WO2018205355A1 - 阵列激光投影装置及深度相机 - Google Patents

阵列激光投影装置及深度相机 Download PDF

Info

Publication number
WO2018205355A1
WO2018205355A1 PCT/CN2017/089041 CN2017089041W WO2018205355A1 WO 2018205355 A1 WO2018205355 A1 WO 2018205355A1 CN 2017089041 W CN2017089041 W CN 2017089041W WO 2018205355 A1 WO2018205355 A1 WO 2018205355A1
Authority
WO
WIPO (PCT)
Prior art keywords
vcsel
microlens
laser projection
array
image
Prior art date
Application number
PCT/CN2017/089041
Other languages
English (en)
French (fr)
Inventor
黄杰凡
王兆民
许星
Original Assignee
深圳奥比中光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳奥比中光科技有限公司 filed Critical 深圳奥比中光科技有限公司
Publication of WO2018205355A1 publication Critical patent/WO2018205355A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • G03B17/54Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus with projector

Definitions

  • the present invention relates to the field of optical and electronic technologies, and in particular, to an array laser projection device and a depth camera.
  • the depth camera can acquire the depth information of the target to achieve 3D scanning, scene modeling, and gesture interaction.
  • the depth camera is gradually receiving attention from various industries.
  • the combination of a depth camera and a television, a computer, etc. can realize a somatosensory game to achieve the effect of a game fitness two-in-one.
  • Microsoft's KINECT and Aubi's ASTRA are among them.
  • Google's tango project is dedicated to bringing depth cameras to mobile devices, such as tablets and mobile phones, to bring a completely subversive experience, such as a very realistic AR gaming experience, which can be used for indoor map creation and navigation. And other functions.
  • the core component in the depth camera is a laser projection module.
  • the structure and function of the laser projection module are different according to the type of depth camera.
  • the projection module disclosed in the patent CN201610977172A is used to project a speckle pattern into a space to realize Structural light depth measurement
  • this speckle structure light depth camera is also a relatively mature and widely adopted solution.
  • optical projection modules will evolve to smaller and smaller volumes and higher performance. Many existing solutions have encountered many problems in the process of reducing the volume, such as large speckle noise, low speckle contrast, and uneven spot brightness.
  • the object of the present invention is to solve the problem that the optical imaging module in the prior art has poor image quality during the process of volume reduction, and an array laser projection device and a depth camera are proposed.
  • the array laser projection device of the present invention organically combines optical elements such as a vertical cavity surface laser emitter VCSEL, a microlens array, and the like to generate a speckle pattern with higher contrast and uniform brightness, including: a VCSEL array including a plurality of vertical layers a cavity surface emitting laser VCSEL for emitting a light beam; a microlens array comprising a plurality of microlens units consistent with one-to-one correspondence with the number of VCSELs, the microlens unit comprising at least one optical surface, the optical surface
  • the VCSEL interval is a first distance for receiving and diverging the light beam emitted by the VCSEL corresponding thereto;
  • the main lens is spaced apart from the microlens array by a second distance for receiving and concentrating Microlens array diverging light a pattern generating optical element for receiving a light beam concentrated by the main lens and emitting a plurality of light beams at least partially overlapping each other.
  • each of the microlens units is integrated in a light exit of each of the VCSELs.
  • the present invention further provides a depth camera comprising: the above laser projection apparatus for projecting a structured beam image into a target space; and an image acquisition apparatus for acquiring the structuring in the target space a beam image; a processor receiving a structured beam image acquired by the image acquisition device and generating a depth image of the target space from the structured beam image; generating the target space from the structured beam image
  • the depth image refers to calculating a deviation value between the structured beam image and the reference beam image by using a matching algorithm, and calculating the depth image according to the deviation value.
  • the laser projection apparatus further includes: a support member for carrying the VCSEL array; a heat dissipating member for dissipating heat generated by the VCSEL array; and a control unit for controlling the operation of the VCSEL array, and a hole is formed in the control component, and the VCSEL array is embedded in the hole and is in contact with the heat dissipating component.
  • the heat dissipating component functions as a supporting component, so that the laser projection device is small and high. Cooling.
  • the array laser projection device and the depth camera of the invention can form a secondary imaging optical path through a reasonable arrangement and design, and the microlens array and the main lens can realize a lower magnification and a smaller volume, thereby enabling the laser projection device and the depth.
  • the camera is able to improve the image quality while reducing the volume.
  • the distance between the microlens array and the main lens can be changed, thereby flexibly adjusting the magnification to realize output of a plurality of different size spot patterns.
  • integrating the microlens unit with the VCSEL light source can make the overall volume of the laser projection device smaller, and the microlens unit and the VCSEL light source strictly maintain a one-to-one correspondence, without being affected by errors caused by installation or the like.
  • the laser projection device in the depth camera of the present invention has a bottom embedded in a chip, which can realize not only small volume, high heat dissipation, low power consumption, but also lower magnification and higher imaging quality.
  • FIG. 1 is a schematic side view showing the structure of a depth camera based on structured light in an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of an array laser projector in an embodiment of the present invention.
  • Figure 3a is a schematic illustration of an array of circular microlens units in one embodiment of the invention.
  • Figure 3b is a schematic diagram of an array of hexagonal microlens units in one embodiment of the invention.
  • Figure 3c is a schematic illustration of an array of differently shaped microlens units in one embodiment of the invention.
  • FIG. 4 is a block diagram showing the structure of a single VCSEL in one embodiment of the present invention.
  • Figure 5 is a block diagram showing the structure of an array laser projector in an embodiment of the present invention.
  • Figure 6 is a block diagram showing the structure of a single integrated microlens VCSEL in one embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a VCSEL array incorporating microlenses in one embodiment of the invention.
  • Figure 8 is a schematic view showing the bottom structure of a laser projection apparatus in an embodiment of the present invention.
  • Figure 9 is a schematic view showing the bottom structure of a laser projection apparatus in an embodiment of the present invention.
  • Figure 10 is a schematic view showing the bottom structure of a laser projection apparatus in an embodiment of the present invention.
  • Figure 11 is a schematic view showing the bottom structure of a laser projection apparatus in an embodiment of the present invention.
  • Depth cameras are mainly classified into structured light depth cameras, TOF depth cameras, and binocular visual depth cameras.
  • a depth camera based on the structured light triangulation method projects a coded standard structured light pattern into a space by using a laser projection device, and the standard structure light pattern is modulated by a difference in the target depth in the space, and the modulated structured light is obtained by an image correlation algorithm or the like.
  • the difference between the image and the standard structured light pattern, the depth image of the entire target space can be solved by establishing the relationship between the difference and the target depth according to the structural light triangle method.
  • a time-based flight-based depth camera uses a laser projection device to emit a laser pulse to a target, a pulse is acquired by the light receiving device, and a flight time of the transmitted light to the received light is recorded, and a depth image of the target can be calculated according to the time of flight.
  • the depth camera based on the binocular vision principle is essentially similar to the principle of structured light triangulation.
  • the difference is that the structured light triangulation method is active measurement, while the binocular vision is passive measurement.
  • the difference in parallax of the image acquired by the left and right cameras is used, and the parallax is obtained by the visual algorithm, and the depth value of the target is further calculated by using the triangulation measurement principle.
  • laser projection devices are often used to increase the texture information of objects in space. To improve measurement accuracy. Because the laser projection device is extremely important for the depth camera, the performance, volume, and power consumption of the laser projection device will directly affect the accuracy, volume, and the like of the depth camera.
  • the invention proposes a laser projection device and a depth camera based thereon.
  • the laser projection device and the depth camera will be described as an example, but it does not mean that the laser projection device can be applied only to the depth camera. Any other device that uses the solution directly or indirectly should be used. It is included in the scope of protection of the present invention.
  • the main components of the depth camera 101 include a laser projection module 104, an acquisition module 105, a main board 103, and a processor 102.
  • an RGB camera 107 is also provided.
  • the optical projection module 104, the acquisition module 105, and the RGB camera 107 are generally mounted on the same depth camera plane and at the same baseline, and each module or camera corresponds to an incoming window 108.
  • the processor 102 is integrated on the main board 103, and the optical projection module 104 and the acquisition model 105 are connected to the main board via the interface 106.
  • the interface is an FPC interface.
  • the optical projection module is configured to project the encoded structured light pattern into the target space, and the acquisition module collects the structured light image and processes the image through the processor to obtain a depth image of the target space.
  • the structured light image is an infrared laser speckle pattern, and the pattern has a relatively uniform particle distribution but a high local irrelevance.
  • the local irrelevance here refers to that each sub-region in the pattern has a higher Uniqueness.
  • the corresponding acquisition module 105 is an infrared camera corresponding to the optical projection module 104. Obtaining the depth image by using the processor specifically refers to further obtaining the depth image by calculating the deviation value between the speckle pattern and the reference speckle pattern after receiving the speckle pattern collected by the acquisition module.
  • the array laser projection device of this embodiment also referred to as a laser projection module, as shown in FIG. 2, is an embodiment of the laser projection module 104 of FIG.
  • the laser projection module 104 includes a base 201, a light source, a microlens array, a main lens 205, and a diffractive optical element (DOE) 206.
  • the base 201 is used to fix the light source. In some embodiments, it is also used to provide heat dissipation, electrical connection, and the like, such as a base composed of a heat sink and a circuit board.
  • the light source of the laser projection module 104 includes a plurality of sub-light sources for emitting a plurality of sub-beams, and the light source may be a visible light source, a non-visible light such as an infrared light source, or an ultraviolet light source, and the light source may be an edge-emitting type.
  • the light can also be lasered perpendicular to the cavity surface.
  • the optimal solution is to select a VCSEL array composed of a plurality of vertical cavity surface laser emitter VCSELs as the light source. For ease of illustration, only three sub-source VCSELs 202 are listed in one dimension.
  • the VCSEL array is a two-dimensional source arranged by a plurality of VCSELs 202 in a fixed two-dimensional pattern.
  • the arrangement pattern of the VCSELs 202 in the VCSEL array is an irregular pattern, that is, the VCSEL light sources are not arranged in a regular array, but arranged in a certain irregular pattern.
  • the overall size of the VCSEL array is only on the order of microns, such as 5 mm by 5 mm, with tens or even hundreds of VCSEL sources arranged above, with the distance between each VCSEL source being on the order of microns, such as 10 [mu]m.
  • the microlens array includes a plurality of microlens units 204, and each lens unit 204 is in one-to-one correspondence with each VCSEL source 202 in the VCSEL array, that is, the arrangement of each microlens unit 204 in the microlens array. Consistent with the individual VCSEL light sources 202, that is, the number is equal and the arrangement pattern is the same.
  • Each microlens unit 204 is configured to receive a beam of the corresponding VCSEL source 202 and divergence, respectively. The microlens array receives the light beam from the light source and diverges the light beam.
  • the microlens unit 204 includes at least one lens surface 203, where the lens surface is generally a concave spherical surface.
  • the aspherical surface may also be aspherical.
  • the elliptical beam may be diverged not only by the cylindrical lens surface but also shaped to form a circular beam;
  • the circular beam is formed into a uniform shape of the beam shape by a specially designed aspherical lens.
  • the beam emitted by the overall laser projection device not only has a diverging effect, but also has a spot.
  • a uniform non-circular shape facilitates improved accuracy of depth calculations in some cases; and in one embodiment, a specially designed aspherical lens is used to eliminate spherical aberration of the lens to form a more accurate speckle pattern.
  • each lens unit 204 in the microlens array has only one lens face 203
  • the lens face 203 can be placed on the side facing the light source or on the side facing away from the light source.
  • each lens unit may also have a lens face on both sides.
  • Each lens unit 204 in the microlens array has a one-to-one correspondence with each VCSEL light source 202 in the VCSEL array, that is, the arrangement of each lens unit 204 in the microlens array is identical to that of each VCSEL light source 202 in the VCSEL array, that is, the number is equal and the arrangement pattern is the same.
  • Each microlens unit 204 is configured to receive a beam of the corresponding VCSEL source 202 and divergence, respectively.
  • the geometry of the microlens unit 204 can be The square shape shown in Fig. 3a and the hexagonal shape shown in Fig. 3b may be various shapes, such as a square shape, a rhombic shape, and the like which are not shown.
  • the microlens unit 204 may also have a plurality of geometric shapes.
  • one half of the microlens unit has a hexagonal shape and the other half of the lens unit has a circular shape.
  • the different shapes are staggered from one another.
  • the advantage of this embodiment is that the VCSEL light sources corresponding to the different shapes of the microlenses are separately controlled.
  • the VCSEL light source corresponding to the hexagonal shape microlens unit and the VCSEL light source corresponding to the circular shape microlens unit are grouped and controlled, and the independent The opening and the simultaneous opening are performed, so that an emission beam pattern having a different shape or a different density can be obtained.
  • the VCSEL light source corresponding to the hexagonal shape microlens unit is separately opened, and the shape of the emitted light beam pattern is different from that of the VCSEL light source corresponding to the circular shape of the microlens unit alone; for example, only the hexagonal or circular shape is opened.
  • the VCSEL light source corresponding to the microlens unit has a different density of the emitted beam pattern than all of the VCSEL light sources are turned on. It should be understood that only the two groups of examples are listed in the description herein. In fact, more types of grouping can also be performed, and the VCSEL light sources corresponding to the same shape microlens unit can also be grouped and controlled, even, Each VCSEL source can be individually controlled.
  • the corresponding focal lengths generally differ.
  • the focal lengths of the microlens units are different, which may result in the finalization of each VCSEL source in the VCSEL array.
  • the cross-sectional size of the outgoing beam will also vary. Even if the microlens unit is of the same shape, the focal length of the microlens unit can be set to be different in order to produce a different size of the emitted beam pattern. In theory, this method will increase the uncorrelation of the emitted beam pattern, but another Aspects will increase the cost of manufacturing.
  • each VCSEL source in the VCSEL array in the independent, grouping and overall control of each VCSEL source in the VCSEL array, as well as the shape, focal length and other aspects of the microlens unit in the microlens array, it is possible to emit different emission beams of different shapes, sizes, densities, and the like. To meet different application needs.
  • the microlens unit 204 diverges the beam, and the intersection of the reverse extension line can be regarded as a focal plane 207.
  • the light source is a virtual image on the focal plane 207, and generally the focal plane 207 is located at the backlight of the light source.
  • a main lens 205 is disposed behind the microlens unit 204.
  • the main lens 205 is used for secondary focusing imaging of the light beam of the microlens array.
  • the main lens 205 also functions to diffuse the sub-beams.
  • the light beam passing through the main lens is opposite to the emitting surface of the VCSEL light source 202. In terms of the beam, the diameter of the beam is enlarged.
  • the plurality of beams passing through the main lens 205 are transmitted to a diffractive optical element (DOE) 206, and are expanded by the DOE 206 by an integral multiple.
  • DOE diffractive optical element
  • the DOE is expanded by 500 times, and finally a pattern of 50,000 spots is projected into the space.
  • these 50,000 spots will overlap in spatially different distances, so the number of spots will often be less than 50,000.
  • the role of the DOE is to double the pattern formed by the light source 202 in space. It should be noted that due to the increase of the pattern density, when copying, there will be between two adjacent patterns. Partially overlapping, another effect of the overlap is to increase the degree of irrelevance of the overall pattern.
  • Main lens 205 and DOE 206 may be fabricated on the same optical element in some embodiments to achieve a reduced volumetric effect, the optical element having two surfaces for performing the functions of the lens and the diffractive optical element, respectively.
  • the diffractive optical element 206 is a DOE, and the DOE is configured to receive the light beam emitted by the main lens and output structured light, the total number of features (such as spots or dots) included in the structured light being greater than the light beam emitted by the main lens. The total number of features included.
  • the diffractive optical element is implemented as a microlens array or grating.
  • the distance between the microlens array and the VCSEL array light source needs to be specially set. Generally, two conditions are required to be met. One is to ensure that each microlens unit passes only a single VCSEL light source. There is no interference between the adjacent beams; the second is that the VCSEL array source is preferably located within 1 times of the focal length of the microlens unit to ensure sufficient diffusion of the beam. It should be noted that only one optimal solution is given herein, and is not intended to limit the solution of the present invention. Additionally, the distance between the primary lens and the microlens array should generally be less than the focal length of the primary lens.
  • this distance is less than the sum of the focal length of the primary lens and the focal length of the microlens unit.
  • the distance between the main lens and the microlens array only satisfies the above conditions, and the secondary imaging optical path formed by the two can achieve a lower magnification.
  • the optical path arrangement diagram of the laser projection apparatus of the present invention is actually a secondary imaging of the light source.
  • the magnification of the secondary imaging can be adjusted, and the integration degree of the system is more high.
  • the magnification of a single lens is generally about 200 times, and the present invention is composed of a microlens array.
  • the magnification of the optical system consisting of the column and the main lens can be any multiple between 40 and 200. A smaller magnification means that the resulting speckle pattern is more concentrated, the same luminous power can be transmitted to a greater distance and a higher pattern quality is maintained, and the depth map calculation accuracy will be higher.
  • the distance between the microlens array and the main lens can be adjusted to increase the magnification, thereby increasing the projection spot size of the laser projection module to ensure that at a long distance. A higher quality speckle pattern can still be obtained, and vice versa. Adjust the distance between the microlens array and the main lens during installation. After the installation is completed, the magnification of the laser projection device is determined.
  • the magnification can be any value between 40 and 200, compared to the existing one. In the laser projection apparatus of different focal length lenses, since the magnification of a single lens is generally about 200 at present, a lower magnification cannot be achieved, and the finally formed speckle pattern is more concentrated. Therefore, the laser projection apparatus of the present invention, regardless of Whether it is cost or implementation, it has a greater advantage than the existing laser projection device.
  • the present invention employs a microlens array composed of concave lenses, which has at least the following two advantages over the convex lens.
  • the concave lens diffuses the VCSEL source beam, resulting in a larger and uniform spot on the DOE, and the intensity of the formed structured light pattern is more uniform.
  • the concave lens diffuses due to the beam, and the beam is inside the projection module. The distribution is relatively uniform, and the convex lens produces a focus inside the projection module, that is, a point where the optical power is extremely high, so that the temperature of the projection module is too high, which ultimately affects the projection quality.
  • FIG. 4 is a schematic structural view of a single VCSEL.
  • 401 is a single VCSEL.
  • the active layer 405 of the VCSEL is in the middle, and the active layer is connected to a limiting layer 406.
  • the limiting layer functions to control the light field and current to achieve the laser shape.
  • the control layer has P-type and N-type semiconductor mirrors 404 and 407 at both ends of the active layer, and the other side of the mirror 407 is a top electrode 408 (P pole, positive electrode), and one side of the mirror 404 is The semiconductor substrate 403 and the bottom electrode 402 (N pole, negative electrode).
  • the VCSEL array light source can also be packaged into a chip for a special purpose, similar to a CPU such as a computer, and the positive and negative electrodes are connected to the outside on the same side by connecting to the pins.
  • a preferred processing method is to directly place the unpackaged VCSEL semiconductor chip chip on the base 201. The bottom of the chip is connected to the negative electrode and the top is connected to the positive electrode.
  • FIG. 5 is a schematic diagram of a laser projection apparatus according to another embodiment of the present invention, which is another embodiment of the laser projection module 104 of FIG. 1 , including a base 201 , a VCSEL array light source, and a microlens array.
  • the microlens array includes a plurality of microlens units 204, and each lens unit 204 is in one-to-one correspondence with each VCSEL light source 202 in the VCSEL array, that is, the arrangement of each microlens unit 204 in the microlens array is consistent with each VCSEL light source 202, that is, the number is equal.
  • the arrangement pattern is also the same.
  • Each microlens unit 204 is configured to receive a beam of the corresponding VCSEL source 202 and divergence, respectively.
  • the microlens unit 204 is integrated with the VCSEL light source 202, and the integrated situation is as shown in FIG. 5, which can make the overall volume of the laser projection device more Small, and the microlens unit 204 and the VCSEL light source 202 will strictly maintain a one-to-one correspondence, without being affected by errors caused by mounting or the like.
  • FIG. 6 will further detail the details of the VCSEL source 501 with integrated microlenses.
  • the active layer 605 of the VCSEL is in the middle, and the limiting layer 606 is connected to the active layer.
  • the function of the limiting layer is to control the light field and current to control the shape of the laser, etc.
  • the P layer is also provided at both ends of the active layer.
  • N-type semiconductor mirrors 604 and 607, the other side of the mirror 607 is a top electrode 608 (P pole, positive), and one side of the mirror 604 is a semiconductor substrate 603 and a bottom electrode 602 (N pole, negative pole, respectively) ).
  • the VCSEL array 701 with integrated microlenses is shown in Fig. 7.
  • the VCSEL light sources 601 integrated with the microlenses are arranged on the semiconductor substrate 702 in an irregular pattern, each of which has a microlens corresponding thereto in a one-to-one correspondence.
  • the control of the VCSEL light source 601 of each integrated microlens can have different modes.
  • all VCSEL light sources are synchronously controlled to be turned on and off; in another embodiment Medium, VCSEL sources are controlled independently or in groups to produce different illumination densities. The shape and area of a single VCSEL source may also be different.
  • the integrated microlens VCSEL array light source can also be packaged into a chip for special purposes, similar to a computer such as a CPU, and the positive and negative electrodes are connected to the outside on the same side by connecting to the pins.
  • a preferred processing method is to directly place the unpackaged VCSEL semiconductor chip chip on the base 201. The bottom of the chip is connected to the negative electrode and the top is connected to the positive electrode.
  • the laser projection device can use a wafer level optical process to groove the semiconductor substrate, and directly fabricate the light source VCSEL 202, the microlens unit 204, the main lens 205, and the diffractive optical element 206 on the semiconductor substrate. Slotted. The benefit of this process is to reduce the body of the overall module. On the other hand, a plurality of modules can be simultaneously fabricated on one wafer, and finally, a plurality of independent modules are formed by cutting, thereby greatly improving production efficiency.
  • the unpackaged VCSEL semiconductor chip chip can be directly placed on the base 201, the bottom of the chip is connected to the negative pole, and the top is connected positively.
  • a VCSEL chip chip will be described as an example, but it should be understood that a package chip is also included in the scope of the present invention.
  • the words "chip”, "array chip” and the like will be used instead of the VCSEL array mentioned above.
  • Chips need to have a load and connection mechanism to ensure the normal function of the chip.
  • the computer CPU has a card-type connection and fixing mechanism independently designed for it; for some special chips with little heat, it is directly connected to the main board through the pin; and for the chip of the present invention, generally High heat generation and a need for a secure fixture.
  • VCSEL array chips are used to emit light beams, require large power, generate large amounts of heat, and need to be integrated into smaller micro-devices. The heat dissipation problem needs to be solved.
  • the relative positional requirements of the laser projection module are very robust to ensure a stable, accurate depth image output. Therefore, the carrying and connecting mechanism of the VCSEL array chip requires a small volume for integration, and requires better heat dissipation performance and a stable connection.
  • the laser projection device of the present invention adopts a special structural form in a depth camera to realize the advantages of small volume, high heat dissipation, etc., and the structure is at the bottom of the laser projection device, specifically, includes a supporting member for carrying the chip; a heat dissipating component, Used to dissipate the heat generated by the chip; the control unit is used to control the operation of the chip.
  • the base 201 in FIG. 2 is used for carrying and connecting the VCSEL array chip. In the embodiment 4-8, the base 201 is arranged as shown in the figure.
  • the base 201 functions as a triple function of supporting, dissipating, and controlling the chip;
  • the chip is specifically a VCSEL array chip 806;
  • the control component is specifically a circuit board 803, and the electrode is connected through the interface 804 thereof.
  • the VCSEL array chip 806 is powered or controlled;
  • the support member and the heat sink member are specifically the same component, namely the substrate 802.
  • the base 201 is provided as a chip embedding device 801 as shown in FIG.
  • the chip is specifically a VCSEL array chip 806;
  • the control component is specifically a circuit board 803, and an electrode is connected through the interface 804 to supply or control the VCSEL array chip 806;
  • the supporting component and the heat dissipating component are specifically the same component. That is, the substrate 802 is used for placing and carrying the chip, and is connected to the chip to function as a heat dissipation and/or an electrode connection.
  • the commonly used materials are copper gold plating, ceramics and the like.
  • the device is convenient The ground is connected to other control units such as the main board, and the chip can be stably supported.
  • a form of adding a hole in the middle of the circuit board 803 is adopted, and the substrate 802 is glued to the circuit board 803 and covers the hole (generally, the center of the hole and the circuit board 802 are intermediate Coincident), then place the chip in the hole and connect to the substrate.
  • the advantage of this arrangement is that both the connection between the board and the chip and the overall thickness control can be achieved.
  • the chip is embedded in the device 801.
  • the circuit board 803 is a flexible circuit board (FPC)
  • the substrate 802 is a copper gold plated material
  • the VCSEL array chip 806 is located at the center of the hole and passes through the conductive silver paste.
  • the substrate 802 is glued to the circuit board 803.
  • a number of pads 805 are disposed around the holes of the FPC, and the pads 805 are connected to the interface 804 by wires.
  • the positive electrode pad is connected to the VCSEL chip top electrode 806 through the gold wire 807, and the negative electrode pad is directly connected to the substrate 802 through the gold wire 808, since the substrate and the bottom electrode of the chip are connected by the conductive silver paste, thereby realizing The indirect connection of the pad to the bottom electrode.
  • the VCSEL chip is connected to the substrate 802 and the substrate has good thermal conductivity, the heat dissipation problem of the VCSEL chip is also solved.
  • the circuit board 803 and the substrate 802 are physically connected, such as bolts or the like. If the glue is used for connection, the advantage is that it does not occupy space and is convenient to operate, but the disadvantage is that the resistance of the glue is large, which is not conducive to heat dissipation and increases power consumption.
  • the specific connection method is not limited herein.
  • the circuit board 803 is a combination of a printed circuit board (PCB) and a flexible circuit board (FPC), that is, a soft and hard circuit board.
  • PCB printed circuit board
  • FPC flexible circuit board
  • the circuit board 803 can all utilize a printed circuit board (PCB).
  • circuit board 803 is connected to chip 806 and substrate 802 via gold wires 807 and 808, respectively.
  • the hole size of the circuit board should be larger than the size of the chip 806.
  • the shape of the hole is generally circular or square, and is not limited herein.
  • the gold wire for connection may also be any other material that can achieve an electrically conductive connection.
  • the chip may be grooved on the substrate, as shown in FIG. The way can further reduce the overall thickness. It should be noted that it is not recommended to open the groove when the thickness of the substrate itself is thin to avoid deformation of the substrate material when the chip is heated.
  • the substrate can also be other thermally conductive materials such as ceramics.
  • the VCSEL chip is only thermally connected to the substrate, and is electrically connected to the positive and negative electrodes of the circuit board, and the connection manner may adopt any other manner in which the conductive connection can be realized, which is not limited herein.
  • the substrate may also be designed to be suitable for heat dissipation, such as adding fan blades or the like to increase the heat dissipation area and the like.
  • the substrate can also be connected to other heat dissipating materials during integration with devices such as mobile phones to improve thermal performance.
  • the chip is fixed by using a chip embedding device, and by inserting a hole in the control member and embedding the VCSEL array chip therein, the overall volume of the device can be sufficiently reduced, and the chip and the heat dissipating component are directly Contact connection, the heat-dissipating component also plays the role of supporting the chip, ensuring maximum heat dissipation to the chip.
  • the heat-dissipating component also plays the role of supporting the chip, ensuring maximum heat dissipation to the chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光投影装置,包括:VCSEL阵列,包括多个垂直腔面发射激光器VCSEL(202),用于发射光束;微透镜阵列,包括与VCSEL(202)数量一致且一一对应的多个微透镜单元(204),用于接收并发散与之对应的VCSEL(202)发射的光束;主透镜(205),用于接收并汇聚由微透镜阵列发散的光束;图案生成光学元件,用于接收经过主透镜(205)汇聚的光束,并向外发射多个至少部分相互重叠的光束。基于激光投影装置,还提出一种深度相机(101),通过合理的布置与设计,微透镜阵列与主透镜(205)组成二次成像光路,能够实现更低的放大倍数以及更小的体积,从而使激光投影装置和深度相机(101)能够在减小体积的同时提高成像质量。

Description

阵列激光投影装置及深度相机 技术领域
本发明涉及光学及电子技术领域,尤其涉及一种阵列激光投影装置及深度相机。
背景技术
深度相机可以获取目标的深度信息借此实现3D扫描、场景建模、手势交互,与目前被广泛使用的RGB相机相比,深度相机正逐步受到各行各业的重视。例如利用深度相机与电视、电脑等结合可以实现体感游戏以达到游戏健身二合一的效果,微软的KINECT、奥比中光的ASTRA是其中的代表。另外,谷歌的tango项目致力于将深度相机带入移动设备,如平板、手机,以此带来完全颠覆的使用体验,比如可以实现非常真实的AR游戏体验,可以使用其进行室内地图创建、导航等功能。
深度相机中的核心部件是激光投影模组,按照深度相机种类的不同,激光投影模组的结构与功能也有区别,比如专利CN201610977172A中所公开的投影模组用于向空间中投射斑点图案以实现结构光深度测量,这种斑点结构光深度相机也是目前较为成熟且广泛采用的方案。随着深度相机应用领域的不断扩展,光学投影模组将向越来越小的体积以及越来越高的性能上不断进化。已有的诸多方案在将体积减小的过程中会遇到诸多的问题,比如斑点噪声较大、斑点对比度低、斑点亮度不均匀等。
发明内容
本发明的目的是为了解决现有技术中的光学投影模组在体积减小的过程中成像质量变差问题,提出一种阵列激光投影装置及一种深度相机。
本发明的阵列激光投影装置,将垂直腔面激光发射器VCSEL、微透镜阵列等光学元件有机结合以产生更高对比度且亮度均匀的斑点图案,包括:VCSEL阵列,所述VCSEL阵列包括多个垂直腔面发射激光器VCSEL,用于发射光束;微透镜阵列,包括与所述VCSEL数量一致且一一对应的多个微透镜单元,所述微透镜单元包括至少一个光学表面,所述光学表面与所述VCSEL间隔为第一距离,用于接收并发散与之对应的所述VCSEL发射的光束;主透镜,所述主透镜与所述微透镜阵列间隔为第二距离,用于接收并汇聚由所述微透镜阵列发散的光 束;图案生成光学元件,用于接收经过所述主透镜汇聚的光束,并向外发射多个至少部分相互重叠的光束。
优选地,每个所述微透镜单元集成在每个所述VCSEL的出光口。
基于上述激光投影装置,本发明还提出一种深度相机,包括:上述的激光投影装置,用于向目标空间中投影结构化光束图像;图像采集装置,用于采集目标空间中的所述结构化光束图像;处理器,接收由所述图像采集装置采集的结构化光束图像并根据所述结构化光束图像生成所述目标空间的深度图像;所述根据所述结构化光束图像生成所述目标空间的深度图像,指的是利用匹配算法计算所述结构化光束图像与参考光束图像之间的偏离值,根据所述偏离值计算出所述深度图像。
优选地,所述激光投影装置还包括:支撑部件,用来承载所述VCSEL阵列;散热部件,用来将所述VCSEL阵列产生的热量散失;控制部件,用来控制所述VCSEL阵列工作,并且所述控制部件中开有孔洞,所述VCSEL阵列嵌入到所述孔洞中并与散热部件接触连接,此时散热部件起到支撑部件的作用,从而来使所述激光投影装置实现体积小和高散热。
与现有技术相比,本发明的有益效果有:
本发明的阵列激光投影装置及深度相机,通过合理的布置与设计,微透镜阵列与主透镜组成二次成像光路,能够实现更低的放大倍数以及更小的体积,从而使激光投影装置及深度相机能够在减小体积的同时提高成像质量。
进一步地,根据不同的应用需求,可以改变微透镜阵列与主透镜之间距离,进而柔性地调节放大倍数以实现多种不同大小光斑点图案的输出。
进一步地,将微透镜单元与VCSEL光源进行集成,可以使得激光投影装置的整体体积更小,并且微透镜单元与VCSEL光源严格的保持一一对应的关系,不会受到安装等引起的误差影响。
另外,本发明深度相机中的激光投影装置,其底部设计成芯片嵌入式,不仅可以实现小体积、高散热、低功耗,还可以实现更低的放大倍数和更高的成像质量。
附图说明
图1是本发明的一种实施例中基于结构光的深度相机侧面结构示意图。
图2是本发明的一种实施例中阵列激光投影装置的结构示意图。
图3a是本发明的一种实施例中圆形微透镜单元的阵列示意图。
图3b是本发明的一种实施例中六角形微透镜单元的阵列示意图。
图3c是本发明的一种实施例中不同形状微透镜单元的阵列示意图。
图4是本发明的一种实施例中单个VCSEL的结构示意图。
图5是本发明的一种实施例中阵列激光投影装置的结构示意图。
图6是本发明的一种实施例中单个集成微透镜的VCSEL的结构示意图。
图7是本发明的一种实施例中集成微透镜的VCSEL阵列示意图。
图8是本发明的一种实施例中激光投影装置的底部结构示意图。
图9是本发明的一种实施例中激光投影装置的底部结构示意图。
图10是本发明的一种实施例中激光投影装置的底部结构示意图。
图11是本发明的一种实施例中激光投影装置的底部结构示意图。
具体实施方式
下面结合具体实施方式并对照附图对本发明做进一步详细说明,以使更好的理解本发明,但下述实施例并不限制本发明范围。
深度相机按种类主要分为结构光深度相机、TOF深度相机以及双目视觉深度相机。
基于结构光三角法的深度相机利用激光投影装置向空间中投射经编码的标准结构光图案,空间中目标深度的不同将标准结构光图案进行了调制,通过图像相关等算法获取调制后的结构光图像与标准结构光图案的差别,根据结构光三角法建立该差别与目标深度之间的关系就可求解出整个目标空间的深度图像。
基于时间飞行法的深度相机利用激光投影装置向目标发射激光脉冲,由光接收装置获取脉冲并记录下发射到接收的光飞行时间,根据飞行时间可以计算出目标的深度图像。
基于双目视觉原理的深度相机,本质上与结构光三角法原理相似,区别在于结构光三角法是主动测量,而双目视觉则是被动测量。利用左右相机获取的图像在视差上的差别,并由视觉算法获取该视差后进一步利用三角法测量原理计算出目标的深度值。
一般地,前两种深度相机中都需要借助于激光投影装置来向空间中投射光学信号,而对于双目视觉深度相机而言,目前也会常常利用激光投影装置来增加空间中物体的纹理信息以提高测量精度。因为,激光投影装置对于深度相机而言异常重要,往往激光投影装置的性能、体积、功耗将直接影响深度相机的精度、体积等。
本发明提出一种激光投影装置以及基于此的深度相机。在后面的说明中将对激光投影装置以及深度相机为例进行说明,但并不意味着这种激光投影装置仅能应用在深度相机中,任何其他装置中凡是直接或间接利用该方案都应被包含在本发明的保护范围之内。
图1所示的基于结构光的深度相机侧面示意图。深度相机101主要组成部件有激光投影模组104、采集模组105、主板103以及处理器102,在一些深度相机中还配备了RGB相机107。光学投影模组104、采集模组105以及RGB相机107一般被安装在同一个深度相机平面上,且处于同一条基线,每个模组或相机都对应一个进光窗口108。一般地,处理器102被集成在主板103上,而光学投影模组104与采集模型105通过接口106与主板连接,在一种实施例中所述的接口为FPC接口。其中,光学投影模组用于向目标空间中投射经编码的结构光图案,采集模组采集到该结构光图像后通过处理器的处理从而得到目标空间的深度图像。
在本实施例中,结构光图像为红外激光散斑图案,图案具有颗粒分布相对均匀但具有很高的局部不相关性,这里的局部不相关性指的是图案中各个子区域都具有较高的唯一性。对应的采集模组105为与光学投影模组104对应的红外相机。利用处理器获取深度图像具体地指,接收到由采集模组采集到的散斑图案后,通过计算散斑图案与参考散斑图案之间的偏离值来进一步得到深度图像。
本实施例的阵列激光投影装置,又称激光投影模组,如图2所示,是图1中激光投影模组104的一种实施例。激光投影模组104包括底座201、光源、微透镜阵列、主透镜205以及衍射光学元件(DOE)206。底座201用于固定光源,在一些实施例中也用于提供散热、电连接等作用,比如由散热件、电路板共同组成的底座。激光投影模组104的光源包含多个子光源用于发射多个子光束,光源可以是可见光、不可见光如红外、紫外等激光光源,光源的种类可以是边发射激 光也可以垂直腔面激光,为了使得整体的投影装置体积较小,最优的方案是选择由多个垂直腔面激光发射器VCSEL组成的VCSEL阵列作为光源。图中为了方便示意,仅在一维上列出3个子光源VCSEL 202,事实上VCSEL阵列是由多个VCSEL202以固定二维图案排列的二维光源。为了使激光投影装置发射出的图案具有均匀、不相关等特性,VCSEL阵列中VCSEL 202的排列图案为不规则图案,即VCSEL光源并非以规则阵列排列,而是以一定的不规则图案排列。在一些实施例中,VCSEL阵列整体大小仅在微米量级,比如5mm*5mm大小,上面排列了几十个甚至上百个VCSEL光源,各个VCSEL光源之间的距离处于微米量级,比如10μm。
本实施例的激光投影模组中,微透镜阵列包含多个微透镜单元204,各个透镜单元204分别与VCSEL阵列中各个VCSEL光源202一一对应,即微透镜阵列中各个微透镜单元204的排列与各个VCSEL光源202一致,即数量相等,排列图案也相同。每个微透镜单元204分别用于接收对应的VCSEL光源202的光束并发散。微透镜阵列接收来自光源的光束,并对光束进行发散,为了达到发散的效果,微透镜单元204至少包含一个透镜面203,这里的透镜面一般为凹球面。在一些实施例中,也可以为非球面,比如在一个实施例中当光源光束形状为椭圆形时,可以通过柱形透镜面将椭圆形光束不仅进行发散,还进行整形以形成圆形光束;又如在一个实施例中通过特殊设计的非球面透镜将圆形光束整形成具有统一形状的光束形状,这种设置可以使得整体激光投影装置所发射的光束不仅具有发散的效果,其斑点还具有统一的非圆形形状,在一些情形下有利于提高深度计算的准确性;又如在一个实施例中,通过特殊设计的非球面透镜以消除透镜的球形像差以形成更加精确的斑点图案。
当微透镜阵列中各个透镜单元204仅有一个透镜面203时,透镜面203可以被放在朝向光源的一面也可以被放在背向光源的一面。在一些实施例中,每个透镜单元也可以两面都有透镜面。
微透镜阵列中各个透镜单元204分别与VCSEL阵列中各个VCSEL光源202一一对应,即微透镜阵列中各个透镜单元204的排列与VCSEL阵列中各个VCSEL光源202一致,即数量相等,排列图案相同。每个微透镜单元204分别用于接收对应的VCSEL光源202的光束并发散。微透镜单元204的几何形状可 以有多种形状,比如图3a所示的圆形形状以及图3b所示的六角形状,也可以是未示出的方形、菱形形状等等。
在一些实施例中,微透镜单元204也可以有多种几何形状共同构成,比如同一个微透镜阵列中一半微透镜单元为六角形状,另一半透镜单元为圆形形状,一种优选的实施方式如图3c所示,不同的形状之间相互错开分布。这种实施方式的好处在于,将不同形状的微透镜所对应的VCSEL光源分开控制,比如六角形状微透镜单元对应的VCSEL光源与圆形形状微透镜单元对应的VCSEL光源被分组控制,可以实现独立打开以及同步打开,因而可以得到形状不同或密度不同的发射光束图案。比如单独打开六角形形状微透镜单元所对应的VCSEL光源,与单独打开圆形形状微透镜单元所对应的VCSEL光源相比,所射出的光束图案的形状不同;比如仅打开六角形或圆形形状微透镜单元所对应的VCSEL光源,与全部打开VCSEL光源相比,所射出的光束图案的密度也不同。需要理解的是,这里的说明中仅列举了分成两组的例子,事实上,也可以进行更多种类的分组,对于同一种形状微透镜单元所对应的VCSEL光源也可以分组控制,甚至,对每一个VCSEL光源都可以实行单独控制。
当微透镜单元204的形状不同时,其对应的焦距一般也会有差别,当微透镜阵列与VCSEL阵列之间的距离一定时,微透镜单元的焦距不同,会导致VCSEL阵列中各个VCSEL光源最终射出光束的截面大小也会不同。即使微透镜单元为同一种形状,也可以将微透镜单元的焦距设置成不同以期产生大小有差异的发射光束图案,理论上来说,这种方式会提高发射光束图案的不相关度,但另一方面会增加制造的成本。
总之,通过对VCSEL阵列中各个VCSEL光源的独立、分组和整体控制,以及对微透镜阵列中微透镜单元形状、焦距等方面的设置,可以发射出形状、大小、密度等各不相同的发射光束以满足不同的应用需求。
回到图2,微透镜单元204将光束发散,其反向延长线交点可以看成是焦面207,从成像的角度即是光源在焦面207成虚像,一般地焦面207位于光源的背光一侧。在微透镜单元204后设置了主透镜205,主透镜205用于将微透镜阵列的光束进行二次聚焦成像,另一方面主透镜205也起到了将子光束进行扩散的作用,这里的扩散指的是由通过主透镜的光束相对于VCSEL光源202的发射面的 光束而言,光束的直径被扩大了。通过主透镜205的多个光束传输到衍射光学元件(DOE)206,并由DOE206以整数倍进行扩束。比如若VCSEL光源202的数量为100个,即100个子光束,通过DOE后以500倍进行扩束,最终形成50000个斑点的图案投射到空间中。需要注意的,这50000个斑点在空间上不同的距离上会出现重叠现象,因此往往斑点数会小于50000。换句话说,DOE的作用是将光源202所形成的图案在空间中进行成倍的复制,需要注意的是,由于要提高图案密度,在进行复制时,相邻的两幅图案之间会有部分重叠,重叠的另一作用是可以提高整体图案的不相关程度。
主透镜205与DOE206在一些实施例中可以被制作在同一个光学元件上,以达到缩小体积的效果,该光学元件具有两个表面,分别用来执行透镜以及衍射光学元件的功能。
在本实施例中,衍射光学元件206为DOE,DOE被配置成接收主透镜发射的光束并输出结构化光,其结构光中包括的特征(例如斑点或点)总数大于主透镜发出的光束中包括的特征总数。使用这种光学元件,可以使输出的结构化图案中能够有比VCSEL单元中更多的特征。从而,如果期望产生具有一千个特征的结构化光图案,则在VCSEL阵列中不需要一千个VCSEL单元,可以有效减小VCSEL阵列的整体大小和体积,并减少整体的大小和成本。在替换实施例中,衍射光学元件被实现为微透镜阵列或者光栅。
本实施例的激光投影模组中,微透镜阵列与VCSEL阵列光源之间的距离需要进行特别设置,一般地需要满足两个条件,一是保证各个微透镜单元仅通过单个VCSEL光源的光束,相邻光束之间不会有干扰;二是VCSEL阵列光源最好位于微透镜单元1倍焦距以内,以保证光束充分扩散。需要说明的是,这里仅给出了一种最优方案,并非是对本发明的方案的限制。另外,主透镜与微透镜阵列之间的距离一般应该小于主透镜的焦距,一种优选的实施方式中,这一距离小于主透镜焦距与微透镜单元焦距之和。主透镜与微透镜阵列之间的距离只有满足上述条件,两者形成的二次成像光路才能实现更低的放大倍数。
本发明的激光投影装置的光路布置图,事实上也是对光源的二次成像,与已有技术中单个透镜的光路布置图相比,二次成像的放大倍数可以调整,且***的集成度更高。目前单个透镜的放大倍数一般在200倍左右,而本发明由微透镜阵 列与主透镜构成的光学***的放大倍数则可以实现40~200之间的任一倍数。更小的放大倍数则意味着最终形成的散斑图案更加集中,相同的发光功率可以传输到更远的距离且保持较高的图案质量,深度图计算精度将更高。另外根据不同的应用场景需要,比如对于远距离测量,则可以调节微透镜阵列与主透镜之间的距离以增大放大倍数,从而增加激光投影模组的投影斑点大小,以保证在远距离时仍能获取较高质量的斑点图案,反之则减小放大倍数。在安装时调整好微透镜阵列与主透镜之间的距离,安装完成后激光投影装置的放大倍数即已确定,放大倍数可以是40-200之间的任何一个数值,相比于现有的采用不同焦距透镜的激光投影装置而言,由于目前单个透镜的放大倍数一般均在200左右,无法实现更低的放大倍数使最终形成的散斑图案更加集中,因此,本发明的激光投影装置,无论是成本还是实现方式上,都比现有的激光投影装置有更大的优势。
另外,本发明采用凹透镜组成的微透镜阵列,相对于凸透镜而言,至少有以下两个方面的优势。一方面凹透镜将VCSEL光源光束进行了扩散,导致在DOE上的光斑更加大且均匀,形成的结构光图案的强度会更加均匀;另一方面凹透镜由于对光束起扩散作用,光束在投影模组内部分布相对均匀,而凸透镜则会在投影模组的内部产生焦点,即光功率极高的点,使得投影模组的温度过高最终影响投影质量。
图4是单个VCSEL的结构示意图。在图4中,401为单个VCSEL,一般地,VCSEL的有源层405在中间,与有源层连接的是限制层406,限制层的作用是用来控制光场和电流以实现对激光形状等的控制,有源层两端还有P型与N型的半导体反射镜404与407,反射镜407的另一侧是顶部电极408(P极、正极),反射镜404的一侧分别是半导体衬底403以及底部电极402(N极、负极)。
在一些实施例中,VCSEL阵列光源按特殊的用途也可以进行封装成芯片,类似于电脑的CPU等芯片,将正负极通过连接到引脚在同一侧与外界连接。针对本发明所述的深度相机实施例而言,为了达到体积小的效果,一种较佳的处理方式是直接将未封装的VCSEL半导体切片芯片置于底座201上。芯片的底部与负极相连,顶部与正极相连。
图5所示的是根据本发明另一实施例的激光投影装置示意图,是图1中激光投影模组104的另一种实施例,包括底座201、VCSEL阵列光源、微透镜阵列、 主透镜205以及衍射光学元件(DOE)206。微透镜阵列包含多个微透镜单元204,各个透镜单元204分别与VCSEL阵列中各个VCSEL光源202一一对应,即微透镜阵列中各个微透镜单元204的排列与各个VCSEL光源202一致,即数量相等,排列图案也相同。每个微透镜单元204分别用于接收对应的VCSEL光源202的光束并发散。为了进一步减小激光投影装置的整体体积,在本实施例中,将微透镜单元204与VCSEL光源202进行集成,集成后的情形如5所示,这种方式可以使得激光投影装置的整体体积更小,且微透镜单元204与VCSEL光源202将严格的保持一一对应的关系,不会受到安装等引起的误差影响。
图6将进一步介绍集成微透镜的VCSEL光源501的细节。VCSEL的有源层605在中间,与有源层连接的是限制层606,限制层的作用是用来控制光场和电流以实现对激光形状等的控制,有源层两端还有P型与N型的半导体反射镜604与607,反射镜607的另一侧是顶部电极608(P极、正极),反射镜604的一侧分别是半导体衬底603以及底部电极602(N极、负极)。激光束在P极608之间发出,通过在反射镜607上制作微透镜609以实现集成的效果,比如在一种实施例中通过在反射镜607上沉积SiO2-Si3N4从而形成微透镜。集成微透镜的VCSEL阵列701如图7所示,集成微透镜的VCSEL光源601以不规则图案排列在半导体衬底702上,每个光源表面均有与其一一对应的微透镜。
集成微透镜的VCSEL阵列701中,对各个集成微透镜的VCSEL光源601的控制可以有不同的模式,在一种实施例中,所有的VCSEL光源被同步控制打开与关闭;在另一种实施例中,VCSEL光源被独立或分组控制以产生不同的光照密度。单个VCSEL光源的形状、面积也可以不相同。
在一些实施例中,集成微透镜的VCSEL阵列光源按特殊的用途也可以进行封装成芯片,类似于电脑的CPU等芯片,将正负极通过连接到引脚在同一侧与外界连接。针对本发明所述的深度相机实施例而言,为了达到体积小的效果,一种较佳的处理方式是直接将未封装的VCSEL半导体切片芯片置于底座201上。芯片的底部与负极相连,顶部与正极相连。
在又一实施例中,激光投影装置可以利用晶圆级光学工艺,在半导体衬底上开槽,将光源VCSEL202、微透镜单元204、主透镜205以及衍射光学元件206都直接制作在半导体衬底的开槽中。这种工艺的好处一方面减小整体模组的体 积,另一方面可以在一片晶圆上同时制作多个模组,最后经切割形成多个独立的模组,从而大幅度提高生产效率。
为了进一步减小体积,对于激光投影装置,可以直接将未封装的VCSEL半导体切片芯片置于底座201上,芯片的底部负极连接,顶部正极连接。在以下说明中将以VCSEL切片芯片为例进行说明,但应理解的是封装芯片也包含在本发明的保护范围内。在下面的阐述中,为了便于理解,将用“芯片”、“阵列芯片”等用词来代替上文所提到的VCSEL阵列。
芯片都需要有承载和连接机构,以保证芯片的正常功能。例如电脑CPU有为其独立设计的卡套式连接与固定机构;对于一些发热量不大的专用芯片,会直接通过引脚与主板进行直接相连;而对于本发明所述的芯片,一般具有较高的发热量,且需要有稳固的固定装置。VCSEL阵列芯片由于是用来发射光束,需要较大的功率,发热量较大,另外还需要被集成到体积较小的微型设备中,散热问题需要解决;另一方面,对于深度相机而言,激光投影模组的相对位置要求非常稳固,以确保有稳定、精确的深度图像输出。因此,VCSEL阵列芯片的承载与连接机构就要求既拥有小的体积以便于集成,又需要有较好的散热性能以及稳固的连接。
本发明的激光投影装置在深度相机中采用一种特殊的结构形式来实现体积小、散热高等优点,该结构处于激光投影装置的底部,具体地,包括支撑部件,用来承载芯片;散热部件,用来将芯片产生的热量散失;控制部件,用来控制芯片工作,图2中的底座201即是用于承载及连接VCSEL阵列芯片,在实施例4-8中,底座201被设置成如图8-11所示的芯片嵌入装置801,即底座201起到支撑、散热和控制芯片的三重作用;芯片具体为VCSEL阵列芯片806;控制部件具体为电路板803,通过其接口804接入电极以供电或控制VCSEL阵列芯片806;支撑部件和散热部件具体为同一个部件,即基底802。
在本实施例中,底座201被设置成如图8所示的芯片嵌入装置801。在本实施例中,芯片具体为VCSEL阵列芯片806;控制部件具体的为电路板803,通过其接口804接入电极以供电或控制VCSEL阵列芯片806;支撑部件和散热部件具体为同一个部件,即基底802,用于放置并承载芯片,并且与芯片连接起到散热和/或电极连接的作用,常用的材料为铜镀金、陶瓷等等。该装置可以方便 地与其他控制单元如主板进行连接,且可以稳定地支撑芯片。
在本实施例中,为了减小整体的体积,采取的是在电路板803中间增加孔洞的形式,基底802与电路板803胶接,并且覆盖了孔洞(一般地,孔洞中心与电路板802中间重合),然后将芯片置于孔洞中且与基底连接。这种设置的好处在于可以同时兼顾电路板与芯片之间的连接以及整体厚度的控制。
在又一实施例中,芯片嵌入装置801中,如图9所示,电路板803为柔性电路板(FPC),基底802为铜镀金材料,VCSEL阵列芯片806位于孔洞中心,且通过导电银浆与基底802连接,基底802与电路板803胶接。在FPC的孔洞周围布置了一些焊盘805,焊盘805通过线路与接口804连接。在图9中,正极焊盘通过金线807与VCSEL芯片顶端电极806连接,负极焊盘通过金线808直接与基底802连接,由于基底与芯片的底部电极通过导电银浆相连,因而也就实现了焊盘与底部电极的间接连接。另外,由于VCSEL芯片与基底802连接,且基底具有很好的导热性,因此VCSEL芯片的散热问题也得到了解决。
在另一实施例中,电路板803与基底802之间通过物理连接,比如螺栓等。若利用胶水连接,优点在于不占用空间,操作便捷,但缺点是由于胶水的电阻较大,因而不利于散热,会增加功耗。具体的连接方式在此不做限定。
在另一个不同的实施例中,电路板803为印制电路板(PCB)与柔性电路板(FPC)的结合,即软硬结合电路板,与FPC相比,PCB硬度高,承载性能较好,但是连接则较为困难。因此,在本实施例中,采用了二者结合的方式,即接口所在部位用FPC,而在与基底连接的部位采用软硬结合板。在其他实施例中,电路板803可以全部采用印制电路板(PCB)。
电路板与芯片及基底的连接,更清晰地可见图10。在图10中,电路板803通过金线807和808分别与芯片806以及基底802连接。一般地,电路板的孔洞尺寸应大于芯片806的尺寸,一方面便于安装以及为金线808与基底802的连接留出操作空隙,另一方面进一步提高了基底802的散热性能。孔洞的形状一般为圆形或方形,在此不做限定。
在其他实施例中,连接用的金线也可以为其他任何可以实现导电连接的材料。
为了进一步地减小体积,可以在基底上为芯片开凹槽,如图11所示,这种 方式可以进一步减小整体的厚度。需要注意的是,当基底本身厚度就较薄时不建议开凹槽,以避免当芯片发热时会导致基底材料的变形。
在其他实施例中,基底也可以是其他导热材料,比如陶瓷。此时,VCSEL芯片与基底仅导热连接,与电路板的正、负极导电连接,连接方式可以采取任何其他可以实现导电连接的方式,在此不做限定。
在其他实施例中,基底也可以被设计成适合散热的形状,比如增加扇叶等方式以增加散热面积等。在与手机等设备进行集成过程中也可以将基底与其他散热材料进行连接以提升散热性能。
根据本发明所描述的激光投影装置,采用芯片嵌入装置对芯片进行固定,通过在控制部件上开设孔洞,并将VCSEL阵列芯片嵌入其中,可以充分减小装置的整体体积,同时芯片与散热部件直接接触连接,散热部件同时起到支撑芯片的作用,保证给芯片提供最大限度的散热。与现有技术相比,不仅可以实现小体积、高散热、低功耗,还可以实现更低的放大倍数和更高的成像质量。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (11)

  1. 一种激光投影装置,其特征在于,包括:
    VCSEL阵列,所述VCSEL阵列包括多个垂直腔面发射激光器VCSEL,用于发射光束;
    微透镜阵列,包括与所述VCSEL数量一致且一一对应的多个微透镜单元,所述微透镜单元包括至少一个光学表面,所述光学表面与所述VCSEL间隔为第一距离,用于接收并发散与之对应的所述VCSEL发射的光束;
    主透镜,所述主透镜与所述微透镜阵列间隔为第二距离,用于接收并汇聚由所述微透镜阵列发散的光束;
    图案生成光学元件,用于接收经过所述主透镜汇聚的光束,并向外发射多个至少部分相互重叠的光束。
  2. 根据权利要求1所述的激光投影装置,其特征在于,所述图案生成光学元件包括DOE、微透镜阵列、光栅中的一种。
  3. 根据权利要求1所述的激光投影装置,其特征在于,所述第一距离小于所述微透镜单元的焦距。
  4. 根据权利要求1所述的激光投影装置,其特征在于,所述第二距离小于所述主透镜焦距与所述微透镜单元焦距之和。
  5. 根据权利要求1所述的激光投影装置,其特征在于,所述第二距离小于所述主透镜的焦距。
  6. 根据权利要求1所述的装置,其特征在于,所述多个VCSEL以不规则形状排列以形成所述VCSEL阵列。
  7. 根据权利要求1所述的装置,其特征在于,所述微透镜阵列中至少包含两种不同形状或不同焦距的微透镜单元,每一种所述微透镜单元对应的VCSEL被独立控制发光,以实现不同形状、不同大小或不同密度的发射光束。
  8. 根据权利要求1所述的装置,其特征在于,所述主透镜与所述图案生成光学元件被制作在同一个光学元件上。
  9. 根据权利要求1所述的装置,其特征在于,每个所述微透镜单元集成在每个所述VCSEL的出光口。
  10. 一种深度相机,其特征在于,所述深度相机包括:
    权利要求1~9任一所述的激光投影装置,用于向目标空间中投影结构化光束图像;
    图像采集装置,用于采集目标空间中的所述结构化光束图像;
    处理器,接收由所述图像采集装置采集的结构化光束图像并根据所述结构化光束图像生成所述目标空间的深度图像;
    所述根据所述结构化光束图像生成所述目标空间的深度图像指的是利用匹配算法计算所述结构化光束图像与参考光束图像之间的偏离值,根据所述偏离值计算出所述深度图像。
  11. 根据权利要求10所述的深度相机,其特征在于,所述激光投影装置还包括:支撑部件,用来承载所述VCSEL阵列;散热部件,用来将所述VCSEL阵列产生的热量散失;控制部件,用来控制所述VCSEL阵列工作,并且所述控制部件中开有孔洞,所述VCSEL阵列嵌入到所述孔洞中并与散热部件接触连接,此时散热部件起到支撑部件的作用,从而使所述激光投影装置实现体积小和高散热。
PCT/CN2017/089041 2017-05-09 2017-06-19 阵列激光投影装置及深度相机 WO2018205355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710322794.7 2017-05-09
CN201710322794.7A CN106990548A (zh) 2017-05-09 2017-05-09 阵列激光投影装置及深度相机

Publications (1)

Publication Number Publication Date
WO2018205355A1 true WO2018205355A1 (zh) 2018-11-15

Family

ID=59418615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089041 WO2018205355A1 (zh) 2017-05-09 2017-06-19 阵列激光投影装置及深度相机

Country Status (2)

Country Link
CN (1) CN106990548A (zh)
WO (1) WO2018205355A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332082A (zh) * 2018-01-15 2018-07-27 深圳奥比中光科技有限公司 照明模组
CN110596720A (zh) * 2019-08-19 2019-12-20 深圳奥锐达科技有限公司 距离测量***
CN110716189A (zh) * 2019-09-27 2020-01-21 深圳奥锐达科技有限公司 一种发射器及距离测量***
CN112698353A (zh) * 2020-12-31 2021-04-23 清华大学苏州汽车研究院(吴江) 一种结构线激光与倾斜双目组合的车载视觉雷达***
JP2022049746A (ja) * 2020-09-17 2022-03-30 カシオ計算機株式会社 光源装置、投影装置、マイクロレンズアレイ及び光源制御方法
CN114500808A (zh) * 2019-08-14 2022-05-13 Oppo广东移动通信有限公司 激光投射器、深度相机及电子装置
CN114815451A (zh) * 2021-01-18 2022-07-29 Aptiv技术有限公司 红外激光源装置、照明装置和机动车辆

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357118A (zh) * 2017-08-02 2017-11-17 深圳奥比中光科技有限公司 具有高散热性能的光学模组
CN109756725A (zh) * 2017-08-25 2019-05-14 华为技术有限公司 结构光投影器、三维摄像头模组以及终端设备
CN107591679A (zh) * 2017-09-08 2018-01-16 深圳市三千米光电科技有限公司 利用双远心镜头进行vcsel激光器发散角压缩的装置
CN107741682A (zh) * 2017-10-20 2018-02-27 深圳奥比中光科技有限公司 光源投影装置
CN107748475A (zh) 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
CN110068983A (zh) * 2018-01-24 2019-07-30 宁波舜宇光电信息有限公司 结构光投影装置
CN108594454B (zh) 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108710215A (zh) * 2018-06-20 2018-10-26 深圳阜时科技有限公司 一种光源模组、3d成像装置、身份识别装置及电子设备
CN110707530A (zh) * 2018-07-10 2020-01-17 深圳市安思疆科技有限公司 一种用于3d深度获取设备的vcsel阵列及该3d深度获取设备
US11462888B2 (en) * 2018-10-12 2022-10-04 Lumentum Operations Llc Emitter array with multiple groups of interspersed emitters
DE112019005258T5 (de) * 2018-10-22 2021-07-15 Ams Sensors Asia Pte. Ltd. Strukturierte Beleuchtungseinrichtungen
CN109270699A (zh) * 2018-10-23 2019-01-25 宁波盈芯信息科技有限公司 一种vcsel激光散斑投射器
CN109581795A (zh) * 2018-12-13 2019-04-05 深圳阜时科技有限公司 一种光学投影模组、感测装置及设备
CN109471270A (zh) * 2018-12-26 2019-03-15 宁波舜宇光电信息有限公司 一种结构光投射器、深度成像装置
CN111580281B (zh) * 2019-02-15 2022-08-23 奇景光电股份有限公司 光学装置
CN111947565A (zh) * 2019-04-30 2020-11-17 深圳市光鉴科技有限公司 基于同步ToF离散点云的3D成像方法
CN110471081A (zh) * 2019-04-30 2019-11-19 深圳市光鉴科技有限公司 基于同步ToF离散点云的3D成像装置及电子设备
CN110187594A (zh) * 2019-05-27 2019-08-30 上海鲲游光电科技有限公司 一种线型光场投射器
CN112394523A (zh) * 2019-08-19 2021-02-23 上海鲲游光电科技有限公司 匀光元件及其随机规则制造方法和***以及电子设备
WO2021087998A1 (zh) * 2019-11-08 2021-05-14 南昌欧菲生物识别技术有限公司 光发射模组、深度相机和电子设备
CN111123532A (zh) * 2020-02-25 2020-05-08 李德龙 一种基于全像传递的平面光源光束整形方法及装置
EP4130852A4 (en) * 2020-04-16 2023-05-31 Huawei Technologies Co., Ltd. ELECTROLUMINESCENT ASSEMBLY, TIME-OF-FLIGHT CAMERA MODULE AND MOBILE TERMINAL
CN112769039A (zh) * 2020-11-03 2021-05-07 深圳阜时科技有限公司 一种光源、发射模组、光学感测装置及电子设备
CN113419300A (zh) * 2021-07-21 2021-09-21 上海芯物科技有限公司 一种微透镜阵列
CN113640819A (zh) * 2021-09-15 2021-11-12 上海禾赛科技有限公司 激光雷达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129152A (zh) * 2009-12-21 2011-07-20 微软公司 具有集成vcsel阵列的深度投影仪***
CN102231037A (zh) * 2010-06-16 2011-11-02 微软公司 带有超辐射发光二极管的深度照像机照明器
CN103069436A (zh) * 2010-08-05 2013-04-24 奥博泰克有限公司 照明***
US20160127713A1 (en) * 2014-11-03 2016-05-05 Aquifi, Inc. 3d depth sensor and projection system and methods of operating thereof
CN105705964A (zh) * 2013-10-09 2016-06-22 微软技术许可有限责任公司 发射结构化光的照射模块
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647124A (zh) * 2013-02-04 2017-05-10 深圳市光峰光电技术有限公司 激光光源、波长转换光源、合光光源和投影显示装置
CN103984066B (zh) * 2014-05-20 2016-08-24 昆山柯斯美光电有限公司 用于高速传输的多路并行光组件及其组装方法
JP6563022B2 (ja) * 2015-01-29 2019-08-21 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッドHeptagon Micro Optics Pte. Ltd. パターン化された照射を生成するための装置
US20160377414A1 (en) * 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
CN205283683U (zh) * 2015-12-23 2016-06-01 高准精密工业股份有限公司 光学装置
CN105929559A (zh) * 2016-06-20 2016-09-07 深圳奥比中光科技有限公司 一种激光模组、激光模组制备方法及深度测量装置
CN106569382B (zh) * 2016-10-26 2018-07-06 深圳奥比中光科技有限公司 激光投影仪及其深度相机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129152A (zh) * 2009-12-21 2011-07-20 微软公司 具有集成vcsel阵列的深度投影仪***
CN102231037A (zh) * 2010-06-16 2011-11-02 微软公司 带有超辐射发光二极管的深度照像机照明器
CN103069436A (zh) * 2010-08-05 2013-04-24 奥博泰克有限公司 照明***
CN105705964A (zh) * 2013-10-09 2016-06-22 微软技术许可有限责任公司 发射结构化光的照射模块
US20160127713A1 (en) * 2014-11-03 2016-05-05 Aquifi, Inc. 3d depth sensor and projection system and methods of operating thereof
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332082A (zh) * 2018-01-15 2018-07-27 深圳奥比中光科技有限公司 照明模组
CN114500808A (zh) * 2019-08-14 2022-05-13 Oppo广东移动通信有限公司 激光投射器、深度相机及电子装置
CN110596720A (zh) * 2019-08-19 2019-12-20 深圳奥锐达科技有限公司 距离测量***
CN110716189A (zh) * 2019-09-27 2020-01-21 深圳奥锐达科技有限公司 一种发射器及距离测量***
JP2022049746A (ja) * 2020-09-17 2022-03-30 カシオ計算機株式会社 光源装置、投影装置、マイクロレンズアレイ及び光源制御方法
JP7223287B2 (ja) 2020-09-17 2023-02-16 カシオ計算機株式会社 光源装置、投影装置、及び光源制御方法
CN112698353A (zh) * 2020-12-31 2021-04-23 清华大学苏州汽车研究院(吴江) 一种结构线激光与倾斜双目组合的车载视觉雷达***
CN114815451A (zh) * 2021-01-18 2022-07-29 Aptiv技术有限公司 红外激光源装置、照明装置和机动车辆

Also Published As

Publication number Publication date
CN106990548A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2018205355A1 (zh) 阵列激光投影装置及深度相机
CN206833079U (zh) 阵列激光投影装置及深度相机
US11320666B2 (en) Integrated structured-light projector
CN106990659A (zh) 激光投影装置
US10288417B2 (en) Overlapping pattern projector
CN107132720B (zh) 发光装置及其光学投影模组
US9825425B2 (en) Integrated structured-light projector comprising light-emitting elements on a substrate
CN206877030U (zh) 发光装置及其激光投影模组
US8783893B1 (en) Optical illuminator
KR20200043952A (ko) 구조형 광의 프로젝터
US8950917B2 (en) Vehicular lamp
CN108333856B (zh) 光学投影装置及应用其的深度相机
WO2019128232A1 (zh) 一种多只To封装半导体激光器的空间耦合结构
CN206877029U (zh) 激光投影装置
JP2009135080A (ja) 光源装置
WO2022241778A1 (zh) 飞行时间深度检测的发射装置及电子设备
CN206412341U (zh) 芯片嵌入装置
TW201945819A (zh) 承載結構及其形成方法及光學投影模組
CN208076909U (zh) 芯片嵌入装置及投影模组
WO2018133319A1 (zh) 芯片嵌入装置
JP6331814B2 (ja) 照明装置
CN219329483U (zh) 一种基于vcsel激光二极管阵列的合束光学***
CN203870008U (zh) 激光勘查装置
WO2022163353A1 (ja) 発光装置、発光装置の製造方法、および測距装置
CN115113493A (zh) 一种带微透镜阵列的集成半导体激光直接成像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909523

Country of ref document: EP

Kind code of ref document: A1