WO2018207455A1 - チップ抵抗器の製造方法 - Google Patents

チップ抵抗器の製造方法 Download PDF

Info

Publication number
WO2018207455A1
WO2018207455A1 PCT/JP2018/009791 JP2018009791W WO2018207455A1 WO 2018207455 A1 WO2018207455 A1 WO 2018207455A1 JP 2018009791 W JP2018009791 W JP 2018009791W WO 2018207455 A1 WO2018207455 A1 WO 2018207455A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance value
trimming groove
resistor
trimming
cut
Prior art date
Application number
PCT/JP2018/009791
Other languages
English (en)
French (fr)
Inventor
松本 健太郎
夏希 井口
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to US16/611,875 priority Critical patent/US20210142932A1/en
Priority to CN201880029658.1A priority patent/CN110603614A/zh
Priority to DE112018002416.4T priority patent/DE112018002416T5/de
Publication of WO2018207455A1 publication Critical patent/WO2018207455A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming

Definitions

  • the present invention relates to a chip resistor manufacturing method in which a resistance value is adjusted by forming a trimming groove in a resistor provided on an insulating substrate.
  • a chip resistor is disposed to face a rectangular parallelepiped insulating substrate, a pair of front electrodes opposed to the surface of the insulating substrate with a predetermined interval, and a back surface of the insulating substrate with a predetermined interval.
  • this type of chip resistor When manufacturing this type of chip resistor, a large number of electrodes, resistors, protective films, etc. are formed in a lump on a large substrate, and then the large substrate is formed into a grid-like dividing line (for example, dividing grooves). A number of chip resistors are taken along the line. In the manufacturing process of such a chip resistor, a large number of resistors are formed on one side of a large substrate by printing and baking a resistor paste. Since it is unavoidable that the resistance value of each resistor varies due to unevenness and the like, it is difficult to avoid resistance value adjustment work by forming a trimming groove in each resistor in the state of a large substrate and setting it to a desired resistance value. Done.
  • the resistance value of the resistor is formed in advance with a resistance value somewhat lower than the target resistance value, and a probe for measurement is brought into contact with both electrodes, and the resistor
  • the resistance value is rounded up to the target resistance value by irradiating the resistor with laser light to form a trimming groove while measuring the resistance value.
  • the shape of the trimming groove I-cut, L-cut, etc. are known, and when performing high-precision resistance adjustment, II cut or IL cut combining two trimming grooves for coarse adjustment and fine adjustment or A double L-cut or the like is employed (Patent Document 1, Patent Document 2).
  • FIG. 6 is a plan view of the chip resistor described in Patent Document 1. As shown in FIG. 6, the resistor 100 has an L-cut first trimming groove 101 and an I-cut second trimming groove 102. The resistance value of the resistor 100 is adjusted to the target resistance value by the first trimming groove 101 for coarse adjustment and the second trimming groove 102 for fine adjustment.
  • the method for trimming the resistor will be described. First, the probe is brought into contact with the pair of electrodes 103 to measure the initial resistance value of the resistor 100, and the first target resistance value lower than the target resistance value based on the initial setting value. Set and memorize. Next, while the probe is brought into contact with both electrodes 103 and the resistance value of the resistor 100 is measured, laser light is irradiated upward from the lower side of the resistor 100 to start vertical cutting of the first trimming groove 101. To do. When the measured resistance value by the probe reaches the first target resistance value, the laser light irradiation direction is turned L to the left, and the horizontal trimming of the first trimming groove 101 is executed.
  • the length of the second trimming groove 102 is The L-turn position of one trimming groove 101 (the tip of the longitudinal cut portion) is not exceeded.
  • the second trimming is performed.
  • the length of the I-cut portion of the groove 102 does not become extremely long or short, and stable and highly accurate trimming can be performed regardless of variations in the initial resistance value.
  • microcracks are generated at the tip portions of the first trimming groove 101 and the second trimming groove 102, and the microcracks at the tip portions of the first trimming groove 101 extend in the inter-electrode direction (lateral direction), and thus have a resistance value.
  • the microcracks at the tip of the second trimming groove 102 extend in a direction (vertical direction) perpendicular to the inter-electrode direction, so that the microcrack generated at the tip of the second trimming groove 102 has a resistance value.
  • the microcracks have a great influence, and further, the electrical characteristics and durability of the resistor 100 are hindered.
  • an L-cut first trimming groove 101 and an L-cut are formed in the resistor 100 as shown in FIG.
  • a second trimming groove 104 having a shape is formed facing each other.
  • the resistor trimming method in this case will be described.
  • the probe is brought into contact with both electrodes 103 and the resistance value of the resistor 100 is measured. Irradiation starts cutting the first trimming groove 101 in the vertical direction.
  • the laser light irradiation direction is turned L to the left to start the lateral cut of the first trimming groove 101, and the measured resistance value is the target.
  • the laser beam irradiation is stopped to form the L-cut first trimming groove 101.
  • the first trimming groove 101 for rough adjustment is formed in this way, a value brought close to the target resistance value as the actually measured resistance value to some extent is obtained, and the rough adjustment of the resistance value is completed.
  • laser light is irradiated upward from the lower side of the resistor 100 at a position away from the vertical cut portion of the first trimming groove 101 by a predetermined distance L to the left, and the vertical direction of the second trimming groove 104 Start cutting.
  • the resistance value measured by the probe reaches, for example, a resistance value obtained by subtracting 1% from the target resistance value
  • the laser beam irradiation direction is turned L to the right, and the lateral cutting of the second trimming groove 104 is started.
  • the laser beam irradiation is stopped to form the L-cut second trimming groove 104.
  • the first trimming groove 101 having an L-cut shape is formed in the resistor 100 and the resistance value is roughly adjusted. Since the L-shaped second trimming groove 104 is formed and the resistance value is finely adjusted, both microcracks generated at the tip of the first trimming groove 101 and the second trimming groove 104 are in the inter-electrode direction. The resistance is less affected by the resistance value, and the influence of the microcrack generated at the tip of the first trimming groove 101 is blocked by the second trimming groove 104. The influence on characteristics and durability can be reduced.
  • the lengths of the vertical cut portion and the horizontal cut portion of the first and second trimming grooves 101 and 104 are based on the ratio of the resistor 100 to the final target resistance value.
  • the longitudinal cut is L-turned, and then from the target resistance value The horizontal cut is stopped when the resistance value obtained by subtracting several percent is reached.
  • the overall length of the lateral cut portion of the first trimming groove 101 is a length until reaching a resistance value obtained by subtracting several percent from the final target resistance value, and varies depending on the film thickness, material, and the like of the resistor 100. Therefore, depending on the length of the lateral cut portion of the first trimming groove 101, a situation may occur in which the resistance value adjustment with high accuracy by the second trimming groove 104 cannot be performed.
  • the trimming start point of the second trimming groove 104 is greatly separated from the end of the first trimming groove 101.
  • the distance until the leading end of the second trimming groove 104 in the vertical direction reaches the conduction line EL1 becomes extremely short.
  • the conduction line EL1 is a virtual line connecting the contact point P1 of the left electrode 103 in contact with the lower side of the resistor 100 and the terminal position of the first trimming groove 101 (the tip of the lateral cut) at the shortest distance.
  • the second trimming groove 102 is formed in a region Q1 that is a line and is surrounded by the conductive line EL1 and the first trimming groove 101.
  • This region Q1 is a portion where the ratio of the increment of the resistance value to the increment of the cut amount of the second trimming groove 102 is small. As described above, the tip of the vertical cut of the second trimming groove 104 reaches the conduction line EL1. If the distance to is short, the distance over which the resistance value can be adjusted is short, and as a result, the resistance value cannot be finely adjusted.
  • a method of manufacturing a chip resistor according to the present invention includes an electrode forming step of forming a pair of electrodes on a surface of an insulating substrate at a predetermined interval, and a connection to the pair of electrodes.
  • a second cut extending from the terminal end of the first cut in the direction between the electrodes by a fixed distance L1 is made into an L shape.
  • the incision in the first trimming groove is in the direction between the electrodes from one side surface of the resistor, with a position separated from the first incision by a certain distance L2 longer than the distance L1 in one electrode direction as a trimming start point. It is characterized by extending in a direction perpendicular to the direction.
  • the second cut after the L turn of the first trimming groove for coarse adjustment has a constant length L1 regardless of the film thickness or material of the resistor, Since the trimming start point of the second trimming groove for fine adjustment is always determined at a position that is a predetermined distance L2 away from the first cut of the first trimming groove, the trimming start point of the second trimming groove is set to the second trimming groove.
  • the end position of one trimming groove is not too far or too close, and stable and highly accurate resistance value adjustment can be performed.
  • the first target resistance value for determining the turn position of the first trimming groove may always be the same value, but the resistance value change amount associated with the second cut depth
  • the resistance value after the second cutting is the target even if the initial resistance value varies greatly. The resistance value is not exceeded and fine adjustment of the resistance value by the second trimming groove can be performed reliably.
  • the third cut of the second trimming groove exceeds an imaginary line connecting the intersection of one electrode contacting one side of the resistor and the terminal end of the first trimming groove,
  • the first trimming groove is formed so as not to exceed the first cut length, adverse effects caused by microcracks generated at the tip of the first trimming groove can be more effectively reduced.
  • the manufacturing method of the chip resistor according to the present invention it is possible to reduce the adverse effect on the characteristics caused by the microcrack and to perform stable and accurate resistance value adjustment by the second trimming groove for fine adjustment. be able to.
  • a chip resistor 1 includes a rectangular parallelepiped insulating substrate 2 and a surface of the insulating substrate 2.
  • a pair of front electrodes 3 provided at both ends in the longitudinal direction, a rectangular resistor 4 provided on the surface of the insulating substrate 2 so as to be connected to the pair of front electrodes 3, and so as to cover the resistor 4
  • the resistor 4 is mainly formed with a first trimming groove 5 for coarse adjustment of the resistance value and a second trimming groove 6 for fine adjustment.
  • a pair of back electrodes is provided on the back surface of the insulating substrate 2 so as to correspond to the front electrode 3, and corresponding front electrodes and An end face electrode that bridges the back electrode is provided.
  • the insulating substrate 2 is made of ceramic or the like, and this insulating substrate 2 is obtained by dividing a large-sized substrate, which will be described later, along a vertical and horizontal dividing groove and taking a large number of them.
  • the surface electrode 3 is obtained by screen-printing Ag-based paste and drying and firing.
  • the back electrode (not shown) is also obtained by screen-printing Ag-based paste and drying and firing.
  • the resistor 4 is a resistor paste made of Cu—Ni, ruthenium oxide or the like, screen-printed, dried and fired. The details will be described later, but the resistor 4 has an L-shaped first trimming groove 5. And the second trimming groove 6 are formed so as to face each other, so that the resistance value of the chip resistor 1 is adjusted.
  • a protective film (not shown) is obtained by screen-printing and curing an epoxy resin paste, and this protective film has a function of protecting the resistor 4 from the external environment.
  • the end face electrode is one obtained by applying an Ag paste to the end face of the insulating substrate 2 and then drying and firing, or by sputtering Ni / Cr or the like instead of the Ag paste. A plating layer of Au, Au, Sn or the like is applied.
  • a large-sized substrate from which a large number of insulating substrates 2 are taken is prepared.
  • the large-sized substrate is provided with a primary division groove and a secondary division groove in a grid shape in advance, and each of the squares divided by both division grooves is a chip area.
  • a large substrate 2A corresponding to one chip area is shown as a representative, but in reality, the steps described below are collectively performed for a large substrate corresponding to many chip areas. Done.
  • an Ag-based paste is screen-printed on the surface of the large substrate 2A, and then dried and fired to form a pair of surface electrodes 3 (surface electrode forming step).
  • an Ag-based paste is screen-printed on the back surface of the large substrate 2A, and then dried and fired to form a back electrode (not shown) (back electrode formation step).
  • a resistor paste such as Cu—Ni or ruthenium oxide is screen-printed on the surface of the large substrate 2A, dried and fired, so that both ends in the longitudinal direction are surface electrodes. 3 to form a rectangular resistor 4 (resistor forming step).
  • a resistor is set with a position that is a certain distance L2 (L2> L1) left from the first longitudinal cut portion 5a of the first trimming groove 5 as a trimming start point.
  • L2 L2> L1
  • the second horizontal cut portion 6b extending L-turns rightward from the tip of the second vertical cut portion 6a is formed.
  • an L-cut second trimming groove 6 opposite to the first trimming groove 5 is formed in the resistor 4 (second trimming forming step).
  • the shape of the second trimming groove 6 can be formed in various shapes depending on the purpose, such as an I-cut shape extending only in the direction orthogonal to the inter-electrode direction from the trimming start point.
  • both microcracks generated at the tips of the first trimming groove 5 and the second trimming groove 6 extend in the direction between the electrodes. Since it will be in a state, the bad influence resulting from a microcrack can be reduced more effectively.
  • the tip of the L-shaped second trimming groove 6 is formed so as not to exceed the first trimming groove 5, the adverse effect caused by the microcrack generated at the tip of the second trimming groove 6 is more effective.
  • the tip of the second trimming groove 6 comes inside the first trimming groove 5 having an L-cut shape, it is caused by microcracks generated at the tip of the second trimming groove. Can eliminate the negative effects.
  • a protective film (not shown) that covers the entire resistor 4 is formed by screen printing an epoxy resin paste from above the first and second trimming grooves 5 and 6 and then heat-curing (protective film forming step). ).
  • Each process so far is a batch process for a large-sized substrate 2A for taking a large number of pieces, but in the next step, a primary break process is performed in which the large-sized substrate 2A is divided into strips along the primary dividing groove.
  • a strip-shaped substrate (not shown) provided with a plurality of chip regions is obtained (primary division step).
  • an end face electrode (not shown) that bridges the front electrode 3 and the back electrode by applying an Ag paste to the divided surface of the strip-shaped substrate and drying / firing or sputtering Ni / Cr instead of the Ag paste. (End face electrode forming step).
  • a chip break having a size equivalent to that of the chip resistor 1 is obtained by performing a secondary break process of dividing the strip substrate along the secondary dividing groove (secondary dividing step).
  • electrolytic plating of Ni, Au, Sn, or the like is performed on both ends in the longitudinal direction of the individual insulating substrate 2 of each chip, thereby forming an external electrode (not shown) that covers the surface electrode 3 exposed from the protective film.
  • the chip resistor 1 as shown in FIG. 1 is obtained.
  • an unillustrated probe is brought into contact with the pair of front electrodes 3 to measure the initial resistance value R0 of the resistor 4 (S-1), and then based on the initial resistance value R0.
  • the first target resistance value R1 is determined to be minus 3% of the target resistance value Rt, and the initial resistance value R0 is equal to the target resistance value Rt. If it is minus 30%, the first target resistance value R1 is determined to be minus 5% of the target resistance value Rt.
  • the probe is brought into contact with the pair of surface electrodes 3 to measure the resistance value R of the resistor 4 (S-3), and the laser beam is moved along the Y1 direction from the starting point coordinates (x0, y0) shown in FIG. Scan (S-4).
  • the first vertical cut portion 5a extending upward from the lower side of the resistor 4 is formed (S-5), and the cut amount of the first vertical cut portion 5a is increased.
  • the measured resistance value R of the resistor 4 gradually increases.
  • the irradiation position of the laser beam is a fixed distance L1 in the X2 direction from the turn coordinates (x0, y1).
  • the laser irradiation is terminated at this position to form the L-shaped first trimming groove 5 (S-10).
  • the resistance value of the resistor 4 is roughly adjusted to the second target resistance value R2 that is higher than the first target resistance value R1 and lower than the target resistance value Rt. Is done.
  • the first trimming groove 5 may be formed in the resistor 4 by covering the surface of the resistor 4 with a precoat layer made of glass paste or the like and irradiating the precoat layer with laser light.
  • the amount of change in the resistance value associated with the cutting distance L1 of the first horizontal cut portion 5b varies depending on the tip position (turn position) of the first vertical cut portion 5a, and the turn position approaches the upper side of the resistor 4.
  • the resistance value change amount associated with the cutting distance L1 of the first lateral cut portion 5b increases.
  • the first target resistance value R1 is determined to be smaller as the difference between the initial resistance value R0 and the target resistance value Rt is larger, the initial resistance value R0 becomes the target resistance value Rt. Even in the case of large fluctuations, the resistance value of the resistor 4 can be reliably roughly adjusted to the second target resistance value R2 by cutting the first lateral cut portion 5b by a certain distance L1. .
  • the irradiation start coordinates of the laser beam which is the trimming start point of the second trimming groove 6, are determined based on the position of the first vertical cut portion 5 a of the first trimming groove 5.
  • the irradiation start coordinates are set so as to be a position (x0 + L2, y0) that is a fixed distance L2 away from the start point coordinates (x0, y0) in the left direction (X2 direction) (S-11).
  • the probe is brought into contact with the pair of surface electrodes 3 to measure the resistance value R of the resistor 4 (S-12), and the laser beam is scanned from the irradiation start coordinates (x0 + L2, y0) along the Y1 direction. (S-13).
  • a second vertical cut portion 6a extending upward from the lower side of the resistor 4 is formed (S-14), and the amount of cut of the second vertical cut portion 6a is increased.
  • the measured resistance value R of the resistor 4 further increases.
  • the second vertical cut portion 6a has the shortest distance between the contact P1 of the left surface electrode 3 in contact with the lower side of the resistor 4 and the terminal end of the first horizontal cut portion 5b of the first trimming groove 5. It is formed so as to extend toward the conduction line EL1 connected at the point.
  • the laser beam is turned 90 ° to the right. Scan in the X1 direction (S-16). As a result, as shown in FIG. 3D, a second horizontal cut portion 6b extending rightward from the tip of the second vertical cut portion 6a is formed (S-17). The resistance value of the resistor 4 further increases little by little with the cutting amount of 6b.
  • the laser irradiation is terminated at the position to form the second trimming groove 6 (S-19). All trimming steps for the resistor 4 are completed.
  • the first trimming groove 5 for coarse adjustment when the first trimming groove 5 for coarse adjustment is formed, the first lateral direction after the L turn of the first trimming groove 5 is formed.
  • the cut portion 5b (second cut) is set to a fixed length L1 regardless of the film thickness or material of the resistor 4, and the trimming start point of the second trimming groove 6 for fine adjustment is the first
  • the position of the first trimming groove 5 with respect to the trimming start point of the second trimming groove 6 is determined at a position that is always separated from the first vertical cut portion 5a (first notch) of the trimming groove 5 by a certain distance L2.
  • the terminal position is not too far away or too close, and the resistance value can be adjusted stably and accurately.
  • the first target resistance value is predicted by predicting the amount of change in resistance value associated with the cutting amount of the first lateral cut portion 5b (second cutting) after the L turn of the first trimming groove 5. Since R1 is set to a predetermined value corresponding to the initial resistance value R0, even if the initial resistance value R0 varies greatly, the rough adjustment of the resistance value by the first trimming groove 5 can be reliably performed. it can.
  • the second vertical cut portion (third cut) 6a of the second trimming groove 6 is formed by the intersection P1 where one electrode 3 is in contact with one side surface of the resistor 4 and the first trimming groove 5. Is formed so as not to exceed the imaginary line EL1 connecting the end of the second trimming groove 6 but extends the second longitudinal cut portion 6a of the second trimming groove 6 to a position exceeding the imaginary line EL1 and the second trimming groove 5 You may form so that the length of 1 vertical direction cut part (1st cut) 5a may not be exceeded. In this case, since the influence of the microcrack generated at the tip of the first trimming groove 5 is blocked by the second longitudinal cut portion 6a of the second trimming groove 6, the first lateral cut of the first trimming groove 5 is performed. The bad influence resulting from the microcrack which generate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

マイクロクラックに起因する特性への悪影響を軽減することができると共に、微調整用の第2トリミング溝による安定した高精度な抵抗値調整を行うことができるチップ抵抗器の製造方法を提供する。 抵抗体4に粗調整用の第1トリミング溝5と微調整用の第2トリミング溝6が形成されているチップ抵抗器1において、第1トリミング溝5のLターン後の第1横方向カット部5bを一定長さL1に設定すると共に、第2トリミング溝6のトリミング開始点の座標を第1トリミング溝5の第1縦方向カット部5aから常に一定距離L2だけ隔てた位置に設定し、当該座標から電極間方向と直交する方向へレーザ光を照射することにより、第1トリミング溝5と逆向きに対向する第2トリミング溝6を形成するようにした。

Description

チップ抵抗器の製造方法
 本発明は、絶縁基板上に設けられた抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器の製造方法に関するものである。
 一般的にチップ抵抗器は、直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を橋絡する端面電極と、対をなす表電極どうしを橋絡する抵抗体と、抵抗体を覆う保護膜等によって主に構成されている。
 この種のチップ抵抗器を製造する場合、大判基板に対して多数個分の電極や抵抗体や保護膜等を一括して形成した後、この大判基板を格子状の分割ライン(例えば分割溝)に沿って分割してチップ抵抗器を多数個取りするようにしている。かかるチップ抵抗器の製造過程で、大判基板の片面には抵抗ペーストを印刷・焼成することにより多数の抵抗体が形成されるが、印刷時の膜厚のばらつきや滲み、あるいは焼成炉内の温度むら等の影響により、各抵抗体の抵抗値にばらつきを生じることは避け難いため、大判基板の状態で各抵抗体にトリミング溝を形成して所望の抵抗値に設定するという抵抗値調整作業が行われる。
 このような抵抗器の抵抗値調整方法においては、予め抵抗体の抵抗値を目標抵抗値よりも幾分低い抵抗値にて形成しておき、両電極に測定用のプローブを接触させて抵抗体の抵抗値を測定しながら、抵抗体にレーザ光を照射してトリミング溝を形成することにより、抵抗値を切り上げて目標の抵抗値にするのが一般的である。トリミング溝の形状としてはIカットやLカット等が知られており、高精度の抵抗値調整を行う場合は、粗調整用と微調整用のトリミング溝を2本組み合わせたIIカットやILカットあるいはダブルLカット等が採用されている(特許文献1、特許文献2)。
 図6は特許文献1に記載されたチップ抵抗器の平面図であり、同図に示すように、抵抗体100にはLカット形状の第1トリミング溝101とIカット形状の第2トリミング溝102が形成されており、これら粗調整用の第1トリミング溝101と微調整用の第2トリミング溝102とによって抵抗体の100の抵抗値が目標抵抗値に調整されている。
 かかる抵抗体のトリミング方法について説明すると、まず、一対の電極103にプローブを接触させて抵抗体100の初期抵抗値を測定し、この初期設定値に基づいて目標抵抗値より低い第1目標抵抗値を設定・記憶する。次に、両電極103にプローブを接触させて抵抗体100の抵抗値を測定しながら、抵抗体100の下辺から上方へ向けてレーザ光を照射し、第1トリミング溝101の縦方向カットを開始する。そして、プローブによる測定抵抗値が第1目標抵抗値に達したなら、レーザ光の照射方向を左方へLターンして第1トリミング溝101の横方向カットを実行する。
 次いで、第1トリミング溝101の縦方向カット部から右方へ所定距離だけ離れた所定位置において、抵抗体100の下辺から上方へ向けてレーザ光を照射し、第2トリミング溝102のIカット(ストレートカット)を開始する。そして、プローブによる測定抵抗値が目標抵抗値に達したら、抵抗体100に対するレーザ光の照射を停止して第2トリミング溝102のIカットを終了することにより、抵抗体100の抵抗値調整(トリミング工程)が終了する。このように、抵抗体100の初期抵抗値を測定し、この初期設定値に基づいて第1トリミング溝101の縦方向カット長さを設定することで、第2トリミング溝102の長さは、第1トリミング溝101のLターン位置(縦方向カット部の先端)を越えないようになっている。
 このように特許文献1に記載された抵抗体のトリミング方法では、抵抗体100の初期抵抗値に基づいて第1トリミング溝101の横方向カット部分の長さを決定しているため、第2トリミング溝102のIカット部分の長さが極端に長くなったり短くなったりすることはなく、初期抵抗値のばらつきに関係なく安定した高精度のトリミングを行うことができる。しかしながら、第1トリミング溝101と第2トリミング溝102の先端部にはマイクロクラックが発生し、第1トリミング溝101の先端部のマイクロクラックは電極間方向(横方向)へ延長するため抵抗値にほとんど影響しないが、第2トリミング溝102の先端部のマイクロクラックは電極間方向と直交する方向(縦方向)へ延長するため、第2トリミング溝102の先端部に発生するマイクロクラックは抵抗値に大きく影響し、さらに、このマイクロクラックが抵抗体100の電気的特性や耐久性に支障をきたすという問題がある。
 このようなマイクロクラックの影響を軽減するために、特許文献2に記載された抵抗体のトリミング方法では、図7に示すように、抵抗体100にLカット形状の第1トリミング溝101とLカット形状の第2トリミング溝104とを向かい合わせに形成している。この場合の抵抗体のトリミング方法について説明すると、まず、両電極103にプローブを接触させて抵抗体100の抵抗値を測定しながら、抵抗体100の下辺の所定箇所から上方へ向けてレーザ光を照射して第1トリミング溝101の縦方向カットを開始する。そして、測定抵抗値が目標抵抗値の数十パーセントに達した時点で、レーザ光の照射方向を左方へLターンして第1トリミング溝101の横方向カットを開始し、測定抵抗値が目標抵抗値から数パーセントを差し引いた抵抗値に達した時点で、レーザ光の照射を停止してLカット形状の第1トリミング溝101を形成する。こうして粗調整用の第1トリミング溝101が形成されると、実測抵抗値としての目標抵抗値にある程度まで近づけられた値が得られ、抵抗値の粗調整が完了する。
 次に、第1トリミング溝101の縦方向カット部から左方へ所定距離Lだけ離れた位置において、抵抗体100の下辺から上方へ向けてレーザ光を照射し、第2トリミング溝104の縦方向カットを開始する。そして、プローブによる測定抵抗値が例えば目標抵抗値から1パーセントを差し引いた抵抗値に達した時点で、レーザ光の照射方向を右方へLターンして第2トリミング溝104の横方向カットを開始し、引き続き測定抵抗値が目標抵抗値に達した時点で、レーザ光の照射を停止してLカット形状の第2トリミング溝104を形成する。こうして抵抗体100に粗調整用の第1トリミング溝101と微調整用の第2トリミング溝104が形成されると、実測抵抗値が所期の目標抵抗値にほとんど達した時点でトリミングが終了した状態となり、そうして抵抗値全体の調整が完了する。
 このように特許文献2に記載された抵抗体のトリミング方法では、抵抗体100にLカット形状の第1トリミング溝101を形成して抵抗値を粗調整した後、この第1トリミング溝101と向かい合わせにLカット形状の第2トリミング溝104を形成して抵抗値を微調整しているため、第1トリミング溝101と第2トリミング溝104の先端部に発生するマイクロクラックが両方共に電極間方向へ延長した状態となって抵抗値に影響が少なくなり、さらに第1トリミング溝101の先端部に発生するマイクロクラックの影響が第2トリミング溝104によって遮られるため、これらマイクロクラックに起因する電気的特性や耐久性への影響を軽減することができる。
特開平4-196502号公報 特開2000-340401号公報
 特許文献2に記載された抵抗体100では、抵抗体100の最終的な目標抵抗値に対する割合に基づいて、第1および第2トリミング溝101,104の縦方向カット部と横方向カット部の長さがそれぞれ決定されており、例えば、粗調整用の第1トリミング溝101の長さについては、目標抵抗値の数十パーセントに達した時点で縦方向カットをLターンした後、目標抵抗値から数パーセントを差し引いた抵抗値に達した時点で横方向カットを停止するようにしている。しかし、第1トリミング溝101の横方向カット部の全長は、最終的な目標抵抗値から数パーセントを差し引いた抵抗値に達するまでの長さであり、抵抗体100の膜厚や材料等によって様々な長さになるため、第1トリミング溝101の横方向カット部の長さによっては、第2トリミング溝104による高精度な抵抗値調整をできなくなる事態が発生してしまう。
 例えば、図8(a)に示すように、第1トリミング溝101の横方向カット部の全長が短くなった場合、第2トリミング溝104のトリミング開始点が第1トリミング溝101の終端から大きく離れてしまうことがあり、その場合、第2トリミング溝104の縦方向カットの先端が導通ラインEL1に到達するまでの距離が極端に短くなってしまう。ここで、導通ラインEL1は、抵抗体100の下辺側に接する図中左側の電極103の接点P1と、第1トリミング溝101の終端位置(横方向カットの先端)とを最短距離で結んだ仮想線であり、この導通ラインEL1と第1トリミング溝101とで囲まれた領域Q1内に第2トリミング溝102が形成されるようになっている。この領域Q1は、第2トリミング溝102の切込み量増分に対する抵抗値増分の割合が小さい部位であるが、上記したように、第2トリミング溝104の縦方向カットの先端が導通ラインEL1に到達するまでの距離が短くなっていると、抵抗値を調整できる距離が短いため、結果的に抵抗値の微調整にならなくなる。
 また、図8(b)に示すように、第1トリミング溝101の横方向カット部の全長が長くなった場合、第1トリミング溝101の終端が第2トリミング溝104のトリミング開始点を越えてしまうことがあり、その場合、第2トリミング溝104の縦方向カットにおける単位長さ当たりの抵抗値変化が極端に小さくなるため、目標抵抗値から1パーセントを差し引いた抵抗値に達するまで第2トリミング溝104の縦方向カットを延ばしていくと、第2トリミング溝104の縦方向カットの先端が領域Q1を越えて第1トリミング溝101の横方向カットを突き抜けてしまう。その結果、抵抗体100の抵抗値が急激に上昇して微調整にならず、しかも、第2トリミング溝104の縦方向カットの先端部に発生するマイクロクラックの影響が大きくなってしまう。
 本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、マイクロクラックに起因する特性への悪影響を軽減することができると共に、微調整用の第2トリミング溝による安定した高精度な抵抗値調整を行うことができるチップ抵抗器の製造方法を提供することにある。
 上記の目的を達成するために、本発明によるチップ抵抗器の製造方法は、絶縁基板の表面に所定間隔を存して一対の電極を形成する電極形成工程と、一対の電極に接続するように長方形状の抵抗体を形成する抵抗体形成工程と、前記抵抗体の抵抗値を測定しながら、測定抵抗値が初期抵抗値より高く目標抵抗値より低い第1目標抵抗値に達するまで、前記抵抗体の一側面から電極間方向と直交する方向へ延びる第1の切込みを入れた後、前記第1の切込みの終端から電極間方向へ一定距離L1だけ延びる第2の切込みを入れてL字状の第1トリミング溝を形成する第1トリミング形成工程と、前記抵抗体の抵抗値を測定しながら、測定抵抗値が前記第1トリミング形成工程後の抵抗値より高く目標抵抗値より低い第2目標抵抗値に達するまで、前記第1トリミング溝の先端側の前記抵抗体の一側面から電極間方向と直交する方向へ延びる第3の切込みを入れた後、前記第3の切込みの終端から前記第1トリミング溝の前記第1の切込み方向へ、目標抵抗値に達するまで第4の切込みを入れてL字状の第2トリミング溝を形成する第2トリミング形成工程と、を含み、前記第2トリミング溝の前記第3の切込みは、前記第1トリミング溝の前記第1の切込みから一方の電極方向に前記距離L1よりも長い一定距離L2だけ隔てた位置をトリミング開始点として、前記抵抗体の一側面から電極間方向と直交する方向へ延びていることを特徴としている。
 このようなチップ抵抗器の製造方法では、粗調整用の第1トリミング溝のLターン後の第2の切込みが、抵抗体の膜厚や材料等に関係なく一定の長さL1にしてあり、微調整用の第2トリミング溝のトリミング開始点が、第1トリミング溝の第1の切込みから常に一定距離L2だけ隔てた位置に決定されるため、第2トリミング溝のトリミング開始点に対して第1トリミング溝の終端位置が離れ過ぎたり近づき過ぎることがなくなり、安定して高精度な抵抗値調整を行うことができる。
 上記したチップ抵抗器の製造方法おいて、第1トリミング溝のターン位置を決定する第1目標抵抗値は常に同じ値であっても良いが、第2の切込みの切込み量に伴う抵抗値変化量を予測して、第1目標抵抗値が初期抵抗値に応じて所定の値に設定されていると、初期抵抗値が大きく変動する場合であっても、第2の切込み後の抵抗値が目標抵抗値を越えてしまうことがなくなり、第2トリミング溝による抵抗値の微調整を確実に行うことができる。
 また、上記したチップ抵抗器の製造方法において、第2トリミング溝の第3の切込みが、一方の電極が抵抗体の一側面に接する交点と第1トリミング溝の終端とを結ぶ仮想線を越え、かつ第1トリミング溝の第1の切込み長さを越えないように形成されていると、第1トリミング溝の先端部に発生するマイクロクラックに起因する悪影響をより効果的に軽減することができる。
 本発明に係るチップ抵抗器の製造方法によれば、マイクロクラックに起因する特性への悪影響を軽減することができると共に、微調整用の第2トリミング溝による安定した高精度な抵抗値調整を行うことができる。
本発明の実施形態例に係るチップ抵抗器の平面図である。 該チップ抵抗器の製造工程を示す説明図である。 該チップ抵抗器のトリミング方法を示す説明図である。 該チップ抵抗器のトリミング方法を示すフローチャートである。 該チップ抵抗器のトリミング方法を示すフローチャートである。 従来例に係るチップ抵抗器の平面図である。 他の従来例に係るチップ抵抗器の平面図である。 図7のチップ抵抗器が有する問題点を示す説明図である。
 発明の実施の形態について図面を参照して説明すると、図1に示すように、本発明の実施形態例に係るチップ抵抗器1は、直方体形状の絶縁基板2と、この絶縁基板2の表面の長手方向両端部に設けられた一対の表電極3と、これら一対の表電極3に接続するように絶縁基板2の表面に設けられた長方形状の抵抗体4と、この抵抗体4を覆うように設けられた保護膜(図示せず)等によって主に構成されており、抵抗体4には抵抗値の粗調整用の第1トリミング溝5と微調整用の第2トリミング溝6とが形成されている。なお、図示省略されているが、絶縁基板2の裏面には表電極3に対応するように一対の裏電極が設けられており、絶縁基板2の長手方向の両端面には対応する表電極と裏電極を橋絡する端面電極が設けられている。
 絶縁基板2はセラミック等からなり、この絶縁基板2は後述する大判基板を縦横の分割溝に沿って分割して多数個取りされたものである。表電極3はAg系ペーストをスクリーン印刷して乾燥・焼成させたものであり、図示せぬ裏電極も同じくAg系ペーストをスクリーン印刷して乾燥・焼成させたものである。
 抵抗体4はCu-Niや酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成させたものであり、詳細については後述するが、この抵抗体4にL字形状の第1トリミング溝5と第2トリミング溝6を向かい合わせに形成することによってチップ抵抗器1の抵抗値が調整されるようになっている。
 なお、図示せぬ保護膜はエポキシ系の樹脂ペーストをスクリーン印刷して加熱硬化させたものであり、この保護膜は抵抗体4を外部環境から保護する機能を有している。また、端面電極は、絶縁基板2の端面にAgペーストを塗布して乾燥・焼成させたものや、Agペーストの代わりにNi/Cr等をスパッタしたものであり、この端面電極の表面にはNiやAuあるいはSn等のメッキ層が施されている。
 次に、このように構成されたチップ抵抗器1の製造工程について、図2を参照しながら説明する。
 まず、絶縁基板2が多数個取りされる大判基板を準備する。この大判基板には予め1次分割溝と2次分割溝が格子状に設けられており、両分割溝によって区切られたマス目の1つ1つが1個分のチップ領域となる。図2には1個分のチップ領域に相当する大判基板2Aが代表して示されているが、実際は多数個分のチップ領域に相当する大判基板に対して以下に説明する各工程が一括して行われる。
 すなわち、図2(a)に示すように、この大判基板2Aの表面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成して一対の表電極3を形成する(表電極形成工程)。なお、この電極形成工程と同時あるいは前後して、大判基板2Aの裏面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成して図示せぬ裏電極を形成する(裏電極形成工程)。
 次に、図2(b)に示すように、大判基板2Aの表面にCu-Niや酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、長手方向の両端部が表電極3に重なる長方形状の抵抗体4を形成する(抵抗体形成工程)。
 次に、図2(c)に示すように、抵抗体4の下辺の所定箇所から上方へ延びる第1縦方向カット部5aを形成した後、その第1縦方向カット部5aの先端から左方へLターンして一定距離L1だけ延びる第1横方向カット部5bを形成することにより、抵抗体4にLカット形状の第1トリミング溝5を形成する(第1トリミング形成工程)。この第1トリミング溝5により、抵抗体4の抵抗値は目標抵抗値よりも若干低い値に粗調整される。
 次に、図2(d)に示すように、第1トリミング溝5の第1縦方向カット部5aから左方へ一定距離L2(L2>L1)だけ離れた位置をトリミング開始点として、抵抗体4の下辺から上方へ延びる第2縦方向カット部6aを形成した後、その第2縦方向カット部6aの先端から右方へLターンして延びる第2横方向カット部6bを形成することにより、抵抗体4に第1トリミング溝5とは逆向きのLカット形状の第2トリミング溝6を形成する(第2トリミング形成工程)。このように第1トリミング溝5と第2トリミング溝6を形成した時点で抵抗体4の抵抗値調整は完了し、抵抗体4の抵抗値は目標抵抗値にほぼ近い値となる。
 ここで、第2トリミング溝6の形状をトリミング開始点から電極間方向と直交する方向にのみ延びるIカット形状など、目的に応じて様々な形状に形成することも可能であるが、第2トリミング溝6が第1トリミング溝5と逆向きのL字状に形成されていると、第1トリミング溝5と第2トリミング溝6の先端部に発生するマイクロクラックが両方共に電極間方向へ延長した状態となるため、マイクロクラックに起因する悪影響をより効果的に軽減することができる。また、Lカット形状の第2トリミング溝6の先端が第1トリミング溝5を越えないように形成されていると、第2トリミング溝6の先端部に発生するマイクロクラックに起因する悪影響をより効果的に軽減することができ、さらに、Lカット形状の第1トリミング溝5の内部に第2トリミング溝6の先端部が来るようにすると、第2トリミング溝の先端部に発生するマイクロクラックに起因する悪影響をなくすことができる。
 次に、第1および第2トリミング溝5,6の上からエポキシ樹脂ペーストをスクリーン印刷して加熱硬化することにより、抵抗体4の全体を覆う図示せぬ保護膜を形成する(保護膜形成工程)。
 ここまでの各工程は多数個取り用の大判基板2Aに対する一括処理であるが、次なる工程では、大判基板2Aを1次分割溝に沿って短冊状に分割するという1次ブレーク加工を行うことより、複数個分のチップ領域が設けられた図示せぬ短冊状基板を得る(1次分割工程)。次いで、短冊状基板の分割面にAgペーストを塗布して乾燥・焼成したり、Agペーストの代わりにNi/Crをスパッタすることにより、表電極3と裏電極を橋絡する図示せぬ端面電極を形成する(端面電極形成工程)。
 しかる後、短冊状基板を2次分割溝に沿って分割するという2次ブレーク加工を行うことにより、チップ抵抗器1と同等の大きさのチップ単体を得る(2次分割工程)。最後に、個片化された各チップ単体の絶縁基板2の長手方向両端部にNiとAuやSn等の電解メッキを施し、保護膜から露出する表電極3を覆う図示せぬ外部電極を形成することにより、図1に示すようなチップ抵抗器1が得られる。
 次に、上記した第1トリミング形成工程と第2トリミング形成工程について、図3~図5を参照しつつ詳細に説明する。
 図4のフローチャートに示すように、まず、一対の表電極3に図示せぬプローブを接触させて抵抗体4の初期抵抗値R0を測定した後(S-1)、その初期抵抗値R0に基づいて第1目標抵抗値R1の値を決定する。例えば、初期抵抗値R0が目標抵抗値Rtのマイナス10%であった場合は、第1目標抵抗値R1を目標抵抗値Rtのマイナス3%に決定し、初期抵抗値R0が目標抵抗値Rtのマイナス30%であった場合は、第1目標抵抗値R1を目標抵抗値Rtのマイナス5%に決定する。
 次に、一対の表電極3にプローブを接触させて抵抗体4の抵抗値Rを測定しながら(S-3)、レーザ光を図3に示す始点座標(x0,y0)からY1方向に沿って走査する(S-4)。これにより、図3(a)に示すように、抵抗体4の下辺から上方へ延びる第1縦方向カット部5aが形成され(S-5)、この第1縦方向カット部5aの切込み量に伴って抵抗体4の測定抵抗値Rが次第に上昇していく。
 そして、抵抗体4の測定抵抗値Rが第1目標抵抗値R1に達したら(S-6)、当該位置をターン座標(x0,y1)としてレーザ光を左側に90°方向変換してX2方向に走査する(S-7)。これにより、図3(b)に示すように、第1縦方向カット部5aの先端から左方向へ延びる第1横方向カット部5bが形成され(S-8)、この第1横方向カット部5bの切込み量に伴って抵抗体4の抵抗値が僅かずつ上昇していく。
 そして、第1横方向カット部5bが第1縦方向カット部5aの先端から一定距離L1だけ延びたなら、すなわち、レーザ光の照射位置がターン座標(x0,y1)からX2方向に一定距離L1だけ移動した座標(x0+L1,y1)に達したら(S-9)、当該位置でレーザの照射を終了してL字状の第1トリミング溝5を形成する(S-10)。こうして粗調整用の第1トリミング溝5が形成されると、この時点で、抵抗体4の抵抗値は第1目標抵抗値R1より高く目標抵抗値Rtより低い第2目標抵抗値R2に粗調整される。なお、抵抗体4の表面をガラスペースト等からなるプリコート層で覆い、このプリコート層の上からレーザ光を照射することにより、抵抗体4に第1トリミング溝5を形成するようにしても良い。
 ここで、第1横方向カット部5bの切込み距離L1に伴う抵抗値変化量は第1縦方向カット部5aの先端位置(ターン位置)によって変化し、当該ターン位置が抵抗体4の上辺に近づくほど、第1横方向カット部5bの切込み距離L1に伴う抵抗値変化量は大きくなる。上述したように本実施形態例では、目標抵抗値Rtに対する初期抵抗値R0の差分が大きいほど第1目標抵抗値R1の値を小さく決定しているため、初期抵抗値R0が目標抵抗値Rtに対して大きく変動する場合であっても、第1横方向カット部5bを一定距離L1だけ切込むことにより、抵抗体4の抵抗値を第2目標抵抗値R2に確実に粗調整することができる。
 しかる後、図5のフローチャートに示すように、第1トリミング溝5の第1縦方向カット部5aの位置に基づいて第2トリミング溝6のトリミング開始点であるレーザ光の照射開始座標を決定し、この照射開始座標を始点座標(x0,y0)から左方向(X2方向)へ一定距離L2だけ離れた位置(x0+L2,y0)となるように設定する(S-11)。
 次に、一対の表電極3にプローブを接触させて抵抗体4の抵抗値Rを測定しながら(S-12)、レーザ光をこの照射開始座標(x0+L2,y0)からY1方向に沿って走査する(S-13)。これにより、図3(c)に示すように、抵抗体4の下辺から上方へ延びる第2縦方向カット部6aが形成され(S-14)、この第2縦方向カット部6aの切込み量に伴って抵抗体4の測定抵抗値Rがさらに上昇していく。その際、第2縦方向カット部6aは、抵抗体4の下辺に接する図中左側の表電極3の接点P1と、第1トリミング溝5の第1横方向カット部5bの終端とを最短距離で結んだ導通ラインEL1に向かって延びるように形成される。
 そして、抵抗体4の測定抵抗値Rが第2目標抵抗値R2より高く目標抵抗値Rtより低い第3目標抵抗値R3に達したら(S-15)、レーザ光を右側に90°方向変換してX1方向に走査する(S-16)。これにより、図3(d)に示すように、第2縦方向カット部6aの先端から右方向へ延びる第2横方向カット部6bが形成され(S-17)、この第2横方向カット部6bの切込み量に伴って抵抗体4の抵抗値がさらに僅かずつ上昇していく。
 そして、抵抗体4の測定抵抗値Rが目標抵抗値Rtに達したら(S-18)、当該位置でレーザの照射を終了して第2トリミング溝6を形成することにより(S-19)、抵抗体4に対する全てのトリミング工程が完了する。
 以上説明したように、本実施形態例に係るチップ抵抗器1の製造方法では、粗調整用の第1トリミング溝5を形成する際に、第1トリミング溝5のLターン後の第1横方向カット部5b(第2の切込み)が、抵抗体4の膜厚や材料等に関係なく一定長さL1に設定されており、微調整用の第2トリミング溝6のトリミング開始点が、第1トリミング溝5の第1縦方向カット部5a(第1の切込み)から常に一定距離L2だけ隔てた位置に決定されるため、第2トリミング溝6のトリミング開始点に対して第1トリミング溝5の終端位置が離れ過ぎたり近づき過ぎることがなくなり、安定して高精度な抵抗値調整を行うことができる。
 また、本実施形態例では、第1トリミング溝5のLターン後の第1横方向カット部5b(第2の切込み)の切込み量に伴う抵抗値変化量を予測して、第1目標抵抗値R1が初期抵抗値R0に応じた所定の値に設定されているため、初期抵抗値R0が大きく変動する場合であっても、第1トリミング溝5による抵抗値の粗調整を確実に行うことができる。
 なお、上記実施形態例では、第2トリミング溝6の第2縦方向カット部(第3の切込み)6aが、一方の電極3が抵抗体4の一側面に接する交点P1と第1トリミング溝5の終端とを結ぶ仮想線EL1を越えないように形成されているが、第2トリミング溝6の第2縦方向カット部6aを仮想線EL1を越える位置まで延ばし、かつ第1トリミング溝5の第1縦方向カット部(第1の切込み)5aの長さを越えないように形成しても良い。このようにすると、第1トリミング溝5の先端部に発生するマイクロクラックの影響が第2トリミング溝6の第2縦方向カット部6aによって遮られるため、第1トリミング溝5の第1横方向カット部5bの先端部に発生するマイクロクラックに起因する悪影響をより効果的に軽減することができる。
 1 チップ抵抗器
 2 絶縁基板
 3 表電極
 4 抵抗体
 5 第1トリミング溝
 5a 第1縦方向カット部(第1の切込み)
 5b 第1横方向カット部(第2の切込み)
 6 第2トリミング溝
 6a 第2縦方向カット部(第3の切込み)
 6b 第2横方向カット部(第4の切込み)
 EL1 導通ライン
 Q1 領域

Claims (4)

  1.  絶縁基板の表面に所定間隔を存して一対の電極を形成する電極形成工程と、
     一対の電極に接続するように長方形状の抵抗体を形成する抵抗体形成工程と、
     前記抵抗体の抵抗値を測定しながら、測定抵抗値が初期抵抗値より高く目標抵抗値より低い第1目標抵抗値に達するまで、前記抵抗体の一側面から電極間方向と直交する方向へ延びる第1の切込みを入れた後、前記第1の切込みの終端から電極間方向へ一定距離L1だけ延びる第2の切込みを入れてL字状の第1トリミング溝を形成する第1トリミング形成工程と、
     前記抵抗体の抵抗値を測定しながら、測定抵抗値が前記第1トリミング形成工程後の抵抗値より高く目標抵抗値より低い第2目標抵抗値に達するまで、前記第1トリミング溝の先端側の前記抵抗体の一側面から電極間方向と直交する方向へ延びる第3の切込みを入れた後、前記第3の切込みの終端から前記第1トリミング溝の前記第1の切込み方向へ、目標抵抗値に達するまで第4の切込みを入れてL字状の第2トリミング溝を形成する第2トリミング形成工程と、を含み、
     前記第2トリミング溝の前記第3の切込みは、前記第1トリミング溝の前記第1の切込みから一方の電極方向に前記距離L1よりも長い一定距離L2だけ隔てた位置をトリミング開始点として、前記抵抗体の一側面から電極間方向と直交する方向へ延びていることを特徴とするチップ抵抗器の製造方法。
  2.  請求項1の記載において、前記第1目標抵抗値の値は初期抵抗値に応じて決定されることを特徴とするチップ抵抗器の製造方法。
  3.  請求項1の記載において、前記第2トリミング溝の前記第3の切込みは、一方の前記電極が前記抵抗体の一側面に接する交点と前記第1トリミング溝の終端とを結ぶ仮想線を越え、かつ前記第1トリミング溝の前記第1の切込み長さを超えないように形成されていることを特徴とするチップ抵抗器の製造方法。
  4.  請求項2の記載において、前記第2トリミング溝の前記第3の切込みは、一方の前記電極が前記抵抗体の一側面に接する交点と前記第1トリミング溝の終端とを結ぶ仮想線を越え、かつ前記第1トリミング溝の前記第1の切込み長さを超えないように形成されていることを特徴とするチップ抵抗器の製造方法。
     
PCT/JP2018/009791 2017-05-11 2018-03-13 チップ抵抗器の製造方法 WO2018207455A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/611,875 US20210142932A1 (en) 2017-05-11 2018-03-13 Chip Resistor Manufacturing Method
CN201880029658.1A CN110603614A (zh) 2017-05-11 2018-03-13 片式电阻器的制造方法
DE112018002416.4T DE112018002416T5 (de) 2017-05-11 2018-03-13 Herstellungsverfahren für einen Chipwiderstand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094736A JP2018190922A (ja) 2017-05-11 2017-05-11 チップ抵抗器の製造方法
JP2017-094736 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207455A1 true WO2018207455A1 (ja) 2018-11-15

Family

ID=64105260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009791 WO2018207455A1 (ja) 2017-05-11 2018-03-13 チップ抵抗器の製造方法

Country Status (5)

Country Link
US (1) US20210142932A1 (ja)
JP (1) JP2018190922A (ja)
CN (1) CN110603614A (ja)
DE (1) DE112018002416T5 (ja)
WO (1) WO2018207455A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115206609A (zh) * 2021-04-05 2022-10-18 Koa株式会社 片式电阻器和片式电阻器的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115985609B (zh) * 2022-12-07 2024-02-06 长春光华微电子设备工程中心有限公司 一种激光调阻方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377101A (ja) * 1986-09-19 1988-04-07 三洋電機株式会社 抵抗体のトリミング方法
JPH09180917A (ja) * 1995-12-26 1997-07-11 Matsushita Electric Ind Co Ltd チップ抵抗器の抵抗値修正方法
JP2000340401A (ja) * 1999-05-31 2000-12-08 Rohm Co Ltd チップ抵抗器、およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289803A (ja) * 1997-04-16 1998-10-27 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2013179212A (ja) * 2012-02-29 2013-09-09 Panasonic Corp チップ抵抗器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377101A (ja) * 1986-09-19 1988-04-07 三洋電機株式会社 抵抗体のトリミング方法
JPH09180917A (ja) * 1995-12-26 1997-07-11 Matsushita Electric Ind Co Ltd チップ抵抗器の抵抗値修正方法
JP2000340401A (ja) * 1999-05-31 2000-12-08 Rohm Co Ltd チップ抵抗器、およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115206609A (zh) * 2021-04-05 2022-10-18 Koa株式会社 片式电阻器和片式电阻器的制造方法
CN115206609B (zh) * 2021-04-05 2023-12-19 Koa株式会社 片式电阻器和片式电阻器的制造方法

Also Published As

Publication number Publication date
US20210142932A1 (en) 2021-05-13
JP2018190922A (ja) 2018-11-29
DE112018002416T5 (de) 2020-02-27
CN110603614A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
JP6371187B2 (ja) 抵抗体のトリミング方法
JPH1126204A (ja) 抵抗器およびその製造方法
CN112005323B (zh) 晶片电阻器及晶片电阻器的制造方法
WO2018207455A1 (ja) チップ抵抗器の製造方法
JP2018195637A (ja) チップ抵抗器の製造方法
JP2018010987A (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP6479361B2 (ja) チップ抵抗器
CN111279443B (zh) 片式电阻器及片式电阻器的制造方法
JP6371080B2 (ja) チップ抵抗器の製造方法
JP2018190923A (ja) チップ抵抗器の製造方法
JP2015230922A (ja) チップ抵抗器の製造方法
JP6453599B2 (ja) チップ抵抗器の製造方法
JP3727806B2 (ja) チップ抵抗器、およびその製造方法
JP6792484B2 (ja) チップ抵抗器とその製造方法
JP6498885B2 (ja) チップ抵抗器およびチップ抵抗器のトリミング方法
JP6756534B2 (ja) チップ抵抗器およびチップ抵抗器のトリミング方法
US11742116B2 (en) Chip resistor
CN115206609B (zh) 片式电阻器和片式电阻器的制造方法
TWI817476B (zh) 晶片電阻器及晶片電阻器之製造方法
JP2019046879A (ja) チップ抵抗器の製造方法
JP6453598B2 (ja) チップ抵抗器
JP2001118705A (ja) チップ型抵抗器
JP2015167178A (ja) チップ抵抗器の製造方法
JP2018088497A (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP6364606B2 (ja) チップ抵抗器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798498

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18798498

Country of ref document: EP

Kind code of ref document: A1