WO2018220806A1 - リラクタンスモータ、圧縮機および空気調和装置 - Google Patents

リラクタンスモータ、圧縮機および空気調和装置 Download PDF

Info

Publication number
WO2018220806A1
WO2018220806A1 PCT/JP2017/020536 JP2017020536W WO2018220806A1 WO 2018220806 A1 WO2018220806 A1 WO 2018220806A1 JP 2017020536 W JP2017020536 W JP 2017020536W WO 2018220806 A1 WO2018220806 A1 WO 2018220806A1
Authority
WO
WIPO (PCT)
Prior art keywords
reluctance motor
slit
rotor
winding
motor according
Prior art date
Application number
PCT/JP2017/020536
Other languages
English (en)
French (fr)
Inventor
石川 淳史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019521886A priority Critical patent/JP6789390B2/ja
Priority to PCT/JP2017/020536 priority patent/WO2018220806A1/ja
Priority to US16/603,374 priority patent/US11264847B2/en
Priority to EP17911412.9A priority patent/EP3633834B1/en
Publication of WO2018220806A1 publication Critical patent/WO2018220806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • H02K1/325Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium between salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings

Definitions

  • the present invention relates to a reluctance motor, and a compressor and an air conditioner using the reluctance motor.
  • a reluctance motor (more specifically, a synchronous reluctance motor) has been developed in order to reduce power consumption and reduce manufacturing costs.
  • a reluctance motor uses a reluctance torque by using a reluctance torque by forming a slit in a magnetic pole of a rotor without using a permanent magnet.
  • Patent Document 1 and Patent Document 2 disclose a technique for improving the motor output by attaching a permanent magnet to a reluctance motor rotor in an auxiliary manner.
  • Patent Document 3 discloses a technique for suppressing a decrease in reluctance torque due to magnetic saturation by dividing a rotor of a reluctance motor into a permanent magnet rotor portion and a reluctance rotor portion.
  • JP2013-192359A JP 2011-83066 A (see FIG. 1) JP 2004-88852 A (see FIG. 2)
  • the reluctance motor in order to reduce the manufacturing cost of the reluctance motor, it is desirable not to use a permanent magnet.
  • the reluctance motor in order to obtain a high torque only by the reluctance torque, the reluctance motor must be enlarged, and it is difficult to accommodate it in a limited space inside the compressor.
  • the refrigerant flows in the axial direction through a through hole (air hole) formed in the rotor, but it is necessary to increase the refrigerant flow rate as the torque is improved.
  • the present invention has been made to solve the above-described problems, and can be stored in a limited space in a compressor, can generate high torque, and can provide a sufficient reluctance flow rate.
  • An object is to provide a motor.
  • the reluctance motor of the present invention is used for a compressor.
  • a reluctance motor has a rotor core having an annular outer periphery centered on an axis, a rotor having a plurality of magnetic poles along the outer periphery, no permanent magnet, and a rotor outside in a radial direction centered on the axis.
  • a stator having a winding wound around the stator core by wave winding.
  • Each of the plurality of magnetic poles has a first slit formed in the rotor core and a second slit formed inside the first slit in the radial direction.
  • the stator core has a refrigerant passage through which the refrigerant flows in the direction of the axis.
  • the winding is wound by wave winding, the coil end portion can be made small. Therefore, the rotor core and the stator core can be enlarged in the axial direction without enlarging the entire reluctance motor, and thereby high torque can be obtained. Further, since the refrigerant passage is provided in the stator core, the flow rate of the refrigerant in the compressor can be increased.
  • FIG. 3 is a cross-sectional view showing the rotor of the motor according to the first embodiment.
  • FIG. 3 is an enlarged view showing a part of the rotor of the motor according to the first embodiment.
  • FIG. 3 is a schematic diagram showing an enlargement of the periphery of the teeth of the motor according to the first embodiment.
  • 1 is a perspective view showing a motor according to a first embodiment.
  • FIG. 3 is a perspective view showing a winding according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an enlarged part of the winding according to the first embodiment.
  • FIG. 3 is a perspective view showing one winding portion of the winding according to the first embodiment.
  • FIG. 3 is a perspective view showing two winding portions of the winding according to the first embodiment.
  • FIG. 4 is a perspective view showing a winding portion inserted into the same slot of the stator of the first embodiment.
  • the motor of Embodiment 1 it is a figure which shows the analysis result of magnetic flux distribution when not providing a groove part in a rotor.
  • the motor of Embodiment 1 it is a figure which shows the analysis result of magnetic flux distribution at the time of providing a groove part in a rotor.
  • FIG. 6 is a cross-sectional view showing a motor according to a second embodiment.
  • FIG. 6 is an enlarged view showing a part of a rotor of a motor according to a second embodiment.
  • FIG. 6 is a cross-sectional view showing a motor according to a third embodiment.
  • FIG. 6 is an enlarged view showing a part of a rotor of a motor according to a third embodiment.
  • FIG. 6 is a cross-sectional view showing a motor according to a fourth embodiment. It is a longitudinal cross-sectional view which shows the compressor which can apply the motor of each embodiment. It is a figure which shows the air conditioning apparatus provided with the compressor of FIG.
  • FIG. 1 is a cross-sectional view showing a motor 100 according to the first embodiment.
  • the motor 100 is a brushless DC motor, and is used for a compressor 500 (FIG. 20) described later.
  • the motor 100 is a reluctance motor (more specifically, a synchronous reluctance motor) that generates a driving force by a reluctance torque without using a permanent magnet.
  • the motor 100 includes a stator 1 and a rotor 3 that is rotatably provided inside the stator 1. An air gap is provided between the stator 1 and the rotor 3.
  • the stator 1 is incorporated on the inner peripheral surface 41 side of the cylindrical shell 4 of the compressor 500.
  • the rotor 3 has a cylindrical rotor core 30.
  • the rotor core 30 is formed by stacking laminated steel plates (magnetic steel plates) having a thickness of 0.25 to 0.5 mm, for example, in the direction of the rotation axis and fixed by caulking or the like.
  • a circular shaft hole 37 is formed at the radial center of the rotor core 30.
  • a shaft 38 that is a rotating shaft is fixed to the shaft hole 37 by press-fitting.
  • An axis C ⁇ b> 1 that is the central axis of the shaft 38 forms the rotation axis of the rotor 3.
  • the direction of the axis C1 of the shaft 38 is referred to as “axial direction”.
  • the circumferential direction around the axis C1 (indicated by an arrow R1 in FIG. 1 and the like) is referred to as “circumferential direction”.
  • a radial direction centered on the axis C1 is referred to as a “radial direction”.
  • FIG. 2 is a cross-sectional view showing the rotor 3.
  • the rotor 3 has an annular outer peripheral surface 30a (outer periphery) extending in the circumferential direction, and has six magnetic poles in the circumferential direction.
  • the number of poles P of the rotor 3 is 6.
  • the symbols P1, P2, P3, P4, P5, and P6 are attached to the six magnetic poles.
  • the number of poles P is not limited to 6, but may be 2 or more.
  • the center position in the circumferential direction of each magnetic pole is the pole center.
  • there is a gap (indicated by a symbol M in FIG. 2).
  • a first slit 31 is formed along the outer periphery of the rotor core 30.
  • a second slit 32 is formed on the radially inner side of the first slit 31.
  • the first slit 31 and the second slit 32 correspond to one magnetic pole. In other words, each of the six magnetic poles has the first slit 31 and the second slit 32.
  • the first slit 31 and the second slit 32 are also referred to as a flux barrier.
  • the first slit 31 has an arc shape in which a central portion 31a in the circumferential direction protrudes radially inward from both end portions 31b in the circumferential direction.
  • the second slit 32 has a circular arc shape in which a central portion 32a in the circumferential direction protrudes radially inward from both end portions 32b in the circumferential direction.
  • the central portion 31a of the first slit 31 and the central portion 32a of the second slit 32 are on the same axis (radial axis) passing through the axis C1. is there.
  • This axis corresponds to the q-axis (that is, the center line of the magnetic pole).
  • the radial axis passing between the magnetic poles adjacent in the circumferential direction corresponds to the d-axis (that is, the center line between the poles).
  • FIG. 3 is an enlarged view showing a portion including one magnetic pole of the rotor core 30.
  • Each of the first slits 31 has an arcuate outer peripheral side edge 311 and an inner peripheral side edge 312. From the stator 1 between the first slit 31 and the outer peripheral surface 30a of the rotor core 30 (more specifically, between the outer peripheral side edge 311 of the first slit 31 and the outer peripheral surface 30a of the rotor core 30). A region B1 through which the magnetic flux flows is formed.
  • Each of the second slits 32 has an arcuate outer peripheral side edge 321 and an inner peripheral side edge 322. Between the first slit 31 and the second slit 32 (more specifically, between the inner peripheral side edge 312 of the first slit 31 and the outer peripheral side edge 321 of the second slit 32). The region B2 through which the magnetic flux from the stator 1 flows is formed.
  • the first slit 31 and the second slit 32 of the rotor core 30 cause a difference between the d-axis inductance Ld and the q-axis inductance Lq, and reluctance torque is generated.
  • an outer peripheral bridge that is a thin portion is formed between the end 31 b of the first slit 31 and the outer peripheral surface 30 a of the rotor core 30.
  • an outer peripheral bridge that is a thin portion is formed between the end portion 32 b of the second slit 32 and the outer peripheral surface 30 a of the rotor core 30.
  • the thickness of the outer bridge is, for example, the same as the thickness of one laminated steel plate.
  • a circular shaft hole 37 that fits into the shaft 38 is formed in the central portion of the rotor core 30 in the radial direction.
  • a groove portion 35 is formed on the outer side in the radial direction from the outer peripheral surface of the shaft hole 37.
  • the groove portion 35 penetrates the rotor core 30 in the axial direction.
  • the radially outer end 35 a of the groove 35 is close to the center 32 a of the second slit 32.
  • the shortest distance between the end 35a of the groove 35 and the second slit 32 is, for example, the same as the thickness of one laminated steel plate.
  • the rotor core 30 has the same number of grooves 35 as the number of poles P formed radially.
  • the number of poles P is 6, six groove portions 35 are formed.
  • the circumferential position of each groove 35 corresponds to each magnetic pole.
  • the center line of the groove part 35 (the radial line that defines the circumferential center of the groove part 35) coincides with the center line of the magnetic pole.
  • the groove part 35 constitutes a refrigerant passage through which the refrigerant flows.
  • the groove part 35 is formed continuously with the shaft hole 37, it may be spaced apart from the shaft hole 37 radially outward.
  • the number of the groove portions 35 is not limited to the same number as the number of poles P, and may be one or more.
  • the stator 1 includes a stator core 10 and a winding 2 (FIG. 5) wound around the stator core 10 by wave winding.
  • the stator core 10 is formed by, for example, laminating steel sheets (magnetic steel sheets) having a thickness of 0.25 to 0.5 mm, which are laminated in the axial direction and fixed by a caulking portion 17.
  • the stator core 10 includes an annular yoke portion 11 extending in the circumferential direction and a plurality of teeth 12 extending radially inward from the yoke portion 11.
  • a slot 13 is formed between the teeth 12 adjacent in the circumferential direction.
  • the slot 13 is a portion that accommodates the winding 2 wound around the tooth 12 and extends in the radial direction.
  • the number of teeth 12 and the number of slots 13 are the same as each other, and in the example shown in FIG. That is, six slots 13 correspond to one magnetic pole of the rotor 3.
  • the number of slots S is 3n (n is a natural number) times the number of poles P. Therefore, the ratio (ratio) S / P of the slot number S to the pole number P is, for example, 3, 6, 9, 12, 15 or the like.
  • a notch 16 is formed on the outer peripheral surface 18 of the stator core 10.
  • the notch 16 is a cylindrical outer peripheral surface 18 that is notched with a plane parallel to the axis C ⁇ b> 1, and extends across the entire axial direction of the stator core 10.
  • the notch portion 16 is formed at a plurality of locations in the circumferential direction in the yoke portion 11. Here, six notches 16 having the same number as the number of poles P are arranged at equal intervals in the circumferential direction.
  • the notch 16 constitutes a refrigerant passage that allows the refrigerant to pass in the axial direction between the inner peripheral surface 41 of the shell 4.
  • the yoke portion 11 is formed with a crimping portion 17 that fixes the laminated steel plates constituting the stator core 10 to each other.
  • the reason why the caulking portion 17 is formed not on the teeth 12 but on the yoke portion 11 is to prevent the flow of magnetic flux from being disturbed by the caulking portion 17.
  • six crimping portions 17 having the same number as the number of poles P are formed at equal intervals in the circumferential direction.
  • the caulking portion 17 is formed at a position corresponding to the central portion in the circumferential direction of the notch portion 16.
  • FIG. 4 is a schematic view showing a part of the stator 1 in an enlarged manner.
  • the width (the length in the circumferential direction) of the tooth 12 becomes narrower as the tip 12a of the tooth 12 is approached. That is, the width W1 at the tip 12a (the radially inner end) of the tooth 12 is narrower than the width W2 at the root 12b (the radially outer end) of the tooth 12.
  • the length of the teeth 12 in the radial direction (that is, the distance from the root portion 12b to the tip portion 12a) is H1.
  • H1 is also the length of the slot 13.
  • the distance (yoke width) from the root portion 12b of the tooth 12 to the outer peripheral surface 18 of the yoke portion 11 is defined as H2.
  • the yoke width H2 is the width of a magnetic path that flows in the circumferential direction in the yoke portion 11.
  • the windings 2 are arranged in a line.
  • the circumferential width Ws of the slot 13 is set to such a width that the windings 2 are arranged in a line. That is, the slot 13 has a rectangular shape having a circumferential width Ws and a radial length H1.
  • the radially inner end of the slot 13 is an opening 13a into which the winding 2 is inserted, and the radially outer end is a terminal end 13b.
  • FIG. 5 is a perspective view showing the motor 100 in which the winding 2 is wound around the stator core 10.
  • the winding 2 is wound around 36 teeth 12 (FIG. 1) of the stator core 10 by wave winding. Since the coil
  • the winding 2 is wound by wave winding, the amount of projection of the winding 2 from the stator core 10 in the axial direction is small compared to the case of winding by concentric winding.
  • the axial length of the stator core 10 and the rotor core 30 can be increased by the amount of the axial protrusion of the winding 2 being small.
  • the part (part inserted in the slot 13) other than a coil end part can be lengthened among the full length of the coil
  • the winding 2 is a conductor (for example, copper) formed with a corrosion-resistant film such as a polyesterimide or polyamideimide film.
  • winding 2 is for contacting the refrigerant
  • FIG. 6 is a schematic diagram showing only the winding 2 wound by wave winding.
  • Winding 2 includes linear portion 22 inserted into slot 13 (FIG. 1), coil end portion 21 extending in the circumferential direction at one axial end surface of rotor core 30, and the other axial end surface of rotor core 30. And a coil end portion 23 extending in the circumferential direction.
  • FIG. 7 is an enlarged view showing a part of the coil end portion 21 of the winding 2.
  • nine winding portions 20 are wound at the same radial winding position (for example, the innermost circumferential position) while shifting the circumferential position by one slot.
  • Three of the nine winding portions 20 wound on the innermost periphery are referred to as winding portions 20a, 20b, and 20c.
  • FIG. 8 is a schematic view showing one winding portion 20a.
  • the winding portion 20a includes two coil end portions 21a, four linear portions 22a, and two coil end portions 23a.
  • the winding portion 20 a is wound so as to straddle the nine teeth 12. That is, the straight portion 22a of the winding portion 20a is inserted into every nine slots 13.
  • the coil end portion 21a extends so as to connect one axial end (the upper end in FIG. 8) of the linear portion 22a, and the coil end portion 23a connects the other axial end (the lower end in FIG. 8) of the linear portion 22a. It extends to connect.
  • the coil end portions 21a and the coil end portions 23a are alternately arranged in the circumferential direction around the axis C1.
  • a nose portion 25a that is displaced in the radial direction by a displacement amount E1 is provided at the center portion in the circumferential direction of the coil end portion 21a.
  • the coil end portion 21a extends in the circumferential direction around the axis C1, and is displaced radially inward by the displacement amount E1 at the nose portion 25a. It extends in the direction indicated by.
  • a nose portion 26a that is displaced by a displacement amount E1 in the radial direction is provided at the center portion in the circumferential direction of the coil end portion 23a.
  • the coil end portion 23a extends in the circumferential direction around the axis C1, and is displaced radially outward by the nose portion 26a by the displacement amount E1. It extends in the direction indicated by.
  • FIG. 9 is a schematic diagram showing two winding portions 20a and 20b. Similar to the winding portion 20a, the winding portion 20b has two coil end portions 21b, four linear portions 22b, and two coil end portions 23b.
  • the linear portion 22b of the winding portion 20b is at a position shifted by one slot clockwise with respect to the axis C1 with respect to the linear portion 22a of the winding portion 20a.
  • Nose portions 25b and 26b are respectively formed at the center portions in the circumferential direction of the coil end portions 21b and 23b, similarly to the nose portions 25a and 26a of the coil end portions 21a and 23a.
  • the coil end portions 21a and 21b of the winding portions 20a and 20b overlap in the axial direction and extend in the circumferential direction, and the top and bottom (axial positional relationship) are reversed through the nose portions 25a and 25b.
  • the coil end portions 23a and 23b of the winding portions 20a and 20b overlap in the axial direction and extend in the circumferential direction, and are reversed upside down via the nose portions 26a and 26b. Therefore, the straight portions 22a and 22b of the winding portions 20a and 20b can be inserted into the adjacent slots 13 (FIG. 1) without interfering with each other.
  • FIG. 9 shows only two winding portions 20a and 20b, but a total of nine winding portions 20a and 20b including these at the same radial winding position (for example, the innermost circumferential position) as the winding portions 20a and 20b.
  • Winding portion 20 is wound. That is, the straight portions 22 of the winding 2 are inserted into all 36 slots 13 of the stator core 10.
  • FIG. 10 is a schematic diagram showing a total of eight winding portions 20 inserted into the same slot 13 as the winding portion 20a shown in FIG.
  • the eight winding portions 20 are wound at equal intervals in the radial direction.
  • the winding portion 20 is wound with a shift of one slot in the circumferential direction (FIG. 9) and also wound in the radial direction, whereby the wave winding 2 shown in FIG. 6 is formed. .
  • the number of winding portions 20 inserted into one slot 13 and the number of teeth 12 spanned by the winding portion 20 are not limited to the examples shown in FIGS. It can be arbitrarily set according to the number of slots S.
  • FIG. 11 is a diagram illustrating the analysis result of the magnetic flux distribution in the motor 100 when the groove portion 35 is not provided in the rotor core 30.
  • a current is passed through the winding 2 (not shown in FIG. 11) in the slot 13 of the stator 1
  • the magnetic flux generated by this winding current is distributed as shown in FIG.
  • the magnetic flux flows through a region B ⁇ b> 1 on the outer peripheral side of the first slit 31 and a band-shaped region B ⁇ b> 2 between the first slit 31 and the second slit 32.
  • the magnetic flux flowing in the inner peripheral region B3 surrounded by the second slits 32 of the six magnetic poles is very small.
  • FIG. 12 is a diagram showing an analysis result of the magnetic flux distribution in the motor 100 when the groove portion 35 is provided in the rotor core 30.
  • the groove 35 is formed in the inner peripheral side region B3 of the rotor core 30, and only a slight magnetic flux flows through the inner peripheral side region B3. Therefore, the groove portion 35 does not hinder the flow of magnetic flux in the rotor core 30 and does not affect the magnetic characteristics of the motor 100.
  • FIG. 13 is a cross-sectional view showing a motor 100D of a comparative example, in a cross section orthogonal to the axis C1.
  • the motor 100D of the comparative example has a stator 1D and a rotor 3D.
  • Stator 1D has stator core 10D and winding 2D wound around stator core 10D.
  • the stator core 10D has an annular yoke portion 11D and 18 teeth 12D protruding radially inward from the yoke portion 11D.
  • a slot 13D is formed between the teeth 12D adjacent in the circumferential direction.
  • a winding 2D is wound around the teeth 12D in a concentric manner.
  • the rotor 3D is configured in the same manner as the rotor 3 of the first embodiment except that the rotor 3D is not provided.
  • the coil end portion is large. Therefore, in order to store the motor 100D in a limited space in the compressor, it is necessary to reduce the axial lengths of the stator core 10D and the rotor core 30.
  • FIG. 14 is a graph showing a comparison between the output of the motor 100 (FIG. 1) of the first embodiment and the output of the motor 100D (FIG. 13) of the comparative example.
  • the motor output of the motor 100 of the first embodiment and the motor 100D of the comparative example are compared with the same size (size in the axial direction and radial direction) of the entire motor.
  • the winding 2 wound by the wave winding has a coil end portion smaller than the winding 2 wound by the concentric winding. Therefore, in the motor 100 of the first embodiment, the axial lengths of the stator core 10 and the rotor core 30 can be increased and inserted into the slot 13 of the winding 2 as compared with the comparative motor 100D having the same dimensions. The length (the length that contributes to the generation of driving force) can be increased.
  • the torque constant can be increased by increasing the axial length of the stator core 10 and the rotor core 30 and the length that contributes to the generation of the driving force of the winding 2. Therefore, when the same current is passed through the winding 2, the motor 100 of the first embodiment can generate a higher output than the motor 100D of the comparative example. In the analysis result shown in FIG. 14, the motor 100 of the first embodiment generates an output that is 60% higher than the motor 100D of the comparative example.
  • the motor 100 according to the first embodiment can generate a high output even though it is a reluctance motor that does not use a permanent magnet.
  • first slit 31 and second slit 32 are formed in each magnetic pole
  • three or more slits may be formed in each magnetic pole.
  • the outermost slit of each magnetic pole is referred to as a first slit
  • the innermost slit is referred to as a second slit.
  • the motor 100 according to the first embodiment of the present invention is a reluctance motor having the first slit 31 and the second slit 32 in each magnetic pole of the rotor 3. 2 is wound by wave winding, and a notch 16 (refrigerant passage) is formed for circulating the refrigerant in the axial direction.
  • the coil end portion is small, so that it contributes to the axial length of the stator core 10 and the rotor core 30 and the generation of the driving force of the winding 2 without enlarging the entire motor 100.
  • the length to do can be lengthened. As a result, a high output can be obtained even with a reluctance motor having no permanent magnet.
  • the winding 2 is wound in a wave winding, and the protrusion to the outside in the radial direction is small, the flow of the refrigerant passing through the notch portion 16 is not hindered by the winding 2, and a sufficient flow rate of the refrigerant is ensured. can do. That is, it is possible to flow a refrigerant having a flow rate corresponding to the improvement in the output of the motor 100.
  • the groove portion 35 penetrating the rotor core 30 in the radial direction is provided on the radially outer side of the shaft hole 37 of the rotor core 30, the flow rate of the refrigerant can be increased without hindering the flow of magnetic flux in the rotor core 30.
  • the groove portion 35 is formed continuously with the shaft hole 37, the laminated steel plate can be easily processed, and the area of the groove portion 35 (that is, the flow path area) can be secured large.
  • the slits 31 and 32 have circular arc shapes in which the center portions 31a and 32a in the circumferential direction protrude radially inward from the both end portions 31b and 32b. Therefore, the slits 31 and 32 have a d-axis inductance Ld and a q-axis inductance Lq. A difference can be produced and a reluctance torque can be produced.
  • FIG. 15 is a cross-sectional view taken along a plane orthogonal to the axis C1, showing the configuration of the motor 100A according to the second embodiment.
  • the motor 100A has a stator 1 and a rotor 3A.
  • the stator 1 of the motor 100A has the same configuration as the stator 1 of the motor 100 of the first embodiment. That is, the stator core 10 of the stator 1 includes a yoke portion 11 and a tooth 12, the winding 2 is wound around the tooth 12 by a wave winding, and the yoke portion 11 has a notch portion 16 through which refrigerant flows in the axial direction. (Refrigerant passage) is formed.
  • the rotor 3A of the motor 100A is obtained by providing a caulking portion 33 and a rivet hole (through hole) 34 to the rotor 3 of the motor 100 of the first embodiment.
  • the number of crimping portions 33 and the number of rivet holes 34 are both the same as the number of poles P.
  • the number of poles P is 6, the number of crimping portions 33 and the number of rivet holes 34 are both six.
  • FIG. 16 is an enlarged view showing a part of the rotor 3A.
  • the caulking part 33 of the rotor 3 fixes the laminated steel plates constituting the rotor core 30 to each other.
  • the caulking portion 33 is formed in the inner peripheral side region B ⁇ b> 3 surrounded by the second slit 32 of each magnetic pole in the rotor core 30. Further, the caulking portion 33 is formed between the electrodes. More specifically, the crimping portion 33 is formed at a position sandwiched between two second slits 32 adjacent in the circumferential direction.
  • the rivet hole 34 of the rotor 3 is formed in the inner peripheral side region B3 surrounded by the second slit 32 of each magnetic pole in the rotor core 30 like the caulking portion 33.
  • the rivet hole 34 is formed between the poles and is located on the radially inner side of the crimping portion 33.
  • the caulking portion 33 and the rivet hole 34 are provided in the rotor core 30. Does not block the flow of magnetic flux.
  • the occupied area of the gap portions (slits 31 and 32) of the rotor core 30 is larger than that in the permanent magnet embedded motor, and the area where the caulking portion 33 can be formed is small.
  • the rivet hole 34 through which the rivet is inserted occupies a larger area than the caulking portion 17. Therefore, in the second embodiment, the rivet hole 34 is formed on the inner side in the radial direction than the caulking portion 33.
  • the caulking portion 33 and the rivet hole 34 are formed between all the six poles, the weight balance in the circumferential direction of the rotor core 30 is improved.
  • six crimping portions 33 and six rivet holes 34 are formed, but it is sufficient that at least one of them is formed.
  • both the crimping portion 33 and the rivet hole 34 are formed in the rotor core 30, but only the crimping portion 33 may be formed, or only the rivet hole 34 may be formed. Further, the rivet hole 34 may be used as a through hole through which the refrigerant passes in the axial direction.
  • first slit 31 and second slit 32 are formed in each magnetic pole, but three or more slits may be formed.
  • the caulking portion 33 and the rivet hole 34 may be formed in a region surrounded by the innermost slit (referred to as a second slit) of each magnetic pole.
  • the caulking portion 33 is formed in the inner peripheral side region B3 surrounded by the second slit 32 of each magnetic pole of the rotor core 30, so that the flow of magnetic flux in the rotor core 30
  • the caulking portion 33 is provided so as not to hinder, and the laminated element of the rotor core 30 can be firmly fixed.
  • a rivet hole (through hole) 34 is formed on the inner side in the radial direction of the caulking portion 33, the rivet hole 34 is provided so as not to disturb the flow of magnetic flux in the rotor core 30, thereby further strengthening the laminated elements of the rotor core 30. Can be fixed.
  • the crimping portion 33 and the rivet hole 34 are formed between the poles, the limited space of the inner peripheral side region B3 of the rotor core 30 can be used effectively. Since the crimping portion 33 and the rivet hole 34 are provided between all the poles, the weight balance in the circumferential direction of the rotor core 30 is improved.
  • FIG. 17 is a cross-sectional view taken along a plane orthogonal to the axis C1, showing the configuration of the motor 100B according to the third embodiment.
  • the motor 100B has a stator 1 and a rotor 3B.
  • the stator 1 of the motor 100B has the same configuration as the stator 1 of the motor 100 of the first embodiment. That is, the stator core 10 of the stator 1 includes a yoke portion 11 and a tooth 12, the winding 2 is wound around the tooth 12 by a wave winding, and the yoke portion 11 has a notch portion 16 through which refrigerant flows in the axial direction. (Refrigerant passage) is formed.
  • the rotor 3B of the motor 100B has a slit shape different from that of the rotor 3 of the motor 100 of the first embodiment.
  • the rotor 3 ⁇ / b> B of the second embodiment includes a first slit 51 formed along the outer peripheral surface 30 a of the rotor core 30 and a second slit 52 formed on the radially inner side of the first slit 51.
  • the first slit 51 and the second slit 52 correspond to one magnetic pole. In other words, each of the six magnetic poles has the first slit 51 and the second slit 52.
  • FIG. 18 is an enlarged view showing a part of the rotor 3B.
  • the first slit 51 includes a first portion 51b that includes a central portion 51a in the circumferential direction and extends linearly, and a straight line from each circumferential end of the first portion 51b toward the outer periphery of the rotor core 30. And a pair of second portions 51c extending in a shape.
  • the first portion 51b extends in a direction orthogonal to the radial straight line (magnetic pole center line) passing through the central portion 51a.
  • the pair of second portions 51c extend symmetrically with respect to a straight line in the radial direction passing through the central portion 51a so that the distance between the second portions 51c increases toward the outer side in the radial direction.
  • the second slit 52 includes a first portion 52b that extends in a straight line including the central portion 52a in the circumferential direction, and a straight line from each circumferential end of the first portion 52b toward the outer periphery of the rotor core 30. And a pair of second portions 52c extending in a shape.
  • the first portion 52b extends in a direction orthogonal to the radial straight line (magnetic pole center line) passing through the central portion 52a.
  • the pair of second portions 52c extend symmetrically with respect to a radial straight line passing through the central portion 52a so that the distance between the second portions 52c increases toward the outer side in the radial direction.
  • a region B1 through which the magnetic flux from the stator 1 flows is formed on the outer peripheral side of the first slit 51. Between the 1st slit 51 and the 2nd slit 52, the strip
  • two slits are formed in each magnetic pole of the rotor 3B, but three or more slits may be formed.
  • the configurations of the shaft hole 37 and the groove 35 of the rotor core 30 are the same as those in the first embodiment. Further, the caulking portion 33 and the rivet hole 34 described in the second embodiment may be formed in the inner peripheral region B3 of the rotor core 30.
  • the reluctance motor has the first slit 51 and the second slit 52 in each magnetic pole of the rotor 3B, and the winding 2 is wound around the stator core 10. And a notch 16 (refrigerant passage) is formed through which the refrigerant flows in the axial direction. Therefore, as in the first embodiment, a high output can be obtained without enlarging the entire motor 100B. In addition, since the winding 2 is wound in a wave manner and there is little overhanging outward in the radial direction, a sufficient flow rate of the refrigerant passing through the notch portion 16 can be ensured.
  • the groove portion 35 penetrating the rotor core 30 in the radial direction is provided on the radially outer side of the shaft hole 37 of the rotor core 30, the flow rate of the refrigerant can be increased without hindering the flow of magnetic flux in the rotor core 30.
  • FIG. 19 is a cross-sectional view taken along a plane orthogonal to the axis C1, showing the configuration of the motor 100C according to the third embodiment.
  • the motor 100 ⁇ / b> C includes a stator 1 ⁇ / b> C and a rotor 3.
  • the stator 1C of the motor 100C has a stator core 10 and a winding 2.
  • the stator core 10 has a yoke portion 11 and a tooth 12, and the winding 2 is wound around the tooth 12 by wave winding.
  • a through hole 15 (refrigerant passage) through which the refrigerant flows in the axial direction is formed in the yoke portion 11 instead of the notch portion 16.
  • through holes 15 having the same number as the number of poles P are formed at equal intervals in the circumferential direction.
  • the through hole 15 is located on a radial axis passing through the center position in the circumferential direction of the tooth 12.
  • the through holes 15 are preferably formed alternately with the caulking portions 17 of the stator core 10 in the circumferential direction.
  • the notch portion 16 (FIG. 1) described in the first embodiment may be formed in the yoke portion 11.
  • the number of through holes 15 is not limited to the same number as the number of poles P, and may be one or more.
  • the rotor 3 of the motor 100C has the same configuration as the rotor 3 of the first embodiment.
  • the caulking portion 33 and the rivet hole 34 may be formed in the rotor 3 as described in the second embodiment, and the shapes of the slits 51 and 52 described in the third embodiment may be employed.
  • the through hole 15 through which the refrigerant passes is formed in the yoke portion 11 of the stator 1C, and the winding 2 is wound in the tooth 12 by the wave winding.
  • the flow of the refrigerant passing through the hole 15 is not hindered by the winding 2, and a sufficient flow rate of the refrigerant can be ensured.
  • both the through-hole 15 and the notch part 16 are provided in the yoke part 11 of the stator 1C, the flow rate of the refrigerant can be further increased.
  • FIG. 20 is a cross-sectional view showing a configuration of a compressor (scroll compressor) 500 using the motor 100 of the first embodiment described above.
  • the compressor 500 is a scroll compressor, and in a sealed container 502, a compression mechanism 510, a motor 100 that drives the compression mechanism 510, a main shaft 501 that connects the compression mechanism 510 and the motor 100, and compression of the main shaft 501
  • a subframe 503 that supports the opposite end (subshaft portion) of the mechanism 510 and a lubricating oil 504 that is stored in a sump 505 at the bottom of the sealed container 502 are provided.
  • the heel compression mechanism 510 includes a fixed scroll 511 and a swing scroll 512 attached to the main shaft 501. Each of the fixed scroll 511 and the swing scroll 512 has a spiral portion, and a spiral compression chamber 516 is formed therebetween.
  • the compression mechanism 510 further includes an Oldham ring 513 that restricts the rotation of the swing scroll 512 to swing the swing scroll 512, a compliant frame 514 to which the swing scroll 512 is attached, and a guide frame that supports these. 515.
  • a suction pipe 506 penetrating the sealed container 502 is press-fitted into the heel fixed scroll 511.
  • a discharge pipe 507 that discharges high-pressure refrigerant gas discharged from the discharge port 511a of the fixed scroll 511 to the outside through the sealed container 502 is provided.
  • the sealed container 502 has a cylindrical shell 4 (FIG. 1), and the motor 100 of the first embodiment is attached to the inner peripheral side of the shell 4.
  • a glass terminal 508 for electrically connecting the stator 1 of the motor 100 and the drive circuit is fixed to the sealed container 502 by welding.
  • the main shaft 501 is the shaft 38 (FIG. 1) of the motor 100.
  • the operation of the compressor 500 is as follows.
  • the main shaft 501 (shaft 38) rotates together with the rotor 3.
  • the swing scroll 512 swings, and the volume of the compression chamber 516 between the fixed scroll 511 and the swing scroll 512 is changed.
  • the refrigerant gas is sucked into the compression chamber 516 from the suction pipe 506 and compressed.
  • the high-pressure refrigerant gas compressed in the compression chamber 516 is discharged from the discharge port 511a of the fixed scroll 511 into the sealed container 502 and discharged from the discharge pipe 507 to the outside. Further, a part of the refrigerant gas discharged from the compression chamber 516 into the sealed container 502 passes through the notch portion 16 (FIG. 1) of the stator 1 to cool the motor 100 and the lubricating oil 504.
  • the motor 100 according to the first embodiment generates a high torque and has a low manufacturing cost. Therefore, the output of the compressor 500 can be increased and the manufacturing cost can be reduced.
  • the compressor 500 may use the motors 100A to 100C described in Embodiments 2 to 4 instead of the motor 100.
  • the scroll compressor has been described here as an example of the compressor, the motors 100 to 100C of the first to fourth embodiments may be applied to a compressor other than the scroll compressor.
  • FIG. 21 is a diagram showing the configuration of the air conditioning apparatus 400.
  • An air conditioner 400 shown in FIG. 21 includes a compressor 401, a condenser 402, a throttle device (decompression device) 403, and an evaporator 404.
  • the compressor 401, the condenser 402, the expansion device 403, and the evaporator 404 are connected by a refrigerant pipe 407 to constitute a refrigeration cycle. That is, the refrigerant circulates in the order of the compressor 401, the condenser 402, the expansion device 403, and the evaporator 404.
  • the compressor 401, the condenser 402, and the expansion device 403 are provided in the outdoor unit 410.
  • the compressor 401 includes the compressor 500 shown in FIG.
  • the outdoor unit 410 is provided with an outdoor fan 405 that supplies outdoor air to the condenser 402.
  • the evaporator 404 is provided in the indoor unit 420.
  • the indoor unit 420 is provided with an indoor blower 406 that supplies indoor air to the evaporator 404.
  • the operation of the air conditioner 400 is as follows.
  • the compressor 401 compresses and sends out the sucked refrigerant.
  • the condenser 402 exchanges heat between the refrigerant flowing in from the compressor 401 and the outdoor air, condenses and liquefies the refrigerant, and sends it out to the refrigerant pipe 407.
  • the outdoor blower 405 supplies outdoor air to the condenser 402.
  • the expansion device 403 adjusts the pressure and the like of the refrigerant flowing through the refrigerant pipe 407 by changing the opening degree.
  • the evaporator 404 exchanges heat between the refrigerant in the low pressure state by the expansion device 403 and the indoor air, causes the refrigerant to evaporate (vaporize) the heat of the air, and sends it to the refrigerant pipe 407.
  • the indoor fan 406 supplies indoor air to the evaporator 404. Thereby, the cold air from which heat has been removed by the evaporator 404 is supplied to the room.
  • the motors 100 to 100C described in the first to fourth embodiments are applied to the compressor 401 (the compressor 500 in FIG. 20), the air conditioning capability of the air conditioner 400 is increased and the manufacturing cost is reduced. Can do.
  • compressor 500 to which the motors 100 to 100C of the first to fourth embodiments are applied is not limited to the air conditioner 400 shown in FIG. 21, but may be used for other types of air conditioners.
  • stator core 11 yoke part, 12 teeth, 12a tip, 12b root part, 13 Slot, 15 through hole, 16 notch, 17 crimping part, 18 outer peripheral surface, 20, 20a, 20b, 20c winding part, 30 rotor core, 31 1st slit, 31a center, 31b end, 32 2nd Slit, 32a center part, 32b end part, 33 crimping part, 34 rivet hole, 35 groove part, 37 shaft hole, 38 shaft, 51 first slit, 51a center part, 51b first part, 51c second part , 52 Second slit 52a central part, 52b first part, 52c second part, 100, 100A, 100B, 100C motor, 400 air conditioner, 401 outdoor unit, 402 indoor unit, 403 refrigerant piping, 405 blower, 406 blade, 500 compression Machine (scroll compressor),

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Synchronous Machinery (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

リラクタンスモータは、圧縮機に用いられる。リラクタンスモータは、軸線を中心とする環状の外周を有するロータコアを有し、外周に沿って複数の磁極を有し、永久磁石を有さないロータと、軸線を中心とする径方向においてロータを外側から囲むステータコアと、ステータコアに波巻で巻かれた巻線とを有するステータとを備える。複数の磁極は、いずれも、ロータコアに形成された第1のスリットと、第1のスリットの径方向の内側に形成された第2のスリットとを有する。ステータコアは、冷媒を軸線の方向に流通させる冷媒通路を有する。

Description

リラクタンスモータ、圧縮機および空気調和装置
 本発明は、リラクタンスモータ、並びに、リラクタンスモータを用いた圧縮機および空気調和装置に関する。
 従来より、消費電力を抑制して製造コストを低減するため、リラクタンスモータ(より具体的には、同期リラクタンスモータ)の開発が進められている。リラクタンスモータは、永久磁石を使用せず、ロータの磁極にスリットを形成し、リラクタンストルクを利用して駆動力を得るものである。
 例えば、特許文献1および特許文献2には、リラクタンスモータのロータに永久磁石を補助的に取り付けることにより、モータ出力の向上等を図る技術が開示されている。
 また、特許文献3には、リラクタンスモータのロータを、永久磁石回転子部分とリラクタンス回転子部分とに分割することにより、磁気飽和によるリラクタンストルクの低下を抑制する技術が開示されている。
特開2013-192359号公報(図2参照) 特開2011-83066号公報(図1参照) 特開2004-88852号公報(図2参照)
 ここで、リラクタンスモータの製造コストを低減するためには、永久磁石を使用しないことが望ましい。しかしながら、リラクタンストルクのみで高いトルクを得るためには、リラクタンスモータを大きくしなければならず、圧縮機の内部の限られたスペースに収納することが難しい。
 また、圧縮機では、ロータに形成された貫通穴(風穴)等を通って冷媒が軸方向に流れるが、トルクの向上に伴い、冷媒流量を増加させる必要がある。
 本発明は、上記の課題を解決するためになされたものであり、圧縮機内の限られたスペースに収納可能で、高いトルクを発生することができ、十分な冷媒流量を確保することができるリラクタンスモータを提供することを目的とする。
 本発明のリラクタンスモータは、圧縮機に用いられる。リラクタンスモータは、軸線を中心とする環状の外周を有するロータコアを有し、外周に沿って複数の磁極を有し、永久磁石を有さないロータと、軸線を中心とする径方向においてロータを外側から囲むステータコアと、ステータコアに波巻で巻かれた巻線とを有するステータとを備える。複数の磁極は、いずれも、ロータコアに形成された第1のスリットと、第1のスリットの径方向の内側に形成された第2のスリットとを有する。ステータコアは、冷媒を軸線の方向に流通させる冷媒通路を有する。
 本発明では、巻線が波巻で巻かれているため、コイルエンド部を小さくすることができる。そのため、リラクタンスモータの全体を大きくすることなく、ロータコアおよびステータコアを軸線方向に大きくすることができ、これにより高いトルクを得ることが可能になる。また、ステータコアに冷媒通路が設けられるため、圧縮機の冷媒の流量を増加させることができる。
実施の形態1のモータ(リラクタンスモータ)を示す断面図である。 実施の形態1のモータのロータを示す断面図である。 実施の形態1のモータのロータの一部を拡大して示す図である。 実施の形態1のモータのティースの周囲を拡大して示す模式図である。 実施の形態1のモータを示す斜視図である。 実施の形態1の巻線を示す斜視図である。 実施の形態1の巻線の一部を拡大して示す模式図である。 実施の形態1の巻線の1本の巻線部分を示す斜視図である。 実施の形態1の巻線の2本の巻線部分を示す斜視図である。 実施の形態1のステータの同一スロットに挿入される巻線部分を示す斜視図である。 実施の形態1のモータにおいて、ロータに溝部を設けない場合の磁束分布の解析結果を示す図である。 実施の形態1のモータにおいて、ロータに溝部を設けた場合の磁束分布の解析結果を示す図である。 比較例のモータを示す断面図である。 実施の形態1と比較例のモータ出力を比較して示すグラフである。 実施の形態2のモータを示す断面図である。 実施の形態2のモータのロータの一部を拡大して示す図である。 実施の形態3のモータを示す断面図である。 実施の形態3のモータのロータの一部を拡大して示す図である。 実施の形態4のモータを示す断面図である。 各実施の形態のモータが適用可能な圧縮機を示す縦断面図である。 図20の圧縮機を備えた空気調和装置を示す図である。
実施の形態1.
<モータの構成>
 本発明の実施の形態1について説明する。図1は、実施の形態1のモータ100を示す断面図である。このモータ100は、ブラシレスDCモータであり、後述する圧縮機500(図20)に用いられる。また、このモータ100は、永久磁石を用いずに、リラクタンストルクによって駆動力を発生するリラクタンスモータ(より具体的には、同期リラクタンスモータ)である。
 モータ100は、ステータ1と、ステータ1の内側に回転可能に設けられたロータ3とを有する。ステータ1とロータ3との間には、エアギャップが設けられている。また、ステータ1は、圧縮機500の円筒状のシェル4の内周面41側に組み込まれている。
 ロータ3は、円筒状のロータコア30を有する。ロータコア30は、例えば厚さ0.25~0.5mmの積層鋼板(電磁鋼板)を回転軸の方向に積層し、カシメ等により固定したものである。ロータコア30の径方向の中心には、円形のシャフト孔37が形成されている。シャフト孔37には、回転軸であるシャフト38が圧入によって固定されている。シャフト38の中心軸である軸線C1は、ロータ3の回転軸をなしている。
 以下では、シャフト38の軸線C1の方向を、「軸方向」と称する。また、軸線C1を中心とする円周方向(図1等に矢印R1で示す)を、「周方向」と称する。軸線C1を中心とする半径方向を、「径方向」と称する。
<ロータの構成>
 図2は、ロータ3を示す断面図である。ロータ3は、周方向に延在する環状の外周面30a(外周)を有し、周方向に6個の磁極を有する。言い換えると、ロータ3の極数Pは、6である。図2では、6個の磁極に、符号P1,P2,P3,P4,P5,P6を付している。但し、極数Pは6に限らず、2以上であればよい。各磁極の周方向の中心位置は、極中心となる。また、周方向に隣り合う任意の磁極の間は、極間(図2に符号Mで示す)となる。
 ロータコア30の外周に沿って、第1のスリット31が形成されている。また、第1のスリット31の径方向内側には、第2のスリット32が形成されている。第1のスリット31および第2のスリット32は、1磁極に対応する。言い換えると、6個の磁極のそれぞれが、第1のスリット31と第2のスリット32とを有する。第1のスリット31および第2のスリット32は、フラックスバリアとも称する。
 第1のスリット31は、周方向の中心部31aが周方向の両端部31bよりも径方向内側に突出する円弧形状を有する。同様に、第2のスリット32は、周方向の中心部32aが周方向の両端部32bよりも径方向内側に突出する円弧形状を有する。
 図2に示した軸線C1に直交する断面において、第1のスリット31の中心部31aと第2のスリット32の中心部32aとは、軸線C1を通る同一の軸線(径方向の軸線)上にある。この軸線は、q軸(すなわち磁極の中心線)に相当する。一方、周方向に隣り合う磁極の間を通る径方向の軸線は、d軸(すなわち極間の中心線)に相当する。
 図3は、ロータコア30の1つの磁極を含む部分を拡大して示す図である。第1のスリット31は、いずれも円弧状の外周側端辺311と内周側端辺312とを有する。第1のスリット31とロータコア30の外周面30aとの間(より具体的には、第1のスリット31の外周側端辺311とロータコア30の外周面30aとの間)には、ステータ1からの磁束が流れる領域B1が形成される。
 第2のスリット32は、いずれも円弧状の外周側端辺321と内周側端辺322とを有する。第1のスリット31と第2のスリット32との間(より具体的には、第1のスリット31の内周側端辺312と第2のスリット32の外周側端辺321との間)には、ステータ1からの磁束が流れる領域B2が形成される。
 また、6つの磁極の第2のスリット32によって囲まれる領域(より具体的には、第2のスリット32の内周側端辺312によって囲まれる領域)には、ステータ1からの磁束の流れの少ない内周側領域B3が形成される。
 ロータコア30の第1のスリット31と第2のスリット32とにより、d軸のインダクタンスLdと、q軸のインダクタンスLqとに差が生じ、リラクタンストルクが発生する。
 また、第1のスリット31の端部31bとロータコア30の外周面30aとの間には、薄肉部である外周ブリッジが形成されている。同様に、第2のスリット32の端部32bとロータコア30の外周面30aとの間には、薄肉部である外周ブリッジが形成されている。外周ブリッジの厚さは、例えば、積層鋼板の1枚の板厚と同じである。
 ロータコア30の径方向中心部には、シャフト38(図2)に嵌合する円形のシャフト孔37が形成されている。シャフト孔37の外周面から径方向外側に、溝部35が形成されている。溝部35は、ロータコア30を軸方向に貫通している。溝部35の径方向外側の端部35aは、第2のスリット32の中心部32aに接近している。溝部35の端部35aと第2のスリット32との最短距離は、例えば、積層鋼板の1枚の板厚と同じである。
 図2に戻り、ロータコア30には、極数Pと同数の溝部35が、放射状に形成されている。ここでは極数Pが6であるため、6個の溝部35が形成されている。また、それぞれの溝部35の周方向位置は、各磁極に対応している。溝部35の中心線(溝部35の周方向中心を規定する径方向の線)は、磁極の中心線と一致している。
 シャフト孔37にシャフト38(図1)が嵌合した状態でも、溝部35は塞がれず、そのため、溝部35の内部を冷媒が軸方向に流れる。溝部35は、冷媒を流通させる冷媒通路を構成する。なお、溝部35は、シャフト孔37に連続して形成されているが、シャフト孔37から径方向外側に離間していてもよい。また、溝部35の数は、極数Pと同数に限らず、1つ以上であればよい。
<ステータの構成>
 図1に戻り、ステータ1は、ステータコア10と、ステータコア10に波巻で巻かれた巻線2(図5)とを有する。ステータコア10は、例えば厚さ0.25~0.5mmの積層鋼板(電磁鋼板)を軸方向に積層し、カシメ部17により固定したものである。
 ステータコア10は、周方向に延在する環状のヨーク部11と、ヨーク部11から径方向内側に延在する複数のティース12とを有する。周方向に隣り合うティース12の間に、スロット13が形成される。スロット13は、ティース12に巻かれる巻線2を収容する部分であり、径方向に延在している。
 ティース12の数とスロット13の数(スロット数Sと称する)とは、互いに同じであり、図1に示した例では、36である。すなわち、ロータ3の1磁極に、6個のスロット13が対応している。3相分布巻の場合には、スロット数Sは、極数Pの3n(nは自然数)倍となる。そのため、極数Pに対するスロット数Sの比(割合)S/Pは、例えば3、6、9、12、15等となる。
 ステータコア10の外周面18には、切欠き部16が形成されている。切欠き部16は、円筒状の外周面18を、軸線C1に平行な平面で切り欠いたものであり、ステータコア10の軸方向の全域に亘って延在している。切欠き部16は、ヨーク部11において、周方向の複数箇所に形成されている。ここでは、極数Pと同数である6個の切欠き部16が、周方向に等間隔に配置されている。切欠き部16は、シェル4の内周面41との間に、冷媒を軸方向に通過させる冷媒通路を構成する。
 また、ヨーク部11には、ステータコア10を構成する積層鋼板を互いに固定するカシメ部17が形成されている。カシメ部17をティース12ではなくヨーク部11に形成する理由は、磁束の流れをカシメ部17で妨げないようにするためである。ここでは、極数Pと同数である6個のカシメ部17が、周方向に等間隔に形成されている。また、カシメ部17は、切欠き部16の周方向における中央部に対応する位置に形成されている。
 図4は、ステータ1の一部を拡大して示す模式図である。ティース12の幅(周方向の長さ)は、ティース12の先端部12aに近づくほど狭くなる。すなわち、ティース12の先端部12a(径方向の内側端部)での幅W1は、ティース12の根元部12b(径方向の外側端部)での幅W2よりも狭い。
 ティース12の径方向の長さ(すなわち根元部12bから先端部12aまでの距離)を、H1とする。H1は、スロット13の長さでもある。また、ティース12の根元部12bからヨーク部11の外周面18までの距離(ヨーク幅)を、H2とする。ヨーク幅H2は、ヨーク部11内を周方向に流れる磁路の幅である。
 スロット13には、巻線2が一列に配列される。スロット13の周方向の幅Wsは、巻線2が一列に配列される程度の幅に設定される。すなわち、スロット13は、周方向の幅Wsおよび径方向の長さH1を有する長方形形状を有する。スロット13の径方向内側の端部は、巻線2を挿入する開口部13aであり、径方向外側の端部は、終端部13bである。
<巻線の構成>
 次に、巻線2について説明する。図5は、ステータコア10に巻線2を巻き付けたモータ100を示す斜視図である。巻線2は、ステータコア10の36個のティース12(図1)に、波巻で巻かれる。巻線2は、波巻で巻かれているため、ティース12から径方向外側への突出量が少ない。そのため、巻線2は、切欠き部16を通過する冷媒の流れの妨げにならない。
 また、巻線2が波巻で巻かれているため、同心巻で巻かれた場合と比較して、巻線2のステータコア10からの軸方向の突出量も少ない。巻線2の軸方向の突出量が少ない分だけ、ステータコア10およびロータコア30の軸方向の長さを長くすることができる。また、巻線2の全長のうち、コイルエンド部以外の部分(スロット13に挿入される部分)を長くすることができるため、より高いトルクを得ることができる。
 巻線2は、導体(例えば銅)に、耐腐食性の被膜、例えばポリエステルイミドまたはポリアミドイミドの被膜を形成したものである。巻線2は、モータ100が設けられる圧縮機500の内部を循環する冷媒に接触するためである。
 図6は、波巻で巻かれた巻線2のみを取り出して示す模式図である。巻線2は、スロット13(図1)内に挿入される直線部22と、ロータコア30の軸方向の一端面で周方向に延在するコイルエンド部21と、ロータコア30の軸方向の他端面で周方向に延在するコイルエンド部23とを有する。ここでは、1つのスロット13(図1)に、巻線2の8本の巻線部分20が挿入されているものとする。
 図7は、巻線2のコイルエンド部21の一部を拡大して示す図である。コイルエンド部21では、径方向の同じ巻き付け位置(例えば最内周位置)に、9本の巻線部分20が、1スロット分ずつ周方向位置をずらしながら巻き回されている。最内周に巻かれた9本の巻線部分20のうちの3本を、巻線部分20a,20b,20cとする。
 図8は、1本の巻線部分20aを取り出して示す模式図である。巻線部分20aは、2つのコイルエンド部21aと、4つの直線部22aと、2つのコイルエンド部23aとを有する。巻線部分20aは、9個のティース12にまたがるように巻き回される。すなわち、巻線部分20aの直線部22aは、9個おきのスロット13に挿入される。
 コイルエンド部21aは、直線部22aの軸方向一端(図8における上端)同士をつなぐように延在し、コイルエンド部23aは、直線部22aの軸方向他端(図8における下端)同士をつなぐように延在する。コイルエンド部21aとコイルエンド部23aとは、軸線C1を中心とする周方向に交互に配置されている。
 コイルエンド部21aの周方向の中心部には、径方向に変位量E1だけ変位するノーズ部25aが設けられている。コイルエンド部21aは、図8に矢印A1で示すように軸線C1を中心とする時計回りに周方向に延在し、ノーズ部25aで径方向内側に変位量E1だけ変位して、再び矢印A1で示す方向に延在する。
 また、コイルエンド部23aの周方向の中心部には、径方向に変位量E1だけ変位するノーズ部26aが設けられている。コイルエンド部23aは、図8に矢印A2で示すように軸線C1を中心とする時計回りに周方向に延在し、ノーズ部26aで径方向外側に変位量E1だけ変位して、再び矢印A2で示す方向に延在する。
 図9は、2本の巻線部分20a,20bを示す模式図である。巻線部分20aと同様に、巻線部分20bは、2つのコイルエンド部21bと、4つの直線部22bと、2つのコイルエンド部23bとを有する。
 巻線部分20bの直線部22bは、巻線部分20aの直線部22aに対して、軸線C1を中心とする時計回りに1スロット分だけシフトした位置にある。コイルエンド部21b,23bの周方向の中心部には、コイルエンド部21a,23aのノーズ部25a,26aと同様に、ノーズ部25b,26bがそれぞれ形成されている。
 巻線部分20a,20bのコイルエンド部21a,21bは、軸方向に重なり合って周方向に延在し、ノーズ部25a,25bを経て上下(軸方向の位置関係)が逆転する。同様に、巻線部分20a,20bのコイルエンド部23a,23bは、軸方向に重なり合って周方向に延在し、ノーズ部26a,26bを経て上下が逆転する。そのため、巻線部分20a,20bの直線部22a,22bを、互いに干渉することなく、隣り合うスロット13(図1)に挿入することができる。
 図9には、2本の巻線部分20a,20bのみを示しているが、巻線部分20a,20bと同じ径方向の巻き付け位置(例えば最内周位置)に、これらを含む合計9本の巻線部分20が巻き回される。すなわち、ステータコア10の36個の全てのスロット13に、巻線2の直線部22が挿入される。
 図10は、図8に示した巻線部分20aと同じスロット13に挿入される合計8本の巻線部分20を示す模式図である。8本の巻線部分20は、径方向に等間隔に巻き回されている。このように、巻線部分20を周方向に1スロット分だけずらして巻き回し(図9)、また径方向にも巻き回すことにより、図6に示した波巻の巻線2が形成される。
 なお、1つのスロット13に挿入される巻線部分20の数、および巻線部分20がまたがるティース12の数は、図6~図10に示した例に限定されるものではなく、極数Pおよびスロット数Sに応じて任意に設定することができる。
 図11は、ロータコア30に溝部35を設けない場合のモータ100における磁束分布の解析結果を示す図である。ステータ1のスロット13内の巻線2(図11では省略)に電流を流すと、この巻線電流によって生じる磁束は、図11に示すように分布する。ロータコア30では、第1のスリット31よりも外周側の領域B1、および第1のスリット31と第2のスリット32との間の帯状の領域B2を、磁束が流れる。一方、6つの磁極の第2のスリット32に囲まれた内周側領域B3に流れる磁束は、僅かである。
 図12は、ロータコア30に溝部35を設けた場合のモータ100における磁束分布の解析結果を示す図である。溝部35は、ロータコア30の内周側領域B3に形成されており、内周側領域B3には僅かな磁束しか流れない。そのため、溝部35は、ロータコア30内の磁束の流れを妨げず、モータ100の磁気特性には影響を及ぼさない。
<比較例>
 図13は、比較例のモータ100Dを示す、軸線C1に直交する断面における断面図である。比較例のモータ100Dは、ステータ1Dとロータ3Dとを有する。ステータ1Dは、ステータコア10Dと、ステータコア10Dに巻かれた巻線2Dとを有する。ステータコア10Dは、環状のヨーク部11Dと、ヨーク部11Dから径方向内側に突出する18個のティース12Dとを有する。周方向に隣り合うティース12Dの間には、スロット13Dが形成されている。ティース12Dには、巻線2Dが、同心巻で巻かれている。ロータ3Dは、溝部35を有さない点を除き、実施の形態1のロータ3と同様に構成されている。
 比較例のモータ100Dでは、巻線2Dが同心巻で巻かれているため、コイルエンド部が大きい。そのため、モータ100Dを圧縮機内の限られたスペースに収納するためには、ステータコア10Dおよびロータコア30の軸方向の長さを小さくする必要がある。
<モータ出力の向上>
 次に、この実施の形態1によるモータ出力の向上効果について説明する。図14は、実施の形態1のモータ100(図1)の出力と、比較例のモータ100D(図13)の出力とを比較して示すグラフである。ここでは、実施の形態1のモータ100と比較例のモータ100Dについて、モータ全体の大きさ(軸方向および径方向における寸法)を同一として、モータ出力を比較している。
 波巻で巻かれた巻線2は、同心巻で巻かれた巻線2よりもコイルエンド部が小さい。そのため、実施の形態1のモータ100は、同一寸法の比較例のモータ100Dと比較して、ステータコア10およびロータコア30の軸方向の長さを長くすることができ、巻線2のスロット13に挿入される長さ(駆動力発生に寄与する長さ)も長くすることができる。
 このようにステータコア10およびロータコア30の軸方向長さおよび巻線2の駆動力発生に寄与する長さを長くすることにより、トルク定数を大きくすることができる。そのため、巻線2に同一の電流を流した場合、実施の形態1のモータ100は、比較例のモータ100Dよりも高い出力を発生することができる。図14に示した解析結果では、実施の形態1のモータ100は、比較例のモータ100Dよりも60%高い出力を発生している。
 このように、この実施の形態1のモータ100は、永久磁石を用いないリラクタンスモータでありながら、高い出力を発生することができる。
 ここでは、各磁極に2つのスリット(第1のスリット31および第2のスリット32)を形成したが、各磁極に3つ以上のスリットを形成してもよい。その場合には、各磁極の最も外周側のスリットを第1のスリットと称し、最も内周側のスリットを第2のスリットと称する。
<実施の形態の効果>
 以上説明したように、本発明の実施の形態1のモータ100は、ロータ3の各磁極に第1のスリット31と第2のスリット32とを有するリラクタンスモータであって、ステータコア10には巻線2が波巻で巻かれ、また冷媒を軸方向に流通させる切欠き部16(冷媒通路)が形成されている。
 巻線2が波巻で巻かれているため、コイルエンド部が小さく、そのため、モータ100全体を大きくすることなく、ステータコア10およびロータコア30の軸方向長さおよび巻線2の駆動力発生に寄与する長さを長くすることができる。その結果、永久磁石を有さないリラクタンスモータであっても、高い出力を得ることができる。
 また、巻線2が波巻で巻かれており、径方向外側への張り出しが少ないため、切欠き部16を通過する冷媒の流れが巻線2によって妨げられず、冷媒の十分な流量を確保することができる。すなわち、モータ100の出力向上に応じた流量の冷媒を流すことができる。
 また、ロータコア30のシャフト孔37の径方向外側に、ロータコア30を径方向に貫通する溝部35を有するため、ロータコア30内の磁束の流れを妨げることなく、冷媒の流量を増加させることができる。
 また、溝部35は、シャフト孔37に連続して形成されているため、積層鋼板の加工が容易であり、また溝部35の面積(すなわち流路面積)を大きく確保することができる。
 また、スリット31,32は、周方向の中心部31a,32aが両端部31b,32bよりも径方向内側に突出する円弧形状を有するため、d軸のインダクタンスLdと、q軸のインダクタンスLqとに差を生じさせ、リラクタンストルクを生じさせることができる。
実施の形態2.
 次に、本発明の実施の形態2について説明する。図15は、実施の形態2のモータ100Aの構成を示す、軸線C1に直交する面における断面図である。モータ100Aは、ステータ1と、ロータ3Aとを有している。
 モータ100Aのステータ1は、実施の形態1のモータ100のステータ1と同様の構成を有する。すなわち、ステータ1のステータコア10は、ヨーク部11とティース12とを有し、ティース12には巻線2が波巻で巻かれ、ヨーク部11には冷媒を軸方向に流通させる切欠き部16(冷媒通路)が形成されている。
 モータ100Aのロータ3Aは、実施の形態1のモータ100のロータ3に、カシメ部33とリベット穴(貫通孔)34とを設けたものである。カシメ部33の数およびリベット穴34の数は、いずれも極数Pと同じである。ここでは、極数Pが6であるため、カシメ部33の数およびリベット穴34の数は、いずれも6個である。
 図16は、ロータ3Aの一部を拡大して示す図である。ロータ3のカシメ部33は、ロータコア30を構成する積層鋼板を互いに固定するものである。カシメ部33は、ロータコア30において各磁極の第2のスリット32に囲まれた内周側領域B3に形成されている。また、カシメ部33は、極間に形成されている。より具体的には、カシメ部33は、周方向に隣り合う2つの第2のスリット32に挟まれる位置に形成されている。
 ロータ3のリベット穴34は、カシメ部33と同様、ロータコア30において各磁極の第2のスリット32に囲まれた内周側領域B3に形成されている。また、リベット穴34は、極間に形成されており、カシメ部33よりも径方向内側に位置している。
 実施の形態1で説明したように、ロータコア30の各磁極の第2のスリット32に囲まれた内周側領域B3では磁束の流れが少ないため、カシメ部33およびリベット穴34はロータコア30内の磁束の流れを妨げない。
 また、リラクタンスモータでは、永久磁石埋込型モータよりもロータコア30の空隙部分(スリット31,32)の占有面積が広く、カシメ部33を形成可能な領域が少ない。カシメ部33を極間に形成することで、ロータコア30内の限られた領域を有用に利用することができる。
 また、リラクタンスモータでは、スリット31,32内に永久磁石が挿入されないため、永久磁石埋込型モータと比較して、ロータ3の回転中に積層鋼板の位置ずれが生じやすい。そのため、積層鋼板を、カシメ部17とリベットとによって確実に締結する必要がある。また、リベットを挿通するリベット穴34は、カシメ部17よりも占有面積が広い。そこで、この実施の形態2では、リベット穴34をカシメ部33よりも径方向内側に形成している。
 また、カシメ部33およびリベット穴34は、6個の極間の全てに形成されているため、ロータコア30の周方向の重量バランスが向上する。なお、ここでは、カシメ部33およびリベット穴34は、それぞれ6個ずつ形成されているが、いずれも少なくとも1つ形成されていればよい。
 また、ここでは、ロータコア30にカシメ部33およびリベット穴34の両方を形成したが、カシメ部33のみを形成してもよく、リベット穴34のみを形成してもよい。また、リベット穴34は、冷媒を軸方向に通過させる貫通孔として用いても良い。
 また、ここでは各磁極に2つのスリット(第1のスリット31および第2のスリット32)を形成したが、3つ以上のスリットを形成してもよい。その場合には、各磁極の最も内周側のスリット(第2のスリットと称する)に囲まれた領域に、カシメ部33およびリベット穴34を形成すればよい。
 以上説明したように、この実施の形態2では、ロータコア30の各磁極の第2のスリット32によって囲まれた内周側領域B3にカシメ部33が形成されるため、ロータコア30内の磁束の流れを妨げないようにカシメ部33を設け、ロータコア30の積層要素を強固に固定することができる。
 また、カシメ部33の径方向内側にリベット穴(貫通孔)34が形成されるため、ロータコア30内の磁束の流れを妨げないようにリベット穴34を設け、ロータコア30の積層要素をさらに強固に固定することができる。
 また、カシメ部33およびリベット穴34が極間に形成されるため、ロータコア30の内周側領域B3の限られたスペースを有効に利用することができる。カシメ部33およびリベット穴34が全ての極間に設けられているため、ロータコア30の周方向の重量バランスが向上する。
実施の形態3.
 次に、本発明の実施の形態3について説明する。図17は、実施の形態3のモータ100Bの構成を示す、軸線C1に直交する面における断面図である。モータ100Bは、ステータ1と、ロータ3Bとを有している。
 モータ100Bのステータ1は、実施の形態1のモータ100のステータ1と同様の構成を有する。すなわち、ステータ1のステータコア10は、ヨーク部11とティース12とを有し、ティース12には巻線2が波巻で巻かれ、ヨーク部11には冷媒を軸方向に流通させる切欠き部16(冷媒通路)が形成されている。
 モータ100Bのロータ3Bは、実施の形態1のモータ100のロータ3に対して、スリットの形状が異なるものである。実施の形態2のロータ3Bは、ロータコア30の外周面30aに沿って形成された第1のスリット51と、第1のスリット51の径方向内側に形成された第2のスリット52とを有する。第1のスリット51および第2のスリット52は、1磁極に対応する。言い換えると、6個の磁極のそれぞれが、第1のスリット51と第2のスリット52とを有する。
 図18は、ロータ3Bの一部を拡大して示す図である。第1のスリット51は、周方向の中心部51aを含んで直線状に延在する第1の部分51bと、第1の部分51bの周方向の各端部からロータコア30の外周に向けて直線状に延在する一対の第2の部分51cとを有する。第1の部分51bは、中心部51aを通る径方向の直線(磁極の中心線)に対して直交する方向に延在している。一対の第2の部分51cは、径方向外側ほど両者の間隔が広がるように、中心部51aを通る径方向の直線に対して、互いに対称に延在している。
 第2のスリット52は、周方向の中心部52aを含んで直線状に延在する第1の部分52bと、第1の部分52bの周方向の各端部からロータコア30の外周に向けて直線状に延在する一対の第2の部分52cとを有する。第1の部分52bは、中心部52aを通る径方向の直線(磁極の中心線)に対して直交する方向に延在している。一対の第2の部分52cは、径方向外側ほど両者の間隔が広がるように、中心部52aを通る径方向の直線に対して、互いに対称に延在している。
 第1のスリット51の外周側には、ステータ1からの磁束が流れる領域B1が形成される。第1のスリット51と第2のスリット52との間には、ステータ1からの磁束が流れる帯状の領域B2が形成される。各磁極の第2のスリット52によって囲まれた領域には、磁束の流れの少ない内周側領域B3が形成される。なお、ここでは、ロータ3Bの各磁極に2つのスリット(第1のスリット51および第2のスリット52)を形成しているが、3つ以上のスリットを形成してもよい。
 ロータコア30のシャフト孔37および溝部35の構成は、実施の形態1と同様である。また、ロータコア30の内周側領域B3に、実施の形態2で説明したカシメ部33およびリベット穴34を形成してもよい。
 以上説明したように、この実施の形態3においても、ロータ3Bの各磁極に第1のスリット51と第2のスリット52とを有するリラクタンスモータであって、ステータコア10には巻線2が波巻で巻かれ、また冷媒を軸方向に流通させる切欠き部16(冷媒通路)が形成されている。そのため、実施の形態1と同様、モータ100B全体を大きくすることなく、高い出力を得ることができる。また、巻線2が波巻で巻かれており、径方向外側への張り出しが少ないため、切欠き部16を通過する冷媒の十分な流量を確保することができる。
 また、ロータコア30のシャフト孔37の径方向外側に、ロータコア30を径方向に貫通する溝部35を有するため、ロータコア30内の磁束の流れを妨げることなく、冷媒の流量を増加させることができる。
実施の形態4.
 次に、本発明の実施の形態4について説明する。図19は、実施の形態3のモータ100Cの構成を示す、軸線C1に直交する面における断面図である。モータ100Cは、ステータ1Cと、ロータ3とを有している。
 モータ100Cのステータ1Cは、ステータコア10と巻線2とを有する。ステータコア10は、実施の形態1と同様、ヨーク部11とティース12とを有し、ティース12に巻線2が波巻で巻かれている。但し、ヨーク部11には、切欠き部16の代わりに、冷媒を軸方向に流通させる貫通穴15(冷媒通路)が形成されている。
 ここでは、極数Pと同数である6個の貫通穴15が、周方向に等間隔に形成されている。貫通穴15は、例えば、ティース12の周方向の中心位置を通る径方向の軸線上に位置している。また、貫通穴15は、ステータコア10のカシメ部17と、周方向に交互に形成されていることが望ましい。
 ティース12に波巻で巻かれた巻線2は、径方向外側への張り出しが少ないため、貫通穴15を通過する冷媒の流れを妨げることがなく、冷媒の十分な流量を確保することができる。また、ヨーク部11に、貫通穴15に加えて、実施の形態1で説明した切欠き部16(図1)を形成してもよい。なお、貫通穴15の数は、極数Pと同数に限らず、1つ以上であればよい。
 モータ100Cのロータ3は、実施の形態1のロータ3と同様の構成を有する。但し、実施の形態2で説明したようにロータ3にカシメ部33およびリベット穴34を形成してもよく、実施の形態3で説明したスリット51,52の形状を採用してもよい。
 以上説明したように、この実施の形態4では、ステータ1Cのヨーク部11に冷媒を通過させる貫通穴15が形成されており、ティース12に巻線2が波巻で巻かれているため、貫通穴15を通過する冷媒の流れが巻線2によって妨げられず、冷媒の十分な流量を確保することができる。また、ステータ1Cのヨーク部11に貫通穴15と切欠き部16の両方を設ければ、冷媒の流量をさらに増加させることができる。
<圧縮機>
 次に、上述した実施の形態1のモータ100を用いた圧縮機について説明する。図20は、上述した実施の形態1のモータ100を用いた圧縮機(スクロール圧縮機)500の構成を示す断面図である。
 圧縮機500は、スクロール圧縮機であり、密閉容器502内に、圧縮機構510と、圧縮機構510を駆動するモータ100と、圧縮機構510とモータ100とを連結する主軸501と、主軸501の圧縮機構510の反対側の端部(副軸部)を支持するサブフレーム503と、密閉容器502の底部の油だめ505に貯留される潤滑油504とを備える。
  圧縮機構510は、固定スクロール511と、主軸501に取り付けられた揺動スクロール512とを有する。固定スクロール511および揺動スクロール512は、いずれも渦巻部分を有し、両者の間に渦巻き状の圧縮室516が形成される。圧縮機構510は、さらに、揺動スクロール512の自転を規制して揺動スクロール512を揺動させるオルダムリング513と、揺動スクロール512が取り付けられたコンプライアントフレーム514と、これらを支持するガイドフレーム515とを備える。
  固定スクロール511には、密閉容器502を貫通した吸入管506が圧入されている。また、密閉容器502を貫通して、固定スクロール511の吐出ポート511aから吐出される高圧の冷媒ガスを外部に吐出する吐出管507が設けられている。
  密閉容器502は、円筒状のシェル4(図1)を有し、このシェル4の内周側に、実施の形態1のモータ100が取り付けられる。密閉容器502には、モータ100のステータ1と駆動回路とを電気的に接続するためのガラス端子508が溶接により固定されている。主軸501は、モータ100のシャフト38(図1)である。
 圧縮機500の動作は、以下の通りである。モータ100が回転すると、ロータ3と共に主軸501(シャフト38)が回転する。主軸501が回転すると、揺動スクロール512が揺動し、固定スクロール511と揺動スクロール512との間の圧縮室516の容積を変化させる。これにより、吸入管506から圧縮室516に冷媒ガスを吸入して圧縮する。
 圧縮室516内で圧縮された高圧の冷媒ガスは、固定スクロール511の吐出ポート511aから密閉容器502内に排出され、吐出管507から外部に排出される。また、圧縮室516から密閉容器502内に排出された冷媒ガスの一部は、ステータ1の切欠き部16(図1)を通過し、モータ100および潤滑油504を冷却する。
 上記の通り、実施の形態1のモータ100は、高いトルクを発生し、製造コストが低いため、圧縮機500の出力を高め、また製造コストを低減することができる。
 なお、圧縮機500には、モータ100の代わりに、実施の形態2~4で説明したモータ100A~100Cを用いても良い。また、ここでは、圧縮機の一例としてスクロール圧縮機について説明したが、実施の形態1~4のモータ100~100Cは、スクロール圧縮機以外の圧縮機に適用してもよい。
<空気調和装置>
 次に、図20に示した圧縮機500を有する空気調和装置(冷凍サイクル装置)について説明する。図21は、空気調和装置400の構成を示す図である。図21に示した空気調和装置400は、圧縮機401と、凝縮器402と、絞り装置(減圧装置)403と、蒸発器404とを備えている。圧縮機401、凝縮器402、絞り装置403および蒸発器404は、冷媒配管407によって連結されて冷凍サイクルを構成している。すなわち、圧縮機401、凝縮器402、絞り装置403および蒸発器404の順に、冷媒が循環する。
 圧縮機401、凝縮器402および絞り装置403は、室外機410に設けられている。圧縮機401は、図20に示した圧縮機500で構成されている。室外機410には、凝縮器402に室外の空気を供給する室外側送風機405が設けられている。蒸発器404は、室内機420に設けられている。この室内機420には、蒸発器404に室内の空気を供給する室内側送風機406が設けられている。
 空気調和装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して送り出す。凝縮器402は、圧縮機401から流入した冷媒と室外の空気との熱交換を行い、冷媒を凝縮して液化させて冷媒配管407に送り出す。室外側送風機405は、凝縮器402に室外の空気を供給する。絞り装置403は、開度を変化させることによって、冷媒配管407を流れる冷媒の圧力等を調整する。
 蒸発器404は、絞り装置403により低圧状態にされた冷媒と室内の空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発(気化)させて、冷媒配管407に送り出す。室内側送風機406は、蒸発器404に室内の空気を供給する。これにより、蒸発器404で熱が奪われた冷風が、室内に供給される。
 圧縮機401(図20の圧縮機500)には、実施の形態1~4で説明したモータ100~100Cが適用されるため、空気調和装置400の空調能力を高め、また製造コストを低減することができる。
 なお、実施の形態1~4のモータ100~100Cを適用した圧縮機500は、図21に示した空気調和装置400に限らず、他の種類の空気調和装置に用いてもよい。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
 1,1C ステータ、 2,2A,2B,2C,2D,2E,2F 巻線、 3,3A,3B ロータ、 4 シェル、 10 ステータコア、 11 ヨーク部、 12 ティース、 12a 先端部、 12b 根元部、 13 スロット、 15 貫通穴、 16 切欠き部、 17 カシメ部、 18 外周面、 20,20a,20b,20c 巻線部分、 30 ロータコア、 31 第1のスリット、 31a 中心部、 31b 端部、 32 第2のスリット、 32a 中心部、 32b 端部、 33 カシメ部、 34 リベット穴、 35 溝部、 37 シャフト孔、 38 シャフト、 51 第1のスリット、 51a 中心部、 51b 第1の部分、 51c 第2の部分、 52 第2のスリット、 52a 中心部、 52b 第1の部分、 52c 第2の部分、 100,100A,100B,100C モータ、 400 空気調和装置、 401 室外機、 402 室内機、 403 冷媒配管、 405 送風機、 406 羽根、 500 圧縮機(スクロール圧縮機)、 501 主軸、 502 密閉容器、 510 圧縮機構。

Claims (18)

  1.  圧縮機に用いられるリラクタンスモータであって、
     軸線を中心とする環状の外周を有するロータコアを有し、前記外周に沿って複数の磁極を有し、永久磁石を有さないロータと、
     前記軸線を中心とする径方向において前記ロータを外側から囲むステータコアと、前記ステータコアに波巻で巻かれた巻線とを有するステータと
     を備え、
     前記複数の磁極は、いずれも、前記ロータコアに形成された第1のスリットと、前記第1のスリットの前記径方向の内側に形成された第2のスリットとを有し、
     前記ステータコアは、冷媒を前記軸線の方向に流通させる冷媒通路を有する
     リラクタンスモータ。
  2.  前記ロータコアは、前記径方向の中心に形成されたシャフト孔と、前記シャフト孔の前記径方向の外側に形成された溝部とを有し、
     前記溝部は、前記ロータコアを前記軸線の方向に貫通する
     請求項1に記載のリラクタンスモータ。
  3.  前記溝部は、前記シャフト孔に連続して形成されている
     請求項2に記載のリラクタンスモータ。
  4.  前記ロータコアは、前記溝部を含む、前記複数の磁極の極数と同数の溝部を有する
     請求項2または3に記載のリラクタンスモータ。
  5.  前記ロータコアは、前記複数の磁極のそれぞれの前記第2のスリットによって囲まれた領域に、カシメ部を有する
     請求項1から4までの何れか1項に記載のリラクタンスモータ。
  6.  前記カシメ部は、前記複数の磁極のうち、隣り合う2つの磁極の極間に位置している
     請求項5に記載のリラクタンスモータ。
  7.  前記ロータコアは、前記カシメ部を含む、前記複数の磁極の極数と同数のカシメ部を有する
     請求項5または6に記載のリラクタンスモータ。
  8.  前記ロータコアは、前記カシメ部よりも前記径方向の内側に、前記ロータコアを前記軸線の方向に貫通する貫通穴を有する
     請求項5から7までの何れか1項に記載のリラクタンスモータ。
  9.  前記貫通穴は、前記複数の磁極のうち、隣り合う2つの磁極の極間に位置している
     請求項8に記載のリラクタンスモータ。
  10.  前記ロータコアは、前記貫通穴を含む、前記複数の磁極の極数と同数の貫通穴を有する
     請求項8または9に記載のリラクタンスモータ。
  11.  前記第1のスリットおよび前記第2のスリットは、いずれも、前記軸線を中心とする周方向の中心部が前記周方向の両端部よりも前記径方向の内側に突出する円弧形状を有する
     請求項1から10までの何れか1項に記載のリラクタンスモータ。
  12.  前記第1のスリットおよび前記第2のスリットは、いずれも、前記軸線を中心とする周方向の中心部を含み直線状に延在する第1の部分と、前記第1の部分の前記周方向の両端部から前記ロータの前記外周に向けて直線状に延在する一対の第2の部分とを有する
     請求項1から10までの何れか1項に記載のリラクタンスモータ。
  13.  前記冷媒通路は、前記ステータコアの外周に、前記ステータコアの前記軸線の方向の全域に亘って形成された切欠き部を有する
     請求項1から12までの何れか1項に記載のリラクタンスモータ。
  14.  前記冷媒通路は、前記ステータコアを前記軸線の方向に貫通する貫通穴を有する
     請求項1から12までの何れか1項に記載のリラクタンスモータ。
  15.  前記巻線は、ポリエステルイミドまたはポリアミドイミドの被膜を有する
     請求項1から14までの何れか1項に記載のリラクタンスモータ。
  16.  請求項1から15までの何れか1項に記載のリラクタンスモータと、前記リラクタンスモータによって駆動される圧縮機構とを備えた
     圧縮機。
  17.  前記圧縮機は、円筒状のシェルを有し、
     前記ステータコアは、前記シェルの内側に嵌合する
     請求項16に記載の圧縮機。
  18.  圧縮機、凝縮器、減圧装置および蒸発器を備えた空気調和装置であって、
     前記圧縮機は、請求項1から15までの何れか1項に記載のリラクタンスモータと、前記リラクタンスモータによって駆動される圧縮機構とを備える
     空気調和装置。
     
     
     
     
     
     
     
PCT/JP2017/020536 2017-06-02 2017-06-02 リラクタンスモータ、圧縮機および空気調和装置 WO2018220806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019521886A JP6789390B2 (ja) 2017-06-02 2017-06-02 リラクタンスモータ、圧縮機および空気調和装置
PCT/JP2017/020536 WO2018220806A1 (ja) 2017-06-02 2017-06-02 リラクタンスモータ、圧縮機および空気調和装置
US16/603,374 US11264847B2 (en) 2017-06-02 2017-06-02 Reluctance motor, compressor, and air conditioner
EP17911412.9A EP3633834B1 (en) 2017-06-02 2017-06-02 Reluctance motor, compressor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020536 WO2018220806A1 (ja) 2017-06-02 2017-06-02 リラクタンスモータ、圧縮機および空気調和装置

Publications (1)

Publication Number Publication Date
WO2018220806A1 true WO2018220806A1 (ja) 2018-12-06

Family

ID=64455865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020536 WO2018220806A1 (ja) 2017-06-02 2017-06-02 リラクタンスモータ、圧縮機および空気調和装置

Country Status (4)

Country Link
US (1) US11264847B2 (ja)
EP (1) EP3633834B1 (ja)
JP (1) JP6789390B2 (ja)
WO (1) WO2018220806A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104651A1 (fr) * 2019-12-13 2021-06-18 Danfoss Commercial Compressors Compresseur à spirales ayant un moteur à réluctance synchrone à démarrage direct sur le réseau (DOL)
WO2023084676A1 (ja) * 2021-11-11 2023-05-19 三菱電機株式会社 リラクタンスモータ、圧縮機、空気調和装置、及びリラクタンスモータの製造方法
WO2023152891A1 (ja) * 2022-02-10 2023-08-17 三菱電機株式会社 リラクタンスモータ駆動装置、リラクタンスモータユニット、圧縮機及び空気調和装置
JP7437808B2 (ja) 2022-05-26 2024-02-26 國立宜蘭大學 モーターローターとその設計方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245239A (ja) * 1987-03-31 1988-10-12 Toshiba Corp 誘導電動機の回転子
JPH10290541A (ja) * 1997-04-14 1998-10-27 Sanyo Electric Co Ltd 電動機の回転子
JP2002153029A (ja) * 2000-11-13 2002-05-24 Denso Corp リラクタンス型電動機
JP2004088852A (ja) 2002-08-23 2004-03-18 Daikin Ind Ltd 電動機およびそれを用いた圧縮機
JP2009077480A (ja) * 2007-09-19 2009-04-09 Mitsubishi Electric Corp 回転電動機
JP2010075011A (ja) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp 電動機の固定子及び電動機及び圧縮機
JP2011083066A (ja) 2009-10-02 2011-04-21 Osaka Prefecture Univ 永久磁石補助形同期リラクタンスモータ
JP2011147259A (ja) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp リラクタンスモータ
JP2013192359A (ja) 2012-03-14 2013-09-26 Mitsuba Corp ブラシレスモータ
JP2015156756A (ja) * 2014-02-20 2015-08-27 三菱電機株式会社 単相誘導電動機、密閉型圧縮機及び冷凍サイクル装置
WO2015132991A1 (ja) * 2014-03-05 2015-09-11 三菱電機株式会社 シンクロナスリラクタンスモータ
WO2016002012A1 (ja) * 2014-07-01 2016-01-07 三菱電機株式会社 回転子、電動機、圧縮機、及び送風機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114555U (ja) * 1984-01-06 1985-08-02 三菱電機株式会社 回転電機の界磁鉄心
JPH10281064A (ja) * 1997-04-02 1998-10-20 Daikin Ind Ltd 密閉型電動圧縮機
TW364234B (en) 1997-04-14 1999-07-11 Sanyo Electric Co Rotor for an electric motor
US6189322B1 (en) * 1998-03-13 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
JP3906879B2 (ja) * 1998-03-31 2007-04-18 株式会社富士通ゼネラル リラクタンスモータ
JP3952346B2 (ja) * 1998-05-20 2007-08-01 株式会社デンソー 回転電機及びその製造方法
JP2006121821A (ja) * 2004-10-21 2006-05-11 Honda Motor Co Ltd シンクロナスリラクタンスモータおよびシンクロナスリラクタンスモータを搭載した電動ステアリング装置
EP1880461B1 (en) * 2005-05-12 2013-02-13 LG Electronics Inc. Rotor of synchronous reluctance motor
JP4815204B2 (ja) * 2005-12-01 2011-11-16 アイチエレック株式会社 永久磁石回転機及び圧縮機
JP2009077582A (ja) * 2007-09-21 2009-04-09 Toyota Industries Corp 回転電機における相間絶縁シート、相間絶縁シートの製造方法及び電動圧縮機
JP2009185722A (ja) * 2008-02-07 2009-08-20 Panasonic Corp 密閉型圧縮機
US8740584B2 (en) * 2008-08-05 2014-06-03 Mitsubishi Electric Corporation Induction motor and hermetic compressor
CN102414448B (zh) * 2009-03-26 2015-04-15 江森自控科技公司 压缩机
JP5235911B2 (ja) 2010-01-14 2013-07-10 三菱電機株式会社 リラクタンスモータ
JP2015002650A (ja) * 2013-06-18 2015-01-05 ダイキン工業株式会社 モータ及びそれを用いた圧縮機

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245239A (ja) * 1987-03-31 1988-10-12 Toshiba Corp 誘導電動機の回転子
JPH10290541A (ja) * 1997-04-14 1998-10-27 Sanyo Electric Co Ltd 電動機の回転子
JP2002153029A (ja) * 2000-11-13 2002-05-24 Denso Corp リラクタンス型電動機
JP2004088852A (ja) 2002-08-23 2004-03-18 Daikin Ind Ltd 電動機およびそれを用いた圧縮機
JP2009077480A (ja) * 2007-09-19 2009-04-09 Mitsubishi Electric Corp 回転電動機
JP2010075011A (ja) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp 電動機の固定子及び電動機及び圧縮機
JP2011083066A (ja) 2009-10-02 2011-04-21 Osaka Prefecture Univ 永久磁石補助形同期リラクタンスモータ
JP2011147259A (ja) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp リラクタンスモータ
JP2013192359A (ja) 2012-03-14 2013-09-26 Mitsuba Corp ブラシレスモータ
JP2015156756A (ja) * 2014-02-20 2015-08-27 三菱電機株式会社 単相誘導電動機、密閉型圧縮機及び冷凍サイクル装置
WO2015132991A1 (ja) * 2014-03-05 2015-09-11 三菱電機株式会社 シンクロナスリラクタンスモータ
WO2016002012A1 (ja) * 2014-07-01 2016-01-07 三菱電機株式会社 回転子、電動機、圧縮機、及び送風機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633834A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104651A1 (fr) * 2019-12-13 2021-06-18 Danfoss Commercial Compressors Compresseur à spirales ayant un moteur à réluctance synchrone à démarrage direct sur le réseau (DOL)
WO2023084676A1 (ja) * 2021-11-11 2023-05-19 三菱電機株式会社 リラクタンスモータ、圧縮機、空気調和装置、及びリラクタンスモータの製造方法
WO2023152891A1 (ja) * 2022-02-10 2023-08-17 三菱電機株式会社 リラクタンスモータ駆動装置、リラクタンスモータユニット、圧縮機及び空気調和装置
JP7437808B2 (ja) 2022-05-26 2024-02-26 國立宜蘭大學 モーターローターとその設計方法

Also Published As

Publication number Publication date
US11264847B2 (en) 2022-03-01
JPWO2018220806A1 (ja) 2019-11-07
US20200328636A1 (en) 2020-10-15
EP3633834A1 (en) 2020-04-08
JP6789390B2 (ja) 2020-11-25
EP3633834A4 (en) 2020-05-27
EP3633834B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US10075034B2 (en) Magnet-embedded motor and compressor having magnet-embedded motor
TWI569560B (zh) A permanent magnet type rotating machine, and a compressor using the same
JP5401204B2 (ja) 自己始動型永久磁石同期電動機、及び、これを用いた圧縮機と冷凍サイクル
WO2018220806A1 (ja) リラクタンスモータ、圧縮機および空気調和装置
CN108886276B (zh) 电动机、送风机、压缩机及空气调节装置
US11750053B2 (en) Stator, motor, compressor, and air conditioner
CN110622394B (zh) 定子、电动机、压缩机及空调装置
JP6942246B2 (ja) ロータ、電動機、圧縮機および空気調和装置
JP6305535B2 (ja) 回転子、電動機、圧縮機、及び送風機
WO2018128006A1 (ja) 永久磁石式回転電機、及び、それを用いた圧縮機
JP7090605B2 (ja) 電動機、圧縮機および空気調和装置
WO2019073509A1 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
KR20150050464A (ko) 자석 매립형 모터 및 자석 매립형 모터를 가지는 압축기
WO2022014031A1 (ja) 固定子、電動機、圧縮機、及び空気調和機
JP6470598B2 (ja) 永久磁石式回転電機、並びにそれを用いる圧縮機
WO2021070353A1 (ja) ロータ、電動機、圧縮機、及び空気調和機
JP2016100927A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
WO2022064624A1 (ja) ステータ、電動機、圧縮機、冷凍サイクル装置およびステータの製造方法
WO2023037438A1 (ja) ロータ、モータ、圧縮機および冷凍サイクル装置
WO2022180717A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2023032134A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2018163370A1 (ja) 回転電機、圧縮機および冷凍サイクル装置
JPH07336918A (ja) 永久磁石形モータ及び冷却装置用コンプレッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017911412

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911412

Country of ref document: EP

Effective date: 20200102