的SOC值为第二SOC值。
以下,将结合图6和式(1)描述通过电压值和内阻值,得到SOC值的过程:
参见图6和式(1),当电池组处于放电状态或充电状态时,采用电池内阻模型,将单体电池等效为理想电压源与电阻R串联。则对于一单体电池,可根据式(1)将采样得到的该单体电池的电压值V L(即负载电压值)转换为开路电压值:
OCV=V L+I×R   (1)
其中,V L为采集时段内,采集模块采集到的负载电压值;I为采集时段内,采集模块采集到的放电电流或充电电流;R为单体电池的内阻值。
单体电池的内阻值可为预置的。或者单体电池的内阻值可为根据单体电池的电压和容量确定的。例如,根据单体电池的电压、容量和内阻值的对应关系,确定单体电池的内阻值。应理解,还可采用其它电池模型,如:Thevenin(戴维南)模型、PNGV(Partnership for a New Generation of Vehicles,新一代汽车合作伙伴计划)模型等,实现将采集到的单体电池的负载电压转换为开路电压。
获取到单体电池的开路电压后,根据该单体电池的OCV-SOC曲线,即可得到该单体电池对应的SOC值。
应理解,图5所示的OCV-SOC曲线还可转换为OCV和SOC的对应关系表,一OCV值对应一SOC值,或一OCV范围对应一SOC值。
在本公开的一个实施例中,OCV-SOC曲线或OCV-SOC对应关系表,可是经过测定获取到的。例如,对于某一单体电池,在其SOC值从0到100%之间变化的过程中,每间隔一定的SOC值,则测定一次电池的开路电压OCV,然后将每个点对应的OCV和SOC一一对应,形成该单体电池的SOC-OCV曲线或OCV-SOC对应关系表。
应理解,测定开路电压OCV时,可以先采集单体电池的负载电压,然后根据式(1)转换为对应的开路电压OCV。
由此,可根据参考电压值、参考电池的内阻值以及参考电池对应的OCV-SOC曲线,获取到参考电池的第一SOC值。根据需要均衡的单体电池的电压值、需要均衡的单体电池的内阻值以及需要均衡的单体电池对应的OCV-SOC曲线,获取到需要均衡的单体电池的第二SOC值。
接下来,按照式(2)确定电量差:
ΔQ=ΔSOC×C n  (2)
其中,ΔQ为电量差,ΔSOC为第一SOC值与第二SOC值之间的SOC差值,C n为需要均衡的单体电池的可用容量。
按照式(3)确定需要均衡的单体电池的目标均衡时长:
t=ΔQ/(I×τ)  (3)
其中,t为需要均衡的单体电池的预设均衡时长,I为需要均衡的单体电池的预设均衡电流,τ为均衡占空比。均衡占空比是指单位周期内的均衡时段与单位周期的比值,本公开实施例中,均衡占空比可以是预先根据需求设定好的值,比如设定为50%,等等。
当确定了需要均衡的单体电池的目标均衡时长后,按照该目标均衡时长,对需要均衡的单体电池进行均衡,以实现提高均衡效率,降低均衡成本。
参见图7,为本公开一实施例的均衡模块的示意图。控制需要均衡的单体电池在单位周期的均衡时段进行均衡,需要结合上述均衡判断进行。根据均衡判断的步骤中,确定需要均衡的单体电池的均衡方式为被动均衡(例如对需要均衡的单体电池进行放电),还是主动均衡(例如对需要均衡的单体电池进行充电),并导通相应的均衡模块。
参见图7,对于被动均衡,均衡模块包括:一电阻811,每个单体电池对应一个均衡模块,即每节单体电池的两端均并联一个电阻。
对于需要进行被动均衡的单体电池,在单位周期的均衡时段内,控制模块控制该需要均衡的单体电池与其对应的电阻之间的并联回路导通,以执行对该单体电池的被动均衡。参见图7,控制模块通过控制开关模块812导通,实现需要均衡的单体电池与其对应的电阻之间的并联回路的导通。
电阻811可为定值电阻或可变电阻。在一个实施例中,电阻811可为正温度系数的热敏电阻,其可随温度的变化而变化,从而可调节均衡时产生的均衡电流,进而自动调节电池均衡***的发热量,并最终对电池均衡***的温度进行有效控制。
参见图7,对于主动均衡,均衡模块包括与电池组中的每一个单体电池81均并联的充电支路94,充电支路94与单体电池95一一对应,且每个充电支路94均连接于发电机92,发电机92与发动机91通过齿轮机械连接。
对于需要进行主动均衡的单体电池,控制模块控制与该需要均衡的单体电池对应的充电支路94导通。发动机91转动时,则带动发电机92发电,从而将发电机92所发的电量输送给需要均衡的单体电池,使该需要均衡的单体电池的电量增加。
参见图7,当发电机92为交流发电机时,均衡模块还包括与发电机92串联的整流器93,每个充电支路94均串联所述整流器93。通过整流器93将发电机92发出的交流电转换为直流电后,可以使得发电机92能够用于对需要均衡的单体电池进行充电。
参见图7,控制模块可通过控制与需要均衡的单体电池对应的开关96导通,使得该需 要均衡的单体电池对应的充电支路导通,执行对需要均衡的单体电池的主动均衡。
在另一些实施例中,除了图7所示的,利用发电机对单体电池进行充电外,还可通过整车中的启动电池为需要均衡的单体电池进行充电。
在另一实施例中,除了图7所示的,并联电阻与需要均衡的单体电池外,还可将需要均衡的单体电池与整车的启动电池并联,将需要均衡的单体电池放出的电量充入启动电池,实现对需要均衡的单体电池的均衡的同时有效避免能量的浪费。
如上所述,在本公开的实施例中,多个单体电池可共用一个均衡模块,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接,分别进行均衡。
相应的,本公开实施例还提供一种车辆。
图8是本公开一实施例的车辆的示意图。如图8所示,该车辆8包括电池组304和上述的电池均衡***80,所述电池组304和所述电池均衡***80连接。
相应的,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述的电池均衡方法。
相应的,本公开实施例还提供一种电子设备,包括:前述计算机可读存储介质;以及一个或者多个处理器,用于执行所述计算机可读存储介质中的程序。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (20)

  1. 一种电池均衡方法,其特征在于,应用于电池均衡***,所述电池均衡***包括:均衡模块、采集模块以及控制模块,所述控制模块通过一个控制通道分别与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道,所述方法包括:
    所述控制模块通过对应于电池组中各个单体电池的采集模块获取各个单体电池的电压值;
    所述控制模块根据所述电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值;
    所述控制模块根据所述电池组中至少一个单体电池的电压值和所述参考电压值,确定需要均衡的单体电池。
  2. 根据权利要求1所述的方法,其特征在于,所述控制模块根据所述电池组中至少一个单体电池的电压值和所述参考电压值,确定需要均衡的单体电池,包括:
    所述控制模块确定所述至少一个单体电池的电压值与所述参考电压值之间的电压差值;
    所述控制模块将所述至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池。
  3. 根据权利要求1或2所述的方法,其特征在于,所述控制模块根据所述电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值,包括:
    所述控制模块将所述电池组中各单体电池的电压值中的最小值确定为所述参考电压值;
    所述控制模块确定所述至少一个单体电池的电压值与所述参考电压值之间的电压差值,包括:
    所述控制模块确定以下单体电池的电压值与所述参考电压值之间的电压差值:
    所述电池组中电压值最大的单体电池;或,
    所述电池组中除电压值为所述最小值的单体电池之外的其他单体电池。
  4. 根据权利要求2所述的方法,其特征在于,在所述控制模块将所述至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池之后,所 述方法还包括:
    所述控制模块控制所述至少一个单体电池中电压差值大于或等于所述均衡开启阈值的单体电池放电。
  5. 根据权利要求1或2所述的方法,其特征在于,所述控制模块根据所述电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值,包括:
    所述控制模块将所述电池组中各个单体电池的电压值中的最大值确定为所述参考电压值;
    所述控制模块确定所述至少一个单体电池的电压值与所述参考电压值之间的电压差值,包括:
    所述控制模块确定以下单体电池的电压值与所述参考电压值之间的电压差值:
    所述电池组中电压值最小的单体电池;或,
    所述电池组中除电压值为所述最大值的单体电池之外的其他单体电池。
  6. 根据权利要求2所述的方法,其特征在于,在所述控制模块将所述至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池之后,所述方法还包括:
    所述控制模块控制所述至少一个单体电池中电压差值大于或等于所述均衡开启阈值的单体电池充电。
  7. 根据权利要求1或2所述的方法,其特征在于,所述控制模块根据所述电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值,包括:
    所述控制模块将所述电池组中各个单体电池的电压值的平均值确定为所述参考电压值;
    所述控制模块确定所述至少一个单体电池的电压值与所述参考电压值之间的电压差值,包括:
    所述控制模块确定所述电池组中各个单体电池的电压值与所述参考电压值之间的电压差值。
  8. 根据权利要求2所述的方法,其特征在于,在所述控制模块将所述至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池之后,所述方法还包括:
    所述控制模块控制所述需要均衡的单体电池中电压值小于所述参考电压值的单体电池充电,并控制所述需要均衡的单体电池中电压值大于所述参考电压值的单体电池放电。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,在所述控制模块根据所述电池组中至少一个单体电池的电压值和所述参考电压值,确定需要均衡的单体电池之后,所述方法还包括:
    所述控制模块根据所述需要均衡的单体电池的电压值以及所述参考电压值,确定所述需要均衡的单体电池的目标均衡时长;
    所述控制模块按照所述需要均衡的单体电池的目标均衡时长,控制所述需要均衡的单体电池的均衡。
  10. 一种电池均衡***,其特征在于,包括:
    均衡模块、采集模块以及控制模块,所述控制模块通过一个控制通道与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述控制通道;
    所述控制模块用于通过对应于电池组中各个单体电池的采集模块获取各个单体电池的电压值,根据所述电池组中各个单体电池的电压值,确定均衡判断所需的参考电压值,以及根据所述电池组中至少一个单体电池的电压值和所述参考电压值,确定需要均衡的单体电池。
  11. 根据权利要求10所述的电池均衡***,其特征在于,所述控制模块还用于:
    确定所述至少一个单体电池的电压值与所述参考电压值之间的电压差值;
    将所述至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池。
  12. 根据权利要求10所述的电池均衡***,其特征在于,所述控制模块还用于:
    将所述电池组中各单体电池的电压值中的最小值确定为所述参考电压值;
    确定以下单体电池的电压值与所述参考电压值之间的电压差值:
    所述电池组中电压值最大的单体电池;或,
    所述电池组中除电压值为所述最小值的单体电池之外的其他单体电池。
  13. 根据权利要求11所述的电池均衡***,其特征在于,所述控制模块还用于:
    控制所述至少一个单体电池中电压差值大于或等于所述均衡开启阈值的单体电池放 电。
  14. 根据权利要求10或11所述的电池均衡***,其特征在于,所述控制模块还用于:
    将所述电池组中各个单体电池的电压值中的最大值确定为所述参考电压值;
    确定以下单体电池的电压值与所述参考电压值之间的电压差值:
    所述电池组中电压值最小的单体电池;或,
    所述电池组中除电压值为所述最大值的单体电池之外的其他单体电池。
  15. 根据权利要求11所述的电池均衡***,其特征在于,所述控制模块还用于:
    控制所述至少一个单体电池中电压差值大于或等于所述均衡开启阈值的单体电池充电。
  16. 根据权利要求10或11所述的电池均衡***,其特征在于,所述控制模块还用于:
    将所述电池组中各个单体电池的电压值的平均值确定为所述参考电压值;
    确定所述电池组中各个单体电池的电压值与所述参考电压值之间的电压差值。
  17. 根据权利要求10或11所述的电池均衡***,其特征在于,所述控制模块还用于:
    控制所述需要均衡的单体电池中电压值小于所述参考电压值的单体电池充电,并控制所述需要均衡的单体电池中电压值大于所述参考电压值的单体电池放电。
  18. 根据权利要求10-17任意一项所述的电池均衡***,其特征在于,所述控制模块还用于:
    根据所述需要均衡的单体电池的电压值以及所述参考电压值,确定所述需要均衡的单体电池的目标均衡时长;
    按照所述需要均衡的单体电池的目标均衡时长,控制所述需要均衡的单体电池的均衡。
  19. 根据权利要求10-18任意一项所述的电池均衡***,其特征在于,所述控制模块包括控制芯片,所述控制芯片通过一个引脚和所述一个控制通道与对应于同一单体电池的采集模块和均衡模块连接。
  20. 一种车辆,其特征在于,所述车辆包括:电池组以及权利要求10-19任一项所述的电池均衡***。
PCT/CN2018/103471 2017-08-31 2018-08-31 电池均衡方法、***、车辆、存储介质及电子设备 WO2019042401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710776094.5 2017-08-31
CN201710776094.5A CN109435766B (zh) 2017-08-31 2017-08-31 电池均衡方法、***、车辆、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2019042401A1 true WO2019042401A1 (zh) 2019-03-07

Family

ID=65524882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103471 WO2019042401A1 (zh) 2017-08-31 2018-08-31 电池均衡方法、***、车辆、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN109435766B (zh)
WO (1) WO2019042401A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200143019A (ko) * 2019-06-14 2020-12-23 현대자동차주식회사 차량용 배터리 진단 장치 및 그의 배터리 진단 방법과 그를 포함하는 차량
CN110703107B (zh) * 2019-11-05 2022-03-08 中国第一汽车股份有限公司 动力电池的一致性判断方法、装置、设备及存储介质
CN110696625A (zh) * 2019-11-18 2020-01-17 珠海格力电器股份有限公司 电池管理***的控制方法及主动均衡拓扑装置
CN113346582B (zh) * 2021-05-31 2023-04-07 上海航天电源技术有限责任公司 一种电池组电压均衡方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166257A (zh) * 2011-12-14 2013-06-19 比亚迪股份有限公司 电池组电压均衡***及均衡方法
CN104079016A (zh) * 2013-03-28 2014-10-01 比亚迪股份有限公司 电池组均衡***及其均衡控制方法
US20150295407A1 (en) * 2014-04-10 2015-10-15 Nec Laboratories America, Inc. Decentralized Energy Management Platform
CN106042961A (zh) * 2016-06-15 2016-10-26 重庆长安汽车股份有限公司 一种动力电池被动均衡控制方法及***
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡***及车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917038B (zh) * 2010-08-05 2014-01-15 惠州市亿能电子有限公司 动力电池组充电均衡控制方法
CN106230067A (zh) * 2016-08-31 2016-12-14 宋利军 一种电池组均衡充电电路及均衡充电方法
CN106549454A (zh) * 2016-12-15 2017-03-29 深圳晶福源科技股份有限公司 一种电压采样与电量均衡共线的电池管理***和管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166257A (zh) * 2011-12-14 2013-06-19 比亚迪股份有限公司 电池组电压均衡***及均衡方法
CN104079016A (zh) * 2013-03-28 2014-10-01 比亚迪股份有限公司 电池组均衡***及其均衡控制方法
US20150295407A1 (en) * 2014-04-10 2015-10-15 Nec Laboratories America, Inc. Decentralized Energy Management Platform
CN106042961A (zh) * 2016-06-15 2016-10-26 重庆长安汽车股份有限公司 一种动力电池被动均衡控制方法及***
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡***及车辆

Also Published As

Publication number Publication date
CN109435766B (zh) 2021-07-20
CN109435766A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2019042365A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015185B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015178B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042355A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435778B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042364A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015187B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428355B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042410A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042401A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042399A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435775B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428129B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428356B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015179B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015174B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015184B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015188B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435770B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435774B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435758B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015168B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015129B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042356A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428358B (zh) 电池均衡方法、***、车辆、存储介质及电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852352

Country of ref document: EP

Kind code of ref document: A1