WO2019003464A1 - ガラス組成物及びこれを用いたガラス製品 - Google Patents

ガラス組成物及びこれを用いたガラス製品 Download PDF

Info

Publication number
WO2019003464A1
WO2019003464A1 PCT/JP2017/036810 JP2017036810W WO2019003464A1 WO 2019003464 A1 WO2019003464 A1 WO 2019003464A1 JP 2017036810 W JP2017036810 W JP 2017036810W WO 2019003464 A1 WO2019003464 A1 WO 2019003464A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass composition
cao
mgo
content
Prior art date
Application number
PCT/JP2017/036810
Other languages
English (en)
French (fr)
Inventor
文 中村
将範 小路谷
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to EP23191703.0A priority Critical patent/EP4276079A3/en
Priority to US16/624,794 priority patent/US11760684B2/en
Priority to EP17916371.2A priority patent/EP3647286B1/en
Priority to CN202310265559.6A priority patent/CN116282906A/zh
Priority to CN201780092528.8A priority patent/CN110809565B/zh
Priority to JP2018505048A priority patent/JP6343112B1/ja
Priority to BR112019027258-5A priority patent/BR112019027258B1/pt
Publication of WO2019003464A1 publication Critical patent/WO2019003464A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres

Definitions

  • the present invention relates to a glass composition suitable for glass fiber etc. Specifically, a glass fiber product suitable for use as a rubber reinforcing cord, a glass fiber product such as a glass fiber non-woven fabric, a filler etc. And a glass product made of the glass composition.
  • a rubber reinforcing cord is used as a reinforcing material for a rubber product which is repeatedly subjected to bending stress.
  • the rubber reinforcing cord is embedded in a rubber product such as a rubber belt or a tire to suppress the elongation and the strength decrease of the rubber product, and contributes to the improvement of the dimensional stability of the rubber product and the prolongation of the fatigue life.
  • fibers for constituting a rubber reinforcing cord glass fibers are known together with aramid fibers, carbon fibers, polyester fibers and the like.
  • Patent Document 1 discloses glass fibers made of a glass composition having a high elastic modulus as glass fibers suitable for a rubber reinforcing cord.
  • the Young's modulus (tensile elastic modulus) of most of the glass compositions provided for practical use is 90 GPa or less, but the Young's modulus of the glass composition of Patent Document 1 exceeds 100 GPa.
  • This glass composition comprises, as a percentage by weight, 10 to 40% SiO 2 , 10 to 30% Al 2 O 3 , and 20 to 60% Y 2 O 3 + La 2 O 3 as essential components. It is.
  • Patent Document 3 discloses glass fibers using oxynitride glass to provide glass fibers with high strength.
  • the oxynitride glass is a glass in which a part of oxygen atoms of the oxide glass is substituted by nitrogen atoms.
  • the glass fiber of Patent Document 3 contains a nitride such as silicon nitride at a ratio of more than 10% by weight.
  • the glass composition disclosed in Patent Document 1 has a high Young's modulus, but requires 20% by weight or more of Y 2 O 3 and / or La 2 O 3 . For this reason, a considerable amount of rare earth raw material is required for the production, and the production cost becomes high. In addition, the glass composition becomes relatively heavy because of the oxide of the rare earth contained at 20% by weight or more.
  • the elastic modulus of the glass fiber disclosed in Patent Document 2 does not actually increase to the extent required in some glass fiber products represented by rubber reinforcing cords. . It is considered that this is because the content of SiO 2 in the glass composition is too high.
  • the content of SiO 2 is in a range exceeding 65% in terms of mol% .
  • the oxynitride glass as disclosed in Patent Document 3 needs to melt the glass material in a nitrogen atmosphere.
  • platinum-based materials usually used for melting glass can not be used for the inner wall of the furnace for melting the raw material of oxynitride glass, and special materials are required.
  • a glass composition having a high modulus of elasticity in particular a Young's modulus.
  • the practical strength of glass fiber is affected by the occurrence of fine cracks and breakage due to their elongation.
  • the strength against micro cracks is greatly affected not only by the Young's modulus but also by the crack resistance load. Therefore, to obtain high strength glass fibers, it is desirable to use a glass composition that has a high Young's modulus and a high crack resistance resistance.
  • higher strength is also required for particulate glass used as a filler for reinforcing a base material such as a plastic.
  • the present invention provides a glass composition having a high Young's modulus and a large crack resistance load within the range of the composition which can be produced by a general-purpose glass manufacturing apparatus without requiring a large amount of a rare earth raw material. With the goal.
  • the present invention is expressed in mol%, SiO 2 50 to 65% Al 2 O 3 7.5 to 26% MgO 15 to 30% CaO 0-8% B 2 O 3 0 to 3% Li 2 O 0 to 3% Na 2 O 0 to 0.2% Including
  • the total content of MgO and CaO is in the range of 18 to 35 mol%,
  • the molar ratio calculated by Al 2 O 3 / (MgO + CaO) is less than 1
  • Provided is a glass composition.
  • the present invention it is possible to provide a glass composition having a high Young's modulus and a large crack resistance load within the range of the composition which can be produced by a general-purpose glass manufacturing apparatus without requiring a large amount of rare earth raw material. .
  • % indicating the content of the glass component is all mol% unless otherwise specified.
  • substantially free of a component means that the content of the component is 0.1 mol% or less, preferably less than 0.08 mol%, more preferably less than 0.05 mol%. means.
  • “particulate” means that it is a granular material having a maximum diameter of 5 mm or less, preferably 3 mm or less, more preferably 1 mm or less.
  • each component of the glass composition (SiO 2 ) SiO 2 is a component that forms a glass skeleton, and its content is set in the range of 50 to 65%.
  • the content of SiO 2 is preferably 52% or more, more preferably 53% or more, particularly preferably 54% or more, and in some cases, 56% or more, further preferably 57% or more. If the content of SiO 2 is too high, the Young's modulus may decrease. Therefore, the content of SiO 2 is preferably 62% or less, more preferably 61% or less, particularly preferably 60% or less, and in some cases, may be 59% or less, further 58% or less.
  • the content of SiO 2 in the glass compositions disclosed so can calculate the composition of a molar basis in Patent Document 2 is greater than 65%.
  • Al 2 O 3 contributes to maintaining the heat resistance, water resistance and the like of the glass composition, and is also a component that affects the devitrification temperature, viscosity and the like.
  • the content of Al 2 O 3 is set in the range of 7.5 to 26%.
  • the content of Al 2 O 3 is preferably 9% or more, more preferably 10% or more, particularly preferably 11% or more, and in some cases, 12% or more, or even 14% or more. If the content of Al 2 O 3 is too high, the liquidus temperature may be greatly increased, which may cause problems in production. Therefore, the content of Al 2 O 3 may be 24% or less, preferably 22% or less, and in some cases 20% or less, or even 19% or less.
  • the devitrification temperature of the glass composition is preferably sufficiently lower than the liquidus temperature.
  • the content of Al 2 O 3 suitable for lowering the devitrification temperature sufficiently below the liquidus temperature is 11 to 15%, furthermore 11 to 14%, in particular 11.5 to 13.5%.
  • an appropriate amount of Li 2 O and / or B 2 O 3 may be added to sufficiently lower the devitrification temperature as compared to the liquidus temperature.
  • the content of Al 2 O 3 suitable for sufficiently increasing the crack resistance load is 15 to 26%, further 16 to 22%, and particularly 17 to 21%.
  • MgO MgO contributes to the improvement of Young's modulus and is also a component that affects the devitrification temperature, viscosity, and the like.
  • the content of MgO is set in the range of 15 to 30%.
  • the content of MgO is preferably 17% or more, more preferably 18% or more, particularly preferably 20% or more, and in some cases, 21% or more, or even 22% or more. If the content of MgO is too high, the liquidus temperature may rise significantly. Therefore, the content of MgO is preferably 29% or less, and in some cases, may be 28% or less, or even 27% or less.
  • the content of MgO suitable for lowering the devitrification temperature sufficiently below the liquidus temperature is 18 to 30%, and further 20 to 28%.
  • the content of MgO suitable for sufficiently increasing the crack resistance load is 17 to 30%, further 18 to 26%, in particular 22 to 26%.
  • CaO CaO is an optional component that contributes to maintenance of water resistance and the like and affects the devitrification temperature, viscosity, and the like.
  • the content of CaO is set in the range of 0 to 8%. Addition of an appropriate amount of CaO is preferable from the viewpoint of lowering the liquidus temperature. Therefore, it is preferable to add CaO (content rate is more than 0%), the content rate is 0.1% or more, more preferably 0.12% or more, and in some cases 2% or more, further 3% or more It may be However, too much CaO may lower the Young's modulus. Therefore, the content of CaO is preferably 7% or less, more preferably 5% or less.
  • the content of CaO which is particularly suitable for the improvement of the Young's modulus and the crack resistance is less than 1%.
  • the total content of MgO and CaO is set in the range of 18 to 35%, preferably 20 to 30%.
  • the molar ratio of Al 2 O 3 to the sum of the content of MgO and CaO is set to less than 1. This facilitates coexistence of a high Young's modulus and a liquidus temperature not too high.
  • the molar ratio Al 2 O 3 / (MgO + CaO) is preferably 0.3 to 0.9, more preferably 0.35 to 0.85, and in some cases 0.4 to 0.7, further preferably 0.4 to 0. It may be in the range of six.
  • the molar ratio Al 2 O 3 / (MgO + CaO) particularly suitable for improvement of crack resistance load is 0.7 or more and less than 1, further 0.7 or more and 0.9 or less, and particularly 0.8 or more and 0.9 or less It is.
  • B 2 O 3 is an optional component that forms the skeleton of glass and affects the characteristics such as the devitrification temperature and the viscosity.
  • the content of B 2 O 3 is set in the range of 0 to 3%.
  • the addition of trace amounts of B 2 O 3 may contribute to the reduction of the devitrification temperature. Therefore, it is preferable to add B 2 O 3 (content rate is more than 0%), the content rate is preferably 0.1% or more, particularly preferably 0.3% or more, and in some cases 0.5% or more, further May be 0.7% or more.
  • too much B 2 O 3 may lower the Young's modulus.
  • the content of B 2 O 3 is preferably 2.5% or less, more preferably 2% or less, particularly preferably 1.8% or less, and in some cases, may be 1.6% or less, or even 1.5% or less.
  • An example of a preferable range of the content of B 2 O 3 is 0.1 to 1.6%.
  • Li 2 O is a component that modifies the skeleton of glass, and is an optional component that affects properties such as liquidus temperature, devitrification temperature, and viscosity.
  • the content of Li 2 O is set in the range of 0 to 3%.
  • the addition of Li 2 O in this range is effective in lowering the devitrification temperature. Therefore, it is preferable to add Li 2 O (content rate is more than 0%), and the content rate is 0.1% or more, further 0.2% or more, particularly preferably 0.3% or more, depending on the case May be 0.5% or more, or even 0.7% or more. If the content of Li 2 O is too high, the Young's modulus may decrease.
  • the content of Li 2 O is preferably 2.5% or less, more preferably 2% or less, particularly preferably 1.8% or less, and in some cases, may be 1.6% or less, or even 1.5% or less.
  • An example of a preferred range of the Li 2 O content is 0.2 to 2.5%, which is a range higher than the Na 2 O content.
  • B 2 O 3 and Li 2 O coexist (B 2 O 3 > 0%, Li 2 O> 0%), it becomes easy to properly adjust the liquidus temperature and the devitrification temperature of the glass .
  • the total content of B 2 O 3 and Li 2 O is 0.1% or more, preferably 0.5% or more, particularly preferably 0.7% or more, and in some cases 1% or more It may be. Also, the total may be 5.5% or less, more preferably 5% or less, particularly 4%, and in some cases 3.5% or less.
  • B 2 O 3 and Li 2 O are advantageous from the viewpoint of improving the characteristics.
  • the molar ratio exhibited by B 2 O 3 / Li 2 O is in the range 0.2 to 5, even 0.4 to 2.5, in particular 0.5 to 2 and in some cases 0.8 to 1.25. Is preferred.
  • Na 2 O Na 2 O is an optional component that affects properties such as liquidus temperature, devitrification temperature, and viscosity.
  • the content is set in the range of 0 to 0.2%. Basically, it is desirable not to contain Na 2 O, but for the purpose of fining of the glass melt, it is limited to 0.2%, and further to 0.15%, for example, more than 0% and 0.1%. It is preferable to add in the range below.
  • the total content of the seven components (SiO 2 , Al 2 O 3 , MgO, CaO, B 2 O 3 , Li 2 O and Na 2 O) described above is 95% or more, and more preferably 97% or more. It is preferably 98% or more, particularly 99% or more, and in some cases 99.5% or even 99.9% or more, and may be 100%.
  • the glass composition consists only of SiO 2 , Al 2 O 3 , MgO, CaO, B 2 O 3 , Li 2 O and Na 2 O .
  • Additional component As the additional components other than the seven components described above, the following can be exemplified. However, the additional component is not limited to the following, and the display of the content of the additional component is also an example.
  • K 2 O is also an optional component that affects properties such as liquidus temperature, devitrification temperature, viscosity and the like, and has an effect of promoting the clarification of the glass melt.
  • its content should be set in the range of 0 to 0.1%, further 0 to 0.05%, particularly 0 to 0.03%. Is preferred.
  • SrO is also an optional component that affects properties such as liquidus temperature, devitrification temperature, and viscosity. However, the addition of SrO may also lower the Young's modulus. Also, too much SrO may inhibit the homogeneity of the glass melt. Therefore, the content of SrO is preferably set in the range of 0 to 5%. The content of SrO is preferably 3% or less, more preferably 1% or less, particularly 0.5% or less, particularly 0.1% or less. The content of SrO is preferably set such that the total content with CaO is 8% or less, more preferably 6% or less, and particularly 5% or less.
  • BaO is also an optional component that affects properties such as liquidus temperature, devitrification temperature, and viscosity. However, when BaO is added, the Young's modulus may be significantly reduced. Further, BaO is a component having a large environmental load and working environment. Therefore, BaO is preferably substantially not contained.
  • Transition metal oxides etc. Oxides of transition elements (groups 3 to 11 of the periodic table) called transition metal oxides are also acceptable as an additional component.
  • Examples of transition metal oxides include TiO 2 , ZrO 2 , Fe 2 O 3 , Y 2 O 3 , La 2 O 3 and CeO 2 .
  • ZnO which is an oxide of Group 12 elements, is also acceptable as an additional component. Although it is desirable to basically exclude these oxides, they may be inevitably mixed in as impurities derived from raw materials or production equipment. In addition, depending on the type of oxide, the addition of a small amount of the oxide may be effective as a fining agent or the like.
  • the total content of oxides of the Group 3 to Group 12 elements is preferably 3% or less, more preferably 1% or less, particularly preferably 0.5% or less, and 0.1 if necessary. It may be limited to% or less.
  • the content of each transition metal oxide is preferably 0.5% or less, particularly 0.3% or less, and particularly 0.1% or less.
  • the content ratio of the oxide of the transition element present by taking a plurality of valences in the glass composition is calculated in terms of the oxide in which the oxidation number of the metal is the largest.
  • iron oxide is usually present in the glass composition as Fe 2 O 3 or FeO.
  • iron oxide is present as FeO are terms of Fe 2 O 3
  • summed with iron oxide are present as Fe 2 O 3
  • the content of iron oxide is calculated.
  • SnO 2 , Sb 2 O 3 , Sb 2 O 5 , SO 3 , Cl and F can be exemplified. These ingredients can act as fining agents.
  • Ga 2 O 3 and P 2 O 5 can be exemplified as another additional component.
  • the content of each component from SnO 2 to P 2 O 5 exemplified in this column is also preferably 0.5% or less, particularly 0.3% or less, and particularly 0.1% or less.
  • the glass composition is substantially free of oxides of rare earth elements.
  • the glass composition contains 0 to 0.5% of T-Fe 2 O 3 and, except for MgO, CaO and FeO, substantially contains a divalent metal oxide.
  • the glass composition is substantially free of alkali metal oxides except for Li 2 O and Na 2 O.
  • the glass composition is substantially free of TiO 2 and ZrO 2 .
  • the glass composition has a nitride content of 10% by weight or less, and preferably is substantially free of nitrides.
  • the glass composition comprises the seven components described above (SiO 2 , Al 2 O 3 , MgO, CaO, B 2 O 3 , Li 2 O and Na 2 O) and an additional five components (K
  • the total content of 2 O, SrO, TiO 2 , ZrO 2 and T-Fe 2 O 3 ) is 99% or more, further 99.5% or more, particularly 99.9% or more, especially 99.95% or more In some cases, it is 100%.
  • the content of the additional five components is: K 2 O: 0 to 0.05%, SrO: 0 to 5%, TiO 2 : 0 to 0.1%, ZrO 2 : 0 to 0.1% , T-Fe 2 O 3 : 0 to 0.5%.
  • the glass composition comprises the seven components described above (SiO 2 , Al 2 O 3 , MgO, CaO, B 2 O 3 , Li 2 O and Na 2 O) and an additional three components (K
  • the total content of 2 O, TiO 2 and T-Fe 2 O 3 ) is 99% or more, further 99.5% or more, particularly 99.9% or more, especially 99.95% or more, and in some cases 100 %.
  • the content of the additional three components is K 2 O: 0 to 0.05%, TiO 2 0: 0.1%, T-Fe 2 O 3 : 0 to 0.5%.
  • the glass composition is SiO 2 53 to 60% Al 2 O 3 11 to 15% MgO 18 to 30% CaO 0-5% B 2 O 3 0.2 to 1.5% Li 2 O 0.5 to 2.5% Na 2 O 0 to 0.2% Including
  • the molar ratio calculated by Al 2 O 3 / (MgO + CaO) is 0.3 to 0.5.
  • the total content of MgO and CaO in this glass composition is in the range of 18 to 35%. This embodiment is particularly suitable for adjusting the devitrification temperature to a preferred range in relation to the liquidus temperature and the like.
  • the glass composition is SiO 2 53 to 60% Al 2 O 3 15 to 26% MgO 17-30% CaO 0-5% B 2 O 3 0.2 to 3% Li 2 O 0.2 to 1.5% Na 2 O 0 to 0.2% Including
  • the molar ratio calculated by Al 2 O 3 / (MgO + CaO) is 0.5 or more and less than 1, preferably 0.7 to 0.9.
  • the total content of MgO and CaO in this glass composition is in the range of 18 to 35%. This embodiment is particularly suitable for improving the crack load resistance.
  • the specific gravity of the glass composition is 3.0 or less, preferably 2.8 or less, more preferably 2.7 or less.
  • the lower limit of the specific gravity is not particularly limited, but may be 2.5 or more.
  • the specific gravity of the glass composition disclosed in Patent Document 1 containing a considerable amount of a rare earth element exceeds 3.
  • the Young's modulus of the glass composition is 98 GPa or more, preferably 100 GPa or more.
  • the upper limit of the Young's modulus is not particularly limited, but may be 110 GPa or less, and further 105 GPa or less.
  • the measuring method of Young's modulus is demonstrated in the column of an Example. Glass compositions with high Young's modulus are suitable for providing glass fibers with a low degree of deformation to tensile stress.
  • the crack resistance load of the glass composition is 300 g or more, preferably 400 g or more, more preferably 500 g or more.
  • the glass compositions with a particularly high resistance to cracking for example 900 g or more, even 1000 g or more, in particular 1200 g or more.
  • the upper limit of the crack resistance load is not particularly limited, but may be 2000 g or less. The method of measuring the crack resistance load will be described in the section of Examples. Glass compositions having a high resistance to cracking are suitable for providing glass fibers having high strength against tensile stress and bending stress.
  • the glass composition has a cracking resistance in the range of 300 to 550 g and a devitrification temperature TL of 1250 to 1350 ° C. This composition is suitable for mass production of high strength glass fibers.
  • the devitrification temperature TL of the glass composition is higher than the temperature T2 at which the logarithm (log)) of the liquid phase viscosity ⁇ (unit: dPa ⁇ s) of the melt of the glass composition is 2. 20 ° C. or higher, preferably 30 ° C. or higher, more preferably 50 ° C. or higher, particularly preferably 100 ° C. or higher.
  • the devitrification temperature TL of the glass composition is higher than the temperature T3 at which the logarithm (log)) of the liquidus viscosity ⁇ of the melt of the glass composition is 3, Lower than T2.5 by definition.
  • the methods for measuring the devitrification temperature TL and the liquid phase viscosity ⁇ will be described in the section of the examples.
  • the devitrification temperature TL is 1450 ° C. or less, preferably 1400 ° C. or less, more preferably 1380 ° C. or less, particularly preferably 1350 ° C. or less.
  • the glass compositions described above are suitable for use as glass fibers.
  • the present invention provides, in another aspect, a glass fiber comprising the glass composition according to the present invention.
  • the glass fibers may be long glass fibers or short glass fibers.
  • the long glass fiber is produced by letting the viscosity-controlled glass melt flow out from the nozzle, and winding it up with a winder.
  • the continuous fibers are cut into appropriate lengths at the time of use.
  • the short glass fiber is manufactured while blowing away the glass melt by high pressure air, centrifugal force or the like.
  • the short glass fiber is sometimes called glass wool because it has a cotton-like form.
  • the long glass fiber and short glass fiber according to the present invention can be further processed into various glass fiber products and used.
  • Examples of glass fiber products for which glass fibers having high Young's modulus and high crack resistance load are particularly desired include rubber reinforcing cords.
  • the rubber reinforced cord comprises a strand obtained by bundling a plurality of long glass fibers (referred to as filaments).
  • Each strand is composed of, for example, 100 to 2000, and typically 200 to 600 glass filaments.
  • Each strand is often coated with a coating to improve adhesion to rubber.
  • the treatment liquid for forming the covering layer and the method thereof are described in detail in the documents including the patent document 1 and the description thereof is omitted here.
  • Glass fiber non-woven fabric can be mentioned as another glass fiber product in which the characteristic of glass fiber that Young's modulus and crack load resistance are large is desired.
  • the glass fiber non-woven fabric is a non-woven fabric composed of glass fibers, one example of which is glass paper produced by papermaking of minute glass short fibers.
  • glass fiber nonwoven fabrics are expected to have high strength.
  • a glass fiber non-woven fabric is often required to have a high porosity. For these reasons, in these applications, in particular, the expectation for improving the strength of glass fiber is large.
  • the present invention provides, from another aspect thereof, a glass fiber product comprising the glass fiber according to the present invention.
  • a glass fiber product comprising the glass fiber according to the present invention.
  • preferable examples of the glass fiber product include a rubber reinforcing cord having strands into which glass long fibers are bundled, and a glass fiber non-woven fabric containing glass short fibers.
  • Glass particulate products are suitable not only for glass fibers but also for use as particulate glass, in particular as glass flakes.
  • the glass flake is a scaly glass, and the size thereof is, for example, an average thickness of 2 to 5 ⁇ m and an average particle diameter of 10 to 4000 ⁇ m (particularly 10 to 1000 ⁇ m).
  • Glass flakes are formed from molten glass and mass-produced by a blowing method, a rotary method or the like.
  • Particulate glass represented by glass flakes may be used by being mixed with a base material as a filler for improving the strength of the base material.
  • a typical base material is plastic.
  • the miniaturization of plastic parts has progressed in recent years, and further improvement in dimensional stability and strength of parts is required.
  • the shape of the particulate glass is typically scaly, but the shape does not matter as long as it corresponds to "particulate" (maximum diameter 5 mm or less).
  • FIG. 1 shows an example of a rubber belt including a rubber reinforcing cord.
  • the rubber belt 1 has a so-called toothed belt shape, and includes a matrix rubber 3 and a plurality of rubber reinforcing cords 2 embedded in the matrix rubber 3.
  • the rubber reinforcing cords 2 are arranged in parallel to each other along the longitudinal direction of the rubber belt 1, that is, the direction orthogonal to the belt width direction traversed by the protruding portions 4 to be "teeth".
  • a tooth cloth 5 is attached to the surface of the rubber belt 1 on which the projecting portion 4 is formed for the purpose of suppressing abrasion and the like.
  • the glass raw materials were prepared so as to obtain the compositions shown in Tables 1 and 2, and melted for 4 hours in an electric furnace maintained at 1500 to 1600 ° C.
  • stirring was performed multiple times with a quartz glass stirring rod.
  • the molten glass was flowed into a stainless steel frame to produce a plate-like glass.
  • the plate-like glass was maintained at a temperature of 20 to 50 ° C., the glass transition temperature of each glass, for 2 hours or more, and then slowly cooled to room temperature over about 8 hours to obtain sample glass to be measured. .
  • the following characteristics were measured using the sample glass thus obtained.
  • the density was measured by the Archimedes method using water as a dip for small pieces of sample glass.
  • Young's modulus Young's modulus was measured according to the ultrasonic pulse method described in Japanese Industrial Standard (JIS) R 1602-1995. Each test piece was a 5 mm ⁇ 25 mm ⁇ 35 mm rectangular parallelepiped. Moreover, the measurement was performed at room temperature in the air. The device used is a model 25 DL Plus from Panametrics.
  • glass fiber has a comparatively low elasticity modulus normally with the glass fiber and bulk glass which consist of the same glass composition. It is believed that this is because the glass fibers are cooled much more rapidly when formed from the glass melt.
  • elastic modulus of glass fiber and the elastic modulus of bulk glass (elastic modulus measured by the above JIS)
  • it is used as glass fiber or glass fiber using the measurement value by the above JIS It is reasonable to evaluate the properties of the glass composition to do this.
  • particulate glass it is appropriate to select an appropriate glass composition with reference to the evaluation results of the elastic modulus of bulk glass. The same applies to the crack resistance load described in the next paragraph.
  • the crack resistance load was measured by a test in which a Vickers indenter was pressed against the surface of a mirror-polished sample glass.
  • the apparatus used is a Vickers hardness tester manufactured by Akassi Seisakusho.
  • the sample glass was processed into a plate having parallel planes.
  • the surface pressing the indenter was mirror-polished using a suspension of cerium oxide abrasive.
  • a Vickers indenter was pressed against the mirror-polished surface for 15 seconds, and after 5 minutes of unloading, it was measured whether cracks occurred from the top of the square indentation remaining on the surface of the sample glass. Whether or not a crack had occurred was judged by observation using a microscope incorporated in a Vickers hardness tester.
  • T2, T2.5, T3 were measured by measuring the viscosity at each temperature at intervals of 25 ° C. according to a platinum ball pulling method on a sample glass, and calculating the viscosity in the middle by the Fulcher's equation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本発明は、多量の希土類原料を必要とせず、汎用のガラス製造装置で製造できて、ヤング率と共に耐クラック荷重が大きい、ガラス繊維等に適したガラス組成物を提供する。本発明によるガラス組成物は、モル%で表示して、SiO2:50~65%、Al23:7.5~26%、MgO:15~30%、CaO:0~8%、B23:0~3%、Li2O:0~3%、Na2O:0~0.2%を含み、MgOとCaOとの含有率の合計が18~35モル%、Al23/(MgO+CaO)の値が1未満である。

Description

ガラス組成物及びこれを用いたガラス製品
 本発明は、ガラス繊維等に適したガラス組成物、具体的には、ゴム補強用コード、ガラス繊維不織布等のガラス繊維製品、充填剤等として使用される粒子状ガラス製品その他に適したガラス組成物と、このガラス組成物により構成されたガラス製品に関する。
 曲げ応力を繰り返し受けるゴム製品の補強材として、ゴム補強用コードが使用されている。ゴム補強用コードは、ゴムベルト、タイヤ等のゴム製品に埋め込まれてそのゴム製品の伸びや強度低下を抑制し、ゴム製品の寸法安定性の向上や疲労寿命の長期化に寄与している。ゴム補強用コードを構成するための繊維としては、アラミド繊維、炭素繊維、ポリエステル繊維等と共に、ガラス繊維が知られている。
 特許文献1には、ゴム補強用コードに適したガラス繊維として、弾性率が高いガラス組成物により構成されたガラス繊維が開示されている。実用に供されているガラス組成物の多くはそのヤング率(引張弾性率)が90GPa以下であるが、特許文献1のガラス組成物のヤング率は100GPaを超えている。このガラス組成物は、重量%で表示して、10~40%のSiO2、10~30%のAl23、及び20~60%のY23+La23を必須成分として含んでいる。
 特許文献2には、プリント配線板に適したガラス繊維を提供することを目的として、重量%で表示して、60~70%のSiO2、17~27%のAl23、7~17%のMgO、0.1~1.0%の遷移金属酸化物のガラス組成物が開示されている。遷移金属酸化物としては、Fe23、TiO2、CeO2等が例示されている。特許文献2によると、ガラス組成物の上記以外の成分としては、清澄に効果があるフッ素成分、亜硫酸成分等の成分が0.5重量%を上限として許容されるのみである。
 特許文献3には、強度が高いガラス繊維を提供するために、オキシナイトライドガラスを用いたガラス繊維が開示されている。オキシナイトライドガラスは、酸化物ガラスの酸素原子の一部が窒素原子に置換されたガラスである。特許文献3のガラス繊維は、窒化珪素等の窒化物を10重量%を超える比率で含んでいる。
国際公開第2006/057405号 特開平11-21147号公報 特公平7-29815号公報
 特許文献1に開示されたガラス組成物は、高いヤング率を有するが、20重量%以上のY23及び/又はLa23を必要とする。このため、その製造には相当量の希土類原料が必要とされ、製造コストが高くなる。また、20重量%以上含まれる希土類の酸化物のため、このガラス組成物は相対的に重くなる。
 本発明者の検討によると、特許文献2に開示されたガラス繊維の弾性率は、実際には、ゴム補強用コードに代表される一部のガラス繊維製品において要求されている程度には高くならない。これは、ガラス組成物におけるSiO2の含有率が高すぎるためと考えられる。特許文献2に具体的に開示されている組成例(SiO2:64.6重量%以上;表1、2)では、SiO2の含有率がモル%に換算して65%を超える範囲にある。
 特許文献3に開示されているようなオキシナイトライドガラスは、窒素雰囲気中でガラス原料を溶融する必要がある。また、オキシナイトライドガラスの原料を溶融するための炉の内壁には、ガラスの溶融に通常使用されている白金系材料を用いることができず、特殊な材料が必要とされる。
 強度が高いガラス繊維を提供するためには、弾性率、具体的にはヤング率、が高いガラス組成物の使用が適している。しかし、ガラス繊維の実用強度は、微細クラックの発生とその伸長による破壊の影響を受ける。微細クラックに対する強さは、ヤング率のみではなく、耐クラック荷重にも大きな影響を受ける。したがって、高い強度のガラス繊維を得るためには、高いヤング率と共に大きな耐クラック荷重を有するガラス組成物を使用することが望ましい。また近年では、プラスチック等の母材を補強するための充填剤として使用される粒子状のガラスにも、より高い強度が求められている。
 以上の事情に鑑み、本発明は、多量の希土類原料を必要とせず、汎用のガラス製造装置で製造できる組成の範囲内において、ヤング率が高く、耐クラック荷重が大きいガラス組成物を提供することを目的とする。
 本発明は、モル%で表示して、
  SiO2  50~65%
  Al23  7.5~26%
  MgO   15~30%
  CaO   0~8%
  B23      0~3%
  Li2O    0~3%
  Na2O    0~0.2%
を含み、
 MgOとCaOとの含有率の合計が18~35モル%の範囲にあり、
 Al23/(MgO+CaO)により算出されるモル比が1未満である、
ガラス組成物を提供する。
 本発明によれば、多量の希土類原料を必要とせず、汎用のガラス製造装置で製造できる組成の範囲内において、ヤング率が高く、耐クラック荷重が大きいガラス組成物を提供することが可能となる。
本発明によるガラス繊維製品であるゴム補強用コードを備えた歯付きゴムベルトの構造の一例を示す図である。
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。以下において、ガラス成分の含有率を示す%は、特に断らない限り、すべてモル%である。また、ある成分を「実質的に含まない」とは、その成分の含有率が0.1モル%以下、好ましくは0.08モル%未満、より好ましくは0.05モル%未満であることを意味する。また、「粒子状」とは、最大径が5mm以下、好ましくは3mm以下、より好ましくは1mm以下の粒状であることを意味する。
[ガラス組成物の各成分]
(SiO2
 SiO2は、ガラス骨格を形成する成分であり、その含有率は50~65%の範囲に設定される。SiO2の含有率は、52%以上、さらに53%以上、特に54%以上が好ましく、場合によっては56%以上、さらに57%以上であってもよい。SiO2の含有率が高すぎると、ヤング率が低下することがある。したがって、SiO2の含有率は、62%以下、さらに61%以下、特に60%以下が好ましく、場合によっては59%以下、さらに58%以下であってもよい。
 なお、特許文献2にモル基準の組成を算出できるように開示されているガラス組成物におけるSiO2の含有率は65%を超える。
(Al23
 Al23は、ガラス組成物の耐熱性、耐水性等の維持に貢献し、失透温度、粘度等に影響を与える成分でもある。Al23の含有率は、7.5~26%の範囲に設定される。Al23の含有率は、9%以上、さらに10%以上、特に11%以上が好ましく、場合によっては12%以上、さらには14%以上であってもよい。Al23の含有率が高すぎると、液相温度が大きく上昇して製造に不都合が生じることがある。したがって、Al23の含有率は、24%以下、さらに22%以下が好ましく、場合によっては20%以下、さらには19%以下であってもよい。
 特に量産を考慮すると、ガラス組成物の失透温度は液相温度よりも十分低いことが好ましい。失透温度を液相温度よりも十分に低下させるために適したAl23の含有率は、11~15%、さらに11~14%、特に11.5~13.5%である。後述するように、失透温度を液相温度と比較して十分に低下させるためには、適量のLi2O及び/又はB23を添加するとよい。
 耐クラック荷重を十分に大きくするために適したAl23の含有率は、15~26%、さらに16~22%、特に17~21%である。
(MgO)
 MgOは、ヤング率の向上に寄与し、失透温度、粘度等に影響を与える成分でもある。MgOの含有率は、15~30%の範囲に設定される。MgOの含有率は、17%以上、さらに18%以上、特に20%以上が好ましく、場合によっては21%以上、さらには22%以上であってもよい。MgOの含有率が高すぎると、液相温度が大きく上昇することがある。したがって、MgOの含有率は、29%以下が好ましく、場合によっては28%以下、さらには27%以下であってもよい。
 失透温度を液相温度よりも十分に低下させるために適したMgOの含有率は、18~30%、さらに20~28%である。
 耐クラック荷重を十分に大きくするために適したMgOの含有率は、17~30%、さらに18~26%、特に22~26%である。
(CaO)
 CaOは、耐水性等の維持に貢献し、失透温度、粘度等に影響を与える任意成分である。CaOの含有率は0~8%の範囲に設定される。適量のCaOの添加は液相温度を低下させる観点から好ましい。したがって、CaOは添加することが好ましく(含有率0%超)、その含有率は、0.1%以上、さらには0.12%以上が好ましく、場合によっては2%以上、さらには3%以上であってもよい。ただし、多すぎるCaOはヤング率を低下させることがある。したがって、CaOの含有率は、7%以下、さらには5%以下が好ましい。ヤング率及び耐クラック荷重の改善のために特に適しているCaOの含有率は、1%未満である。
<MgOとCaOとの合計>
 MgOとCaOとの含有率の合計は、18~35%、好ましくは20~30%の範囲に設定される。
<(Al23)/(MgO+CaO)>
 MgOとCaOの含有率の合計に対するAl23のモル比は、1未満に設定される。これにより、高いヤング率と高すぎない液相温度との両立が容易になる。モル比Al23/(MgO+CaO)は、0.3~0.9、特に0.35~0.85が好ましく、場合によっては0.4~0.7、さらには0.4~0.6の範囲であってもよい。ただし、耐クラック荷重の改善に特に適しているモル比Al23/(MgO+CaO)は、0.7以上1未満、さらに0.7以上0.9以下、特に0.8以上0.9以下である。
(B23
 B23は、ガラスの骨格を形成すると共に、失透温度、粘度等の特性に影響を与える任意成分である。B23の含有率は0~3%の範囲に設定される。微量のB23の添加は、失透温度の低下に寄与することがある。したがって、B23は添加することが好ましく(含有率0%超)、その含有率は、0.1%以上、特に0.3%以上が好ましく、場合によっては0.5%以上、さらには0.7%以上であってもよい。ただし、多すぎるB23はヤング率を低下させることがある。B23の含有率は、2.5%以下、さらに2%以下、特に1.8%以下が好ましく、場合によっては1.6%以下、さらに1.5%以下であってもよい。B23の含有率の好ましい範囲の一例は、0.1~1.6%である。
(Li2O)
 Li2Oは、ガラスの骨格を修飾する成分であり、液相温度、失透温度、粘度等の特性に影響を与える任意成分である。Li2Oの含有率は、0~3%の範囲に設定される。この範囲のLi2Oの添加は、失透温度の低下に効果がある。したがって、Li2Oは、添加することが好ましく(含有率0%超)、その含有率は、0.1%以上、さらには0.2%以上、特に0.3%以上が好ましく、場合によっては0.5%以上、さらには0.7%以上であってもよい。Li2Oの含有率が高すぎると、ヤング率が低下することがある。したがって、Li2Oの含有率は、2.5%以下、さらに2%以下、特に1.8%以下が好ましく、場合によっては1.6%以下、さらに1.5%以下であってもよい。Li2Oの含有率の好ましい範囲の一例は、0.2~2.5%であってNa2Oの含有率よりも高い範囲である。
<B23とLi2Oとの共存>
 B23とLi2Oとを共存させると(B23>0%、Li2O>0%)、ガラスの液相温度と失透温度とを適切に調整することが容易になる。B23とLi2Oとの含有率の合計は、0.1%以上、さらには0.5%を超えていること、特に0.7%以上が好ましく、場合によっては1%以上であってもよい。また、この合計は、5.5%以下、さらに5%以下、特に4%が好ましく、場合によっては3.5%以下であってもよい。
 B23とLi2Oとを適切な比で添加することが特性改善の観点からは有利である。B23/Li2Oにより示されるモル比は、0.2~5、さらには0.4~2.5、特に0.5~2、場合によっては0.8~1.25の範囲が好適である。
(Na2O)
 Na2Oは、Li2Oと同様、液相温度、失透温度、粘度等の特性に影響を与える任意成分である。ただし、Li2Oよりもヤング率を低下させる効果が大きいため、その含有率は0~0.2%の範囲に設定される。Na2Oは、基本的に含有させないことが望ましいが、ガラス融液の清澄のために0.2%を限度として、さらには0.15%を限度として、例えば0%を超え0.1%未満の範囲で添加すること好ましい。
<以上に説明した成分の合計>
 以上に説明した7成分(SiO2、Al23、MgO、CaO、B23、Li2O及びNa2O)の含有率の合計は、95%以上、さらには97%以上、特に98%以上、とりわけ99%以上であることが好ましく、場合によって99.5%、さらには99.9%を上回っていてもよく、100%であってもよい。7成分の合計が100%になる実施形態では、言い換えると、ガラス組成物が、SiO2、Al23、MgO、CaO、B23、Li2O及びNa2Oのみから構成される。
<追加成分>
 以上に説明した7成分以外の追加成分としては、以下を例示できる。ただし、追加成分が以下に限定されるわけではなく、追加成分の含有率の表示も例示である。
(K2O)
 K2Oも、Li2Oと同様、液相温度、失透温度、粘度等の特性に影響を与える任意成分であり、ガラス融液の清澄を促進する効果を奏する。ただし、Na2Oよりもヤング率を低下させる効果がさらに大きいため、その含有率は0~0.1%、さらに0~0.05%、特に0~0.03%の範囲に設定することが好ましい。
(SrO)
 SrOも、液相温度、失透温度、粘度等の特性に影響を与える任意成分である。ただし、SrOの添加によってもヤング率が低下することがある。また、多すぎるSrOはガラス融液の均質性を阻害することがある。したがって、SrOの含有率は、0~5%の範囲に設定することが好ましい。SrOの含有率は、3%以下、さらには1%以下、特に0.5%以下、とりわけ0.1%以下が好適である。また、SrOの含有率は、CaOの含有率との合計が8%以下、さらには6%以下、特に5%以下となるように設定することが好ましい。
(BaO)
 BaOも、液相温度、失透温度、粘度等の特性に影響を与える任意成分である。ただし、BaOを添加するとヤング率が著しく低下することがある。また、BaOは環境負荷や作業環境が大きい成分である。したがって、BaOは、実質的に含まないこととするのが好ましい。
(遷移金属酸化物等)
 遷移金属酸化物と呼ばれる遷移元素(周期表第3族~第11族)の酸化物も、追加成分として許容される。遷移金属酸化物としては、TiO2、ZrO2、Fe23、Y23、La23、CeO2を例示できる。第12族の元素の酸化物であるZnOも追加成分として許容される。これらの酸化物は、基本的には排除することが望ましいが、原料由来又は製造装置由来の不純物として不可避的に混入する場合がある。また、酸化物の種類によっては、その微量の添加が清澄剤等として効果を発揮する場合もある。第3族~第12族の元素の酸化物の含有率は、その合計により表示して、3%以下、さらには1%以下、特に0.5%以下が好ましく、必要があれば0.1%以下に制限してもよい。各遷移金属酸化物の含有率は、0.5%以下、特に0.3%以下、とりわけ0.1%以下であることが好ましい。
 本明細書において、ガラス組成物において複数の価数をとって存在する遷移元素の酸化物の含有率は、その金属の酸化数が最大である酸化物に換算して算出することとする。例えば、酸化鉄は、通常、Fe23又はFeOとしてガラス組成物中に存在する。したがって、FeOとして存在している酸化鉄はFe23に換算され、Fe23として存在している酸化鉄と合算して、酸化鉄の含有率(慣用的に「T-Fe23」と表記される)が算出される。
(その他の成分)
 上記以外の追加の成分としては、SnO2、Sb23、Sb25、SO3、Cl及びFを例示できる。これらの成分は清澄剤として作用し得る。また別の追加の成分として、Ga23及びP25を例示できる。この欄に例示したSnO2からP25までの各成分の含有率も、0.5%以下、特に0.3%以下、とりわけ0.1%以下であることが好ましい。
<ガラス組成物の好ましい形態の例示>
 本発明の一実施形態において、ガラス組成物は、希土類元素の酸化物を実質的に含まない。本発明の別の一実施形態において、ガラス組成物は、0~0.5%のT-Fe23を含み、MgO、CaO及びFeOを除いて、2価の金属の酸化物を実質的に含まない。本発明のまた別の一実施形態において、ガラス組成物は、Li2O及びNa2Oを除いて、アルカリ金属酸化物を実質的に含まない。本発明のさらに別の一実施形態において、ガラス組成物は、TiO2及びZrO2を実質的に含まない。本発明のまたさらに別の一実施形態において、ガラス組成物は、窒化物の含有率が10重量%以下であり、好ましくは窒化物を実質的に含まない。
 本発明の一実施形態において、ガラス組成物は、上述の7成分(SiO2、Al23、MgO、CaO、B23、Li2O及びNa2O)と追加の5成分(K2O、SrO、TiO2、ZrO2及びT-Fe23)の含有率の合計が、99%以上、さらには99.5%以上、特に99.9%以上、とりわけ99.95%以上、場合によっては100%である。この形態において、追加の5成分の含有率は、K2O:0~0.05%、SrO:0~5%、TiO2:0~0.1%、ZrO2:0~0.1%、T-Fe23:0~0.5%である。
 本発明の一実施形態において、ガラス組成物は、上述の7成分(SiO2、Al23、MgO、CaO、B23、Li2O及びNa2O)と追加の3成分(K2O、TiO2及びT-Fe23)の含有率の合計が、99%以上、さらには99.5%以上、特に99.9%以上、とりわけ99.95%以上、場合によっては100%である。この形態において、追加の3成分の含有率は、K2O:0~0.05%、TiO2:0~0.1%、T-Fe23:0~0.5%である。
 本発明の一実施形態において、ガラス組成物は、
  SiO2  53~60%
  Al23  11~15%
  MgO   18~30%
  CaO   0~5%
  B23      0.2~1.5%
  Li2O    0.5~2.5%
  Na2O    0~0.2%
を含み、
 Al23/(MgO+CaO)により算出されるモル比が0.3~0.5である。
 このガラス組成物におけるMgOとCaOとの含有率の合計は18~35%の範囲にある。この実施形態は、失透温度を液相温度等との関係において好ましい範囲に調整することに特に適している。
 本発明の一実施形態において、ガラス組成物は、
  SiO2  53~60%
  Al23  15~26%
  MgO   17~30%
  CaO   0~5%
  B23      0.2~3%
  Li2O    0.2~1.5%
  Na2O    0~0.2%
を含み、
 Al23/(MgO+CaO)により算出されるモル比が0.5以上1未満、好ましくは0.7~0.9である。このガラス組成物におけるMgOとCaOとの含有率の合計は18~35%の範囲にある。この実施形態は、耐クラック荷重の向上に特に適している。
[ガラス組成物の特性]
(比重)
 本発明の一実施形態において、ガラス組成物の比重は、3.0以下であり、好ましくは2.8以下であり、より好ましくは2.7以下である。比重の下限は、特に限定されないが、2.5以上であってよい。希土類元素を相当量含む特許文献1に開示されたガラス組成物の比重は3を上回る。
(ヤング率)
 本発明の一実施形態において、ガラス組成物のヤング率は、98GPa以上であり、好ましくは100GPa以上である。ヤング率の上限は、特に限定されないが、110GPa以下、さらには105GPa以下であってよい。ヤング率の測定方法は、実施例の欄において説明する。ヤング率が高いガラス組成物は、引張応力に対する変形の程度が小さいガラス繊維の提供に適している。
(耐クラック荷重)
 本発明の一実施形態において、ガラス組成物の耐クラック荷重は、300g以上であり、好ましくは400g以上であり、より好ましくは500g以上である。驚くべきことに、本発明の一実施形態によれば、耐クラック荷重が特別に高い、例えば900g以上、さらには1000g以上、特に1200g以上のガラス組成物を提供することも可能である。耐クラック荷重の上限は、特に限定されないが、2000g以下であってよい。耐クラック荷重の測定方法は、実施例の欄において説明する。耐クラック荷重が大きいガラス組成物は、引っ張り応力や曲げ応力に対する強度が高いガラス繊維の提供に適している。
 本発明の別の一実施形態において、ガラス組成物は、その耐クラック荷重が300~550gの範囲にあり、かつその失透温度TLが1250~1350℃である。この組成物は、強度が高いガラス繊維の量産に適している。
(高温粘性と失透温度との関係)
 本発明の一実施形態において、ガラス組成物の失透温度TLは、そのガラス組成物の融液の液相粘度η(単位:dPa・s)の対数(logη)が2となる温度T2よりも20℃以上、好ましくは30℃以上、より好ましくは50℃以上、特に好ましくは100℃以上低い。また、本発明の一実施形態において、ガラス組成物の失透温度TLは、そのガラス組成物の融液の液相粘度ηの対数(logη)が3となる温度T3よりも高いが、同様の定義によるT2.5よりも低い。失透温度TL及び液相粘度ηの測定方法は、実施例の欄において説明する。
 本発明の一実施形態において、失透温度TLは、1450℃以下であり、好ましくは1400℃以下であり、より好ましくは1380℃以下、特に好ましくは1350℃以下である。
[ガラス繊維]
 以上に説明したガラス組成物は、ガラス繊維としての利用に適している。本発明は、その別の側面から、本発明によるガラス組成物からなるガラス繊維を提供する。ガラス繊維は、ガラス長繊維であってもガラス短繊維であってもよい。ガラス長繊維は、粘度を制御したガラス融液をノズルから流出させ、巻き取り機によって巻き取って製造される。この連続繊維は、使用時に適切な長さに切断される。ガラス短繊維は、高圧空気、遠心力等によってガラス融液を吹き飛ばしながら製造される。ガラス短繊維は、綿状の形態を有しているためにグラスウールと呼ばれることもある。
[ガラス繊維製品]
 本発明によるガラス長繊維及びガラス短繊維は、さらに種々のガラス繊維製品へと加工して使用することができる。ヤング率及び耐クラック荷重が大きいガラス繊維が特に望まれているガラス繊維製品としては、ゴム補強用コードを挙げることができる。ゴム補強コードは、複数本のガラス長繊維(フィラメントと呼ばれる)を束ねたストランドを備えている。各ストランドは、例えば100~2000本、典型的には200~600本のガラスフィラメントから構成されている。各ストランドは、ゴムとの接着性を改善するための被覆層によって被覆されることが多い。被覆層を形成するための処理液及びその方法は、特許文献1を始めとする文献に詳細に説明されているため、ここでは説明を省略する。
 ヤング率及び耐クラック荷重が大きいというガラス繊維の特徴が望まれている別のガラス繊維製品としては、ガラス繊維不織布を挙げることができる。ガラス繊維不織布は、ガラス繊維によって構成された不織布であって、その一例は、微小なガラス短繊維を抄紙することによって製造されたガラスペーパーである。一般にガラス繊維不織布には大きな強度が期待されている。特に、燃料電池の電解質膜の補強材、及び二次電池を始めとする電気化学デバイスのセパレータの用途においては、ガラス繊維不織布には高い空隙率が求められることが多い。このため、これらの用途では特に、ガラス繊維の強度向上への期待が大きい。
 本発明は、その別の側面から、本発明によるガラス繊維を含むガラス繊維製品を提供する。以上に説明したとおり、ガラス繊維製品の好ましい例としては、ガラス長繊維が束ねられたストランドを備えたゴム補強用コード、及びガラス短繊維を含むガラス繊維不織布が挙げられる。
[ガラス粒子状製品]
 以上に説明したガラス組成物は、ガラス繊維だけでなく、粒子状ガラス、特にガラスフレークとしての使用にも適している。ガラスフレークは、鱗片状のガラスであり、その大きさは、例えば平均厚さ2~5μm、平均粒径10~4000μm(特に10~1000μm)である。ガラスフレークは、ブロー法、ロータリー法等により、溶融したガラスから成形され量産されている。ガラスフレークに代表される粒子状ガラスは、母材の強度を向上させるための充填剤として母材に混合して使用されることがある。代表的な母材はプラスチックである。特に近年はプラスチック部品の小型化が進み、部品の寸法安定性や強度のさらなる向上が求められている。このため、充填剤として使用される粒子状ガラスにも、ヤング率が高く、耐クラック荷重が大きいガラス組成物の使用が望ましい。粒子状ガラスの形状は、典型的には鱗片状であるが、「粒子状」(最大径5mm以下)に相当する限り、その形状は問わない。
 図1に、ゴム補強用コードを含むゴムベルトの一例を示す。ゴムベルト1は、いわゆる歯付きベルトの形状を有し、マトリクスゴム3と、マトリクスゴム3内に埋め込まれた複数のゴム補強用コード2とを備えている。ゴム補強用コード2は、ゴムベルト1の長手方向、言い換えると「歯」となる突起部分4が横断するベルト幅方向に直交する方向に沿って、互いに平行に配置されている。突起部分4が形成されたゴムベルト1の表面には、摩耗を抑制する等の目的で歯布5が貼り付けられている。
 以下、実施例により本発明をより具体的に説明する。
 表1及び2に示した組成となるようにガラス原料を調合し、1500~1600℃に保持した電気炉内で4時間溶融した。溶融時には、ガラスの均質性を確保するため、石英ガラス製の攪拌棒で複数回攪拌を行った。その後、溶融したガラスをステンレス製の枠内に流出させて板状のガラスを作製した。板状のガラスは、各ガラスのガラス転移点+20~50℃の温度で2時間以上保持した後、約8時間程度かけて室温まで放冷することで徐冷し、測定対象の試料ガラスとした。こうして得た試料ガラスを用いて以下の特性を測定した。
(密度)
 密度は、試料ガラスの小片について、水を浸液として用いたアルキメデス法により測定した。
(ヤング率)
 ヤング率は、日本工業規格(JIS)R 1602-1995に記載された超音波パルス法に従って測定した。各試験片は5mm×25mm×35mmの直方体とした。また、測定は、室温、大気中で実施した。用いた装置は、Panametrics製model 25DLPlusである。
 なお、同一のガラス組成物からなるガラス繊維とバルクガラスとでは、通常、ガラス繊維が相対的に低い弾性率を有することが知られている。これは、ガラス融液から成形される際にガラス繊維がはるかに急速に冷却されるためと考えられている。しかし、ガラス繊維の弾性率とバルクガラスの弾性率(上記JISにより測定される弾性率)との間には正の相関があるため、上記JISによる測定値を用いてガラス繊維或いはガラス繊維として使用するためのガラス組成物の特性を評価することは妥当である。粒子状ガラスについても、バルクガラスの弾性率の評価結果を参照して適切なガラス組成を選択することには妥当性がある。次段落で述べる耐クラック荷重についても同様である。
(耐クラック荷重)
 耐クラック荷重は、鏡面研磨した試料ガラスの表面にビッカース圧子を押し当てる試験により測定した。用いた装置はアカシ製作所製ビッカース硬度計である。試料ガラスは、平行平面を有する板状に加工した。また、圧子を押し当てる平面は、酸化セリウム研磨剤の懸濁液を用いて鏡面に研磨した。当該鏡面研磨面にビッカース圧子を15秒間押し当てて、除荷5分後に、試料ガラスの表面に残る正方形の圧痕においてその頂点からクラックが生じているかを計測した。クラックが生じたか否かは、ビッカース硬度計に組み込まれている顕微鏡を用いて観察して判断した。顕微鏡の倍率は100倍である。この計測を10回実施し、クラックが生じた頂点の数を計測した頂点の合計数40で除してクラック発生確率Pを算出した。以上の計測を、P=100%に達するまで、荷重50g、100g、200g、300g、500g、1000g、2000gの順に荷重を変えて繰り返し、各荷重でのクラック発生確率Pを求めた。こうして、P=50%を跨いで隣り合う2つの荷重WH及びWLとその時のクラック発生確率PH及びPL(PH<50%<PL)とを得た。荷重及びクラック発生確率をそれぞれ横軸及び縦軸として2点(WH,PH)、(WL,PL)を通る直線を描き、P=50%となる荷重を耐クラック荷重とした。
(失透温度TL)
 試料ガラスを粉砕し、目開き2.380mmの篩を通り、目開き1.000mmの篩に残ったガラス粒を集め、そのガラス粒をエタノールに浸漬して超音波洗浄した後、恒温槽で乾燥させた。このガラス粒30~32gを幅12mm、長さ200mm、深さ10mmの白金ボート上にほぼ一定の厚さになるように入れて測定試料とした。この白金ボートを950~1550℃の温度勾配を有する電気炉(温度勾配炉)内に2時間保持した。測定試料中に分布する結晶相(失透)が観察された部位の最高温度を液相温度TLとして評価した。
(T2、T2.5、T3)
 T2、T2.5、及びT3は、試料ガラスについて白金球引上げ法に25℃間隔で各温度での粘度を計測し、その中間の粘度はFulcherの式により算出することにより、測定した。
 得られた各サンプルについて上述した特性を測定した。結果を表1及び2に示す。各実施例からは、比重が高すぎず、ヤング率が高く、耐クラック荷重が大きいガラス組成物が得られた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 

Claims (17)

  1.  モル%で表示して、
      SiO2  50~65%
      Al23  7.5~26%
      MgO   15~30%
      CaO   0~8%
      B23      0~3%
      Li2O    0~3%
      Na2O    0~0.2%
    を含み、
     MgOとCaOとの含有率の合計が18~35モル%の範囲にあり、
     Al23/(MgO+CaO)により算出されるモル比が1未満である、
    ガラス組成物。
  2.  JIS R1602-1995に記載された超音波パルス法に基づいて測定したヤング率が98GPa以上である、請求項1に記載のガラス組成物。
  3.   B23の含有率が0.1~1.6モル%である、請求項1又は2に記載のガラス組成物。
  4.   Li2Oの含有率が0.2~2.5モル%であってNa2Oの含有率よりも高い、請求項1~3のいずれか1項に記載のガラス組成物。
  5.   SiO2の含有率が50~60モル%である、請求項1~4のいずれか1項に記載のガラス組成物。
  6.   SiO2、Al23、MgO、CaO、B23、Li2O及びNa2Oの含有率の合計が95モル%以上である、請求項1~5のいずれか1項に記載のガラス組成物。
  7.  SiO2、Al23、MgO、CaO、B23、Li2O、Na2O、K2O、SrO、TiO2、ZrO2及びT-Fe23の含有率の合計が99モル%以上である、請求項1~6のいずれか1項に記載のガラス組成物。
     ただし、K2OからT-Fe23までの含有率は、モル%で表示して、K2O:0~0.05%、SrO:0~5%、TiO2:0~0.1%、ZrO2:0~0.1%、T-Fe23:0~0.5%である。
  8.   0~0.5モル%のT-Fe23を含み、MgO、CaO及びFeOを除いて、2価の金属の酸化物を実質的に含まない、請求項1~7のいずれか1項に記載のガラス組成物。
  9.   Li2O及びNa2Oを除いて、アルカリ金属酸化物を実質的に含まない、請求項1~8のいずれか1項に記載のガラス組成物。
  10.   TiO2及びZrO2を実質的に含まない、請求項1~9のいずれか1項に記載のガラス組成物。
  11.   モル%で表示して、
      SiO2  53~60%
      Al23  11~15%
      MgO   18~30%
      CaO   0~5%
      B23      0.2~1.5%
      Li2O    0.5~2.5%
      Na2O    0~0.2%
    を含み、
     Al23/(MgO+CaO)により算出されるモル比が0.3~0.5である、請求項1~10のいずれか1項に記載のガラス組成物。
  12.   モル%で表示して、
      SiO2  53~60%
      Al23  15~26%
      MgO   17~30%
      CaO   0~5%
      B23      0.2~3%
      Li2O    0.2~1.5%
      Na2O    0~0.2%
    を含み、
     Al23/(MgO+CaO)により算出されるモル比が0.5以上1未満である、請求項1~10のいずれか1項に記載のガラス組成物。
  13.   請求項1~12のいずれか1項に記載のガラス組成物により構成されたガラス長繊維。
  14.  請求項13に記載のガラス長繊維が束ねられたストランドを備えたゴム補強用コード。
  15.   請求項1~12のいずれか1項に記載のガラス組成物により構成されたガラス短繊維。
  16.  請求項15に記載のガラス短繊維を含むガラス繊維不織布。
  17.   請求項1~12のいずれか1項に記載のガラス組成物により構成された粒子状ガラス。
PCT/JP2017/036810 2017-06-29 2017-10-11 ガラス組成物及びこれを用いたガラス製品 WO2019003464A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP23191703.0A EP4276079A3 (en) 2017-06-29 2017-10-11 Glass composition and glass product using same
US16/624,794 US11760684B2 (en) 2017-06-29 2017-10-11 Glass composition and glass product using same
EP17916371.2A EP3647286B1 (en) 2017-06-29 2017-10-11 Glass composition and glass product using same
CN202310265559.6A CN116282906A (zh) 2017-06-29 2017-10-11 玻璃组合物和使用了该玻璃组合物的玻璃制品
CN201780092528.8A CN110809565B (zh) 2017-06-29 2017-10-11 玻璃组合物和使用了该玻璃组合物的玻璃制品
JP2018505048A JP6343112B1 (ja) 2017-06-29 2017-10-11 ガラス組成物及びこれを用いたガラス製品
BR112019027258-5A BR112019027258B1 (pt) 2017-06-29 2017-10-11 Composição de vidro, fibras de vidro longas e curtas, cabo reforçado com borracha, tecido não tecido de fibra de vidro e vidro particulado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127967 2017-06-29
JP2017-127967 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003464A1 true WO2019003464A1 (ja) 2019-01-03

Family

ID=63579928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036810 WO2019003464A1 (ja) 2017-06-29 2017-10-11 ガラス組成物及びこれを用いたガラス製品

Country Status (5)

Country Link
US (1) US11760684B2 (ja)
EP (2) EP4276079A3 (ja)
JP (2) JP6391875B1 (ja)
CN (1) CN110809565B (ja)
WO (1) WO2019003464A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214512B2 (en) 2017-12-19 2022-01-04 Owens Coming Intellectual Capital, LLC High performance fiberglass composition
WO2023100996A1 (ja) * 2021-12-02 2023-06-08 日本板硝子株式会社 ガラス繊維ストランド

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131222A1 (ja) * 2020-12-15 2022-06-23 日本板硝子株式会社 補強用ガラス繊維、チョップドストランド、繊維シート及びロッド
JP2023082636A (ja) * 2021-12-02 2023-06-14 日本板硝子株式会社 ガラス繊維
TW202330430A (zh) * 2021-12-02 2023-08-01 日商日本板硝子股份有限公司 玻璃纖維
CN116390896A (zh) * 2022-05-31 2023-07-04 日本板硝子株式会社 玻璃纤维及玻璃纤维用组合物
JP7235915B1 (ja) 2022-05-31 2023-03-08 日本板硝子株式会社 ガラス繊維およびガラス繊維用組成物
JP7235928B1 (ja) 2022-11-16 2023-03-08 日本板硝子株式会社 ガラス繊維およびガラス繊維用組成物
CN116282934B (zh) * 2023-02-24 2023-08-15 泰山玻璃纤维有限公司 高镁高比模量玻璃纤维组合物及玻璃纤维
CN117447085A (zh) * 2023-10-26 2024-01-26 泰安顺茂新材料技术有限公司 一种高模量耐侵蚀玻璃纤维组合物及玻璃纤维

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126548A (en) * 1979-03-20 1980-09-30 Ohara Inc Glass for bead
JPH0729815B2 (ja) 1987-01-16 1995-04-05 株式会社島津製作所 ガラス繊維
JPH1121147A (ja) 1997-07-02 1999-01-26 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
JP2000313634A (ja) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法、ならびにそれを用いた情報記録媒体用基板、情報記録媒体および情報記録装置
WO2006057405A1 (ja) 2004-11-29 2006-06-01 Nippon Sheet Glass Company, Limited ゴム補強用コードとそれを用いたゴムベルト
JP2011518748A (ja) * 2008-04-23 2011-06-30 サン−ゴバン テクニカル ファブリックス ヨーロッパ ガラスストランド、及びガラスストランドを含む有機及び/又は無機マトリックスを有する複合材料
WO2011155362A1 (ja) * 2010-06-08 2011-12-15 日東紡績株式会社 ガラス繊維
US20150259243A1 (en) * 2012-10-18 2015-09-17 Ocv Intellectual Capital, Llc Glass composition for the manufacture of fibers and process
WO2016040425A1 (en) * 2014-09-09 2016-03-17 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245411B1 (en) * 1959-09-25 2001-06-12 Kabushiki Kaisha Ohara High rigidity glass-ceramic substrate for a magnetic information storage medium
JPS6071540A (ja) * 1983-09-26 1985-04-23 Ohara Inc 基板用ガラス
JPH0729815A (ja) 1993-07-14 1995-01-31 Ushio Inc マスクとワークとの位置合わせ装置およびそれを使用した位置合わせ方法
JP2000236147A (ja) 1999-02-12 2000-08-29 Hoya Corp ガラス基板およびその製造方法
JP4450460B2 (ja) 1999-02-25 2010-04-14 Hoya株式会社 結晶化ガラスおよびその製造方法、ならびにそれを用いた情報記録媒体用基板、情報記録媒体および情報記録装置
CN101549958B (zh) * 2009-05-05 2011-01-26 中材科技股份有限公司 高性能玻璃纤维用组成物
CN101575172A (zh) * 2009-06-01 2009-11-11 巨石集团有限公司 一种玻璃纤维组合物
CN101580344B (zh) 2009-06-29 2012-10-17 巨石集团有限公司 一种高强度玻璃纤维组合物
JP5721534B2 (ja) 2010-06-23 2015-05-20 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
US9278883B2 (en) 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
US9944551B2 (en) * 2015-05-07 2018-04-17 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126548A (en) * 1979-03-20 1980-09-30 Ohara Inc Glass for bead
JPH0729815B2 (ja) 1987-01-16 1995-04-05 株式会社島津製作所 ガラス繊維
JPH1121147A (ja) 1997-07-02 1999-01-26 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
JP2000313634A (ja) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法、ならびにそれを用いた情報記録媒体用基板、情報記録媒体および情報記録装置
WO2006057405A1 (ja) 2004-11-29 2006-06-01 Nippon Sheet Glass Company, Limited ゴム補強用コードとそれを用いたゴムベルト
JP2011518748A (ja) * 2008-04-23 2011-06-30 サン−ゴバン テクニカル ファブリックス ヨーロッパ ガラスストランド、及びガラスストランドを含む有機及び/又は無機マトリックスを有する複合材料
WO2011155362A1 (ja) * 2010-06-08 2011-12-15 日東紡績株式会社 ガラス繊維
US20150259243A1 (en) * 2012-10-18 2015-09-17 Ocv Intellectual Capital, Llc Glass composition for the manufacture of fibers and process
WO2016040425A1 (en) * 2014-09-09 2016-03-17 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214512B2 (en) 2017-12-19 2022-01-04 Owens Coming Intellectual Capital, LLC High performance fiberglass composition
WO2023100996A1 (ja) * 2021-12-02 2023-06-08 日本板硝子株式会社 ガラス繊維ストランド

Also Published As

Publication number Publication date
JP6391875B1 (ja) 2018-09-19
BR112019027258A2 (pt) 2020-07-14
EP3647286A4 (en) 2021-03-24
JP2019011234A (ja) 2019-01-24
US11760684B2 (en) 2023-09-19
EP3647286B1 (en) 2023-11-22
US20200140320A1 (en) 2020-05-07
CN110809565B (zh) 2023-03-31
EP3647286A1 (en) 2020-05-06
JP6483901B2 (ja) 2019-03-13
JP2019011244A (ja) 2019-01-24
EP4276079A2 (en) 2023-11-15
CN110809565A (zh) 2020-02-18
EP4276079A3 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2019003464A1 (ja) ガラス組成物及びこれを用いたガラス製品
JP6995626B2 (ja) 高いホウ素アルミノシリケートの組成の割には改善された低い熱膨張係数を有する、改善された低い誘電率の繊維を作製するための、MgO、ZnO、および希土類酸化物の使用
EP2753590B1 (en) Glass compositions and fibers made therefrom
EP3071526B1 (en) Ion exchangeable high damage resistance glasses
TW201726575A (zh) 化學強化玻璃及化學強化用玻璃
HU217662B (hu) Üvegszerű műrost szálak és termékek
JP2014101270A (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP7507550B2 (ja) 蓄積可能な引張応力が増加していることが好ましいガラス、蓄積可能な引張応力が増加していることが好ましいガラスを有する化学的に強化されたガラス製品、それを製造する方法、およびその使用
JP6343112B1 (ja) ガラス組成物及びこれを用いたガラス製品
CN109982982B (zh) 玻璃纤维用玻璃组合物、玻璃纤维和玻璃纤维的制造方法
JP3132234B2 (ja) ガラス長繊維
WO2016093212A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP2013513547A (ja) 屈折率が制御された高強度ガラス繊維、該ガラス繊維を製造するための組成物及び該ガラス繊維から形成される複合材料
CN111433166B (zh) 玻璃纤维及其制造方法
JP2020186138A (ja) ガラス繊維用ガラス組成物
EP4180400A1 (en) Glass and chemically strengthened glass
EP4393894A1 (en) Glass fiber and composition for glass fiber
WO2023190980A1 (ja) ガラス繊維
BR112019027258B1 (pt) Composição de vidro, fibras de vidro longas e curtas, cabo reforçado com borracha, tecido não tecido de fibra de vidro e vidro particulado
WO2024106292A1 (ja) ガラス繊維およびガラス繊維用組成物
JP2024007454A (ja) ガラス組成物
TW202421595A (zh) 玻璃纖維及玻璃纖維用組成物
TW202402701A (zh) 玻璃纖維
JP2024072752A (ja) ガラス繊維およびガラス繊維用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505048

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 122021022668

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019027258

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017916371

Country of ref document: EP

Effective date: 20200129

ENP Entry into the national phase

Ref document number: 112019027258

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191219