WO2018218960A1 - 一种测量水中总卤代有机物的预处理方法 - Google Patents

一种测量水中总卤代有机物的预处理方法 Download PDF

Info

Publication number
WO2018218960A1
WO2018218960A1 PCT/CN2018/000169 CN2018000169W WO2018218960A1 WO 2018218960 A1 WO2018218960 A1 WO 2018218960A1 CN 2018000169 W CN2018000169 W CN 2018000169W WO 2018218960 A1 WO2018218960 A1 WO 2018218960A1
Authority
WO
WIPO (PCT)
Prior art keywords
water sample
water
silver
ions
photolysis
Prior art date
Application number
PCT/CN2018/000169
Other languages
English (en)
French (fr)
Inventor
陈白杨
卜毅男
Original Assignee
哈尔滨工业大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学深圳研究生院 filed Critical 哈尔滨工业大学深圳研究生院
Publication of WO2018218960A1 publication Critical patent/WO2018218960A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Definitions

  • the invention relates to a total indicator of halogenated organic matter, in particular to a method for separating and converting total halogenated organic matter in a water sample.
  • the total organic halogenated compound is a general indicator covering chlorinated, brominated, and iodine organic compounds in water. It is an important aggregate in the treatment of drinking water. In terms of industrial wastewater treatment, it is a total indicator for evaluating water quality and measuring the content of halogenated organic matter in water. Disinfection by-products in water are very harmful to human health, and there are many kinds of them. The content and control methods have always been an important issue in the field of drinking water treatment. Despite the great efforts of researchers, only about half of the more than 600 DBPs that have been discovered so far have been studied more clearly. As a total indicator, TOX can simultaneously analyze the content of all halogenated by-products, including unknown halogenated by-products. Therefore, since the establishment of the TOX test method, it has been widely and rapidly applied in various fields of water treatment, such as drinking water treatment, raw water evaluation, landfill leachate treatment, municipal and industrial sewage treatment, and sewage reuse.
  • TOX detection is to convert the organic halogenated compound into an inorganic halogen for measurement.
  • the standard TOX analysis process is mainly carried out in three steps, namely, pretreatment of the organic halogen in the adsorbed and separated water sample by activated carbon, conversion of the organic halogenated compound into inorganic halogen by pyrolysis, and measurement of the inorganic halide by means of IC or the like.
  • TOX analysis is sometimes referred to as adsorbable organic halogen (AOX) and dissolved organic halogen (DOX).
  • AOX adsorbable organic halogen
  • DOX dissolved organic halogen
  • the analysis process of AOX is the same as that of TOX, the dissolved organic halogenated substances in the water sample tested by the AOX method are adsorbed by the activated carbon column, and some suspended substances in the water are adsorbed by the activated carbon column, so the results obtained by AOX analysis include dissolution. Both organic halogens and organic substances in suspended matter.
  • the DOX analysis process involves the water sample being first filtered through a membrane to remove suspended matter from the water sample. Therefore, the results obtained by DOX analysis are only dissolved organic halogens. Because the analysis of DOX, AOX, and DOX is only slightly different in the pre-processing process, and the rest of the analysis process is roughly the same, the overall connotation of these three concepts is the same.
  • a method for measuring total halogenated organic compounds in water is disclosed in Japanese Laid-Open Patent Publication No. JPH 06308111, which uses a reversed phase chromatography column to separate organic halogenated compounds and inorganic halogens in a water sample to be tested; The method is carried out by converting an organic halogenated compound into an inorganic halogen.
  • Standard methods such as EPA1650 use activated carbon adsorption to separate organic halogenated compounds.
  • the special activated carbon column is expensive and the test amount is high, resulting in high test cost.
  • the reversed-phase column method avoids the use of activated carbon, but still needs to use the price. Expensive pyrolysis furnaces convert organic halogenated compounds, so equipment costs remain high.
  • a method and system for measuring the content of dissolved organic halogen in water is disclosed in Chinese Patent Application Publication No. CN 106093215, which uses an electrodialysis technique to separate a soluble inorganic halogen and a dissolved organic halogen in the water to be measured, by electrodialysis technology.
  • haloacetic acid one of the important disinfection by-products, is currently strictly defined in the national standard for drinking water, it is necessary to explore alternative methods for its detection.
  • Standard methods such as EPA1650 and other equipment for testing TOX and the cost of consumable testing are relatively expensive.
  • the activated carbon column used to separate organic halogenated compounds by means of activated carbon adsorption is expensive and has a large amount of test; on the other hand, heat is used.
  • the pyrolysis furnace used for the conversion of organic halogenated compounds is expensive and costly.
  • the object of the present invention is to find and apply new techniques to avoid the use of activated carbon adsorption and pyrolysis conversion in the process of measuring TOX, thereby reducing the test cost of TOX.
  • the invention provides a pretreatment method for measuring total organic halogenated compounds in water, which specifically comprises the following steps:
  • the photolyzed water sample converts the organic halogenated compound in the water sample into an inorganic halogen ion.
  • the total halogenated organic compound specifically includes an organic chloride, an organic bromide and an organic iodide; after the photolysis of the water sample, the inorganic halogen content in the water sample after photolysis is measured, and the inorganic substance in the water sample before photolysis is subtracted
  • the halogen ion content is equal to the halogen content of the total halogenated organic matter in the water.
  • silver ions may be added by adding an excess amount of silver carbonate powder in water; the excess silver carbonate powder is embodied as being fully reacted, There is still undissolved pale yellow silver carbonate powder in the water sample; excessive silver carbonate powder is added to make the dissolved silver carbonate in the water saturated, and the silver ions in the water react with the inorganic halogen ions to form a precipitate, which is consumed. The silver carbonate powder will continue to dissolve.
  • the silver carbonate in the water will still be saturated; because the saturated solubility of the silver carbonate in water is relatively low, the silver ion concentration in the water after reacting with the inorganic halogen ions It is also relatively low and easy to follow up.
  • the method of adding silver ions may be to add a silver-soluble compound such as silver nitrate or silver sulfate to the water sample; Measure the content of all inorganic halide ions in the water sample, including chloride, bromide and iodide; add silver sulfate or silver nitrate to make the number of moles of silver ions in the water sample 1.2 of the total number of inorganic halides in the water sample. -2 times.
  • a silver-soluble compound such as silver nitrate or silver sulfate
  • the silver ions may be added by using a pretreatment silver column dedicated to ion chromatography; and removing the inorganic particles from the water sample through a silver column.
  • a pretreatment silver column dedicated to ion chromatography and removing the inorganic particles from the water sample through a silver column.
  • the filtration is selected by a disposable needle filter, the filter material is nylon 66, and the pore diameter is 0.22 um.
  • the filtration is selected by vacuum filtration, and the filter material is nylon 66 and the pore diameter is 0.22 um.
  • the remaining silver ion in the deionized sample is selected from the hydrogen column for ion chromatography pretreatment; and the water sample is at a rate of less than 2 ml/min. , through the hydrogen column at a constant speed, to achieve the purpose of removing the remaining silver ions.
  • the remaining silver ions in the water sample are selected by adding sodium sulfide; for the selective addition of silver carbonate to remove inorganic halogen ions in the water sample,
  • the amount of sodium sulfide is the product of the amount of water-like water and 0.1 mmol/L; for the selection of the compound which dissolves silver to remove the inorganic halide ions in the water sample, the amount of the substance added with sodium sulfide is (the mass of the silver compound added - The mass of total inorganic halogen ions in water) / 2+ 0.05 mmol.
  • the photolysis water sample can be specifically selected by a low pressure mercury lamp having a wavelength of 185 nm; the photolysis method can be performed by using an immersion photolysis device or a sample. Placed in a quartz photolysis tube, external low-pressure mercury lamp, directly photolysis;
  • the water sample may be drinking water, rain water, river water, domestic sewage, industrial sewage, landfill leachate, and the like.
  • the invention provides a pretreatment method for detecting total halogenated organic compounds in water, and removes inorganic halogen ions in the water sample by adding silver ions, and converts the organic halogenated compounds into inorganic halogen ions by photolysis to achieve separation and conversion of the pretreatment.
  • the purpose of pretreatment of organic matter; the water sample after pretreatment can directly determine the total content of halogenated organic compounds in water by measuring the content of inorganic halogen ions; on the basis of the accuracy to meet the test requirements, the activated carbon and pyrolysis furnace are avoided in principle. Use, reducing the cost of testing.
  • FIG. 1a is a flowchart of a preprocessing method provided by Embodiment 1.
  • FIG. 1b is a diagram showing the effect of a pretreatment method for removing halogen ions provided in Example 1.
  • FIG. 1c is a schematic view showing the structure of a pretreatment method optical solution box provided in Embodiment 1
  • Figure 1d is a graph showing the recovery rate of individual photolysis organic matter in a pretreatment method provided in Example 1.
  • Figure 1e is a diagram showing the effect of a pretreatment method provided by Example 1 on different substances.
  • Embodiment 2a is a flow chart of a preprocessing method provided in Embodiment 2
  • Figure 2b is a diagram showing the effect of a pretreatment method for different substances provided in Example 2.
  • FIG. 3a is a flowchart of a preprocessing method provided in Embodiment 3.
  • Figure 3b is a diagram showing the effect of a pretreatment method for different substances provided in Example 3.
  • Figure 4b is a diagram showing the effect of a pretreatment method provided by Example 4 on different substances.
  • Figure 4c is a diagram showing the effect of a pretreatment method provided by Example 4 on actual water samples.
  • the method for pretreating total halogenated organic compounds in water comprises first removing inorganic halide ions in the water sample, adding silver ions to the water sample, and reacting the silver ions with the inorganic halogen ions to form a precipitate, and after being fully reacted, filtering The precipitation is removed to achieve the purpose of removing inorganic halide ions from the water sample.
  • the silver ions for example, by pre-treatment of the silver column by ion chromatography, and the water sample can be passed through the silver column at a constant speed; or the silver sample which is easy to dissolve can be added to the water sample.
  • Inorganic compounds such as silver nitrate, silver sulfate, etc.; in order to ensure the appropriate amount of silver-containing inorganic compounds, to achieve the purpose of removing inorganic halide ions, and not introducing too much silver ions to affect subsequent measurements, etc.
  • the concentration of the inorganic halogen ion in the water sample needs to be measured first, and after calculation, the amount of the silver-containing inorganic compound in the water sample is selectively selected; for example, the volume of a certain water sample is 1 L, and the measurement is performed.
  • the concentration of chloride ion in the water sample is 35.5 mg/L.
  • the total inorganic halide ion content in the water sample is 1 mmol, and 1 mmol of silver ion can be used together with the inorganic halide ion in the water sample.
  • a slight excess of silver ions was added to the water sample to ensure complete reaction, then 1.2-2 mmol of silver ions were added to the water sample.
  • the method of adding the silver ions to the water sample may select a slightly soluble silver-containing compound, for example, adding an excessive amount of silver carbonate powder; the excess silver carbonate powder is embodied in the water sample after sufficient reaction.
  • the undissolved pale yellow silver carbonate powder is present to keep the silver ion saturated state in the water sample; the excess silver carbonate powder is added to make the dissolved silver carbonate in the water saturated, and the silver ions in the water continuously react with the inorganic halogen ions to form Precipitation and consumption, the excess silver carbonate powder will continue to dissolve.
  • the silver carbonate in the water will still be saturated; because the saturated solubility of silver carbonate in water is relatively low, according to the MINEQL software, Considering the solubility of silver carbonate and the concentration of carbonate ions in water, the concentration of saturated silver ions is about 0.18 mmol/L in the presence of excess silver carbonate solids at 25 ° C in water; therefore, after the reaction of silver ions with inorganic halide ions, Silver ions are still saturated in water, but the concentration of silver ions is relatively low and easy to carry out.
  • the formed precipitate needs to be filtered.
  • What kind of filtering equipment or device can be used according to the actual situation, but the pore size of the filter membrane is suitable, and the membrane material is not Adsorption of halogenated organic compounds in water.
  • a filter needle with a pore size of 0.22 um and a nylon 66 material can be used? Filter.
  • silver ions are used to precipitate and filter the original inorganic halide ions in the water sample, and it is necessary to remove the silver ions remaining in the water sample.
  • the silver ions remaining in the water sample are removed to ensure that the inorganic halogen ions generated during the photolysis of the halogenated organic compound in the water sample are not removed from the residual silver ions in a subsequent step.
  • the pretreatment hydrogen column or the sodium column of the ion chromatography may be selected, and the remaining silver ions in the water sample may be adsorbed and removed by cation exchange with the water sample through the hydrogen column or the sodium column.
  • Removing the silver ions remaining in the water sample may also be carried out by adding a substance which can produce a lower solubility than silver halide to the silver sample.
  • a substance which can produce a lower solubility than silver halide for example, in the silver halide, the minimum equilibrium constant of the Ksp precipitation of the solubility product is silver iodide.
  • the precipitate equilibrium constant of 8.3 ⁇ 10 -17, and the silver sulfide precipitate equilibrium constant is 6.3 ⁇ 10 -50, much less than the equilibrium constant of the precipitation of silver iodide; when the water sample precipitate silver sulfide, water samples even then
  • the addition of halogen ions also does not form a silver halide precipitate; therefore, sulfides can be selected to remove the remaining silver ions in the water sample.
  • the silver ion is removed by reacting the sulfide ion with the silver ion to form a precipitate.
  • a water sample has a volume of 1 L, and an excess of silver carbonate is added to the water sample.
  • the concentration of silver ions in the water sample should be the concentration of the saturated solution of silver carbonate, that is, about 0.18 mmol/L. In order to remove the remaining silver ions, the solution is added to the water sample.
  • the water sample is filtered, that is, the purpose of removing the remaining silver ions in the water sample is completed; and the sulfur remaining in the water sample is theoretically formed after the precipitation of silver sulfide
  • the ion is about 0.01 mmol and does not affect subsequent measurements.
  • Example 1 Pretreatment method for detecting total halogenated organic compounds in water I
  • the operation steps are as shown in Fig. 1a.
  • the inorganic halogen in the water sample is removed.
  • the method is to add excess silver carbonate powder to the water; after sufficient reaction, filter; remove the remaining silver ions in the water sample.
  • the water sample is pretreated by ion chromatography to treat the hydrogen column; the photolyzed water sample is used to convert the organic halogenated compound into an inorganic halogen; the inorganic halogen content in the water sample after photolysis is measured, and the inorganic halogen ion content in the water sample before photolysis is subtracted. That is equal to the content of halogen contained in the total halogenated organic matter in water.
  • the specific calculation formula is:
  • Total organic chlorinated compound content chloride ion content in water sample after photolysis - residual chloride ion content in water sample before photolysis
  • Total organic brominated compound content bromide ion content in water sample after photolysis - residual bromide ion content in water sample before photolysis
  • Total organic iodide content iodide ion content in water sample after photolysis - residual iodide ion content in water sample before photolysis
  • test water samples are configured, and the water samples are configured with ultrapure water, and the total amount of each water sample is 1 L, and one of the water samples contains a halogenated organic substance, trichlorophenol 1 mg/L, and tribromophenol.
  • water sample contains inorganic halogen chloride ion 10mg/L, bromide ion 10mg/L, iodide ion 10mg/L; another water sample contains monochloroacetonitrile 1mg/L, monobromide Acetonitrile 1 mg / L, monoiodoacetonitrile 1 mg / L, chloride ion 10 mg / L, bromide 10 mg / L, iodide ion 10 mg / L.
  • the source of silver ions is silver carbonate. To ensure the excess of silver carbonate added to the water sample, 0.5 g of silver carbonate powder is added.
  • the selected filter membrane is a Jinteng needle-type disposable filter membrane with a pore size of 0.22 um and a diameter of 1.5 cm.
  • the filter material is nylon 66.
  • the ion chromatography pretreatment hydrogen column selected is a 1 cc hydrogen column of Dai'an Company.
  • the photolysis solution uses a low-pressure mercury lamp with a wavelength of 185 nm.
  • the photolysis tank structure is shown in Figure 1c.
  • Figure 1d To verify the photolysis efficiency, the photolysis recovery rate of several substances of organic matter 1 mg/L was pre-tested. The specific results are shown in Figure 1d. All the steps involved in the measurement are measured three times, and the average is taken as the result record.
  • the effect of removing inorganic halide ions is shown in Fig. 1b.
  • the effect of the pretreatment method of this embodiment on different substances is shown in Fig. 1e.
  • the operation steps are shown in Figure 2a. Specifically, the inorganic halogen in the water sample is first removed. The method is to add silver nitrate to the water. The specific method is to measure the total inorganic halide ion content in the water sample.
  • the remaining silver ions in the water sample are selected by pre-treatment of the water sample by ion chromatography; photolysis of the water sample, conversion of the organic halogenated compound to inorganic halogen; The inorganic halogen content in the water sample after the solution is subtracted from the inorganic halide ion content in the water sample before photolysis, which is equal to the halogen content in the total halogenated organic matter in the water.
  • the test water sample is configured, and the water sample is configured with ultrapure water, the total amount is 1 L, and the water sample contains halogenated organic matter trichlorophenol 1 mg/L, tribromophenol 1 mg/L, and triiodophenol 1 mg/L. Containing inorganic halogen chloride ion 10mg / L, bromide ion 10mg / L, iodide ion 10mg / L.
  • the source of silver ions is silver nitrate.
  • the selected filter membrane is a Jinteng needle-type disposable filter membrane with a pore size of 0.22 um and a diameter of 1.5 cm.
  • the filter material is nylon 66.
  • the photolysis solution uses a low-pressure mercury lamp with a wavelength of 185 nm, and the structure of the photolysis box is shown in the figure. All the steps involved in the measurement are measured three times, and the average value is taken as the result record. The effect of the pretreatment method of this embodiment on different substances is shown in Fig. 2b.
  • the operation steps are shown in Figure 3a.
  • the method is to pre-treat the water sample by ion chromatography. Because the silver column is attached with silver ions, when the water sample passes through the silver column, it can be reduced.
  • the content of halogen ions in the water sample filtering; removing the remaining silver ions in the water sample by selecting the water sample by ion chromatography to pretreat the hydrogen column; photolyzing the water sample to convert the organic halogenated compound into an inorganic halogen; measuring light
  • the content of inorganic halogen in the water sample is subtracted from the content of inorganic halogen ions in the water sample before photolysis, which is equal to the content of halogen in the total halogenated organic matter in water.
  • Total organic chlorinated compound content chloride ion content in water sample after photolysis - residual chloride ion content in water sample before photolysis
  • Total organic brominated compound content bromide ion content in water sample after photolysis - residual bromide ion content in water sample before photolysis
  • Total organic iodide content iodide ion content in water sample after photolysis - residual iodide ion content in water sample before photolysis
  • the test water sample is configured, the water sample is configured with ultrapure water, the total amount is 1 L, and the water sample contains halogenated organic matter trichlorophenol 1 mg/L, tribromophenol 1 mg/L, and triiodophenol 1 mg/L;
  • the water sample contains 10 mg/L of inorganic halogen chloride ion, 10 mg/L of bromide ion and 10 mg/L of iodide ion.
  • the silver column is selected as the Dion pretreatment column with a specification of 1 cc.
  • the selected filter membrane is a Jinteng needle-type disposable filter membrane with a pore size of 0.22 um and a diameter of 1.5 cm.
  • the filter material is nylon 66.
  • the ion chromatography pretreatment hydrogen column selected is a 1 cc hydrogen column of Dai'an Company.
  • the photolysis solution uses a low-pressure mercury lamp with a wavelength of 185 nm, and the structure of the photolysis box is shown in the figure. All the steps involved in the measurement are measured three times, and the average value is taken as the result record. The effect of the pretreatment method of this embodiment on different substances is shown in Fig. 3b.
  • the inorganic halogen in the water sample is removed.
  • the method is to add excess silver carbonate powder to the water; after sufficient reaction, filter; remove the remaining silver ions in the water sample.
  • Sodium sulfide is added to the sample to remove the remaining silver ions by the precipitation of silver ions with silver ions;
  • the photo-decomposition water sample converts the organic halogenated compound into an inorganic halogen; and the inorganic halogen content in the water sample after photolysis is measured, minus
  • the content of inorganic halogen ions in the water sample before photolysis is equal to the content of halogen in the total halogenated organic matter in water.
  • the specific calculation formula is:
  • Total organic chlorinated compound content chloride ion content in water sample after photolysis - residual chloride ion content in water sample before photolysis
  • Total organic brominated compound content bromide ion content in water sample after photolysis - residual bromide ion content in water sample before photolysis
  • Total organic iodide content iodide ion content in water sample after photolysis - residual iodide ion content in water sample before photolysis
  • test water samples were measured using the pretreatment method IV, and the total amount of each water sample was 1 L, and the specific components are shown in Table 1.
  • the silver ion source is silver carbonate. To ensure that the silver carbonate added to the water sample is in an excess state, 0.5 g of silver carbonate powder is optionally added.
  • the selected filter membrane is a Jinteng needle-type disposable filter membrane with a pore size of 0.22 um and a diameter of 1.5 cm.
  • the filter material is nylon 66.
  • the photolysis solution uses a low-pressure mercury lamp with a wavelength of 185 nm, and the structure of the photolysis box is shown in the figure. All the steps involved in the measurement are measured three times, and the average value is recorded as the result. The effect of the pretreatment method of this embodiment on different substances is shown in Figures 4b and 4c.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种测量水中总卤代有机化合物的预处理方法,首先去除水样中的大多数无机卤素离子,通过在水样中加入银离子,使银离子同无机卤素离子反应形成沉淀,随后过滤;第二步将水样中残留的银离子去除;最后光解水样,利用紫外灯(2)把水样中的有机卤代化合物转化为无机卤素离子。之后用光解后水样中无机卤素离子的含量减去光解前水样中无机卤素离子的含量,即为初始状态下水样中有机卤代化合物中所含卤素的含量。本预处理方法在精度满足测试需求的基础上,避免了现行方法中需要使用价格昂贵的活性炭和热解炉的过程,可显著降低测试成本。

Description

一种测量水中总卤代有机物的预处理方法 技术领域
本发明涉及卤代有机物总量性指标,特别是一种水样中总的卤代有机物的分离和转化方法。
背景技术
总有机卤代化合物(TOX)是一个总量性指标,涵盖了在水中的氯代、溴代、碘代有机化合物,在饮用水处理领域,是反应水中消毒副产物的一个重要的总量性指标;在工业废水处理方面,是评价水质,衡量水中卤代有机物含量的总量性指标。水中消毒副产物对人体健康有很大危害,且种类繁多,其含量及控制方法一直是饮用水处理领域备受关注的重要问题。尽管科研人员投入了很大的精力,但在目前已发现的600多种DBPs中,只有接近一半物质的产生机理和毒性得到了比较清楚的研究。TOX作为一个总量性指标,它能同时分析所有卤代消毒副产物的含量,这其中也包括了未知的卤代消毒副产物。因此,自TOX测试方法建立后,便被广泛和迅速的应用在水处理的各个领域,如饮用水处理、原水评价、垃圾渗滤液处理、市政和工业污水处理以及污水回用。
很多国家和组织都出台了针对TOX分析的标准方法,比较典型的有美国环保署发布的EPA1650和国际标准化组织发布的ISO 9562。因无法直接测量水样中的有机卤代化合物,所以TOX检测的主要思路是将有机卤代化合物转化成无机卤素进行测量。标准的TOX分析过程主要经过三步,分别是用活性炭预处理吸附分离水样中有机卤、通过热解将有机卤代化合物转化为无机卤和利用IC等方法测量无机卤。
根据水样前处理方式的细微不同,TOX分析有时也被称为可吸附有机卤(AOX)和溶解性有机卤(DOX)。虽然AOX的分析过程和TOX相同,但AOX方法被测水样中既有的溶解性有机卤代物质被活性炭柱吸附,也有水中的部分悬浮物质被活性炭柱吸附,因此AOX分析得到的结果包括溶解性有机卤和悬浮物质中的有机物两种。而DOX的分析过程涉及被测水样先经过膜过滤去除水样中的悬浮物质,因此DOX分析得到的结果仅为溶解性有机卤。因为DOX、AOX、DOX的分析仅在预处理过程中略有差别,而其余分析过程都大致相同,因此这三个概念的整体内涵是相通的。
在日本的发明专利公开说明书JPH 06308111中公开了一种测量水中总卤代有机化合物的方法,采用反相色谱柱来分离待测水样中的有机卤代化合物和无机卤素;随后采用热解的方式将有机卤代化合物转化为无机卤素进行测量。标准方法如EPA1650等采用活性炭吸附的方式分离有机卤代化合物,专用的活性炭柱价格高并且测试用量大,造成测试成本高,该反相色谱柱的方式避免了活性炭的使用,但仍需要使用价格昂贵的热解炉转化有机卤代化合物,因此设备成本依然较高。
在中国发明专利申请公开说明书CN 106093215中公开了一种测量水中溶解性有机卤含量的方法及***,采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤,通过电渗析技术,实现溶解性有机卤与溶解性无机卤的分离;随后采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤,并利用具有离子分析功能的仪器分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤总含量指标和各溶解性有机卤(氟、氯、溴、碘)的分量 指标。在此专利中应用了电渗析技术分离无机卤与有机卤,但由于电渗析的离子驱动能力较强,水样中带电荷的卤代乙酸类物质的保留率很低,因此无法准确测量。而卤代乙酸作为重要的消毒副产物之一目前在饮用水国家标准中已被严格限定,因此有必要探索适用其检测的替代方法。
发明内容
发明要解决的问题
标准方法如EPA1650等检测TOX所需设备的售价和耗材测试成本都比较昂贵,一方面采用活性炭吸附的方式分离有机卤代化合物所用的活性炭柱价格高并且测试用量大;另一方面,采用热解方式转化有机卤代化合物所用热解炉价格昂贵、成本较高。
在此,本发明的目的在于,寻找和应用新的技术,在测量TOX的过程中避免使用活性炭吸附和热解转化的手段,从而降低TOX的测试成本。
解决问题的手段
本发明提供了一种测量水中总有机卤代化合物的预处理方法,其中具体包括下列步骤:
在待测水样中加入过量的银离子,使银离子与水样中无机卤素离子充分接触,形成沉淀,随后通过过滤去除大部分无机卤素离子;
去除水样中剩余的银离子;
光解水样,把水样中的有机卤代化合物转化为无机卤素离子。
所述总卤代有机化合物具体包括有机氯化物、有机溴化物和有机碘化物;所述光解水样后,测量光解后水样中的无机卤含量,减去光解前水样中无机卤素离子含量,即等于水中总卤代有机物所含卤素的含量。
作为本发明检测水中总卤代有机化合物的预处理方法的一个优选方案,加入银离子的方式可以为在水中加入过量的碳酸银粉末;所述过量的碳酸银粉末具体体现为在充分反应后,水样中仍有未溶解的淡黄色碳酸银粉末存在;加入过量的碳酸银粉末,使水中溶解的碳酸银处于饱和状态,随着水中银离子同无机卤素离子不断反应形成沉淀而消耗,过量的碳酸银粉末会继续溶解,在水中银离子充分与无机卤素离子反应后,水中碳酸银仍然会处于饱和状态;因为碳酸银在水中的饱和溶解度比较低,同无机卤素离子反应后,水中银离子浓度也比较低,容易进行后续处理。
作为本发明检测水中总卤代有机化合物的预处理方法的另一个优选方案,加入银离子的方式可以为向水样中加入硝酸银、硫酸银等易溶解的含银化合物类物质;具体需要先测量水样中所有无机卤素离子的含量,包括氯离子、溴离子和碘离子;加入硫酸银或硝酸银等物质使其所含有银离子的摩尔数为水样中总无机卤素离子摩尔数的1.2-2倍。
作为本发明检测水中总卤代有机化合物的预处理方法的另一个优选方案,加入银离子的方式可以为将水样通过离子色谱专用的预处理银柱;将水样通过银柱去除其中的无机卤素离子。
作为本发明检测水中总卤代有机化合物的预处理方法的一个优选方案,所述过滤选择一次性针头式滤膜过滤,滤膜材料为尼龙66,孔径为0.22um。
作为本发明检测水中总卤代有机化合物的预处理方法的一个优选方案,所述过滤选择真 空抽滤的方式过滤,滤膜材料为尼龙66,孔径为0.22um。
作为本发明检测水中总卤代有机化合物的预处理方法的一个优选方案,所述去水样中剩余银离子方式,选用离子色谱前处理用的氢柱;将水样以小于2ml/min的速度,匀速通过氢柱,达到去除剩余银离子的目的。
作为本发明检测水中总卤代有机化合物的预处理方法的一个优选方案,所述水样中剩余银离子方式选择加入硫化钠的方式;对于选择加入碳酸银去除水样中无机卤素离子的,加入硫化钠的物质的量为水样水量与0.1mmol/L的乘积;对于选择加入易溶解银的化合物去除水样中无机卤素离子的,加入硫化钠的物质的量为(加入银化合物物质量-水中总无机卤素离子的物质量)/2+0.05mmol。
作为本发明检测水中总卤代有机化合物的预处理方法的一个优选方案,光解水样具体可选用波长为185nm的低压汞灯实现;光解方式可以采用浸没式光解设备,也可以将样品放在石英光解管中,外置低压汞灯,直接进行光解;
作为本发明检测水中总卤代有机化合物的预处理方法,所述水样可以为饮用水、雨水、河水、生活污水、工业污水、垃圾渗滤液等。
发明效果
本发明检测水中总卤代有机化合物的预处理方法,通过加入银离子来去除水样中的无机卤素离子,通过光解将有机卤代化合物转化为无机卤素离子,来达到预处理的分离、转化有机物的预处理目的;预处理后的水样可直接通过测量无机卤素离子含量,确定水中总的卤代有机化合物含量;在精度满足测试需求的基础上,从原理上避免了活性炭和热解炉的使用,降低了测试成本。
附图说明
图1a为实施例1提供的一种预处理方法流程图
图1b为实施例1提供的一种预处理方法除卤素离子效果图
图1c为实施例1提供的一种预处理方法光解箱结构示意图
图1d为实施例1提供的一种预处理方法中单独光解有机物的回收率图
图1e为实施例1提供的一种预处理方法针对不同物质的效果图
图2a为实施例2提供的一种预处理方法流程图
图2b为实施例2提供的一种预处理方法针对不同物质的效果图
图3a为实施例3提供的一种预处理方法流程图
图3b为实施例3提供的一种预处理方法针对不同物质的效果图
图4a为实施例4提供的一种预处理方法流程图
图4b为实施例4提供的一种预处理方法针对不同物质的效果图
图4c为实施例4提供的一种预处理方法针对实际水样的效果图
具体实施方式
本发明检测水中总卤代有机化合物的预处理方法,首先去除水样中的无机卤素离子,在水样中加入银离子,使银离子同无机卤素离子反应形成沉淀,待充分反应后,通过过滤去除沉淀,达到去除水样中无机卤素离子的目的。在水样中加入所述银离子有多种方式,例如可 以通过离子色谱的前处理银柱实现,将水样匀速通过所述银柱即可;也可以向水样中加入易于溶解的含银的无机化合物,如硝酸银、硫酸银等;为保证合适的含银的无机化合物的加入量,达到去除无机卤素离子的目的,并且不会引入过多的银离子影响后续测量等操作,在加入易于溶解的含银无机化合物前需先测量水样中无机卤素离子浓度,通过计算后,有针对性的选择加入水样中含银无机化合物的量;例如,某水样体积为1L,经测量水样中氯离子浓度为35.5mg/L,未检测到溴离子和碘离子,那么水样中总的无机卤素离子的含量即为1mmol,则需1mmol银离子能与水样中的无机卤素离子恰好反应,为了能完全反应,向水样中加入稍微过量的银离子以确保能完全反应,则向所述水样中加入1.2-2mmol的银离子。同样,向水样中加入所述银离子的方式可以选择微溶的含银化合物,例如加入过量的碳酸银粉末;所述过量的碳酸银粉末具体体现为在充分反应后,水样中仍有未溶解的淡黄色碳酸银粉末存在,使水样中始终保持银离子饱和状态;加入过量的碳酸银粉末,使水中溶解的碳酸银处于饱和状态,随着水中银离子同无机卤素离子不断反应形成沉淀而消耗,过量的碳酸银粉末会继续溶解,在水中银离子充分与无机卤素离子反应后,水中碳酸银仍然会处于饱和状态;因为碳酸银在水中的饱和溶解度比较低,根据MINEQL软件估算,考虑到碳酸银的溶解度和水中碳酸根离子的浓度等因素,水中25摄氏度时过量碳酸银固体存在下,饱和银离子浓度大概为0.18mmol/L;所以在银离子同无机卤素离子反应后,虽然银离子仍在水中处于饱和状态,但银离子浓度比较低,容易进行后续处理;添加碳酸银等微溶物质,由于其微溶于水,最终饱和银离子的浓度固定,所以不用预先测量水样中总的无机离子浓度,直接加入过量的碳酸银即可,使用比较方便。
在银离子同水样中的无机卤素离子充分反应后,需要将形成的沉淀过滤,使用何种过滤设备或装置可以根据实际情况灵活选择,但要保证滤膜孔径合适,并且滤膜材料不会吸附水中的卤代有机化合物。例如,可以选用孔径为0.22um,材料为尼龙66的过滤针头?进行过滤。
在本发明方法中,使用银离子将水样中原有的无机卤素离子沉淀并过滤后,需要将水样中残留的银离子去除。去除水样中剩余的银离子,是为了保证在后续步骤中,水样中的卤代有机化合物光解过程中产生的无机卤素离子不会和残留的银离子生成衬垫而被去除。去除水样中剩余的银离子可以选择使用离子色谱的前处理氢柱或钠柱,通过所述氢柱或钠柱与水样进行阳离子交换,可以将水样中的剩余银离子吸附去除。去除水样中剩余的银离子也可以选择向水样中加入能与银离子产生比卤化银溶解度更低的物质来实现,例如,卤化银中溶度积Ksp沉淀平衡常数最小的是碘化银,其沉淀平衡常数为8.3×10 -17,而硫化银的沉淀平衡常数为6.3×10 -50,要远远小于碘化银的沉淀平衡常数;当水样中有硫化银沉淀产生时,水样中即使再加入卤素离子,也不会形成卤化银沉淀;因此可以选择用硫化物来去除水样中剩余的银离子。如向水样中加入硫化钠,通过硫离子同银离子反应会形成沉淀来实现去除银离子的目的。例如,某水样体积为1L,向水样中加入过量的碳酸银。待银离子同卤素离子反应形成沉淀并过滤后,水样中的银离子浓度应该为碳酸银饱和溶液的浓度,即约为0.18mmol/L,为了去除剩余的银离子,选择向水样中加入0.1mmol的硫化钠,待充分反应形成硫化银沉淀后,对水样进行过滤,即完成了去除水样中剩余的银离子的目的;并且理论上形成硫化银沉淀后,水样中剩余的硫离子约为0.01mmol,不会对后续测量产生影响。
下面的实施例只适用于详细说明本发明,并不以任何方式限制本发明的范围。
(1)实施例1:检测水中总卤代有机化合物的预处理方法I
操作步骤如图1a所示,首先去除水样中的无机卤素例子,选用的方式是向水中加入过量的碳酸银粉末;待充分反应后,过滤;去除水样中剩余的银离子,选用方式为将水样通过离子色谱前处理氢柱;光解水样,将有机卤代化合物转化为无机卤素;测量光解后水样中的无机卤含量,减去光解前水样中无机卤素离子含量,即等于水中总卤代有机物所含卤素的含量,具体计算公式为:
总有机氯代化合物含量=光解后水样中氯离子含量-光解前水样中剩余氯离子含量
总有机溴代化合物含量=光解后水样中溴离子含量-光解前水样中剩余溴离子含量
总有机碘代化合物含量=光解后水样中碘离子含量-光解前水样中剩余碘离子含量
具体的,配置两种不同的测试水样,所述水样用超纯水配置,每种水样总量为1L,其中一种水样含卤代有机物三氯苯酚1mg/L、三溴苯酚1mg/L、三碘苯酚1mg/L;水样中含无机卤素氯离子10mg/L、溴离子10mg/L、碘离子10mg/L;另一种水样含一氯乙腈1mg/L、一溴乙腈1mg/L、一碘乙腈1mg/L、氯离子10mg/L、溴离子10mg/L、碘离子10mg/L。选用银离子来源为碳酸银,为保证水样中加入的碳酸银为过量状态,选择加入0.5g碳酸银粉末。选用的滤膜为津腾牌针头式一次性滤膜,孔径为0.22um,直径1.5cm,滤膜材料为尼龙66.选用的离子色谱前处理氢柱为戴安公司1cc氢柱。光解选择使用波长为185nm的低压汞灯,光解箱结构见图1c,为验证光解效率,预先测试有机物1mg/L的几种物质的光解回收率,具体结果见图1d。流程中所有涉及到测量的步骤,皆测量三次,取平均值作为结果记录。去除无机卤素离子的效果见图1b,本实施例预处理方法针对不同物质的效果见图1e。
(2)实施例2:检测水中总卤代有机化合物的预处理方法II
操作步骤见图2a,具体为,首先去除水样中的无机卤素例子,选用的方式是向水中加入硝酸银;具体做法为先测量水样中的总的无机卤素离子含量,测量计算后,加入稍微过量的硝酸银;待充分反应后过滤;去除水样中剩余银离子选用方式为将水样通过离子色谱前处理氢柱;光解水样,将有机卤代化合物转化为无机卤素;测量光解后水样中的无机卤含量,减去光解前水样中无机卤素离子含量,即等于水中总卤代有机物中卤素的含量。
具体的,配置测试水样,所述水样用超纯水配置,总量为1L,水样含卤代有机物三氯苯酚1mg/L、三溴苯酚1mg/L、三碘苯酚1mg/L,含无机卤素氯离子10mg/L、溴离子10mg/L、碘离子10mg/L。选用银离子来源为硝酸银。选用的滤膜为津腾牌针头式一次性滤膜,孔径为0.22um,直径1.5cm,滤膜材料为尼龙66。光解选择使用波长为185nm的低压汞灯,光解箱结构见图。流程中所有涉及到测量的步骤,皆测量三次,取平均值作为结果记录,本实施例预处理方法针对不同物质的效果见图2b。
(3)实施例3:检测水中总卤代有机化合物的预处理方法III
操作步骤见图3a,首先去除水样中的无机卤素例子,选用的方式是将水样通过离子色谱前处理银柱,因为银柱上附着有银离子,当水样通过银柱时,可以降低水样中的卤素离子含量;过滤;去除水样中剩余的银离子,选用方式为将水样通过离子色谱前处理氢柱;光解水样,将有机卤代化合物转化为无机卤素;测量光解后水样中的无机卤含量,减去光解前水样 中无机卤素离子含量,即等于水中总卤代有机物中卤素的含量,具体计算公式为:
总有机氯代化合物含量=光解后水样中氯离子含量-光解前水样中剩余氯离子含量
总有机溴代化合物含量=光解后水样中溴离子含量-光解前水样中剩余溴离子含量
总有机碘代化合物含量=光解后水样中碘离子含量-光解前水样中剩余碘离子含量
具体的,配置测试水样,所述水样用超纯水配置,总量为1L,水样含卤代有机物三氯苯酚1mg/L、三溴苯酚1mg/L、三碘苯酚1mg/L;水样含无机卤素氯离子10mg/L、溴离子10mg/L、碘离子10mg/L。选用银柱为戴安前处理柱,规格为1cc。选用的滤膜为津腾牌针头式一次性滤膜,孔径为0.22um,直径1.5cm,滤膜材料为尼龙66.选用的离子色谱前处理氢柱为戴安公司1cc氢柱。光解选择使用波长为185nm的低压汞灯,光解箱结构见图。流程中所有涉及到测量的步骤,皆测量三次,取平均值作为结果记录,本实施例预处理方法针对不同物质的效果见图3b。
(4)实施例4:检测水中总卤代有机化合物的预处理方法IV
操作步骤见图4a,首先去除水样中的无机卤素例子,选用的方式是向水中加入过量的碳酸银粉末;待充分反应后,过滤;去除水样中剩余的银离子,选用方式为向水样中加入硫化钠,通过硫离子能同银离子生成沉淀来去除剩余的银离子;光解水样,将有机卤代化合物转化为无机卤素;测量光解后水样中的无机卤含量,减去光解前水样中无机卤素离子含量,即等于水中总卤代有机物中卤素的含量,具体计算公式为:
总有机氯代化合物含量=光解后水样中氯离子含量-光解前水样中剩余氯离子含量
总有机溴代化合物含量=光解后水样中溴离子含量-光解前水样中剩余溴离子含量
总有机碘代化合物含量=光解后水样中碘离子含量-光解前水样中剩余碘离子含量
具体的,使用预处理方法IV测量五种不同的测试水样,每种水样总量为1L,具体成分见表1。
表1水样成分表
Figure PCTCN2018000169-appb-000001
用银离子来源为碳酸银,为保证水样中加入的碳酸银为过量状态,选择加入0.5g碳酸银粉末。选用的滤膜为津腾牌针头式一次性滤膜,孔径为0.22um,直径1.5cm,滤膜材料为尼龙66。光解选择使用波长为185nm的低压汞灯,光解箱结构见图。流程中所有涉及到测量的步骤,皆测量三次,取平均值作为结果记录,本实施例预处理方法针对不同物质的效果见图4b和4c。
上面虽然结合实施例对本发明做了详细的说明,但是,所述技术领域的技术人员能够理解,在不脱离本发明的前提下,在权利要求书的保护范围内,还可以对上述实施例进行变更或改变等。
符号说明
1 装水样用光解管
2 紫外灯
3 灯架
4 电线
5 电源

Claims (9)

  1. 一种测量水中总有机卤代化合物的分离和转化方法,包括如下步骤:
    本发明提供了一种测量水中总有机卤代化合物的预处理方法,其中具体包括下列步骤:
    在待测水样中加入过量的银离子,使银离子与水样中无机卤素离子充分接触,形成沉淀,随后通过过滤去除大部分无机卤素离子;
    去除水样中剩余的银离子;
    光解水样,把水样中的有机卤代化合物转化为无机卤素离子。
  2. 根据权利要求1所述的方法,所述总有机卤代有机物具体包括有机氯化物、有机溴化物、有机碘化物;
  3. 根据权利要求1所述的方法,测量光解后水样中的无机卤含量,减去光解前水样中无机卤素离子含量,即等于水中总卤代有机物所含卤素的含量。
  4. 根据权利要求1所述的方法,还包括过滤步骤,在银离子同水样中无机卤素离子充分反应,形成沉淀后,将水样进行过滤;
  5. 根据权利要求4所述的方法,过滤水样的方式可以使用针头式过滤器、真空抽滤器等;
  6. 根据权利要求1所述的方法,加入银离子的方式可以为直接加入能释放银离子的物质,如碳酸银、硝酸银、硫酸银等,也可以是能提供银离子的其它方式,如离子色谱的前处理银柱;
  7. 根据权利要求1所述的方法,光解水样可选用波长为185nm的真空紫外灯实现;
  8. 根据权利要求7所述的方法,光解的方式可以是浸没式光解设备,也可以将样品放在石英光解管中,直接进行光解;
  9. 根据权利要求1至8所述的方法,所述水样可以为饮用水、雨水、河水、生活污水、工业污水、垃圾渗滤液等。
PCT/CN2018/000169 2017-06-01 2018-05-09 一种测量水中总卤代有机物的预处理方法 WO2018218960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710405661.6 2017-06-01
CN201710405661.6A CN107721041A (zh) 2017-06-01 2017-06-01 一种测量水中总卤代有机物的预处理方法

Publications (1)

Publication Number Publication Date
WO2018218960A1 true WO2018218960A1 (zh) 2018-12-06

Family

ID=61201282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000169 WO2018218960A1 (zh) 2017-06-01 2018-05-09 一种测量水中总卤代有机物的预处理方法

Country Status (2)

Country Link
CN (1) CN107721041A (zh)
WO (1) WO2018218960A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721041A (zh) * 2017-06-01 2018-02-23 哈尔滨工业大学深圳研究生院 一种测量水中总卤代有机物的预处理方法
CN110044762A (zh) * 2019-04-26 2019-07-23 华中科技大学 一种催化还原脱溴测定总有机溴含量的方法
CN114280187A (zh) * 2021-12-24 2022-04-05 生态环境部南京环境科学研究所 一种污染场地地下水中苯系物的检测分析方法及其设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941753A (zh) * 2010-08-23 2011-01-12 罗代洪 一种脱除水中氯根的方法
US20150177213A1 (en) * 2011-09-07 2015-06-25 Embro Corporation Use of moss to reduce disinfection by-products in water treated with disinfectants
CN104865306A (zh) * 2015-04-23 2015-08-26 中国制浆造纸研究院 一种固体样品中可吸附有机氯化物的检测方法
CN106093215A (zh) * 2016-05-26 2016-11-09 哈尔滨工业大学深圳研究生院 一种测量水中溶解性有机卤含量的方法及***
CN107721041A (zh) * 2017-06-01 2018-02-23 哈尔滨工业大学深圳研究生院 一种测量水中总卤代有机物的预处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531095B2 (en) * 2004-03-10 2009-05-12 Trojan Technologies Inc. System for predicting reduction in concentration of a target material in a flow of fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941753A (zh) * 2010-08-23 2011-01-12 罗代洪 一种脱除水中氯根的方法
US20150177213A1 (en) * 2011-09-07 2015-06-25 Embro Corporation Use of moss to reduce disinfection by-products in water treated with disinfectants
CN104865306A (zh) * 2015-04-23 2015-08-26 中国制浆造纸研究院 一种固体样品中可吸附有机氯化物的检测方法
CN106093215A (zh) * 2016-05-26 2016-11-09 哈尔滨工业大学深圳研究生院 一种测量水中溶解性有机卤含量的方法及***
CN107721041A (zh) * 2017-06-01 2018-02-23 哈尔滨工业大学深圳研究生院 一种测量水中总卤代有机物的预处理方法

Also Published As

Publication number Publication date
CN107721041A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Bagheri et al. Determination of very low levels of dissolved mercury (II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent
Benner et al. Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation
WO2018218960A1 (zh) 一种测量水中总卤代有机物的预处理方法
Zaporozhets et al. Determination of Cu (II) and Zn (II) using silica gel loaded with 1-(2-thiasolylazo)-2-naphthol
Chen et al. Methods for total organic halogen (TOX) analysis in water: Past, present, and future
US10336631B2 (en) Wastewater treatment method and wastewater treatment apparatus
Ikari et al. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon
Fontàs et al. Novel and selective procedure for Cr (VI) determination by X-ray fluorescence analysis after membrane concentration
JP4981749B2 (ja) セレンの定量分析方法並びに定量分析システム
Wang et al. Simple spectrophotometric determination of sulfate free radicals
Huang et al. Detecting hydrogen peroxide reliably in water via ion chromatography: a method evaluation update and comparison in the presence of interfering components
Mohapatra et al. Selenium in wastewater: fast analysis method development and advanced oxidation treatment applications
JP4538604B2 (ja) 光反応管内蔵型光反応装置及びこれを用いる水質モニタリング装置
Kaushik et al. Arsenic removal using advanced reduction process with dithionite/UV—a kinetic study
Lu et al. Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals
Lee et al. Determination of quantum yields for the photolysis of Fe (III)-hydroxo complexes in aqueous solution using a novel kinetic method
Young et al. Rapid, high-sensitivity analysis of oxyhalides by non-suppressed ion chromatography-electrospray ionization-mass spectrometry: application to ClO 4−, ClO 3−, ClO 2−, and BrO 3− quantification during sunlight/chlorine advanced oxidation
Stanisz et al. Solid-phase extraction with multiwalled carbon nanotubes prior to photochemical generation of cadmium coupled to high-resolution continuum source atomic absorption spectrometry
JP2016057162A (ja) 臭素酸イオン濃度の測定方法および測定システム
AU2012211358B2 (en) Method for detecting a concentration of chlorate-ions in an aqueous solution, apparatus for detecting a concentration of chlorate-ions and control unit
Boudenne et al. Inorganic chloramines analysis in water
CN109991200B (zh) 聚乙烯亚胺修饰的抗坏血酸碳纳米点、制备方法及应用
Wu et al. Total organic halogen (TOX) analysis in waters: A short review
JP3651821B2 (ja) 全窒素測定装置
JP6128523B2 (ja) 水溶性セレンの化学発光分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809697

Country of ref document: EP

Kind code of ref document: A1