WO2019009063A1 - Photoshaping composition - Google Patents

Photoshaping composition Download PDF

Info

Publication number
WO2019009063A1
WO2019009063A1 PCT/JP2018/023293 JP2018023293W WO2019009063A1 WO 2019009063 A1 WO2019009063 A1 WO 2019009063A1 JP 2018023293 W JP2018023293 W JP 2018023293W WO 2019009063 A1 WO2019009063 A1 WO 2019009063A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mpa
viscosity
photocurable resin
photoshaping
Prior art date
Application number
PCT/JP2018/023293
Other languages
French (fr)
Japanese (ja)
Inventor
紘平 上本
毅一郎 石田
一輝 小橋
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018091986A external-priority patent/JP2019014873A/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2019009063A1 publication Critical patent/WO2019009063A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an optical shaping composition capable of containing an inorganic filler in a photocurable resin to improve the storage elastic modulus of a shaped article in a high temperature environment and to suppress the viscosity at the time of shaping low.
  • a liquid photocurable resin is filled in a built-in tray in which a modeling table is disposed so as to be able to move up and down, and the photocurable resin supplied along the modeling table is cured by irradiating light.
  • the molding table is moved in the Z direction (vertical direction) by the lamination pitch to fluidly supply the liquid photocurable resin of the next layer to the surface of the hardened layer, and the same operation is repeated thereafter to carry out lamination molding.
  • the photocurable resin flows on the upper surface of the cured layer by lowering (precipitating) the modeling table from the liquid surface of the photocurable resin by the lamination pitch.
  • the photocurable resin 4 is fluidly supplied to the lower surface of the hardened layer 3 (the gap between the hardened layer 3 and the built tray 2) to form a liquid thin layer, and for this thin layer A system etc. which form a hardening layer one by one by irradiating light (laser) are considered.
  • the liquid photocurable resin used for the above-mentioned photofabrication adds a filler in order to improve mechanical physical properties, such as storage elastic modulus under high-temperature environment of a modeling thing
  • a filler when a filler is added, in general, The viscosity of the molding material itself also increases with the effect of improving the mechanical properties. Therefore, in any of the above-described modeling methods, when the modeling table is moved in the Z direction (vertical direction) by the stacking pitch, the photocurable resin can not be smoothly supplied to the surface of the cured layer and flowed smoothly (new liquid (Layers can not be formed) and can not be used as photofabrication materials.
  • Patent Document 2 or 3 a composition for stereolithography shown in Patent Document 2 or 3 has been proposed.
  • This is a composition for photofabrication, which is obtained by compounding a liquid photocurable resin treated with a silane coupling agent such as aminosilane, epoxysilane, acrylsilane or the like to have high mechanical properties at high temperature.
  • the viscosity of these compounds is in the range of 5000 cps to 10000 cps (Patent Document 2), or in the range of 1000 cps to 10000 cps (Patent Document 3).
  • JP, 2008-248026 A Japanese Patent Laid-Open No. 7-26060 Japanese Patent Application Laid-Open No. 7-26062
  • the viscosity of the composition for stereolithography at the time of modeling is preferably as low as possible from the viewpoint of enhancing the modeling speed and modeling accuracy.
  • the viscosity of the composition for stereolithography is 1800 mPa, in order to smoothly supply the composition for stereolithography to the surface of the hardened layer. It is desirable that the viscosity be less than s (1800 cps), more preferably less than 1000 mPa ⁇ s. For this reason, in the conventional composition for stereolithography, the sufficiently low viscosity was not necessarily obtained.
  • the present invention has been made in view of such circumstances, and provides an optical shaping composition capable of enhancing mechanical physical properties in a high temperature environment in a shaped article and obtaining sufficiently low viscosity at the time of shaping. To be the main issue.
  • the present inventor adds a filler to a photocurable resin in order to satisfy the trade-off requirements of improvement of mechanical physical properties under high temperature environment of a shaped object and reduction of viscosity of a composition for stereolithography during modeling.
  • a filler added to the photocurable resin
  • the mechanical properties of the shaped article in a high temperature environment are improved, while the composition at the time of shaping
  • the viscosity of the composition of the present invention significantly decreases beyond expectation, and the present invention has been accomplished.
  • the composition for stereolithography according to the present invention when using the composition for stereolithography according to the present invention, it is possible to make the viscosity sufficiently low at the time of modeling while enhancing the mechanical properties of the shaped article in a high temperature environment
  • the modeling table is moved in the Z direction (vertical direction) by the stacking pitch, it becomes possible to rapidly form a new liquid layer.
  • FIG. 1 is a conceptual view showing an example of an existing stereolithography apparatus.
  • composition for photofabrication according to the present example is one in which a liquid photocurable resin and a layered silicate compound are blended.
  • Photo-curable resin As a liquid photocurable resin to be a base resin, an epoxy photocurable resin or an acrylic photocurable resin can be used. Among them, it is preferable to use an acrylic photocurable resin.
  • epoxy-based photocurable resins include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S Diglycidyl ether, epoxy novolac resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexyl carboxylate , 2- (3,4-Epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexyl) Sylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl)
  • acrylic photocurable resin for example, isobornyl acrylate, isobornyl methacrylate, zinc chloropentanyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, propylene glycol acrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, Triethylene glycol diacrylate, triethylene glycol dimethacrylate, polyethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol Dimethacrylate, tripropylene glycol diacrylate, tripropylene glycol dimethacrylate Polypropylene glycol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacryl
  • the actual products of the photocurable resin include, for example, SCR 712X, SCR 735, SCR 737, SCR 780, SCR 785, SCR 955, KC 1281 of DMEC, DL360 which is a DWS resin of Seaforce, TSR-883W of Seamet, TSR -884B, TSR-832, and Somos NanoTool from DMS.
  • the content of the photocurable resin is preferably 75% by mass to 95% by mass, and more preferably 78% by mass to 90% by mass, with respect to the total mass of the composition for photofabrication.
  • the layered silicate compound is, among silicate compounds, particles in which plate-like crystals form a layer, or particles in which a layer is peeled off to form a plate-like, and examples thereof include mica, talc, silica, montmorillonite, Bentonite, organic bentonite, hectorite, berdylite, vermiculite, saponite, nontronite, volkon scoreite, magatite, kenyaite, sericite, kaolinite, halloysite, dickite, nacrite, allophane, imogolite, pyrophyllite, smectite, chlorite , Serpentine, sepiolite, palygorskite and the like.
  • those selected from the group consisting of mica, talc, silica, and a mixture obtained by appropriately combining these are preferable.
  • Spherical particles such as spherical silica and spherical silicone resin and having no layer-layer boundary in the particle are excluded. Also, needles like wollastonite are excluded.
  • the particle diameter of the layered silicate compound is preferably 1 ⁇ m to 200 ⁇ m, more preferably 4 ⁇ m to 50 ⁇ m, and still more preferably 5 ⁇ m to 30 ⁇ m.
  • the particle diameter of the layered silicate compound is 1 ⁇ m or more, it is advantageous in that the viscosity of the composition for photofabrication is prevented from becoming too high.
  • the particle diameter of the layered silicate compound is 200 ⁇ m or less, it is advantageous in reducing the thickness per layer of the shaped article.
  • the layered silicate compound preferably has an aspect ratio of 5 to 100, and more preferably 20 to 90. It is advantageous at the point which suppresses that the viscosity of the composition for optical shaping
  • the composition for stereolithography may contain a photopolymerization initiator.
  • the photopolymerization initiator is a compound that absorbs light to generate a polymerization initiation species (eg, radical, cation).
  • a polymerization initiation species eg, radical, cation
  • Known compounds can be used as the photopolymerization initiator.
  • Examples of photopolymerization initiators include carbonyl compounds such as aromatic ketones, acyl phosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds, oxime ester compounds, azo compounds, alkylamine compounds, onium salts And sulfonium salts, phosphonium salts, and pyridinium salts.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the photopolymerization initiator may be added separately from the photocurable resin. For example, if it is commercially available as a photocurable resin containing a photopolymerization initiator, the photocurable resin and the photopolymerization resin may be added. The initiator may be added simultaneously.
  • Method for producing a composition for stereolithography In order to produce the composition for photofabrication, it is preferable to mechanically mix the layered silicon salt compound in the form of powder with the liquid photocurable resin. For example, even when using a mixing device such as a tumbler, ribbon mixer, or Henschel mixer, a liquid photocurable resin and a layered silicon salt compound in powder form are placed in a container and manually stirred, vibrated, etc. It may be mixed uniformly.
  • a mixing device such as a tumbler, ribbon mixer, or Henschel mixer
  • Measurement model Rotational viscometer TV-22 type viscometer cone plate type (made by Toki Sangyo Co., Ltd.) Measurement method: The sample was filled between the cone rotor and the plate, and the viscosity of the sample was measured by measuring the resistance value at a predetermined rotational speed. Measurement condition: Cone rotation speed 2.5rpm Numerical reading conditions 90 seconds after the start of rotation, the numerical value must be stable Temperature condition 20.0 ° C
  • Measurement model Solid viscoelasticity measurement device DMA Q800 (made by TA Instrument) Measurement method: In the three-point bending mode, a sample is periodically (Sin curve, 1 Hz) changed in strain, and the storage elastic modulus is calculated by measuring the displacement amount and load at that time. Measurement conditions: sample shape 14.0 mm ⁇ 3.0 mm ⁇ 1.0 mmt Temperature condition 150 ° C Atmosphere Atmosphere
  • the viscosity and storage elastic modulus obtained by the said measurement method it evaluated by the following references
  • the viscosity be as low as possible in an environment at the time of forming. For this reason, when the forming table is lowered (settled) by several tens of micrometers (sedimentation), or raised, at the laminating pitch, the composition for stereolithography is smoothly supplied to the surface (upper surface or lower surface) of the hardened layer and uniform thickness is obtained.
  • the viscosity at 20.degree. C. under the environment at the time of modeling was less than 1800 mPa.s.
  • the viscosity was evaluated as A for less than 500 mPa ⁇ s, B for 500 mPa ⁇ s or more and less than 1000 mPa ⁇ s, C for 1000 mPa ⁇ s or more and less than 1800, C for C, 1800 D or more for D.
  • the matching condition is that the elastic modulus is 2400 MPa or more.
  • storage elastic modulus evaluated A 3200 MPa or more as B, 2800 MPa or more and less than 3200 MPa as B, 2400 MPa or more and less than 2800 MPa as C, and less than 2400 MPa as D.
  • the evaluation result one with superior A and inferior with D, and one with inferior viscosity and storage elastic modulus is adopted as a result, and the viscosity at 20 ° C. of the composition for photofabrication at modeling is less than 1800 mPa ⁇ s
  • a composition for photofabrication using the layered silicate compound as a filler (Examples 1 to 5) using the above evaluation as a filler and a composition for photoforming using a filler other than the layered silicate compound as a filler (Comparative Example 1)
  • Table 1 shows the results obtained for the items (3) to (3).
  • acrylic photocurable resin in following Table 1 is a resin composition containing 60 mass% of acrylic monomers, 5 mass% of photoinitiators, and 35 mass% of other components.
  • the types of fillers in Table 1 are as follows.
  • FH 105 Talc average particle size 5 ⁇ m; Fuji Talc Kogyo Co., Ltd.
  • SUNLOVELY silica fine particles, Average particle size: 4.1 ⁇ m; AGCS ITEC Co., Ltd.
  • Wollastonite KGP-H40 Wollastonite, average particle size: 3.8 ⁇ m; Maruto Co., Ltd .: AEROSIL 200: silica, average particle size: 0.007 ⁇ m; Nippon Aerosil Co., Ltd. Tospe RL145: silicone resin, the average particle diameter of 4.5 ⁇ m; Momentive Performance Materials Japan LLC, Ltd.
  • the layered silicate compounds mica, talc and silica when used as a filler of a photocurable resin, should increase the mechanical properties (storage elastic modulus) at high temperatures to 2400 MPa or more It could be confirmed that the viscosity at molding could be lowered to less than 1800 mPa ⁇ s.
  • the viscosity can be less than 1000 mPa ⁇ s, and in the case of mica, the viscosity tends to decrease as the particle diameter increases.

Abstract

[Problem] To provide a photoshaping composition which can give a shaped object having heightened mechanical properties in high-temperature environments and which can have a sufficiently low viscosity during shaping. [Solution] A photoshaping composition which comprises a photocurable resin and a phyllosilicate compound. It is preferred that the phyllosilicate compound is selected from the group consisting of mica, talc, silica, and mixtures of two or more of these. The photoshaping composition can give a shaped object which, in a high-temperature environment, has a storage modulus of 2,400 MPa or greater. During shaping, the photoshaping composition can have a viscosity less than 1,800 mPa∙s.

Description

光造形用組成物Composition for stereolithography
 本発明は、光硬化性樹脂に無機フィラーを含有させて、造形物の高温環境下での貯蔵弾性率を向上させると共に、造形時の粘度を低く抑えることが可能な光造形用組成物に関する。 The present invention relates to an optical shaping composition capable of containing an inorganic filler in a photocurable resin to improve the storage elastic modulus of a shaped article in a high temperature environment and to suppress the viscosity at the time of shaping low.
 光造形においては、造形テーブルを昇降自在に配置したビルトトレイ内に液状の光硬化性樹脂を充填し、この造形テーブルに沿って供給された光硬化性樹脂に光を照射することにより硬化させ、造形テーブルをZ方向(鉛直方向)に積層ピッチ分移動させて次の層の液状光硬化樹脂を硬化層の表面に流動供給し、以後同様の操作を繰り返して積層造形していく。 In photofabrication, a liquid photocurable resin is filled in a built-in tray in which a modeling table is disposed so as to be able to move up and down, and the photocurable resin supplied along the modeling table is cured by irradiating light. The molding table is moved in the Z direction (vertical direction) by the lamination pitch to fluidly supply the liquid photocurable resin of the next layer to the surface of the hardened layer, and the same operation is repeated thereafter to carry out lamination molding.
 このような光造形としては、特許文献1に示されるように、造形テーブルを光硬化性樹脂の液面から積層ピッチ分降下(沈降)させることにより、硬化層の上面に光硬化性樹脂を流動供給して液状薄層を形成し、この薄層に対して光を照射させることで順次硬化層を形成する方式や、図1に示されるように、造形テーブル1をビルトトレイ2の底面から積層ピッチ分上昇させることにより、硬化層3の下面(硬化層3とビルトトレイ2との間の間隙)に光硬化性樹脂4を流動供給して液状薄層を形成し、この薄層に対して光(レーザ)を照射させることで順次硬化層を形成する方式等が考えられている。 As such photofabrication, as shown in Patent Document 1, the photocurable resin flows on the upper surface of the cured layer by lowering (precipitating) the modeling table from the liquid surface of the photocurable resin by the lamination pitch. A method of supplying a liquid to form a thin liquid layer, and irradiating the thin layer with light sequentially to form a hardened layer, or, as shown in FIG. 1, laminating the molding table 1 from the bottom of the built tray 2 By raising the pitch, the photocurable resin 4 is fluidly supplied to the lower surface of the hardened layer 3 (the gap between the hardened layer 3 and the built tray 2) to form a liquid thin layer, and for this thin layer A system etc. which form a hardening layer one by one by irradiating light (laser) are considered.
 上述した光造形に用いられる液状の光硬化性樹脂は、造形物の高温環境下での貯蔵弾性率等の機械的物性を向上させるためにフィラーを添加させるが、フィラーを添加すると、通常においては、機械的物性の向上効果に伴い造形材料自体の粘度も上昇してしまう。このため、上述したいずれの造形方式においても、造形テーブルをZ方向(鉛直方向)に積層ピッチ分移動させた際に光硬化性樹脂を硬化層の表面にスムーズに流動供給できなくなり(新たな液状層を形成できなくなり)、光造形材料としては使用できなくなる。 Although the liquid photocurable resin used for the above-mentioned photofabrication adds a filler in order to improve mechanical physical properties, such as storage elastic modulus under high-temperature environment of a modeling thing, when a filler is added, in general, The viscosity of the molding material itself also increases with the effect of improving the mechanical properties. Therefore, in any of the above-described modeling methods, when the modeling table is moved in the Z direction (vertical direction) by the stacking pitch, the photocurable resin can not be smoothly supplied to the surface of the cured layer and flowed smoothly (new liquid (Layers can not be formed) and can not be used as photofabrication materials.
 そこで、従来においては、高温環境下での機械的物性を高くしつつ光造形用組成物の粘度を比較的低くするために、特許文献2又は3に示される光造形用組成物が提案されている。
 これは、液状光硬化性樹脂に、アミノシラン、エポキシシラン、アクリルシラン等のシランカップリング剤で処理されたものを配合して、高温時において高い機械的特性を持たせつつ、光造形用組成物の粘度を5000cps~10000cpsの範囲としたり(特許文献2)、1000cps~10000cpsの範囲としたりするものである(特許文献3)。
Therefore, conventionally, in order to relatively lower the viscosity of the composition for stereolithography while making the mechanical physical properties in a high temperature environment high, a composition for stereolithography shown in Patent Document 2 or 3 has been proposed. There is.
This is a composition for photofabrication, which is obtained by compounding a liquid photocurable resin treated with a silane coupling agent such as aminosilane, epoxysilane, acrylsilane or the like to have high mechanical properties at high temperature. The viscosity of these compounds is in the range of 5000 cps to 10000 cps (Patent Document 2), or in the range of 1000 cps to 10000 cps (Patent Document 3).
特開2008-248026号公報JP, 2008-248026, A 特開平7-26060号公報Japanese Patent Laid-Open No. 7-26060 特開平7-26062号公報Japanese Patent Application Laid-Open No. 7-26062
 しかしながら、造形時における光造形用組成物の粘度は、造形速度や造形精度を高める観点からは、できるだけ低くすることが望ましい。例えば、造形テーブルを数10μmの積層ピッチでZ方向に移動させた場合に、硬化層の表面に光造形用組成物をスムーズに流動供給させるためには、光造形用組成物の粘度は、1800mPa・s(1800cps)未満、より好ましくは1000mPa・s未満とすることが望ましい。このため、従来の光造形用組成物では、必ずしも十分に低い粘度が得られるものではなかった。 However, the viscosity of the composition for stereolithography at the time of modeling is preferably as low as possible from the viewpoint of enhancing the modeling speed and modeling accuracy. For example, when the shaping table is moved in the Z direction with a lamination pitch of several tens of μm, the viscosity of the composition for stereolithography is 1800 mPa, in order to smoothly supply the composition for stereolithography to the surface of the hardened layer. It is desirable that the viscosity be less than s (1800 cps), more preferably less than 1000 mPa · s. For this reason, in the conventional composition for stereolithography, the sufficiently low viscosity was not necessarily obtained.
 本発明は、係る事情に鑑みてなされたものであり、造形物において高温環境下での機械的物性を高くでき、且つ、造形時において、十分に低い粘度が得られる光造形用組成物を提供することを主たる課題としている。 The present invention has been made in view of such circumstances, and provides an optical shaping composition capable of enhancing mechanical physical properties in a high temperature environment in a shaped article and obtaining sufficiently low viscosity at the time of shaping. To be the main issue.
 本発明者は、造形物の高温環境下での機械的物性の向上と、造形時における光造形用組成物の低粘度化という二律背反の要請を満たすために、光硬化性樹脂にフィラーを添加させた組成物の諸特性について鋭意研究を重ねた結果、光硬化性樹脂に、所定の無機フィラーを配合したところ、造形物の高温環境下での機械的特性が向上する一方、造形時の組成物の粘度が予想を超えて著しく低下することを見出し、本発明を完成するに至った。 The present inventor adds a filler to a photocurable resin in order to satisfy the trade-off requirements of improvement of mechanical physical properties under high temperature environment of a shaped object and reduction of viscosity of a composition for stereolithography during modeling. As a result of intensive studies on various properties of the composition, when a predetermined inorganic filler is added to the photocurable resin, the mechanical properties of the shaped article in a high temperature environment are improved, while the composition at the time of shaping It has been found that the viscosity of the composition of the present invention significantly decreases beyond expectation, and the present invention has been accomplished.
 すなわち、本発明にかかる光造形用組成物は、光硬化性樹脂と、層状ケイ酸塩化合物と、を含むことを特徴としている。
 ここで、層状ケイ酸塩化合物は、マイカ、タルク、シリカ、及び、これらの混合物からなる群から選択されるものであることが望ましい。
 このような層状ケイ酸塩化合物を用いれば、20℃での粘度を1800mPa・s未満とし、且つ、150℃での貯蔵弾性率を2400MPa以上にすることが可能となる。
That is, the composition for photofabrication according to the present invention is characterized by containing a photocurable resin and a layered silicate compound.
Here, the layered silicate compound is preferably selected from the group consisting of mica, talc, silica, and a mixture thereof.
If such a layered silicate compound is used, the viscosity at 20 ° C. can be less than 1800 mPa · s, and the storage elastic modulus at 150 ° C. can be 2400 MPa or more.
 以上述べたように、本発明に係る光造形用組成物を用いれば、造形物の高温環境下での機械的物性を高くしつつ、造形時においては、十分に低い粘度にすることが可能となり、造形テーブルをZ方向(鉛直方向)に積層ピッチ分移動させた際に、新たな液状層を迅速に形成することが可能となる。 As described above, when using the composition for stereolithography according to the present invention, it is possible to make the viscosity sufficiently low at the time of modeling while enhancing the mechanical properties of the shaped article in a high temperature environment When the modeling table is moved in the Z direction (vertical direction) by the stacking pitch, it becomes possible to rapidly form a new liquid layer.
図1は、既存の光造形用装置の一例を示す概念図である。FIG. 1 is a conceptual view showing an example of an existing stereolithography apparatus.
 本実施例に係る光造形用組成物は、液状の光硬化性樹脂と、層状ケイ酸塩化合物とを配合したものである。 The composition for photofabrication according to the present example is one in which a liquid photocurable resin and a layered silicate compound are blended.
(光硬化性樹脂)
 ベースレジンとなる液状の光硬化性樹脂としては、エポキシ系の光硬化性樹脂又はアクリル系の光硬化性樹脂を用いることができる。中でもアクリル系の光硬化性樹脂を用いることが好ましい。
(Photo-curable resin)
As a liquid photocurable resin to be a base resin, an epoxy photocurable resin or an acrylic photocurable resin can be used. Among them, it is preferable to use an acrylic photocurable resin.
 エポキシ系の光硬化性樹脂としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、エポキシノボラック樹脂、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、ε-カプロラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、トリメチルカプロラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、β-メチル-δ-バレロラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシシクロへキサヒドロフタル酸ジオクチル、エポキシシクロヘキサヒドロフタル酸ジ-2-エチルヘキシル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリン等の脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノール又はアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;高級脂肪酸のグリシジルエステル類等のエポキシ系モノマーが挙げられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。また、これらを重合したオリゴマーやポリマーを使用してもよい。 Examples of epoxy-based photocurable resins include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S Diglycidyl ether, epoxy novolac resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexyl carboxylate , 2- (3,4-Epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexyl) Sylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, ε-caprolactone Modified 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, trimethylcaprolactone modified 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate, β-methyl-δ-valerolactone Modified 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane), di (3,4-epoxycyclohexylmethyl) ether, ethylenebi (3,4-epoxycyclohexanecarboxylate), dioctyl epoxycyclohexahydrophthalate, di-2-ethylhexyl epoxycyclohexahydrophthalate, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl Ether, neopentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, glycerin triglycidyl ether, polypropylene glycol diglycidyl ethers; aliphatic polyalcohols such as ethylene glycol, propylene glycol, glycerin etc. 1 Polyglycidyl ethers of polyether polyols obtained by adding species or two or more alkylene oxides; aliphatic long chains Diglycidyl esters of dibasic acids; monoglycidyl ethers of aliphatic higher alcohols; monoglycidyl ethers of polyether alcohols obtained by addition of phenol, cresol, butyl phenol or alkylene oxide; glycidyl esters of higher fatty acids, etc. Epoxy based monomers are mentioned. These may be used alone or in combination of two or more. Moreover, you may use the oligomer and polymer which superposed | polymerized these.
 アクリル系光硬化性樹脂としては、例えば、イソボルニルアクリレート、イソボルニルメタクリレート、ジンクロペンタニルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、プロピレングリコールアクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、トリプロピレングリコールジアクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ジエチレングリコールジアクリレート、ビス(オキシメチル)トリシクロ[5.2.1.02,6]デカンジアクリレート、ビス(オキシメチル)トリシクロ[5.2.1.02,6]デカンジメタクリレート、ビス(オキシメチル)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカンジメタクリレート、ビス(オキシメチル)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカンジメタクリレート、2,2-ビス(4-(アクリルオキシジエトキシ)フェニル)プロパン、2,2-ビス(4-(メタクリルオキシジエトキシ)フェニル)プロパン、トリシクロ[5.2.1.02,6]デカン-3,8-ジイルジメチルジアクリレート、トリシクロ[5.2.1.02,6]デカン-3,8-ジイルジメチルジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタアクリレート、トリメチロールプロパンエトキシトリアクリレート、トリメチロールプロパンエトキシトリメタクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラアクリレート、テトラメチロールメタンテトラメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、トリス(2-ヒドロキシエチル)イソシアネートトリアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリメタクリレート等のアクリル系モノマーが挙げられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。また、これらを重合したオリゴマーやポリマーを使用してもよい。 As an acrylic photocurable resin, for example, isobornyl acrylate, isobornyl methacrylate, zinc chloropentanyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, propylene glycol acrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, Triethylene glycol diacrylate, triethylene glycol dimethacrylate, polyethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol Dimethacrylate, tripropylene glycol diacrylate, tripropylene glycol dimethacrylate Polypropylene glycol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, diethylene glycol diacrylate, bis (oxymethyl) tricyclo [5.2. 1.02,6] decanediacrylate, bis (oxymethyl) tricyclo [5.2.1.02,6] decanedimethacrylate, bis (oxymethyl) pentacyclo [6.5.1.13, 6.02, 7.09, 13] Pentadecanedimethacrylate, bis (oxymethyl) pentacyclo [6.5.1.13, 6.02, 7.09, 13] pentadecanedimethacrylate, 2,2-bis (4- (acryloxy) Diethoxy) phenyl) group Bread, 2,2-bis (4- (methacryloxydiethoxy) phenyl) propane, tricyclo [5.2.1.02,6] decane-3,8-diyldimethyldiacrylate, tricyclo [5.2.1 .02,6] decane-3,8-diyldimethyl dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, trimethylolpropane ethoxy triacrylate, trimethylolpropane ethoxy trimethacrylate, tetramethylol methane triacrylate, tetramer Methylol methane trimethacrylate, tetramethylol methane tetraacrylate, tetramethylol methane tetramethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, Pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, tris (2-hydroxyethyl) isocyanate triacrylate, tris (2-hydroxy) And acrylic monomers such as ethyl) isocyanurate trimethacrylate. These may be used alone or in combination of two or more. Moreover, you may use the oligomer and polymer which superposed | polymerized these.
 光硬化性樹脂の実際の製品としては、例えば、ディーメック社のSCR712X、SCR735、SCR737、SCR780、SCR785、SCR955、KC1281、シーフォース社のDWS用樹脂であるDL360、シーメット社のTSR-883W、TSR-884B、TSR-832、DMS社のSomos NanoToolなどが挙げられる。 The actual products of the photocurable resin include, for example, SCR 712X, SCR 735, SCR 737, SCR 780, SCR 785, SCR 955, KC 1281 of DMEC, DL360 which is a DWS resin of Seaforce, TSR-883W of Seamet, TSR -884B, TSR-832, and Somos NanoTool from DMS.
 光硬化性樹脂の含有量は、光造形用組成物の全質量に対して、75質量%~95質量%が好ましく、78質量%~90質量%がより好ましい。 The content of the photocurable resin is preferably 75% by mass to 95% by mass, and more preferably 78% by mass to 90% by mass, with respect to the total mass of the composition for photofabrication.
(層状ケイ酸塩化合物)
 層状ケイ酸塩化合物は、ケイ酸塩化合物のうち、板状の結晶が層状になった粒子、又は、層が剥がれて板状になった粒子であり、例えば、マイカ、タルク、シリカ、モンモリロナイト、ベントナイト、有機ベントナイト、ヘクトライト、バイデライト、バーミキュライト、サポナイト、ノントロナイト、ボルコンスコアイト、マガタイト、ケニアイト、セリサイト、カオリナイト、ハロイサイト、ディッカイト、ナクライト、アロフェン、イモゴライト、パイロフィライト、スメクタイト、クロライト、サーペンティン、セピオライトおよびパリゴルスカイト等があげられる。このうち、マイカ、タルク、シリカ、及び、これらを適宜組み合わせた混合物からなる群から選択されたものが好ましい。
 球状のシリカや球状のシリコーン樹脂など球状の粒子であって粒子中に層と層の境界が無いものは除外される。また、ウォラストナイトのような針状のものも除外される。
(Layered silicate compound)
The layered silicate compound is, among silicate compounds, particles in which plate-like crystals form a layer, or particles in which a layer is peeled off to form a plate-like, and examples thereof include mica, talc, silica, montmorillonite, Bentonite, organic bentonite, hectorite, berdylite, vermiculite, saponite, nontronite, volkon scoreite, magatite, kenyaite, sericite, kaolinite, halloysite, dickite, nacrite, allophane, imogolite, pyrophyllite, smectite, chlorite , Serpentine, sepiolite, palygorskite and the like. Among these, those selected from the group consisting of mica, talc, silica, and a mixture obtained by appropriately combining these are preferable.
Spherical particles such as spherical silica and spherical silicone resin and having no layer-layer boundary in the particle are excluded. Also, needles like wollastonite are excluded.
 層状ケイ酸塩化合物は、粒子径が1μm~200μmであることが好ましく、4μm~50μmであることがより好ましく、5μm~30μmであることがさらに好ましい。
 層状ケイ酸塩化合物の粒子径が1μm以上であると、光造形用組成物の粘度が高くなりすぎることを抑制する点で有利である。一方、層状ケイ酸塩化合物の粒子径が200μm以下であると、造形物の1層あたりの厚みを薄くする点で有利である。
The particle diameter of the layered silicate compound is preferably 1 μm to 200 μm, more preferably 4 μm to 50 μm, and still more preferably 5 μm to 30 μm.
When the particle diameter of the layered silicate compound is 1 μm or more, it is advantageous in that the viscosity of the composition for photofabrication is prevented from becoming too high. On the other hand, when the particle diameter of the layered silicate compound is 200 μm or less, it is advantageous in reducing the thickness per layer of the shaped article.
 層状ケイ酸塩化合物は、粒子のアスペクト比が5~100であることが好ましく、20~90であることがより好ましい。
 アスペクト比が上記範囲内であると、造形物の高温環境下における機械的物性を高くしつつ、光造形用組成物の粘度が高くなりすぎることを抑制する点で有利である。
The layered silicate compound preferably has an aspect ratio of 5 to 100, and more preferably 20 to 90.
It is advantageous at the point which suppresses that the viscosity of the composition for optical shaping | molding becomes high too much, making the mechanical physical property in the high temperature environment of a molded article high as an aspect ratio is in the said range.
 層状ケイ酸塩化合物の含有量は、光造形用組成物の全質量に対して、5質量%~25質量%が好ましく、10質量%~22質量%がより好ましい。
 層状ケイ酸塩化合物の含有量が5質量%以上であると、造形物の高温環境下における機械的物性を高くする点で有利である。一方、層状ケイ酸塩化合物の含有量が25質量%以下であると、光造形用組成物の粘度が高くなりすぎることを抑制する点で有利である。
The content of the layered silicate compound is preferably 5% by mass to 25% by mass, and more preferably 10% by mass to 22% by mass, with respect to the total mass of the composition for photofabrication.
When the content of the layered silicate compound is 5% by mass or more, it is advantageous from the viewpoint of enhancing the mechanical properties of the shaped article in a high temperature environment. On the other hand, it is advantageous at the point which suppresses that the viscosity of the composition for optical shaping | molding becomes high that content of a layered silicate compound is 25 mass% or less.
(光重合開始剤)
 光造形用組成物は、光重合開始剤を含んでいてもよい。
 光重合開始剤は、光を吸収して重合開始種(例えば、ラジカル、カチオン)を生成する化合物である。
 光重合開始剤としては、公知の化合物を使用することができる。光重合開始剤の例としては、芳香族ケトン類等のカルボニル化合物、アシルホスフィンオキシド化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物、オキシムエステル化合物、アゾ化合物、アルキルアミン化合物、オニウム塩、スルホニウム塩、ホスホニウム塩、およびピリジニウム塩等が挙げられる。
 これらの光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 なお、光重合開始剤は、光硬化性樹脂と別々に添加してもよく、例えば、光重合開始剤を含む光硬化性樹脂として市販されているものであれば、光硬化性樹脂と光重合開始剤を同時に添加してもよい。
(Photopolymerization initiator)
The composition for stereolithography may contain a photopolymerization initiator.
The photopolymerization initiator is a compound that absorbs light to generate a polymerization initiation species (eg, radical, cation).
Known compounds can be used as the photopolymerization initiator. Examples of photopolymerization initiators include carbonyl compounds such as aromatic ketones, acyl phosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds, oxime ester compounds, azo compounds, alkylamine compounds, onium salts And sulfonium salts, phosphonium salts, and pyridinium salts.
These photopolymerization initiators may be used alone or in combination of two or more.
The photopolymerization initiator may be added separately from the photocurable resin. For example, if it is commercially available as a photocurable resin containing a photopolymerization initiator, the photocurable resin and the photopolymerization resin may be added. The initiator may be added simultaneously.
(光造形用組成物の製造方法)
 光造形用組成物を製造するためには、液状の光硬化性樹脂に層状ケイ素塩化合物を粉粒状の形態で機械的に混合させるとよい。例えば、タンブラー、リボンミキサー、ヘンシェルミキサー等の混合装置を用いて行っても、容器内に液状の光硬化性樹脂と粉状体の層状ケイ素塩化合物を入れて手動で攪拌、振動等を行って均一に混ぜてもよい。
(Method for producing a composition for stereolithography)
In order to produce the composition for photofabrication, it is preferable to mechanically mix the layered silicon salt compound in the form of powder with the liquid photocurable resin. For example, even when using a mixing device such as a tumbler, ribbon mixer, or Henschel mixer, a liquid photocurable resin and a layered silicon salt compound in powder form are placed in a container and manually stirred, vibrated, etc. It may be mixed uniformly.
 以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
 なお、以下の実施例及び比較例においては、光硬化性樹脂として、アクリル系光硬化性樹脂を用いた場合について説明する。
EXAMPLES The present invention will be more specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
In the following examples and comparative examples, the case of using an acrylic photocurable resin as the photocurable resin will be described.
[光造形用組成物の評価方法]
 光造形用組成物の物性を測定するにあたり、光硬化性樹脂に各種層状ケイ酸塩化合物を配合させた組成物について、造形時の環境下である20℃の環境下で粘度(mPa・s)を測定し、また、それぞれの組成物を用いて造形した後に150℃の大気雰囲気で貯蔵弾性率を測定した。同様に、板状ケイ酸塩化合物でないフィラーを配合させた場合においても、20℃の環境下で粘度(mPa・s)を測定し、また、それぞれの組成物を用いて造形した後に150℃の大気雰囲気で貯蔵弾性率を測定した。
それぞれのフィラーに対して同じ条件にて粘度と貯蔵弾性率を測定するために、同じ光硬化性樹脂に対してフィラー含有量をほぼ20質量%とした。
[Evaluation method of composition for stereolithography]
In measuring the physical properties of the composition for optical shaping, the viscosity (mPa · s) of the composition in which various layered silicate compounds are mixed with the photocurable resin under the environment of 20 ° C. under the environment at the time of shaping The storage modulus was measured in an air atmosphere at 150 ° C. after shaping using each composition. Similarly, even in the case where a filler which is not a plate-like silicate compound is blended, the viscosity (mPa · s) is measured in an environment of 20 ° C., and after shaping using each composition, 150 ° C. The storage modulus was measured in air atmosphere.
In order to measure the viscosity and storage elastic modulus under the same conditions for each filler, the filler content was approximately 20% by mass for the same photocurable resin.
<粘度の測定方法>
測定機種:回転粘度計 TV-22形粘度計 コーンプレートタイプ(東機産業(株)製)
測定方式:コーンロータとプレートとの間に試料を満たし、所定の回転速度における抵抗値を計測することで試料の粘度を測定した。
測定条件:コーン回転数 2.5rpm
     数値読取条件 回転を始めてから90sec経過し、数値が安定していること
     温度条件   20.0℃
<Method of measuring viscosity>
Measurement model: Rotational viscometer TV-22 type viscometer cone plate type (made by Toki Sangyo Co., Ltd.)
Measurement method: The sample was filled between the cone rotor and the plate, and the viscosity of the sample was measured by measuring the resistance value at a predetermined rotational speed.
Measurement condition: Cone rotation speed 2.5rpm
Numerical reading conditions 90 seconds after the start of rotation, the numerical value must be stable Temperature condition 20.0 ° C
<貯蔵弾性率の測定方法>
測定機種:固体粘弾性測定装置DMA Q800(TA Instrument製)
測定方式:3点曲げモードで、試料に周期的(Sinカーブ、1Hz)に変化する歪を与え、その時の変位量と負荷を計測することで貯蔵弾性率を算出した。
     測定条件:試料形状 14.0mm×3.0mm×1.0mmt
          温度条件 150℃
          雰囲気  大気雰囲気
<Method of measuring storage modulus>
Measurement model: Solid viscoelasticity measurement device DMA Q800 (made by TA Instrument)
Measurement method: In the three-point bending mode, a sample is periodically (Sin curve, 1 Hz) changed in strain, and the storage elastic modulus is calculated by measuring the displacement amount and load at that time.
Measurement conditions: sample shape 14.0 mm × 3.0 mm × 1.0 mmt
Temperature condition 150 ° C
Atmosphere Atmosphere
 上記測定方法で得られた粘度と貯蔵弾性率に基づき、以下の基準によって評価した。
 まず、造形速度や造形精度を高める観点から、造形時の環境下では、粘度はできるだけ低いことが望ましい。このため、造形テーブルを積層ピッチである数10μm降下(沈降)、又は、上昇させた場合において、硬化層の表面(上面または下面)に光造形用組成物をスムーズに流動供給させて均一な厚みの液状層を形成できるようにするために、造形時の環境下である20℃での粘度が1800mPa・s未満となることを適合条件とした。なお、粘度は、500mPa・s未満をA、500mPa・s以上1000mPa・s未満をB、1000mPa・s以上1800未満mPa・sをC、1800以上mPa・sをDとして評価した。
Based on the viscosity and storage elastic modulus obtained by the said measurement method, it evaluated by the following references | standards.
First, from the viewpoint of enhancing the forming speed and the forming accuracy, it is desirable that the viscosity be as low as possible in an environment at the time of forming. For this reason, when the forming table is lowered (settled) by several tens of micrometers (sedimentation), or raised, at the laminating pitch, the composition for stereolithography is smoothly supplied to the surface (upper surface or lower surface) of the hardened layer and uniform thickness is obtained. In order to be able to form a liquid layer, it was determined that the viscosity at 20.degree. C. under the environment at the time of modeling was less than 1800 mPa.s. The viscosity was evaluated as A for less than 500 mPa · s, B for 500 mPa · s or more and less than 1000 mPa · s, C for 1000 mPa · s or more and less than 1800, C for C, 1800 D or more for D.
 次に、それぞれの光造形用組成物を用いて造形した造形物が高温下(150℃下)で実用上問題がない機械的物性を備える必要があることから、造形物の150℃での貯蔵弾性率が、2400MPa以上であることを適合条件とした。なお、貯蔵弾性率は、3200MPa以上をA、2800MPa以上3200MPa未満をB、2400MPa以上2800MPa未満をC、2400MPa未満をDとして評価した。 Next, it is necessary to store the shaped object at 150 ° C., since it is necessary for the shaped object shaped using each composition for stereolithography to have mechanical physical properties that cause no practical problems under high temperature (under 150 ° C.) The matching condition is that the elastic modulus is 2400 MPa or more. In addition, storage elastic modulus evaluated A 3200 MPa or more as B, 2800 MPa or more and less than 3200 MPa as B, 2400 MPa or more and less than 2800 MPa as C, and less than 2400 MPa as D.
 評価結果は、Aを優、Dを劣として、粘度および貯蔵弾性率の劣る方を結果として採用し、造形時の光造形用組成物の20℃での粘度が1800mPa・s未満であり、且つ、造形物の150℃での貯蔵弾性率が2400MPa以上である場合(評価結果がA、B又はCである場合)を合格とし、粘度が1800mPa・s以上か、貯蔵弾性率が2400MPa未満であるか、又はその両方である場合(評価がDの場合)を不合格とした。 As the evaluation result, one with superior A and inferior with D, and one with inferior viscosity and storage elastic modulus is adopted as a result, and the viscosity at 20 ° C. of the composition for photofabrication at modeling is less than 1800 mPa · s The case where the storage elastic modulus at 150 ° C. of the shaped article is 2400 MPa or more (when the evaluation result is A, B or C) is a pass, and the viscosity is 1800 mPa · s or more, or the storage elastic modulus is less than 2400 MPa It was rejected when it was either or both (when the evaluation was D).
 以上の評価をフィラーとして層状ケイ酸塩化合物を用いた光造形用組成物(実施例1~5)と、フィラーとして層状ケイ酸塩化合物以外のフィラーを用いた光造形用組成物(比較例1~3)に対して行った結果を表1に示す。
 なお、下記表1におけるアクリル系光硬化性樹脂は、アクリル系モノマーを60質量%、光重合開始剤を5質量%、その他の成分を35質量%含む樹脂組成物である。
A composition for photofabrication using the layered silicate compound as a filler (Examples 1 to 5) using the above evaluation as a filler and a composition for photoforming using a filler other than the layered silicate compound as a filler (Comparative Example 1) Table 1 shows the results obtained for the items (3) to (3).
In addition, acrylic photocurable resin in following Table 1 is a resin composition containing 60 mass% of acrylic monomers, 5 mass% of photoinitiators, and 35 mass% of other components.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1中のフィラーの種類は、以下の通りである。
 SJ-005:白雲母(マスコバイト MUSCOVITE)、平均粒子サイズ5μm、平均アスペクト比20:株式会社ヤマグチマイカ製
 SJ-010:白雲母(マスコバイト MUSCOVITE)、平均粒子サイズ10μm、平均アスペクト比20;株式会社ヤマグチマイカ製
 SYA-21R:白雲母(マスコバイト MUSCOVITE)、平均粒子サイズ27μm、平均アスペクト比90;株式会社ヤマグチマイカ製
 FH105: タルク 平均粒子サイズ5μm;富士タルク工業株式会社製
 SUNLOVELY:シリカ微粒子、平均粒子径4.1μm;AGCエスアイテック株式会社製
 ウォラストナイトKGP-H40:ウォラストナイト、平均粒子径3.8μm;株式会社丸東製
 AEROSIL200:シリカ、平均粒子径0.007μm;日本アエロジル社製
 TOSPEARL145:シリコーン樹脂、平均粒子径4.5μm;モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製
The types of fillers in Table 1 are as follows.
SJ-005: muscovite MUSCOVITE, average particle size 5 μm, average aspect ratio 20: manufactured by Yamaguchi Mica SJ-010: muscovite MUSCOVITE, average particle size 10 μm, average aspect ratio 20; Corporation company SYA-21R: muscovite MUSCOVITE, average particle size 27 μm, average aspect ratio 90; yamaguchi mica Co., Ltd. FH 105: Talc average particle size 5 μm; Fuji Talc Kogyo Co., Ltd. SUNLOVELY: silica fine particles, Average particle size: 4.1 μm; AGCS ITEC Co., Ltd. Wollastonite KGP-H40: Wollastonite, average particle size: 3.8 μm; Maruto Co., Ltd .: AEROSIL 200: silica, average particle size: 0.007 μm; Nippon Aerosil Co., Ltd. Tospe RL145: silicone resin, the average particle diameter of 4.5μm; Momentive Performance Materials Japan LLC, Ltd.
 (評価)
 表1から分かるように、層状ケイ酸塩化合物であるマイカ、タルク、シリカは、光硬化性樹脂のフィラーとして用いると、高温化での機械的物性(貯蔵弾性率)を2400MPa以上に高めることができ、また、造形時の粘度を1800mPa・s未満に低くできることが確認できた。
 特に、マイカやタルクにあっては、粘度を1000mPa・s未満にすることができ、マイカにあっては、粒子径が大きくなるほど粘度が低下する傾向が見られた。
 これに対して、針状粒子のウォラストナイトや球状粒子のシリコーン樹脂にあっては、粘度は十分に低くなるが、高温時の機械的物性(貯蔵弾性率)を規定値以上に高めることができなかった。また、球状粒子のシリカにあっては、光造形用組成物の粘度が異常に高くなり、造形不能により貯蔵弾性率の測定ができないものであった。
 
(Evaluation)
As can be seen from Table 1, the layered silicate compounds mica, talc and silica, when used as a filler of a photocurable resin, should increase the mechanical properties (storage elastic modulus) at high temperatures to 2400 MPa or more It could be confirmed that the viscosity at molding could be lowered to less than 1800 mPa · s.
In particular, in the case of mica and talc, the viscosity can be less than 1000 mPa · s, and in the case of mica, the viscosity tends to decrease as the particle diameter increases.
On the other hand, in the case of wollastonite of needle-like particles and silicone resin of spherical particles, the viscosity is sufficiently lowered, but the mechanical physical properties (storage elastic modulus) at high temperature should be increased to a specified value or more. could not. Moreover, in the case of spherical particles of silica, the viscosity of the composition for photofabrication was abnormally high, and it was impossible to measure the storage elastic modulus due to the inability to model.

Claims (3)

  1. 光硬化性樹脂と、層状ケイ酸塩化合物と、を含むことを特徴とする光造形用組成物。 A photoforming composition comprising a photocurable resin and a layered silicate compound.
  2. 層状ケイ酸塩化合物は、マイカ、タルク、シリカ、及び、これらを組み合わせた混合物からなる群から選択されるものであることを特徴とする請求項1記載の光造形用組成物。 The composition for stereolithography according to claim 1, wherein the layered silicate compound is selected from the group consisting of mica, talc, silica, and a combination thereof.
  3. 20℃での粘度が1800mPa・s未満であり、且つ、150℃での貯蔵弾性率が2400MPa以上であることを特徴とする請求項1又は2記載の光造形用組成物。
     
    The composition for stereolithography according to claim 1 or 2, wherein the viscosity at 20 ° C is less than 1800 mPa · s and the storage elastic modulus at 150 ° C is 2400 MPa or more.
PCT/JP2018/023293 2017-07-05 2018-06-19 Photoshaping composition WO2019009063A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-132101 2017-07-05
JP2017132101 2017-07-05
JP2018-091986 2018-05-11
JP2018091986A JP2019014873A (en) 2017-07-05 2018-05-11 Photoshaping composition

Publications (1)

Publication Number Publication Date
WO2019009063A1 true WO2019009063A1 (en) 2019-01-10

Family

ID=64950825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023293 WO2019009063A1 (en) 2017-07-05 2018-06-19 Photoshaping composition

Country Status (1)

Country Link
WO (1) WO2019009063A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258426A (en) * 1994-03-25 1995-10-09 Mitsubishi Gas Chem Co Inc Molding of high gloss
JP2002220223A (en) * 2001-01-23 2002-08-09 Mitsubishi Rayon Co Ltd Intercalation compound, resin composition compounded with inorganic matter containing intercalation compound, and manufacturing method therefor
JP2002275274A (en) * 2001-03-19 2002-09-25 Dokai Chemical Industries Co Ltd Curable composition including scaly silica particle and having high preservation stability and method for producing the same
JP2002309111A (en) * 2001-01-22 2002-10-23 Asahi Glass Co Ltd Curable composition and coating material
JP2005113107A (en) * 2002-11-21 2005-04-28 Sekisui Chem Co Ltd Transparent resin composition for optical communication
JP2005133055A (en) * 2003-02-03 2005-05-26 Sekisui Chem Co Ltd Resin composition, material for substrate and substrate film
JP2007237683A (en) * 2006-03-10 2007-09-20 Osaka Univ Method of manufacturing stereolithography product
JP2008024780A (en) * 2006-07-19 2008-02-07 Akebono Brake Ind Co Ltd Porous functional filler and method for producing the same
JP2008045121A (en) * 2006-07-21 2008-02-28 Showa Denko Kk Transparent composite material
JP2014210910A (en) * 2013-04-04 2014-11-13 三菱レイヨン株式会社 Thermoplastic resin composition, molded body, laminated molded body, and solar cell module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258426A (en) * 1994-03-25 1995-10-09 Mitsubishi Gas Chem Co Inc Molding of high gloss
JP2002309111A (en) * 2001-01-22 2002-10-23 Asahi Glass Co Ltd Curable composition and coating material
JP2002220223A (en) * 2001-01-23 2002-08-09 Mitsubishi Rayon Co Ltd Intercalation compound, resin composition compounded with inorganic matter containing intercalation compound, and manufacturing method therefor
JP2002275274A (en) * 2001-03-19 2002-09-25 Dokai Chemical Industries Co Ltd Curable composition including scaly silica particle and having high preservation stability and method for producing the same
JP2005113107A (en) * 2002-11-21 2005-04-28 Sekisui Chem Co Ltd Transparent resin composition for optical communication
JP2005133055A (en) * 2003-02-03 2005-05-26 Sekisui Chem Co Ltd Resin composition, material for substrate and substrate film
JP2007237683A (en) * 2006-03-10 2007-09-20 Osaka Univ Method of manufacturing stereolithography product
JP2008024780A (en) * 2006-07-19 2008-02-07 Akebono Brake Ind Co Ltd Porous functional filler and method for producing the same
JP2008045121A (en) * 2006-07-21 2008-02-28 Showa Denko Kk Transparent composite material
JP2014210910A (en) * 2013-04-04 2014-11-13 三菱レイヨン株式会社 Thermoplastic resin composition, molded body, laminated molded body, and solar cell module

Similar Documents

Publication Publication Date Title
US10526469B2 (en) Stabilized matrix-filled liquid radiation curable resin compositions for additive fabrication
US11385541B2 (en) Radiation-curable resin composition and production method thereof
JP4925900B2 (en) Optical three-dimensional resin composition
JP2010265408A (en) Resin composition for optical stereolithography
WO2018119067A1 (en) Photopolymer ceramic dispersion
Yang et al. UV-curable, low-viscosity resin with a high silica filler content for preparing ultrastiff, 3D-printed molds
JP2009040850A (en) Transparent resin composition and method of producing transparent resin composition
Sadej et al. Silica/aluminum oxide hybrid as a filler for photocurable composites
EP3491469A1 (en) Refractive index-matched additives for photo-curable compositions
KR20190109617A (en) Photo-curable resin ink composition for 3D printing with heat resisting and high mechanical property comprising dicyclopentadien epoxy acrylate
Asif et al. Preparation, characterization, thermo‐mechanical, and barrier properties of exfoliated thermoplastic toughened epoxy clay ternary nanocomposites
Seo et al. Curing behavior and structure of an epoxy/clay nanocomposite system
Swaminathan et al. Thermomechanical and fracture properties of exfoliated nanoclay nanocomposites
KR102607733B1 (en) Photocurable composition for 3D printer and manufacturing method thereof
JP2019014873A (en) Photoshaping composition
JP7075279B2 (en) Stereolithography composition
WO2019009063A1 (en) Photoshaping composition
WO2017014067A1 (en) Glass filler and resin composition for solid object modeling using same
WO2019049463A1 (en) Stereolithography composition
JP2001026609A (en) Resin composition for optical stereolithography
US20220380549A1 (en) Method for producing a three-dimensional printed article
JP2000204125A (en) Photosetting resin composition excellent in heat resistance
JPH09227640A (en) Photocurable resin composition excellent in heat resistance
Menezes et al. Obtaining and characterizing dental hybrid composites with clay or silica nanoparticles and boron-aluminum-silicate glass microparticles
JP4150819B2 (en) Photocurable resin composition having dilatancy properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827491

Country of ref document: EP

Kind code of ref document: A1